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Abstract
Our main goal in this paper is to show that one can skip gradient computations for 
gradient descent type methods applied to certain structured convex programming 
(CP) problems.  To this end, we first present an accelerated gradient sliding (AGS) 
method for minimizing the summation of two smooth convex functions with dif-
ferent Lipschitz constants. We show that the AGS method can skip the gradient 
computation for one of these smooth components without slowing down the over-
all optimal rate of convergence. This result is much sharper than the classic black-
box CP complexity results especially when the difference between the two Lipschitz 
constants associated with these components is large. We then consider an important 
class of bilinear saddle point problem whose objective function is given by the sum-
mation of a smooth component and a nonsmooth one with a bilinear saddle point 
structure. Using the aforementioned AGS method for smooth composite optimiza-
tion and Nesterov’s smoothing technique, we show that one only needs O(1∕

√

�) 
gradient computations for the smooth component while still preserving the optimal 
O(1∕�) overall iteration complexity for solving these saddle point problems. We 
demonstrate that even more significant savings on gradient computations can be 
obtained for strongly convex smooth and bilinear saddle point problems.
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1  Introduction

In this paper, we show that one can skip gradient computations without slowing 
down the convergence of gradient descent type methods for solving certain struc-
tured convex programming (CP) problems. To motivate our study, let us first con-
sider the following classic bilinear saddle point problem (SPP):

Here, X ⊆ ℝ
n and Y ⊆ ℝ

m are nonempty, closed, and convex sets, K ∶ ℝ
n
→ ℝ

m is a 
linear operator, J is a relatively simple convex function, and f ∶ X → ℝ is a continu-
ously differentiable convex function satisfying

for some L > 0 , where lf (u, x) ∶= f (u) + ⟨∇f (u), x − u⟩ denotes the first-order Taylor 
expansion of f at u. Since � is a nonsmooth convex function, traditional nonsmooth 
optimization methods, e.g., the subgradient method, would require O(1∕�2) itera-
tions to find an �-solution of (1.1), i.e., a point x̄ ∈ X s.t. 𝜓(x̄) − 𝜓

∗ ≤ 𝜀 . In a land-
mark work [30], Nesterov suggests to approximate � by a smooth convex function

with

for some 𝜌 > 0 , where y0 ∈ Y  and W(y0, ⋅) is a strongly convex function. By properly 
choosing � and applying the optimal gradient method to (1.3), he shows that one can 
compute an �-solution of (1.1) in at most

iterations. Following [30], much research effort has been devoted to the develop-
ment of first-order methods utilizing the saddle-point structure of (1.1) (see, e.g., the 
smoothing technique [2, 3, 11, 20, 22, 24, 29, 30, 36], the mirror-prox methods [9, 
17, 21, 27], the primal-dual type methods [6, 10, 13, 19, 36, 37] and their equiva-
lent form as the alternating direction method of multipliers [15, 16, 18, 26, 33, 34]). 

(1.1)�
∗ ∶= min

x∈X

�

�(x) ∶= f (x) +max
y∈Y

[⟨Kx, y⟩ − J(y)]

�

.

(1.2)0 ≤ f (x) − lf (u, x) ≤
L

2
‖x − u‖2, ∀x, u ∈ X,

(1.3)�
∗
�
∶= min

x∈X

{

�
�
(x) ∶= f (x) + h

�
(x)

}

,

(1.4)h
�
(x) ∶= max

y∈Y
⟨Kx, y⟩ − J(y) − �W(y0, y)

(1.5)O

�

�

L

�

+
‖K‖

�

�
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Some of these methods (e.g., [9, 10, 19, 22, 34]) can achieve exactly the same com-
plexity bound as in (1.5). Recently, in [35] it is proved that the complexity bound in 
(1.5) is theoretically unimprovable. Specifically, for any first-order method that calls 
oracle O(x, y) ↦ (∇f (x),Kx,KTy) at inquiry point (x, y) to access information of f 
and K in the saddle point problem (1.1), the number of oracle inquiries to compute 
an �-solution is at least (1.5). In other words, if each iteration of a first-order method 
requires both the computation of ∇f  and the evaluation of the linear operators (K 
and KT ), the total numbers of gradient and linear operator evaluations will both be 
no less than O(1∕�) . Therefore, Nesterov’s smooth scheme is an optimal method 
among all first-order methods that performs gradient and linear operator evaluations 
in each iteration.

One problem associated with Nesterov’s smoothing scheme and the related meth-
ods mentioned above is that each iteration of these methods requires both the com-
putation of ∇f  and the evaluation of the linear operators (K and KT ). As a result, the 
total number of gradient and linear operator evaluations will both be bounded by 
O(1∕�) . However, in many applications the computation of ∇f  is often much more 
expensive than the evaluation of the linear operators K and KT . This happens, for 
example, when the linear operator K is sparse (e.g., total variation, overlapped group 
lasso and graph regularization), while f involves a more expensive data-fitting term 
(see Sect. 4 and [23] for some other examples). In [23], Lan considered some similar 
situation and proposed a gradient sliding (GS) algorithm to minimize a class of com-
posite problems whose objective function is given by the summation of a general 
smooth and nonsmooth component. He shows that one can skip the computation of 
the gradient for the smooth component from time to time, while still maintaining the 
O(1∕�2) iteration complexity bound. More specifically, by applying the GS method 
in [23] to problem (1.1), we can show that the number of gradient evaluations of ∇f  
will be bounded by

which is significantly better than (1.5). Unfortunately, the total number of evalua-
tions for the linear operators K and KT will be bounded by

which is much worse than (1.5). An important yet unresolved research question 
is whether one can still preserve the optimal O(1∕�) complexity bound in (1.5) 
for solving (1.1) by utilizing only O(1∕

√

�) gradient computations of ∇f  to find 
an �-solution of (1.1). If so, we could be able to keep the total number of itera-
tions relatively small, but significantly reduce the total number of required gradient 
computations.

In order to address the aforementioned issues associated with existing solution 
methods for solving (1.1), we pursue in this paper a different approach to exploit 

O

(

√

L

�

)

,

O

�

�

L

�

+
‖K‖2

�
2

�

,



364	 G. Lan, Y. Ouyang 

1 3

the structural information of (1.1). Firstly, instead of concentrating solely on nons-
mooth optimization as in [23], we study the following smooth composite optimiza-
tion problem:

Here f and h are smooth convex functions satisfying (1.2) and

respectively. It is worth noting that problem (1.6) can be viewed as a special case of 
either (1.1) or (1.3) (with J = h∗ being a strongly convex function, Y = ℝ

n , K = I 
and � = 0 ). Under the assumption that M ≥ L , we present a novel accelerated gra-
dient sliding (AGS) method which can skip the computation of ∇f  from time to 
time. We show that the total number of required gradient evaluations of ∇f  and ∇h , 
respectively, can be bounded by

to find an �-solution of (1.6). Observe that the above complexity bounds are sharper 
than the complexity bound obtained by Nesterov’s optimal method for smooth con-
vex optimization, which is given by

In particular, for the AGS method, the Lipschitz constant M associated with ∇h does 
not affect at all the number of gradient evaluations of ∇f  . Clearly, the higher ratio 
of M/L will potentially result in more savings on the gradient computation of ∇f  . 
Moreover, if f is strongly convex with modulus � , then the above two complexity 
bounds in (1.8) can be significantly reduced to

respectively, which also improves Nesterov’s optimal method applied to (1.6) in 
terms of the number of gradient evaluations of ∇f  . Observe that in the classic black-
box setting [28, 32] the complexity bounds in terms of gradient evaluations of ∇f  
and ∇h are intertwined, and a larger Lipschitz constant M will result in more gradi-
ent evaluations of ∇f  , even though there is no explicit relationship between ∇f  and 
M. In our development, we break down the black-box assumption by assuming that 
we have separate access to ∇f  and ∇h rather than ∇� as a whole. To the best of 
our knowledge, these types of separate complexity bounds as in (1.8) and (1.9) have 
never been obtained before for smooth convex optimization.

(1.6)�
∗ ∶= min

x∈X
{�(x) ∶= f (x) + h(x)}.

(1.7)0 ≤ h(x) − lh(u, x) ≤
M

2
‖x − u‖2, ∀x, u ∈ X,

(1.8)O

(

√

L

�

)

and O

(

√

M

�

)

O

(

√

L +M

�

)

.

(1.9)O

(√

L

�

log
1

�

)

and O

(√

M

�

log
1

�

)

,
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Secondly, we apply the above AGS method to the smooth approximation prob-
lem (1.3) in order to solve the aforementioned bilinear SPP in  (1.1). By choosing 
the smoothing parameter properly, we show that the total number of gradient evalu-
ations of ∇f  and operator evaluations of K (and KT ) for finding an �-solution of (1.1) 
can be bounded by

respectively. In comparison with Nesterov’s original smoothing scheme and other 
existing methods for solving (1.1), our method can provide significant savings on the 
number of gradient computations of ∇f  without increasing the complexity bound on 
the number of operator evaluations of K and KT . In comparison with the GS method 
in [23], our method can reduce the number of operator evaluations of K and KT from 
O(1∕�2) to O(1∕�) . Moreover, if f is strongly convex with modulus � , the above two 
bounds will be significantly reduced to

respectively. To the best of our knowledge, this is the first time that these tight com-
plexity bounds were obtained for solving the classic bilinear saddle point problem 
(1.1).

It should be noted that, even though the idea of skipping the computation of ∇f  
is similar to [23], the AGS method presented in this paper significantly differs from 
the GS method in [23]. In particular, each iteration of the GS method consists of 
one accelerated gradient iteration together with a bounded number of subgradient 
iterations. On the other hand, each iteration of the AGS method is composed of an 
accelerated gradient iteration nested with a few other accelerated gradient iterations 
to solve a different subproblem. The development of the AGS method seems to be 
more technical than GS and its convergence analysis is also highly nontrivial.

This paper is organized as follows. We first present the AGS method and discuss 
its convergence properties for minimizing the summation of two smooth convex 
functions (1.6) in Sect.  2. Utilizing this new algorithm and its associated conver-
gence results, we study the properties of the AGS method for minimizing the bilin-
ear saddle point problem (1.1) in Sect. 3. We then demonstrate the effectiveness of 
the AGS method throughout preliminary numerical experiments for solving certain 
image reconstruction problems in Sect. 4. Some brief concluding remarks are made 
in Sect. 5.

1.1 � Notation, assumption and terminology

We use ‖ ⋅ ‖ , ‖ ⋅ ‖∗ , and ⟨⋅, ⋅⟩ to denote an arbitrary norm, the associated dual norm, 
and the inner product in an Euclidean space, respectively. It should be noted that 

O

�

�

L

�

�

and O

�

‖K‖

�

�

,

O

��

L

�

log
1

�

�

and O

�

‖K‖
√

�

�

,
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there are two Euclidean spaces ℝn and ℝm in problem (1.1) that may be equipped 
with different norms. Nonetheless, since it is easy to distinguish the norm of x ∈ ℝ

n 
and y ∈ ℝ

m by noticing their respective spaces, we will sightly abuse the nota-
tion and use the same norm notation ‖x‖ and ‖y‖ to denote their norms in ℝn and 
ℝ

m respectively. We will also use ‖K‖ to denote the operator norm of an operator 
K ∶ ℝ

n
→ ℝ

m induced by norms ‖ ⋅ ‖ in ℝn and ℝm.
For any set X, we say that V(⋅, ⋅) is a prox-function associated with X ⊆ ℝ

n modu-
lus � if there exists a strongly convex function �(⋅) with strong convexity parameter 
� such that

The above prox-function is also known as the Bregman divergence [4] (see also [27, 
30]), which generalizes the Euclidean distance ‖x − u‖2

2
∕2 . It can be easily seen 

from (1.10) and the strong convexity of � that

Moreover, we say that the prox-function grows quadratically if there exists a con-
stant C such that V(x, u) ≤ C‖x − u‖2∕2 . Without loss of generality, we assume that 
C = 1 whenever this happens, i.e.,

In this paper, we associate sets X ⊆ ℝ
n and Y ⊆ ℝ

m with prox-functions V(⋅, ⋅) and 
W(⋅, ⋅) with moduli � and � w.r.t. their respective norms in ℝn and ℝm.

For any real number r, ⌈r⌉ and ⌊r⌋ denote the nearest integer to r from above and 
below, respectively. We denote the set of nonnegative and positive real numbers by 
ℝ+ and ℝ++ , respectively.

2 � Accelerated gradient sliding for composite smooth optimization

In this section, we present an accelerated gradient sliding (AGS) algorithm for solv-
ing the smooth composite optimization problem in (1.6) and discuss its convergence 
properties. Our main objective is to show that the AGS algorithm can skip the evalu-
ation of ∇f  from time to time and achieve better complexity bounds in terms of gra-
dient computations than the classical optimal first-order methods applied to (1.6) 
(e.g., Nesterov’s method in [31]). Without loss of generality, throughout this section 
we assume that M ≥ L in (1.2) and (1.7).

2.1 � The accelerated gradient sliding algorithm

The AGS method evolves from the gradient sliding (GS) algorithm in [23], which 
was designed to solve a class of composite convex optimization problems with the 
objective function given by the summation of a smooth and nonsmooth component. 

(1.10)V(x, u) = �(u) − �(x) − ⟨∇�(x), u − x⟩, ∀x, u ∈ X.

(1.11)V(x, u) ≥
�

2
‖x − u‖2 ∀x, y ∈ X.

(1.12)V(x, u) ≤
1

2
‖x − u‖2.
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The basic idea of the GS method is to keep the nonsmooth term inside the projection 
(or proximal mapping) in the accelerated gradient method and then to apply a few 
subgradient descent iterations to solve the projection subproblem. Inspired by [23], 
we suggest to keep the smooth term h whose gradient has a larger Lipschitz constant 
in the proximal mapping in the accelerated gradient method, and then to apply a few 
accelerated gradient iterations to solve this smooth subproblem. As a consequence, 
the proposed AGS method involves two nested loops (i.e., outer and inner itera-
tions), each of which consists of a set of modified accelerated gradient descent itera-
tions (see Algorithm 1). At the k-th outer iteration, we first build a linear approxi-
mation lf (xk, u) of f at the search point x

k
∈ X and then call the ProxAG procedure 

in (2.5) to compute a new pair of search points (xk, x̃k) ∈ X × X . The ProxAG pro-
cedure can be viewed as a subroutine to compute a pair of approximate solutions to

where gk(⋅) is defined in (2.4). Here xk−1 is called the prox-center at the k-th outer 
iteration. It is worth mentioning that there are two essential differences associated 
with the steps (2.3–2.7) from the standard Nesterov’s accelerated gradient iterations. 
Firstly, we use two different search points, i.e., xk and xk , respectively, to update x

k
 

to compute the linear approximation and xk to compute the output solution in (2.6). 
Secondly, we employ two parameters, i.e., �k and �k , to update x

k
 and xk , respec-

tively, rather than just one single parameter. For the purpose of understanding the 
intuition behind the proposed AGS method, with some plausible reasoning, the 
proposed AGS methods can also be understood as an implementation of Nesterov’s 
accelerated gradient method in which the proximal subproblem is solved approxi-
mately. Namely, iterations (2.3) through (2.6) can also be interpreted as follows:

Clearly, if the above proximal subproblem is solved exactly and x̃k = xk , then AGS 
becomes Nesterov’s accelerated gradient method. However, note that a caveat of the 
above interpretation is that x̃k and xk need to be different in order to achieve proper 
convergence results.

Based on the above plausible interpretation, the ProxAG procedure in Algo-
rithm  1 solves the proximal subproblem (2.2) approximately. Specifically, it per-
forms Tk inner accelerated gradient iterations to solve (2.1) with certain properly 
chosen starting points ũ0 and u0 . It should be noted, however, that the accelerated 
gradient iterations in (2.7)–(2.9) also differ from the standard Nesterov’s acceler-
ated gradient iterations in the sense that the definition of the search point u

t
 involves 

a fixed search point x . Since each inner iteration of the ProxAG procedure requires 
one evaluation of ∇h and no evaluation of ∇f  , the number of gradient evaluations of 
∇h will be greater than that of ∇f  as long as Tk > 1 . On the other hand, if �k ≡ �k and 

(2.1)
min
u∈X

gk(u) + h(u) + �V(xk−1, u), or equivalently, min
u∈X

lf (xk, u) + h(u) + �V(xk−1, u),

(2.2)

x
k
= (1 − 𝛾k)xk−1 + 𝛾kxk−1,

x̃k ≈ argmin
u∈X

lf (xk, u) + h(u) + 𝛽V(xk−1, u) (also compute xk from solving the subproblem),

xk = (1 − 𝜆k)xk−1 + 𝜆kx̃k.
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Tk ≡ 1 in the AGS method, and �t ≡ 1 , and pt ≡ qt ≡ 0 in the ProxAG procedure, 
then (2.5) becomes

In this case, the AGS method reduces to a variant of Nesterov’s optimal gradient 
method (see, e.g., [32, 36]). Note that concept of Nesterov’s accelerated gradient 
method (with some modification) is applied twice in both the k = 1,… ,N itera-
tions for solving the original problem and in solving the proximal subproblem (2.2) 
approximately. The idea may lead to different combinations such as non-accelerated 
+ accelerated, accelerated + non-accelerated, and accelerated + accelerated. In this 
paper, we show that the total number of gradient evaluations of ∇f  and ∇h can be 
bounded by O(

√

L∕�) and O(
√

M∕�) respectively. To the best of our knowledge, 
such complexity can only be achieved through the last combination. It is possible to 
adapt the convergence analysis to the former two; however, for these two combina-
tions, the bound of one of the gradient evaluations will deteriorate to a worse O(1∕�) 
order.

Algorithm 1 Accelerated gradient sliding (AGS) algorithm for solving (1.6)
Choose x0 ∈ X. Set x0 = x0.
for k = 1, . . . , N do

xk = (1 − γk)xk−1 + γkxk−1, (2.3)

gk(·) = f(xk), , (2.4)

(xk , x̃k) = ProxAG(gk, xk−1, xk−1, λk, βk, Tk) (2.5)

xk = (1 − λk)xk−1 + λk x̃k. (2.6)

end for
Output xN .

procedure (x+, x̃+) = ProxAG(g, x, x, λ, β, γ, T )
Set ũ0 = x and u0 = x.
for t = 1, . . . , T do

ut = (1− λ)x+ λ(1− αt)ũt−1 + λαtut−1, (2.7)

ut = argmin
u∈X

g(u) + lh(ut, u) + βV (x, u) + (βpt + qt)V (ut−1, u), (2.8)

ũt = (1− αt)ũt−1 + αtut, (2.9)

end for
Output x+ = uT and x̃+ = ũT .

end procedure

Our goal in the remaining part of this section is to establish the convergence of 
the AGS method and to provide theoretical guidance to specify quite a few param-
eters, including {�k} , {�k} , {Tk} , {�k} , {�t} , {pt} , and {qt} , used in the generic state-
ment of this algorithm. In particular, we will provide upper bounds on the number 
of outer and inner iterations, corresponding to the number of gradient evaluations 
of ∇f  and ∇h , respectively, performed by the AGS method to find an �-solution to 
(1.6). It should be noted that, although we use several notations for different param-
eters, we are not leaving the task of choosing parameters to the readers. Actually, the 
several notations of different parameters are only used to describe the framework of 
the proposed AGS method. The exact values of all the parameters will be provided 
in the sequel, and AGS requires no more than the knowledge of two Lipschitz con-
stants L and M.

xk = x̃k = argmin
u∈X

gk(u) + lh(xk, u) + 𝛽kV(xk−1, u).
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2.2 � Approximate error measure and technical lemmas

In our convergence analysis, we measure the quality of the output solution com-
puted at the k-th call to the ProxAG procedure by the following (approximate) error 
measure:

Indeed, if x∗ is an optimal solution to (1.6), then Qk(x, x
∗) provides a linear approxi-

mation for the functional optimality gap �(x) − �(x∗) = f (x) − f (x∗) + h(x) − h(x∗) 
obtained by replacing f with gk . The following result describes some relationship 
between �(x) and Qk(⋅, ⋅).

Lemma 2.1  For any u ∈ X , we have

Proof  By the Lipschitz smoothness assumption (1.2), definition of � and gk in (1.6) 
and (2.4) respectively, and the convexity of f (⋅) , we have

	�  ◻

For convergence analysis, we need the following two technical results. The first 
one below characterizes the solution of optimization problems involving prox-func-
tions. The proof of this result can be found, for example, in Lemma 2 of [14].

Lemma 2.2  Suppose that a convex set Z ⊆ ℝ
n , a convex function q ∶ Z → ℝ , points 

z, z� ∈ Z and scalars �1,�2 ∈ ℝ+ are given. Also let V(z, u) be a prox-function. If

then for any u ∈ Z, we have

(2.10)Qk(x, u) ∶= gk(x) − gk(u) + h(x) − h(u).

(2.11)
�(xk) − �(u) ≤ (1 − �k)[�(xk−1) − �(u)] + Qk(xk, u)

− (1 − �k)Qk(xk−1, u) +
L

2
‖xk − x

k
‖

2.

�(xk) − (1 − �k)�(xk−1) − �k�(u)

(1.2)(1.6)

≤ lf (xk, xk) +
L

2
‖xk − x

k
‖

2 + h(xk)

− (1 − �k)lf (xk, xk−1) − (1 − �k)h(xk−1) − �klf (xk, u) − �kh(u)

(2.4)
= gk(xk) +

L

2
‖xk − x

k
‖

2 + h(xk)

− (1 − �k)gk(xk−1) − (1 − �k)h(xk−1) − �kgk(u) − �kh(u)

= Qk(xk, u) − (1 − �k)Qk(xk−1, u) +
L

2
‖xk − x

k
‖

2.

u∗ ∈ Argmin
u∈Z

q(u) + �1V(z, u) + �2V(z
�, u),
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The second technical result slightly generalizes Lemma 3 of [22] to provide a 
convenient way to study sequences with sublinear rates of convergence.

Lemma 2.3  Let ck ∈ (0, 1) , k = 2, 3,… and C1 > 0 be given, and define

If the sequence {�k}k≥0 satisfies

then for any k ≥ 1 we have

In particular, the above inequality becomes equality when the relations in (2.12) are 
all equality relations.

Proof  The result follows from dividing both sides of (2.12) by Ck and then summing 
up the resulting inequalities or equalities. 	�  ◻

It should be noted that, although (2.12) and (2.13) are stated in the form of inequali-
ties, we can derive some useful formulas by setting them to be equalities. For example, 
let {�t} be the parameters used in the ProxAG procedure (see (2.7) and (2.9)) and con-
sider the sequence {�t}t≥1 defined by

By Lemma 2.3 (with k = t , Ck = �t , ck = �t , �k ≡ 1 , and Bk = �t ) and observing that 
�1 = 1 , we have the following weighted sum result regarding the sum of �i∕�i’s:

Similarly, applying Lemma 2.3 to each component of the recursion 
ũt = (1 − 𝛼t)ũt−1 + 𝛼tut in (2.9) (with k = t , Ck = �t , ck = �t , 𝛿k = ũt , and Bk = �tut ), 
we have a weighted sum description of ũt below:

q(u∗) + �1V(z, u
∗) + �2V(z

�, u∗)

≤ q(u) + �1V(z, u) + �2V(z
�, u) − (�1 + �2)V(u

∗, u).

Ck ∶= (1 − ck)Ck−1, k ≥ 2.

(2.12)�k ≤ (1 − ck)�k−1 + Bk, k = 1, 2,… ,

(2.13)�k ≤ Ck

[

1 − c1

C1

�0 +

k
∑

i=1

Bi

Ci

]

.

(2.14)𝛬t =

{

1 t = 1,

(1 − 𝛼t)𝛬t−1 t > 1.

(2.15)

1 =�t

[

1 − �1

�1

+

t
∑

i=1

�i

�i

]

= �t(1 − �1) + �t

t
∑

i=1

�i

�i

or equivalently,
�t

1 − �t(1 − �1)

t
∑

i=1

�i

�i

= 1.
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In view of (2.15) and the fact that ũ0 = x in the description of the ProxAG proce-
dure, the above relation indicates that ũt is a convex combination of x and {ui}ti=1.

2.3 � Convergence properties of the ProxAG procedure

With the help of the technical results in the previous subsection, we are now 
ready to derive some important convergence properties for the ProxAG proce-
dure in terms of the error measure Qk(⋅, ⋅) . For the sake of notational convenience, 
when we work on the k-th call to the ProxAG procedure, we drop the subscript k 
in (2.10) and just denote

In a similar vein, we also define

Comparing the above notations with (2.3) and (2.6), we can observe that x and x+ , 
respectively, represent x

k
 and xk in the k-th call to the ProxAG procedure.

Lemma 2.4  Consider the k-th call to the ProxAG procedure in Algorithm 1 and let 
�t and x+ be defined in (2.14) and (2.18) respectively. If the parameters satisfy

then

where

Proof  Let us fix any arbitrary u ∈ X and denote

Our proof consists of two major parts. We first prove that

(2.16)ũt = 𝛬t

[

(1 − 𝛼1)ũ0 +

t
∑

i=1

𝛼i

𝛬i

ui

]

.

(2.17)Q(x, u) ∶= g(x) − g(u) + h(x) − h(x).

(2.18)x ∶= (1 − 𝛾)x + 𝛾x and x
+
∶= (1 − 𝜆)x + 𝜆x̃+.

(2.19)� ≤ 1,�T (1 − �1) = 1 −
�

�

, and �pt + qt ≥
�M�t

�

,

(2.20)Q(x
+
, u) − (1 − �)Q(x, u) ≤ �T

T
∑

t=1

�t(u)

�t

, ∀u ∈ X,

(2.21)
�t(u) ∶=���t[V(x, u) − V(x, ut) + ptV(ut−1, u) − (1 + pt)V(ut, u)]

+ ��tqt[V(ut−1, u) − V(ut, u)].

(2.22)v ∶= (1 − 𝜆)x + 𝜆u, and ut ∶= (1 − 𝜆)x + 𝜆ũt.

(2.23)Q(x
+
, u) − (1 − �)Q(x, u) ≤ Q(uT , v) −

(

1 −
�

�

)

Q(u0, v),
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and then estimate the right-hand-side of (2.23) through the following recurrence 
property:

The result in (2.20) then follows as an immediate consequence of (2.23) and (2.24). 
Indeed, by Lemma 2.3 applied to (2.24) (with k = t , Ck = �t , ck = �t , �k = Q(ut, v) , 
and Bk = �t(u) ), we have

where last inequality follows from (2.19) and the fact that �1 = 1 in the definition of 
�t in (2.14). The above relation together with (2.23) then clearly imply (2.20).

We start with the first part of the proof regarding (2.23). By the definition of Q in 
(2.17) and the linearity of g(⋅) , we have

Now, noting that by the relation between u and v in (2.22), we have

In addition, by (2.22) and the convexity of h(⋅) , we obtain

or equivalently,

Applying (2.26) and (2.27) to (2.25), and using the definition of Q in (2.17), we 
obtain

(2.24)Q(ut, v) − (1 − �t)Q(ut−1, v) ≤ �t(u).

Q(uT , v) ≤ �T

[

1 − �1

�1

Q(u0, v) +

T
∑

t=1

�t(u)

�t

]

=

(

1 −
�

�

)

Q(u0, v) + �T

T
∑

t=1

�t(u)

�t

,

(2.25)

Q(x
+
, u) − (1 − �)Q(x, u)

= g(x
+
) − (1 − �)g(x) − �g(u) + h(x

+
) − (1 − �)h(x) − �h(u)

= g(x
+
− (1 − �)x − �u) + h(x

+
) − (1 − �)h(x) − �h(u)

= g(x
+
− x + �(x − u)) + h(x

+
) − h(x) + �(h(x) − h(u)).

(2.26)�(x − u) =
�

�

(�x − �u) =
�

�

(x − v).

�

�

[h(v) − (1 − �)h(x) − �h(u)] ≤ 0,

(2.27)�(h(x) − h(u)) ≤
�

�

(h(x) − h(v)).

Q(x
+
, u) − (1 − �)Q(x, u)

≤ g
(

x
+
− x +

�

�

(x − v)
)

+ h(x
+
) − h(x) +

�

�

(h(x) − h(v))

= g(x
+
) −

(

1 −
�

�

)

g(x) −
�

�

g(v) + h(x
+
) −

(

1 −
�

�

)

h(x) −
�

�

h(v)

≤ Q(x
+
, v) −

(

1 −
�

�

)

Q(x, v).
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Noting that ũ0 = x and x̃+ = ũT in the description of the ProxAG procedure, by the 
definitions of x+ and ut in (2.18) and (2.22) we have x+ = uT and u0 = x respectively. 
Therefore, the above relation is equivalent to (2.23), and we conclude the first part 
of the proof.

For the second part of the proof regarding (2.24), first note that by the definitions 
of u

t
 , ũt , and v in (2.7), (2.9), and (2.22) respectively,

By a similar argument as the above, we also have

Now observe that by the definition of Q in (2.17), the convexity of h(⋅) , and the 
smoothness inequality (1.7) regarding constant M,

Summarizing the above three relations, we have

Moreover, it follows from Lemma 2.2 applied to the optimization problem in the 
definition of ut in (2.8) that

Also by the relation between the prox-function V and norm in (1.11) and our 
assumption (2.19), we have

Combining the above three relations, we conclude (2.24). 	�  ◻

ut − (1 − 𝛼t)ut−1 − 𝛼tv = (ut − ut−1) + 𝛼t(ut−1 − v)

= 𝜆(ũt − ũt−1) + 𝜆𝛼t(ũt−1 − u) = 𝜆(ũt − (1 − 𝛼t)ũt−1) − 𝜆𝛼tu

= 𝜆𝛼t(ut − u).

ut − u
t
= 𝜆(ũt − (1 − 𝛼t)ũt−1) − 𝜆𝛼tut−1 = 𝜆𝛼t(ut − ut−1).

Q(ut, v) − (1 − �t)Q(ut−1, v)

(2.17)
= ��t(g(ut) − g(u)) + h(ut) − (1 − �t)h(ut−1) − �th(v)

(1.7)

≤ ��t(g(ut) − g(u)) + lh(ut, ut) +
M

2
‖ut − u

t
‖

2

− (1 − �t)lh(ut, ut−1) − �tlh(ut, v)

= ��t(g(ut) − g(u)) + ⟨∇h(u
t
), ut − (1 − �t)ut−1 − �tv⟩ +

M

2
‖ut − u

t
‖

2.

Q(ut, v) − (1 − �t)Q(ut−1, v)

≤ ��t(g(ut) − g(u)) + ��t⟨∇h(ut), ut − u)⟩ +
M�

2
�
2
t

2
‖ut − ut−1‖

2

= ��t

�

g(ut) − g(u) + lh(ut, ut) − lh(ut, u) +
M��t

2
‖ut − ut−1‖

2

�

.

g(ut) − g(u) + lh(ut, ut) − lh(ut, u)

≤ �(V(x, u) − V(ut, u) − V(x, ut)) + (�pt + qt)(V(ut−1, u) − V(ut, u) − V(ut−1, ut)).

M��t

2
‖ut − ut−1‖

2
≤

M��t

2�
V(ut−1, ut) ≤ (�pt + qt)V(ut−1, ut).
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In the following proposition, we provide certain sufficient conditions under 
which the right-hand-side of (2.20) can be properly bounded. As a consequence, 
we obtain a recurrence relation for the ProxAG procedure in terms of Q(xk, u).

Proposition 2.1  Consider the k-th call to the ProxAG procedure. If (2.19) holds, 
and

for any 1 ≤ t ≤ T − 1 , then we have

where x+ and x are defined in (2.18).

Proof  To prove the proposition it suffices to estimate the right-hand-side of (2.20). 
We make three observations regarding the results (2.20) and (2.21) of Lemma 2.4. 
First, by the weight sum result of �i∕�i ’s in (2.15),

Second, by the prox-function and norm relation (1.11), the weighted sum results 
(2.15) and (2.16), the assumption of parameters in (2.19), the convexity of ‖ ⋅ ‖2 , and 
the fact that ũ0 = x and x̃+ = ũT in the ProxAG procedure, we have

(2.28)
�tqt

�t

=
�t+1qt+1

�t+1

and
�t(1 + pt)

�t

=
�t+1pt+1

�t+1

(2.29)
Q(x

+
, u) − (1 − �)Q(x, u) ≤ ��T [�(1 + pT ) + qT ]

�

V(x, u) − V(x+, u)
�

−
��

2�
‖x

+
− x‖2,

���T

T
∑

t=1

�t

�t

V(x, u) = ��(1 − �T (1 − �1))V(x, u).

𝜆𝛽𝛬T

T
�

t=1

𝛼t

𝛬t

V(x, ut)
(1.11)(2.19)

≥
𝜈𝛾𝛽

2
⋅

𝛬T

(1 − 𝛬T (1 − 𝛼1))

T
�

t=1

𝛼t

𝛬t

‖x − ut‖
2

≥
𝜈𝛾𝛽

2

�

�

�

�

�

�

x −
𝛬T

1 − 𝛬T (1 − 𝛼1)

T
�

i=1

𝛼t

𝛬t

ut

�

�

�

�

�

�

2

(2.15)(2.16)
=

𝜈𝛾𝛽

2

�

�

�

�

x −
ũT − 𝛬T (1 − 𝛼1)ũ0

1 − 𝛬T (1 − 𝛼1)

�

�

�

�

2

=
𝜈𝛾𝛽

2

�

�

�

�

�

x −
𝜆

𝛾

ũT −

�

1 −
𝜆

𝛾

�

ũ0

�

�

�

�

�

2

=
𝜈𝛽

2𝛾
�

�

𝛾x − 𝜆x̃+ − (𝛾 − 𝜆)x�
�

2

=
𝜈𝛽

2𝛾
‖x − x

+
‖

2,
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where the last equality follows from the definitions of x and x+ in (2.18). Third, by 
the assumption of parameters in (2.28), the fact that �1 = 1 in (2.14), and the rela-
tions that u0 = x and uT = x+ in the ProxAG procedure, we have

Using the above three observations in the result of Lemma 2.4 in (2.20), we have

Comparing the above equation with our goal (2.29), it suffices to show that

By the last relation in our assumption (2.28), the weighted sum result of �i∕�i ’s in 
(2.15), and the fact that �1 = 1 , we have

The above implies that �t(1 + pt) = �t�1p1 + 1 − �t(1 − �1) for any 1 ≤ t ≤ T  . 	�  ◻

2.4 � Main convergence results of the AGS method

With the help of the above proposition and Lemma 2.1, we are now ready to 
establish the convergence of the AGS method. The following sequence will the 
used in the analysis of the AGS method:

���T

T
∑

t=1

�t

�t

[ptV(ut−1, u) − (1 + pt)V(ut, u)] + ��T

T
∑

t=1

�tqt

�t

[V(ut−1, u) − V(ut, u)]

= ���T

[

�1p1V(u0, u) −

T−1
∑

i=1

(

�t(1 + pt)

�t

−
�t+1pt+1

�t+1

)

V(ut, u)

−
�T (1 + pT )

�T

V(uT , u)

]

+ ��TqT [V(u0, u) − V(uT , u)]

= ��

[

�T�1p1V(u0, u) − �T (1 + pT )V(uT , u)
]

+ ��TqT [V(u0, u) − V(uT , u)]

= ��

[

�T�1p1V(x, u) − �T (1 + pT )V(x
+, u)

]

+ ��TqT [V(x, u) − V(x+, u)].

Q(x
+
, u) − (1 − �)Q(x, u)

≤ ��

�

(1 − �T (1 − �1) + �T�1p1)V(x, u) − �T (1 + pT )V(x
+, u)

�

+ ��TqT [V(x, u) − V(x+, u)] −
��

2�
‖x − x

+
‖

2.

�T (1 + pT ) = �T�1p1 + 1 − �T (1 − �1).

�t(1 + pt)

�t

=
�t+1pt+1

�t+1

=
�tpt

�t

+
�t

�t

= … =
�1p1

�1

+

t
∑

i=1

�i

�i

= �1p1 +
1 − �t(1 − �1)

�t

.

(2.30)𝛤k =

{

1 k = 1

(1 − 𝛾k)𝛤k−1 k > 1.
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Theorem 2.1  Suppose that the parameters of the k-th call to the ProxAG procedure 
in Algorithm 1 satisfy

for any 1 ≤ t ≤ T − 1 . If

then

where �k is defined in (2.30).

Proof  Note that (2.31) is simply a summary of assumptions (2.19) and (2.28) for 
Proposition 2.1. It follows from Proposition 2.1 that for all u ∈ X,

Substituting the above bound to the result (2.11) in Lemma 2.1, and using the 
assumption (2.32), we have

which, in view of Lemma 2.3 (with ck = �k , Ck = �k , and �k = �(xk) − �(u) ), then 
implies that

where the last equality follows from the fact that �1 = 1 in (2.32). 	�  ◻

(2.31)
� ≤ 1,�T (1 − �1) =1 −

�

�

, �pt + qt ≥
�M�t

�

,
�tqt

�t

=
�t+1qt+1

�t+1

and
�t(1 + pt)

�t

=
�t+1pt+1

�t+1

.

(2.32)�1 = 1 and �k ≥
L�k

�

,

(2.33)�(xk) − �(u) ≤ �k

k
∑

i=1

�i�Ti
(�i(1 + pTi) + qTi)

�i

(V(xi−1, u) − V(xi, u)),

Qk(xk, u) − (1 − �k)Qk(xk−1, u) ≤ �k�Tk
(�k(1 + pTk ) + qTk )(V(xk−1, u)

− V(xk, u)) −
��k

2�k
‖xk − x

k
‖

2.

�(xk) − �(u) ≤ (1 − �k)[�(xk−1) − �(u)] + �k�Tk
(�k(1 + pTk )

+ qTk )(V(xk−1, u) − V(xk, u)),

�(xk) − �(u) ≤ �k

[

1 − �1

�1

(�(x0) − �(u))

+

k
∑

i=1

�i�Ti
(�i(1 + pTi) + qTi)

�i

(V(xi−1, u) − V(xi, u))

]

= �k

k
∑

i=1

�i�Ti
(�i(1 + pTi) + qTi)

�i

(V(xi−1, u) − V(xi, u)),
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There are many possible selections of parameters that satisfy the assumptions 
of the above theorem. In the following corollaries we describe two different ways 
to specify the parameters of Algorithm  1 that lead to the optimal complexity 
bounds in terms of the number of gradient evaluations of ∇f  and ∇h.

Corollary 2.1  Consider problem (1.6) with the Lipschitz constants in (1.2) and 
(1.7) satisfing M ≥ L . Suppose that the parameters of Algorithm 1 are set to

Also assume that the parameters in the first call to the ProxAG procedure ( k = 1 ) are 
set to

and the parameters in the remaining calls to the ProxAG procedure ( k > 1 ) are set to

Then the numbers of gradient evaluations of ∇f  and ∇h performed by the AGS 
method to compute an �-solution of (1.6) can be bounded by

and

respectively, where x∗ is a solution to (1.6).

Proof  Let us start with verification of (2.31) and (2.32) for the purpose of applying 
Theorem 2.1. We will consider the first call to the ProxAG procedure ( k = 1 ) and the 
remaining calls ( k > 1 ) separately.

When k = 1 , by (2.34) we have �1 = �1 = 1 , and �1 = 3L∕� , hence (2.32) holds 
immediately. By (2.35) we can observe that �t = 2∕(t(t + 1)) satisfies (2.14), and 
that

In addition, by (2.34) and (2.35) we have � = � = 1 and �1 = 1 in (2.31), and that

(2.34)

𝛾k =
2

k + 1
, Tk ≡ T ∶=

�
�

M

L

�

, 𝜆k =

⎧

⎪

⎨

⎪

⎩

1 k = 1,
𝛾k(T + 1)(T + 2)

T(T + 3)
k > 1,

and 𝛽k =
3L𝛾k

𝜈k𝜆k
.

(2.35)�t =
2

t + 1
, pt =

t − 1

2
, and qt =

6M

�t
,

(2.36)�t =
2

t + 2
, pt =

t

2
, and qt =

6M

�k(t + 1)
.

(2.37)Nf ∶=

√

30LV(x0, x
∗)

��

(2.38)Nh ∶=

√

30MV(x0, x
∗)

��

+

√

30LV(x0, x
∗)

��

�tqt

�t

≡
6M

�

, and
�t(1 + pt)

�t

=
t(t + 1)

2
=

�t+1pt+1

�t+1

.
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Therefore (2.31) holds.
For the case when k > 1 , from (2.34) and noting that k, T ≥ 1 , we have

Applying the above relation to the definition of �k in (2.34) we have (2.32). It now 
suffices to verify (2.31) in order to apply Theorem 2.1. We can observe from (2.36) 
that �t = 6∕(t + 1)(t + 2) satisfies (2.14), �tqt∕�t ≡ 2M∕(�k) , and that

Applying (2.34), (2.36), (2.39), and noting that k ≥ 2 and that �T = 6∕(T + 1)(T + 2) 
with T ≥ 1 , we can verify in (2.31) that

Therefore, the conditions in (2.31) are satisfied.
We are now ready to apply Theorem 2.1. In particular, noting that �t(1 + pt) ≡ 1 

from (2.35) and (2.36), we obtain from the result (2.33) of Theorem  2.1 (with 
u = x∗ ) that

where

Substituting (2.34) and (2.35) to (2.41), and noting that �i = 2∕(i(i + 1)) by (2.30), 
we have

𝛽pt + qt ≥ qt =
6M

𝜈t
>

2M

𝜈(t + 1)
=

𝜆M𝛼t

𝜈

.

(2.39)
3

k
>

3𝛾k

2
=

3𝜆k

2

(

1 −
2

(T + 1)(T + 2)

)

≥
3𝜆k

2

(

1 −
2

2 ⋅ 3

)

= 𝜆k.

�t(1 + pt)

�t

=
(t + 1)(t + 2)

6
=

�t+1pt+1

�t+1

.

𝜆 =
𝛾(T + 1)(T + 2)

T(T + 3)
=

2

k + 1

(

1 +
2

T(T + 3)

)

≤
2

3

(

1 +
2

1 ⋅ 4

)

= 1,

𝛬T (1 − 𝛼1) =
2

(T + 1)(T + 2)
= 1 −

T(T + 3)

(T + 1)(T + 2)
= 1 −

𝛾

𝜆

,

𝛽pt + qt > qt =
2M

𝜈(t + 1)
⋅

3

k
>

2𝜆M

𝜈(t + 1)
≥

𝜆M𝛼t

𝜈

.

(2.40)�(xk) − �
∗
≤ �k

k
∑

i=1

�i(V(xi−1, x
∗) − V(xi, x

∗)),

(2.41)�i ∶=
�i(�i + �Ti

qTi)

�i

,
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Applying the above two results regarding �i to (2.40), and noting that 𝜉1 > 𝜉2 , we 
have

where the last inequality is due to the fact that T ≥
√

M∕L.
From the above inequality, the number of calls to the ProxAG procedure for com-

puting an �-solution of (1.6) is bounded by Nf  in (2.37). This is also the bound for 
the number of gradient evaluations of ∇f  . Moreover, the number of gradient evalua-
tions of ∇h is bounded by

	�  ◻

In the above corollary, the constant factors in (2.37) and (2.38) are both 
√

30 . 
In the following corollary, we provide a slightly different set of parameters for 
Algorithm 1 that results in a smaller constant factor for (2.37).

Corollary 2.2  Consider problem (1.6) with the Lipschitz constants in (1.2) and 
(1.7) satisfing M ≥ L . Suppose that the parameters in the first call to the ProxAG 
procedure ( k = 1 ) are set to

and that the parameters in the k-th call ( k > 1 ) are set to

𝜉1 = 𝛽1 + 𝛼TqT =
3L

𝜈

+
12M

𝜈T(T + 1)
, and

𝜉i =
𝜆i𝛽i

𝛤i

+
𝜆i𝛼Ti

qTi

𝛤i

=
3L𝛾i

𝜈i𝛤i

+
𝛾i

𝛤i

(Ti + 1)(Ti + 2)

Ti(Ti + 3)

2

Ti + 2

6M

𝜈i(Ti + 1)

≡
3L

𝜈

+
12M

𝜈T(T + 3)
,∀i > 1.

�(xk) − �
∗
≤ �k

[

�1(V(x0, x
∗) − V(x1, x

∗)) +

k
∑

i=2

�i(V(xi−1, x
∗) − V(xi, x

∗))

]

= �k

[

�1(V(x0, x
∗) − V(x1, x

∗)) + �2(V(x1, x
∗) − V(xk, x

∗))
]

≤ �k�1V(x0, x
∗)

=
2

k(k + 1)

(

3L

�

+
12M

�T(T + 1)

)

V(x0, x
∗)

≤
30L

�k(k + 1)
V(x0, x

∗),

TNf ≤

(
√

M

L
+ 1

)

Nf =

√

30MV(x0, x
∗)

��

+

√

30LV(x0, x
∗)

��

= Nh.

(2.42)�t =
2

t + 1
, pt =

t − 1

2
, and qt =

7LT(T + 1)

4�t
,



380	 G. Lan, Y. Ouyang 

1 3

If the other parameters in Algorithm 1 satisfy

where � is defined in (2.43), then the numbers of gradient evaluations of ∇f  and ∇h 
performed by the AGS method to find an �-solution to problem (1.6) can be bounded 
by

and

respectively.

Proof  Let us verify (2.31) and (2.32) first, so that we could apply Theorem 2.1. We 
consider the case when k = 1 first. By the definition of �k and �k in (2.44), it is clear 
that (2.32) is satisfied when k = 1 . Also, by (2.42) we have that �t = 2∕(t(t + 1)) in 
(2.14),

Moreover, by (2.42) and (2.44), we can verify in (2.31) that

Therefore the relations in (2.31) are all satisfied.
Now we consider the case when k > 1 . By the definition of �t in (2.14) and our 

setting of parameters in (2.43), we observe that �t = (1 − �)t−1 for all t ≥ 1 . Moreo-
ver, from the definition of Tk in (2.44), we can also observe that

(2.43)pt ≡ p ∶=

√

M

L
, �t ≡ � ∶=

1

p + 1
, and qt ≡ 0.

(2.44)

𝛾k =
2

k + 1
, Tk ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�

�

8M

7L

�

, k = 1

�

ln(3)

− ln(1 − 𝛼)

�

, k > 1,

𝜆k ∶=

�

1, k = 1
𝛾k

1 − (1 − 𝛼)Tk
, k > 1,

and 𝛽k ∶=

⎧

⎪

⎨

⎪

⎩

L

𝜈

, k = 1

9L𝛾k

2𝜈k𝜆k
, k > 1,

(2.45)Nf ∶= 3

√

LV(x0, x
∗)

��

(2.46)

Nh ∶= (1 + ln 3)Nf

(
√

M

L
+ 1

)

≤ 7

(
√

MV(x0, x
∗)

��

+

√

LV(x0, x
∗)

��

)

,

�tqt

�t

≡
7LT1(T1 + 1)

4�
, and

�t(1 + pt)

�t

=
t(t + 1)

2
=

�t+1pt+1

�t+1

.

𝜆 = 𝛾 = 1,𝛬T1
(1 − 𝛼1) = 0 = 1 −

𝛾

𝜆

, and 𝛽pt + qt ≥ qt >
7LT2

4𝜈t
=

8M

4𝜈t
>

M𝛼t

𝜈

.
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Four relations can be derived based on the aforementioned two observations, (2.43), 
and (2.44). First,

which leads to (2.32). Second,

Third, noting that k ≥ 2 , we have

Fourth,

The last three relations imply that (2.31) holds.
Summarizing the above discussions regarding both the cases k = 1 and k > 1 , 

applying Theorem 2.1, and noting that �t(1 + pt) ≡ 1 , we have

It should be observed from the definition of �k in (2.44) that �i ∶= 2∕(i(i + 1)) satis-
fies (2.30). Using this observation, applying (2.42), (2.43), and (2.44) to the above 
equation we have

Therefore, (2.47) becomes

(1 − �)Tk ≤
1

3
.

𝛽k =
9L(1 − (1 − 𝛼)Tk )

2𝜈k
≥

3L

𝜈k
>

L𝛾k

𝜈

,

�tqt

�t

≡ 0,
�t(1 + pt)

�t

=
1

(1 − �)t−1
=

�t+1pt+1

�t+1

.

�k

1 − �Tk
(1 − �)

= �k =
�k

1 − (1 − �)Tk
≤

3�k

2
=

3

k + 1
≤ 1.

𝜈𝛽kp

𝜆kM𝛼

=
9L𝛾kp(p + 1)

2k𝜆2
k
M

=
9Lp(p + 1)

(

1 − (1 − 𝛼)Tk
)2

2k𝛾kM

=
9(k + 1)

4k
⋅

(

Lp(p + 1)

M

)

⋅

(

1 − (1 − 𝛼)Tk
)2

>

9

4
⋅ 1 ⋅

4

9
= 1.

(2.47)

�(xk) − �(u) ≤ �k

k
∑

i=1

�i(V(xi−1, u) − V(xi, u)), ∀u ∈ X, where �i ∶=
�i(�i + �Ti

qTi)

�i

.

𝜉1 = 𝛽1 + 𝛼T1
qT1 =

L

𝜈

+
7L

2𝜈
=

9L

2𝜈
and 𝜉i =

𝜆i𝛽i

𝛤i

≡
9L

2𝜈
, ∀i > 1.

(2.48)�(xk) − �(u) ≤
9L

�k(k + 1)
(V(x0, u) − V(xk, u)) ≤

9L

�k(k + 1)
V(x0, u).



382	 G. Lan, Y. Ouyang 

1 3

Setting u = x∗ in the above inequality, we observe that the number of calls to the 
ProxAG procedure for computing an �-solution of (1.6) is bounded by Nf  in (2.45). 
This is also the bound for the number of gradient evaluations of ∇f  . Moreover, by 
(2.43), (2.44), and (2.45) we conclude that the number of gradient evaluations of ∇h 
is bounded by

Here the second inequity is from the property of logarithm functions that 
− ln(1 − �) ≥ � for � ∈ [0, 1) . 	�  ◻

The major difference between the convergence results of Corollaries 2.1 and 2.2 
are their constants in the bound of number of gradient and operator evaluations. In 
particular, Corollary 2.1 has a slightly better bound in Nh and Corollary 2.2 has a 
slightly better bound in Nf  , while both the bounds are in the same order. Since M ≥ L 
in (1.2) and (1.7), the results obtained in Corollaries 2.1 and 2.2 indicate that the 
number of gradient evaluations of ∇f  and ∇h that Algorithm 1 requires for comput-
ing an �-solution of (1.6) can be bounded by O(

√

L∕�) and O(
√

M∕�) , respectively. 
Such a result is particularly useful when M is significantly larger, e.g., M = O(L∕�) , 
since the number of gradient evaluations of ∇f  would not be affected at all by the 
large Lipschitz constant of the whole problem. It is interesting to compare the above 
result with the best known so-far complexity bound under the traditional black-box 
oracle assumption. If we treat problem (1.6) as a general smooth convex optimiza-
tion and study its oracle complexity, i.e., under the assumption that there exists an 
oracle that outputs ∇�(x) for any test point x (and ∇�(x) only), it has been shown 
that the number of calls to the oracle cannot be smaller than O(

√

(L +M)∕�) for 
computing an �-solution [28, 32]. Under such “single oracle” assumption, the com-
plexity bounds in terms of gradient evaluations of ∇f  and ∇h are intertwined, and 
a larger Lipschitz constant M will result in more gradient evaluations of ∇f  , even 
though there is no explicit relationship between ∇f  and M. However, the results in 
Corollaries 2.1 and 2.2 suggest that we can study the oracle complexity of problem 
(1.6) based on the assumption of two separate oracles: one oracle Of  to compute 
∇f  for any test point x, and the other one Oh to compute ∇h(y) for any test point y. 

Nf
∑

k=1

Tk = T1 +

Nf
∑

k=2

Tk ≤

(
√

8M

7L
+ 1

)

+ (Nf − 1)

(

ln 3

− ln(1 − 𝛼)
+ 1

)

≤

(
√

8M

7L
+ 1

)

+ (Nf − 1)
(

ln 3

𝛼

+ 1
)

=

(
√

8M

7L
+ 1

)

+ (Nf − 1)

((
√

M

L
+ 1

)

ln 3 + 1

)

< (1 + ln 3)Nf

(
√

M

L
+ 1

)

< 7

(
√

MV(x0, x
∗)

𝜈𝜀

+

√

LV(x0, x
∗)

𝜈𝜀

)

.
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In particular, these two oracles do not have to be called at the same time, and hence 
it is possible to obtain separate complexity bounds O(

√

L∕�) and O(
√

M∕�) on the 
number of calls to Of  and Oh , respectively.

2.5 � Strongly convex extensions

We now consider a special case of (1.6) where f is strongly convex. More specifi-
cally, we assume that there exists 𝜇 > 0 such that

Under the above assumption, we develop a multi-stage AGS algorithm that can skip 
computation of ∇f  from time to time, and compute an �-solution of (1.6) with

gradient evaluations of ∇f  (see Alagorithm  2). It should be noted that, under the 
traditional black-box setting [28, 32] where one could only access ∇�(x) for each 
inquiry x, the number of evaluations of ∇�(x) required to compute an �-solution is 
bounded by

Algorithm 2 The multi-stage accelerated gradient sliding (M-AGS) algorithm
Choose v0 ∈ X, accuracy ε, iteration limit N0, and initial estimate ∆0 such that φ(v0)− φ∗ ≤ ∆0.
for s = 1, . . . , S do

Run the AGS algorithm with x0 = vs−1, N = N0, and parameters in Corollary 2.2, and let vs = xN .
end for
Output vS .

Theorem 2.2 below describes the main convergence properties of the M-AGS 
algorithm.

Theorem 2.2  Suppose that M ≥ L in (1.7) and (2.49), and that the prox-function 
V(⋅, ⋅) grows quadratically (i.e., (1.12) holds). If the parameters in Algorithm 2 are 
set to

then its output vS must be an �-solution of (1.1). Moreover, the total number of gradi-
ent evaluations of ∇f  and ∇h performed by Algorithm 2 can be bounded respectively 
by

(2.49)
�

2
‖x − u‖2 ≤ f (x) − lf (u, x) ≤

L

2
‖x − u‖2, ∀x, u ∈ X.

(2.50)O

(√

L

�

log
1

�

)

(2.51)O

(√

L +M

�

log
1

�

)

.

(2.52)N0 = 3

√

2L

��

and S = log2 max

{

�0

�

, 1

}

,
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and

Proof  With input x0 = vs−1 and N = N0 , we conclude from (2.48) in the proof of 
Corollary 2.2 (with u = x∗ a solution to problem (1.6)) that

where the last inequality follows from (2.52). Using the facts that the input of the 
AGS algorithm is x0 = vs−1 and that the output is set to vs = xN , and the relation 
(1.12), we conclude

where the last inequality is due to the strong convexity of �(⋅) . It then follows from 
the above relation, the definition of �0 in Algorithm 2, and (2.52) that

Comparing Algorithms 1 and 2, we can observe that the total number of gradient 
evaluations of ∇f  in Algorithm  2 is bounded by N0S , and hence we have (2.53). 
Moreover, comparing (2.45) and (2.46) in Corollary 2.2, we conclude (2.54). 	�  ◻

In view of Theorem 2.2, the total number of gradient evaluations of ∇h required 
by the M-AGS algorithm to compute an �-solution of problem (1.6) is the same as 
the traditional result (2.51). However, by skipping the gradient evaluations of ∇f  
from time to time in the M-AGS algorithm, the total number of gradient evaluations 
of ∇f  is improved from (2.51) to (2.50). Such an improvement becomes more sig-
nificant as the ratio M/L increases.

3 � Application to composite bilinear saddle point problems

Our goal in this section is to show the advantages of the AGS method when applied 
to our motivating problem, i.e., the composite bilinear saddle point problem in (1.1). 
In particular, we show in Sect. 3.1 that the AGS algorithm can be used to solve (1.1) 
by incorporating the smoothing technique in [30] and derive new complexity bounds 
in terms of the number of gradient computations of ∇f  and operator evaluations of 
K and KT . Moreover, we demonstrate in Sect. 3.2 that even more significant saving 

(2.53)Nf ∶= 3

√

2L

��

log2 max

{

�0

�

, 1

}

(2.54)

Nh ∶= (1 + ln 3)Nf

(
√

M

L
+ 1

)

< 9

(√

L

𝜈𝜇

+

√

M

𝜈𝜇

)

log2 max

{

𝛥0

𝜀

, 1

}

.

�(xN) − �
∗
≤

9L

�N0(N0 + 1)
V(x0, x

∗) ≤
�

2
V(x0, x

∗),

�(vs) − �
∗
≤

�

4
‖vs−1 − x∗‖2 ≤

1

2
(�(vs−1) − �

∗),

�(vS) − �
∗
≤

1

2S
(�(v0) − �

∗) ≤
�0

2S
≤ �.



385

1 3

Accelerated gradient sliding for structured convex…

on gradient computation of ∇f  can be obtained when f is strongly convex in (1.1) by 
incorporating the multi-stage AGS method.

3.1 � Saddle point problems

Our goal in this section is to extend the AGS algorithm from composite smooth 
optimization to nonsmooth optimization. By incorporating the smoothing tech-
nique in [30], we can apply AGS to solve the composite saddle point problem (1.1). 
Throughout this section, we assume that the dual feasible set Y in (1.1) is bounded, 
i.e., there exists y0 ∈ Y  such that

is finite, where W(⋅, ⋅) is the prox-function associated with Y with modulus �.
Let �

�
 be the smooth approximation of � defined in (1.3). It can be easily shown 

(see [30]) that

Therefore, if � = �∕(2�) , then an (�∕2)-solution to (1.3) is also an �-solution to 
(1.1). Moreover, it follows from Theorem 1 in [30] that problem (1.3) is given in 
the form of (1.6) (with h(x) = h

�
(x) ) and satisfies (1.7) with M = ‖K‖2∕(��) . Using 

these observations, we are ready to summarize the convergence properties of the 
AGS algorithm for solving problem (1.1).

Proposition 3.1  Let 𝜀 > 0 be given and assume that 2‖K‖2𝛺 > 𝜀𝜔L. If we apply 
the AGS method in Algorithm 1 to problem (1.3) (with h = h

�
 and � = �∕(2�) ), in 

which the parameters are set to (2.42)–(2.44) with M = ‖K‖2∕(��) , then the total 
number of gradient evaluations of ∇f  and linear operator evaluations of K (and KT ) 
in order to find an �-solution of (1.1) can be bounded by

and

respectively.

Proof  By (3.1) we have �∗
�
≤ �

∗ and �(x) ≤ �
�
(x) + �� for all x ∈ X , and hence

Using the above relation and the fact that � = �∕(2�) we conclude that if 
�
�
(x) − �

∗
�
≤ �∕2 , then x is an �-solution to (1.1). To finish the proof, it suffices to 

� ∶= max
v∈Y

W(y0, v)

(3.1)�
�
(x) ≤ �(x) ≤ �

�
(x) + ��, ∀x ∈ X.

(3.2)Nf ∶= 3

(
√

2LV(x0, x
∗)

��

)

(3.3)NK ∶= 14

�
�

2LV(x0, x
∗)

��

+
2‖K‖

√

V(x0, x
∗)�

√

���

�

,

�(x) − �
∗
≤ �

�
(x) − �

∗
�
+ ��, ∀x ∈ X.
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consider the complexity of AGS for computing an �∕2-solution of (1.3). By Cor-
ollary 2.2, the total number of gradient evaluations of ∇f  is bounded by (3.2). By 
Theorem  1 in [30], the evaluation of ∇h

�
 is equivalent to 2 evaluations of linear 

operators: one computation of form Kx for computing the maximizer y∗(x) for prob-
lem (1.4), and one computation of form KTy∗(x) for computing ∇h

�
(x) . Using this 

observation, and substituting M = ‖K‖2∕(��) to (2.46), we conclude (3.3). 	�  ◻

According to Proposition 3.1, the total number of gradient evaluations of ∇f  and 
linear operator evaluations of both K and KT are bounded by

and

respectively, for computing an �-solution of the saddle point problem (1.1). There-
fore, if L ≤ O(‖K‖2∕�) , then the number of gradient evaluations of ∇f  will not be 
affected by the dominating term O(‖K‖∕�) . This result significantly improves the 
best known so-far complexity results for solving the bilinear saddle point prob-
lem (1.1) in [30] and [23]. Specifically, it improves the complexity regarding number 
of gradient computations of ∇f  from O(1∕�) in [30] to O(1∕

√

�) , and also improves 
the complexity regarding operator evaluations involving K from O(1∕�2) in [23] to 
O(1∕�).

3.2 � Strongly convex composite saddle point problems

In this subsection, we still consider the SPP in (1.1), but assume that f is strongly con-
vex (i.e., (2.49) holds). In this case, it has been shown previously in the literature that 
O(‖K‖∕

√

�) first-order iterations, each one of them involving the computation of 
∇f  , and the evaluation of K and KT , are needed in order to compute an �-solution of 
(1.1) (e.g., [29]). However, we demonstrate in this subsection that the complexity with 
respect to the gradient evaluation of ∇f  can be significantly improved from O(1∕

√

�) 
to O(log(1∕�)).

Such an improvement can be achieved by properly restarting the AGS method 
applied to to solve a series of smooth optimization problem of form (1.3), in which the 
smoothing parameter � changes over time. The proposed multi-stage AGS algorithm 
with dynamic smoothing is stated in Algorithm 3. 

(3.4)O

(

√

L

�

)

(3.5)O

�

�

L

�

+
‖K‖

�

�
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Algorithm 3 The multi-stage AGS algorithm with dynamic smoothing
Choose v0 ∈ X, accuracy ε, smoothing parameter ρ0, iteration limit N0, and initial estimate ∆0 of (1.1) such that ψ(v0)−ψ∗ ≤
∆0.
for s = 1, . . . , S do

Run the AGS algorithm to problem (1.3) with ρ = 2−s/2ρ0 (where h = hρ in AGS). In the AGS algorithm, set x0 = vs−1,
N = N0, and parameters in Corollary 2.2, and let vs = xN .
end for
Output vS .

Theorem 3.1 describes the main convergence properties of Algorithm 3.

Theorem 3.1  Let 𝜀 > 0 be given and suppose that the Lipschitz constant L in (2.49) 
satisfies

Also assume that the prox-function V(⋅, ⋅) grows quadratically (i.e., (1.12) holds). If 
the parameters in Algorithm 3 are set to

then the output vS of this algorithm must be an �-solution (1.1). Moreover, the total 
number of gradient evaluations of ∇f  and operator evaluations involving K and KT 
performed by Algorithm 3 can be bounded by

and

respectively.

Proof  Suppose that x∗ is an optimal solution to (1.1). By (2.48) in the proof of Cor-
ollary 2.2, in the s-th stage of Algorithm 3 (calling AGS with input x0 = vs−1 , output 
vs = xN , and iteration number N = N0 ), we have

where the last two inequalities follow from (3.6) and (1.12), respectively. Moreover, 
by (3.1) we have �(vs) ≤ �

�
(vs) + �� and �∗ = �(x∗) ≥ �

�
(x∗) , hence

�‖K‖2 max

�
�

15�0

�

, 1

�

≥ 2��0L.

(3.6)N0 = 3

√

2L

��

, S = log2 max

{

15�0

�

, 1

}

, and �0 =
4�0

�2S∕2
,

(3.7)Nf ∶= 3

√

2L

��

log2 max

{

15�0

�

, 1

}

NK ∶= 18

�

L

��

log2 max

�

15�0

�

, 1

�

+
56

√

�‖K‖
√

��0��

⋅max

�
�

15�0

�

, 1

�

,

�
�
(vs) − �

�
(x∗) = �

�
(xN) − �

�
(x∗)

≤
9L

�N0(N0 + 1)
V(x0, x

∗) ≤
�

2
V(x0, x

∗) ≤
�

4
‖x0 − x∗‖2 =

�

4
‖vs−1 − x∗‖2,
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Combing the above two equations and using the strong convexity of �(⋅) , we have

where the last equality is due to the selection of � in Algorithm 3. Reformulating the 
above relation as

and summing the above inequalities from s = 1,… , S , we have

where the first inequality follows from the fact that �(v0) − �
∗ ≤ �0 and the last 

equality is due to (3.6). By (3.6) and the above result, we have �(vS) − �
∗ ≤ � . 

Comparing the descriptions of Algorithms 1 and 3, we can clearly see that the total 
number of gradient evaluations of ∇f  in Algorithm 3 is given N0S , hence we have 
(3.7).

To complete the proof it suffices to estimate the total number of operator evalu-
ations involving K and KT . By Theorem 1 in [30], in the s-th stage of Algorithm 3, 
the number of operator evaluations involving K is equivalent to twice the number of 
evaluations of ∇h

�
 in the AGS algorithm, which, in view of (2.46) in Corollary 2.2, 

is given by

where we used the relation M = ‖K‖2∕(��) (see Sect. 3.1) in the first equality and 
relations � = 2−s∕2�0 and N = N0 from Algorithm 3 in the last equality. It then fol-
lows from the above result and (3.6) that the total number of operator evaluations 
involving K in Algorithm 3 can be bounded by

�(vs) − �
∗
≤ �

�
(vs) − �

�
(x∗) + ��.

�(vs) − �
∗
≤

�

4
‖vs−1 − x∗‖2 + �� ≤

1

2
[�(vs−1) − �

∗] + ��

=
1

2
[�(vs−1) − �

∗] + 2−s∕2�0�,

2s[�(vs) − �
∗] ≤ 2s−1[�(vs−1) − �

∗] + 2s∕2�0�,

2S(𝜓(vS) − 𝜓
∗) ≤ 𝛥0 + 𝜌0𝛺

S
�

s=1

2s∕2

= 𝛥0 + 𝜌0𝛺

√

2(2S∕2 − 1)
√

2 − 1
< 𝛥0 +

7

2
𝜌0𝛺2S∕2 = 15𝛥0,

2(1 + ln 3)N

�
�

M

L
+ 1

�

= 2(1 + ln 3)N

⎛

⎜

⎜

⎝

�

‖K‖2

��L
+ 1

⎞

⎟

⎟

⎠

= 2(1 + ln 3)N0

⎛

⎜

⎜

⎝

�

2s∕2‖K‖2

�0�L
+ 1

⎞

⎟

⎟

⎠

,
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	�  ◻

By Theorem  3.1, the total number of operator evaluations involving K per-
formed by Algorithm 3 to compute an �-solution of (1.6) can be bounded by

which matches with the best-known complexity result (e.g., [29]). However, the total 
number of gradient evaluations of ∇f  is now bounded by

which drastically improves existing results from O(1∕
√

�) to O(log(1∕�)).

4 � Numerical experiments

For preliminary numerical experiments of the proposed AGS method, we consider 
the following total-variation (TV) regularized image reconstruction problem:

Here x ∈ ℝ
n is the n-vector form of a two-dimensional image to be reconstructed, 

‖Dx‖2,1 is the discrete form of the TV semi-norm where D is the finite difference 
operator, A is a measurement matrix describing the physics of data acquisition, and 
b is the observed data. It should be noted that problem (4.1) is equivalent to

S
�

s=1

2(1 + ln 3)N0

⎛

⎜

⎜

⎝

�

2s∕2‖K‖2

𝜌0𝜔L
+ 1

⎞

⎟

⎟

⎠

= 2(1 + ln 3)N0S +
2(1 + ln 3)N0‖K‖

√

𝜌0𝜔L

S
�

s=1

2s∕4

= 2(1 + ln 3)N0S +
3
√

2(1 + ln 3)
√

𝛺‖K‖2S∕4

√

𝜇𝛥0𝜈𝜔

⋅

21∕4(2S∕4 − 1)

21∕4 − 1

< 2(1 + ln 3)N0S +
56

√

𝛺‖K‖
√

𝜇𝛥0𝜈𝜔

⋅ 2S∕2

< 18

�

L

𝜈𝜇

log2 max

�

15𝛥0

𝜀

, 1

�

+
56

√

𝛺‖K‖
√

𝜇𝛥0𝜈𝜔
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�
�

15𝛥0

𝜀

, 1

�

.

O

�

�

L

�

log
1

�

+
‖K‖
√

�

�

,

O

(√

L

�

log
1

�

)

,

(4.1)min
x∈ℝn

�(x) ∶=
1

2
‖Ax − b‖2 + �‖Dx‖2,1.
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where Y ∶= {y ∈ ℝ
2n ∶ ‖y‖2,∞ ∶= maxi=1,…,n ‖(y

(2i−1), y(2i))T‖2 ≤ 1} . The above 
form can be viewed as a special case of the bilinear SPP (1.1) with

and the associated constants are L = �max(A
TA) and ‖K‖ = �

√

8 (see, e.g., [5]). 
Therefore, as discussed in Sect.  3.1, such problem can be solved by AGS after 
incorporating the smoothing technique in [30] and approximate the above problem 
to the form (1.3).

In this experiment, the dimension of A ∈ ℝ
m×n is set to m = ⌈n∕3⌉ . Each com-

ponent of A is generated from a Bernoulli distribution, namely, it takes equal prob-
ability for the values 1∕

√

m and −1∕
√

m respectively. We generate b from a ground 
truth image xtrue with b = Axtrue + � , where � ∼ N(0, 0.001In) . Two ground truth 
images xtrue are used in the experiment, namely, the 256 by 256 ( n = 65536 ) image 
“Cameraman” and the 135 by 198 ( n = 26730 ) image “Onion”. Both of them are 
built-in test images in the MATLAB image processing toolbox.

The parameters of Algorithm 1 are set to Proposition 3.1 for solving the above 
bilinear SPP through smoothing. In order to demonstrate the efficiency of the AGS 
algorithm, we compare it with Nesterov’s accelerated gradient method (NEST) in 
[32]. Note that AGS and NEST are both applied to the smoothed problem (1.3). 
We compare the performance of AGS and NEST for each test image with different 
smoothing parameter � in (1.3), and TV regularization parameter � in (4.1). For both 
algorithms, the prox-functions V(x,  u) and W(y,  v) are set to Euclidean distances 
‖x − u‖2

2
∕2 and ‖y − v‖2

2
∕2 respectively. In order to perform a fair comparison, we 

run NEST for 200 iterations first, and then run AGS with the same amount of CPU 
time. The performances of AGS and NEST are compared through their respective 
relative errors (�AGS − �

∗)∕�∗ and (�NEST − �
∗)∕�∗ , where �AGS and �NEST are the 

objective values of (4.1) corresponding to the approximated solutions computed by 
AGS and NEST respectively. Here the optimal objective value �∗ is approximated 
by running AGS with 2000 evaluation of ∇f .

Tables 1 and 2 show the comparison between AGS and NEST in terms of gra-
dient evaluations of ∇f  , operator evaluations of K and KT , and objective values 
(4.1). It should be noted that in 200 iterations of the NEST algorithm, the num-
ber of gradient evaluations of ∇f  and operator evaluations of K and KT are given 
by 200 and 400, respectively. We can make a few observations about the results 
reported in these tables. First, by skipping gradient evaluations of ∇f  , AGS is 
able to perform more operator evaluation of K and KT during the same amount 
of CPU time. Noting the complexity bounds (3.4) and (3.5), we can observe that 
the extra amount of operator evaluations K and KT can possibly result in better 
approximate solutions obtained by CGS in terms of objective values. It should be 
noted that in problem (4.1), A is a dense matrix while D is a sparse matrix. There-
fore, a very large number of extra evaluations of K and KT can be performed for 
each skipped gradient evaluation of ∇f  . Second, for the smooth approximation 

min
x∈ℝn

1

2
‖Ax − b‖2 +max

y∈Y
�⟨Dx, y⟩,

f (x) ∶=
1

2
‖Ax − b‖2,K ∶= �D, and J(y) ≡ 0,
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problem (1.3), the Lipschitz constant M of h
�
 is given by M = ‖K‖2∕�� . There-

fore, for the cases with � being fixed, larger values of � result in larger norm ‖K‖ , 
and consequently larger Lipschitz constant M. Moreover, for the cases when � is 
fixed, smaller values of � also lead to larger Lipschitz constant M. For both cases, 
as the ratio of M/L increases, we would skip more and more gradient evaluations 
of ∇f  , and allocate more CPU time for operator evaluations of K and KT , which 
results in more significant performance improvement of AGS over NEST. Such 

Table 1   Numbers of gradient evaluations of ∇f  and ∇h performed by the AGS method for solving (4.1) 
with ground truth image “Cameraman”, after running the same amount of CPU time as 200 iterations of 
NEST. Here �AGS and �NEST are the objective values of (4.1) corresponding to approximated solutions 
obtained by AGS and NEST, respectively

Problem # AGS 
evaluations 
of ∇f

# AGS evalua-
tions of K and 
KT

Relative error 
(�AGS − �

∗)∕�∗

Relative error 
(�NEST − �

∗)∕�∗

Relative error 
(�PD − �

∗)∕�∗

� = 1, � = 10
−5 111 40061 1e−5 1.1e1 5.8e−2

� = 10
−1, � = 10

−5 185 6844 1.3e−5 1.0e1 4.7e−1

� = 10
−2, � = 10

−5 198 989 7.5e−3 4.2e−1 2.9e0

� = 10
−1, � = 10

−7 112 40422 3.6e−4 4.6e1

� = 10
−1, � = 10

−6 158 18166 4.3e−5 3.3e1

� = 10
−1, � = 10

−5 185 6844 1.3e−5 1.0e1

� = 10
−1, � = 10

−4 194 2328 8.1e−6 4.5e−1

� = 10
−1, � = 10

−3 199 994 2.4e−4 4.3e−3

� = 10
−1, � = 10

−2 199 398 4.9e−2 4.9e−2

Table 2   Numbers of gradient evaluations of ∇f  and ∇h performed by the AGS method for solving (4.1) 
with ground truth image “Onion”, after running the same amount of CPU time as 200 iterations of 
NEST. Here �AGS and �NEST are the objective values of (4.1) corresponding to approximated solutions 
obtained by AGS and NEST, respectively

Problem # AGS 
evaluations 
of ∇f

# AGS evalua-
tions of K and 
KT

Relative error 
(�AGS − �

∗)∕�∗

Relative error 
(�NEST − �

∗)∕�∗

Relative error 
(�PD − �

∗)∕�∗

� = 1, � = 10
−5 23 16586 3.0e−4 7.1e0 6.7e−2

� = 10
−1, � = 10

−5 162 5993 3.4e−5 1.1e1 3.8e−1

� = 10
−2, � = 10

−5 196 979 5.2e−3 5.5e−1 3.1e0

� = 10
−1, � = 10

−7 67 24177 6.1e−3 4.3e1

� = 10
−1, � = 10

−6 122 14026 2.0e−4 3.2e1

� = 10
−1, � = 10

−5 162 5993 3.4e−5 1.1e1

� = 10
−1, � = 10

−4 189 2268 8.6e−6 3.3e−1

� = 10
−1, � = 10

−3 193 964 7.4e−6 3.0e−3

� = 10
−1, � = 10

−2 199 398 1.6e−2 1.6e−2
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observations are also consistent with our previous theoretical complexity analysis 
regarding AGS and NEST for solving composite bilinear saddle point problems.

Noting that problem (4.1) is a common problem in imaging science, we also com-
pare AGS and NEST with the best result among a few commonly used primal-dual 
(PD) algorithms in the field. Specifically, we use �PD to denote the best objective 
value computed by the following algorithms: a modified version of primal-dual 
hybrid gradient (PDHG) method [1, 37] (see, e.g., [7] for an introduction on PDHG 
algorithms), an overrelaxed primal-dual method [12, 15], and an inertial primal-dual 
method [25]. Our implementation of the PD algorithms is based on [8] since it stud-
ies all the aforementioned algorithms (see Algorithms 1–3 within).1 Since our main 
objective in this experiment is to demonstrate the effectiveness of AGS over NEST 
on evaluations of ∇f  and ∇h , we do not list all the results computed by the afore-
mentioned PD algorithms, but only simply use �PD to denote the smallest objec-
tive value computed by all PD algorithms among all possible relaxation and inertial 
parameters under either ergodic or non-ergodic iterates. We can observe that AGS 
outperforms PD algorithms significantly in all the experiments.

5 � Concluding remarks

We propose an accelerated gradient sliding (AGS) method for solving certain classes 
of structured convex optimization. The main feature of the proposed AGS method is 
that it could skip gradient computations of a smooth component in the objective 
function from time to time, while still maintaining the overall optimal rate of conver-
gence for these probems. In particular, for minimizing the summation of two smooth 
convex functions, the AGS method can skip the gradient computation of the func-
tion with a smaller Lipschitz constant, resulting in sharper complexity results than 
the best known so-far complexity bound under the traditional black-box assumption. 
Moreover, for solving a class of bilinear saddle-point problem, by applying the AGS 
algorithm to solve its smooth approximation, we show that the number of gradient 
evaluations of the smooth component may be reduced to O(1∕

√

�) , which improves 
the previous O(1∕�) complexity bound in the literature. More significant savings on 
gradient computations can be obtained when the objective function is strongly con-
vex, with the number of gradient evaluations being reduced further to O(log(1∕�)) . 
Numerical experiments further confirm the potential advantages of these new opti-
mization schemes for solving structured convex optimization problems.

A few potential future works are in place. First, although the theoretical perfor-
mance of the proposed AGS method is better than Nesterov’s accelerated gradient 
method when M ≫ L , the complexities developed in Corollaries 2.1 and 2.2 have 
slightly worse universal constant factors than that of Nesterov’s method. Specifi-
cally, for the non-strongly convex smooth case of problem (1.6), applying a version 

1  See Sect. s 7.1.3 in [8] for the settings on relaxation and inertial parameters; note that � = 2 and 
� = 1∕3 are not applicable for problem (4.1). The stepsize parameter in [8] are chosen as the following: 
� = 1∕‖K‖ , and � is the largest value that satisfies convergence conditions (16), (23), or (26) in [8].
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of Nesterov’s method to solve problem (e.g., Theorem 2.2.2 in [32]) we can obtain 
an �-solution within 2

√

(M + L)V(x0, x
∗)∕(��) gradient evaluations of both f and h. 

Theoretically, the bounds for gradient evaluations of f from Nesterov’s method is 
worse than that in Corollary 2.1 when M ≥ 8L . However, when M ≤ 7L , the bounds 
for both gradient evaluations of f and h from Nesterov’s method are better than that 
of the proposed AGS method. Similar observations can be made for Corollary 2.1 
and also later for Corollary 3.1. Since the main purpose of this paper is to develop 
a theoretical possibility of solving composite convex optimization using two sepa-
rated gradient oracles instead of treating them jointly, the authors leave it as a future 
work to study whether the proposed AGS method can be further improved so that its 
performance is similar or better than that of Nesterov’s method when M ≤ 7L . Sec-
ond, it should be noted that the proposed AGS method does not address the sliding 
of strongly convex smooth optimization problems in the most straightforward way. 
Specifically, the proposed M-AGS algorithm described in Algorithm 2 is a multi-
stage restarting scheme that applies the AGS algorithms O(log(1∕�)) times. It is a 
potential future work to study whether one could directly exploit the strong con-
vexity and develop an algorithm that incorporates the strong convexity parameters 
into the update rules of the parameters. Third, in Algorithm 3 we use an adaptive 
strategy for choosing the smoothing parameter � . Such strategy is a key factor that 
contributes to the improved convergence properties of Algorithm 3 in strongly con-
vex problems. It is interesting to study whether such adaptive smoothness parameter 
strategy can also be applied to the non-strongly convex cases to improve practical 
performance while maintaining the same theoretical convergence properties.
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