
Vol.:(0123456789)

Computational Optimization and Applications (2022) 82:361–394
https://doi.org/10.1007/s10589-022-00365-z

1 3

Accelerated gradient sliding for structured convex
optimization

Guanghui Lan1 · Yuyuan Ouyang2

Received: 13 April 2020 / Accepted: 16 March 2022 / Published online: 12 April 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Our main goal in this paper is to show that one can skip gradient computations for
gradient descent type methods applied to certain structured convex programming
(CP) problems. To this end, we first present an accelerated gradient sliding (AGS)
method for minimizing the summation of two smooth convex functions with dif-
ferent Lipschitz constants. We show that the AGS method can skip the gradient
computation for one of these smooth components without slowing down the over-
all optimal rate of convergence. This result is much sharper than the classic black-
box CP complexity results especially when the difference between the two Lipschitz
constants associated with these components is large. We then consider an important
class of bilinear saddle point problem whose objective function is given by the sum-
mation of a smooth component and a nonsmooth one with a bilinear saddle point
structure. Using the aforementioned AGS method for smooth composite optimiza-
tion and Nesterov’s smoothing technique, we show that one only needs O(1∕

√

�)
gradient computations for the smooth component while still preserving the optimal
O(1∕�) overall iteration complexity for solving these saddle point problems. We
demonstrate that even more significant savings on gradient computations can be
obtained for strongly convex smooth and bilinear saddle point problems.

Guanghui Lan is partially supported by National Science Foundation Grants 1319050, 1637473
and 1637474, and Office of Naval Research Grant N00014-16-1-2802. Yuyuan Ouyang is partially
supported by US Dept. of the Air Force Grant FA9453-19-1-0078 and Office of Naval Research
Grant N00014-19-1-2295.

 * Yuyuan Ouyang
 yuyuano@clemson.edu

 Guanghui Lan
 george.lan@isye.gatech.edu

1 H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute
of Technology, Atlanta, USA

2 School of Mathematical and Statistical Sciences, Clemson University, Clemson, USA

http://orcid.org/0000-0002-2609-4805
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-022-00365-z&domain=pdf

362 G. Lan, Y. Ouyang

1 3

Keywords Convex programming · Accelerated gradient sliding · Structure ·
Complexity · Nesterov’s method

Mathematics Subject Classification 90C25 · 90C06 · 49M37

1 Introduction

In this paper, we show that one can skip gradient computations without slowing
down the convergence of gradient descent type methods for solving certain struc-
tured convex programming (CP) problems. To motivate our study, let us first con-
sider the following classic bilinear saddle point problem (SPP):

Here, X ⊆ ℝ
n and Y ⊆ ℝ

m are nonempty, closed, and convex sets, K ∶ ℝ
n
→ ℝ

m is a
linear operator, J is a relatively simple convex function, and f ∶ X → ℝ is a continu-
ously differentiable convex function satisfying

for some L > 0 , where lf (u, x) ∶= f (u) + ⟨∇f (u), x − u⟩ denotes the first-order Taylor
expansion of f at u. Since � is a nonsmooth convex function, traditional nonsmooth
optimization methods, e.g., the subgradient method, would require O(1∕�2) itera-
tions to find an �-solution of (1.1), i.e., a point x̄ ∈ X s.t. 𝜓(x̄) − 𝜓

∗ ≤ 𝜀 . In a land-
mark work [30], Nesterov suggests to approximate � by a smooth convex function

with

for some 𝜌 > 0 , where y0 ∈ Y and W(y0, ⋅) is a strongly convex function. By properly
choosing � and applying the optimal gradient method to (1.3), he shows that one can
compute an �-solution of (1.1) in at most

iterations. Following [30], much research effort has been devoted to the develop-
ment of first-order methods utilizing the saddle-point structure of (1.1) (see, e.g., the
smoothing technique [2, 3, 11, 20, 22, 24, 29, 30, 36], the mirror-prox methods [9,
17, 21, 27], the primal-dual type methods [6, 10, 13, 19, 36, 37] and their equiva-
lent form as the alternating direction method of multipliers [15, 16, 18, 26, 33, 34]).

(1.1)�
∗ ∶= min

x∈X

�

�(x) ∶= f (x) +max
y∈Y

[⟨Kx, y⟩ − J(y)]

�

.

(1.2)0 ≤ f (x) − lf (u, x) ≤
L

2
‖x − u‖2, ∀x, u ∈ X,

(1.3)�
∗
�
∶= min

x∈X

{

�
�
(x) ∶= f (x) + h

�
(x)

}

,

(1.4)h
�
(x) ∶= max

y∈Y
⟨Kx, y⟩ − J(y) − �W(y0, y)

(1.5)O

�

�

L

�

+
‖K‖

�

�

363

1 3

Accelerated gradient sliding for structured convex…

Some of these methods (e.g., [9, 10, 19, 22, 34]) can achieve exactly the same com-
plexity bound as in (1.5). Recently, in [35] it is proved that the complexity bound in
(1.5) is theoretically unimprovable. Specifically, for any first-order method that calls
oracle O(x, y) ↦ (∇f (x),Kx,KTy) at inquiry point (x, y) to access information of f
and K in the saddle point problem (1.1), the number of oracle inquiries to compute
an �-solution is at least (1.5). In other words, if each iteration of a first-order method
requires both the computation of ∇f and the evaluation of the linear operators (K
and KT), the total numbers of gradient and linear operator evaluations will both be
no less than O(1∕�) . Therefore, Nesterov’s smooth scheme is an optimal method
among all first-order methods that performs gradient and linear operator evaluations
in each iteration.

One problem associated with Nesterov’s smoothing scheme and the related meth-
ods mentioned above is that each iteration of these methods requires both the com-
putation of ∇f and the evaluation of the linear operators (K and KT). As a result, the
total number of gradient and linear operator evaluations will both be bounded by
O(1∕�) . However, in many applications the computation of ∇f is often much more
expensive than the evaluation of the linear operators K and KT . This happens, for
example, when the linear operator K is sparse (e.g., total variation, overlapped group
lasso and graph regularization), while f involves a more expensive data-fitting term
(see Sect. 4 and [23] for some other examples). In [23], Lan considered some similar
situation and proposed a gradient sliding (GS) algorithm to minimize a class of com-
posite problems whose objective function is given by the summation of a general
smooth and nonsmooth component. He shows that one can skip the computation of
the gradient for the smooth component from time to time, while still maintaining the
O(1∕�2) iteration complexity bound. More specifically, by applying the GS method
in [23] to problem (1.1), we can show that the number of gradient evaluations of ∇f
will be bounded by

which is significantly better than (1.5). Unfortunately, the total number of evalua-
tions for the linear operators K and KT will be bounded by

which is much worse than (1.5). An important yet unresolved research question
is whether one can still preserve the optimal O(1∕�) complexity bound in (1.5)
for solving (1.1) by utilizing only O(1∕

√

�) gradient computations of ∇f to find
an �-solution of (1.1). If so, we could be able to keep the total number of itera-
tions relatively small, but significantly reduce the total number of required gradient
computations.

In order to address the aforementioned issues associated with existing solution
methods for solving (1.1), we pursue in this paper a different approach to exploit

O

(

√

L

�

)

,

O

�

�

L

�

+
‖K‖2

�
2

�

,

364 G. Lan, Y. Ouyang

1 3

the structural information of (1.1). Firstly, instead of concentrating solely on nons-
mooth optimization as in [23], we study the following smooth composite optimiza-
tion problem:

Here f and h are smooth convex functions satisfying (1.2) and

respectively. It is worth noting that problem (1.6) can be viewed as a special case of
either (1.1) or (1.3) (with J = h∗ being a strongly convex function, Y = ℝ

n , K = I
and � = 0). Under the assumption that M ≥ L , we present a novel accelerated gra-
dient sliding (AGS) method which can skip the computation of ∇f from time to
time. We show that the total number of required gradient evaluations of ∇f and ∇h ,
respectively, can be bounded by

to find an �-solution of (1.6). Observe that the above complexity bounds are sharper
than the complexity bound obtained by Nesterov’s optimal method for smooth con-
vex optimization, which is given by

In particular, for the AGS method, the Lipschitz constant M associated with ∇h does
not affect at all the number of gradient evaluations of ∇f . Clearly, the higher ratio
of M/L will potentially result in more savings on the gradient computation of ∇f .
Moreover, if f is strongly convex with modulus � , then the above two complexity
bounds in (1.8) can be significantly reduced to

respectively, which also improves Nesterov’s optimal method applied to (1.6) in
terms of the number of gradient evaluations of ∇f . Observe that in the classic black-
box setting [28, 32] the complexity bounds in terms of gradient evaluations of ∇f
and ∇h are intertwined, and a larger Lipschitz constant M will result in more gradi-
ent evaluations of ∇f , even though there is no explicit relationship between ∇f and
M. In our development, we break down the black-box assumption by assuming that
we have separate access to ∇f and ∇h rather than ∇� as a whole. To the best of
our knowledge, these types of separate complexity bounds as in (1.8) and (1.9) have
never been obtained before for smooth convex optimization.

(1.6)�
∗ ∶= min

x∈X
{�(x) ∶= f (x) + h(x)}.

(1.7)0 ≤ h(x) − lh(u, x) ≤
M

2
‖x − u‖2, ∀x, u ∈ X,

(1.8)O

(

√

L

�

)

and O

(

√

M

�

)

O

(

√

L +M

�

)

.

(1.9)O

(√

L

�

log
1

�

)

and O

(√

M

�

log
1

�

)

,

365

1 3

Accelerated gradient sliding for structured convex…

Secondly, we apply the above AGS method to the smooth approximation prob-
lem (1.3) in order to solve the aforementioned bilinear SPP in (1.1). By choosing
the smoothing parameter properly, we show that the total number of gradient evalu-
ations of ∇f and operator evaluations of K (and KT) for finding an �-solution of (1.1)
can be bounded by

respectively. In comparison with Nesterov’s original smoothing scheme and other
existing methods for solving (1.1), our method can provide significant savings on the
number of gradient computations of ∇f without increasing the complexity bound on
the number of operator evaluations of K and KT . In comparison with the GS method
in [23], our method can reduce the number of operator evaluations of K and KT from
O(1∕�2) to O(1∕�) . Moreover, if f is strongly convex with modulus � , the above two
bounds will be significantly reduced to

respectively. To the best of our knowledge, this is the first time that these tight com-
plexity bounds were obtained for solving the classic bilinear saddle point problem
(1.1).

It should be noted that, even though the idea of skipping the computation of ∇f
is similar to [23], the AGS method presented in this paper significantly differs from
the GS method in [23]. In particular, each iteration of the GS method consists of
one accelerated gradient iteration together with a bounded number of subgradient
iterations. On the other hand, each iteration of the AGS method is composed of an
accelerated gradient iteration nested with a few other accelerated gradient iterations
to solve a different subproblem. The development of the AGS method seems to be
more technical than GS and its convergence analysis is also highly nontrivial.

This paper is organized as follows. We first present the AGS method and discuss
its convergence properties for minimizing the summation of two smooth convex
functions (1.6) in Sect. 2. Utilizing this new algorithm and its associated conver-
gence results, we study the properties of the AGS method for minimizing the bilin-
ear saddle point problem (1.1) in Sect. 3. We then demonstrate the effectiveness of
the AGS method throughout preliminary numerical experiments for solving certain
image reconstruction problems in Sect. 4. Some brief concluding remarks are made
in Sect. 5.

1.1 Notation, assumption and terminology

We use ‖ ⋅ ‖ , ‖ ⋅ ‖∗ , and ⟨⋅, ⋅⟩ to denote an arbitrary norm, the associated dual norm,
and the inner product in an Euclidean space, respectively. It should be noted that

O

�

�

L

�

�

and O

�

‖K‖

�

�

,

O

��

L

�

log
1

�

�

and O

�

‖K‖
√

�

�

,

366 G. Lan, Y. Ouyang

1 3

there are two Euclidean spaces ℝn and ℝm in problem (1.1) that may be equipped
with different norms. Nonetheless, since it is easy to distinguish the norm of x ∈ ℝ

n
and y ∈ ℝ

m by noticing their respective spaces, we will sightly abuse the nota-
tion and use the same norm notation ‖x‖ and ‖y‖ to denote their norms in ℝn and
ℝ

m respectively. We will also use ‖K‖ to denote the operator norm of an operator
K ∶ ℝ

n
→ ℝ

m induced by norms ‖ ⋅ ‖ in ℝn and ℝm.
For any set X, we say that V(⋅, ⋅) is a prox-function associated with X ⊆ ℝ

n modu-
lus � if there exists a strongly convex function �(⋅) with strong convexity parameter
� such that

The above prox-function is also known as the Bregman divergence [4] (see also [27,
30]), which generalizes the Euclidean distance ‖x − u‖2

2
∕2 . It can be easily seen

from (1.10) and the strong convexity of � that

Moreover, we say that the prox-function grows quadratically if there exists a con-
stant C such that V(x, u) ≤ C‖x − u‖2∕2 . Without loss of generality, we assume that
C = 1 whenever this happens, i.e.,

In this paper, we associate sets X ⊆ ℝ
n and Y ⊆ ℝ

m with prox-functions V(⋅, ⋅) and
W(⋅, ⋅) with moduli � and � w.r.t. their respective norms in ℝn and ℝm.

For any real number r, ⌈r⌉ and ⌊r⌋ denote the nearest integer to r from above and
below, respectively. We denote the set of nonnegative and positive real numbers by
ℝ+ and ℝ++ , respectively.

2 Accelerated gradient sliding for composite smooth optimization

In this section, we present an accelerated gradient sliding (AGS) algorithm for solv-
ing the smooth composite optimization problem in (1.6) and discuss its convergence
properties. Our main objective is to show that the AGS algorithm can skip the evalu-
ation of ∇f from time to time and achieve better complexity bounds in terms of gra-
dient computations than the classical optimal first-order methods applied to (1.6)
(e.g., Nesterov’s method in [31]). Without loss of generality, throughout this section
we assume that M ≥ L in (1.2) and (1.7).

2.1 The accelerated gradient sliding algorithm

The AGS method evolves from the gradient sliding (GS) algorithm in [23], which
was designed to solve a class of composite convex optimization problems with the
objective function given by the summation of a smooth and nonsmooth component.

(1.10)V(x, u) = �(u) − �(x) − ⟨∇�(x), u − x⟩, ∀x, u ∈ X.

(1.11)V(x, u) ≥
�

2
‖x − u‖2 ∀x, y ∈ X.

(1.12)V(x, u) ≤
1

2
‖x − u‖2.

367

1 3

Accelerated gradient sliding for structured convex…

The basic idea of the GS method is to keep the nonsmooth term inside the projection
(or proximal mapping) in the accelerated gradient method and then to apply a few
subgradient descent iterations to solve the projection subproblem. Inspired by [23],
we suggest to keep the smooth term h whose gradient has a larger Lipschitz constant
in the proximal mapping in the accelerated gradient method, and then to apply a few
accelerated gradient iterations to solve this smooth subproblem. As a consequence,
the proposed AGS method involves two nested loops (i.e., outer and inner itera-
tions), each of which consists of a set of modified accelerated gradient descent itera-
tions (see Algorithm 1). At the k-th outer iteration, we first build a linear approxi-
mation lf (xk, u) of f at the search point x

k
∈ X and then call the ProxAG procedure

in (2.5) to compute a new pair of search points (xk, x̃k) ∈ X × X . The ProxAG pro-
cedure can be viewed as a subroutine to compute a pair of approximate solutions to

where gk(⋅) is defined in (2.4). Here xk−1 is called the prox-center at the k-th outer
iteration. It is worth mentioning that there are two essential differences associated
with the steps (2.3–2.7) from the standard Nesterov’s accelerated gradient iterations.
Firstly, we use two different search points, i.e., xk and xk , respectively, to update x

k

to compute the linear approximation and xk to compute the output solution in (2.6).
Secondly, we employ two parameters, i.e., �k and �k , to update x

k
 and xk , respec-

tively, rather than just one single parameter. For the purpose of understanding the
intuition behind the proposed AGS method, with some plausible reasoning, the
proposed AGS methods can also be understood as an implementation of Nesterov’s
accelerated gradient method in which the proximal subproblem is solved approxi-
mately. Namely, iterations (2.3) through (2.6) can also be interpreted as follows:

Clearly, if the above proximal subproblem is solved exactly and x̃k = xk , then AGS
becomes Nesterov’s accelerated gradient method. However, note that a caveat of the
above interpretation is that x̃k and xk need to be different in order to achieve proper
convergence results.

Based on the above plausible interpretation, the ProxAG procedure in Algo-
rithm 1 solves the proximal subproblem (2.2) approximately. Specifically, it per-
forms Tk inner accelerated gradient iterations to solve (2.1) with certain properly
chosen starting points ũ0 and u0 . It should be noted, however, that the accelerated
gradient iterations in (2.7)–(2.9) also differ from the standard Nesterov’s acceler-
ated gradient iterations in the sense that the definition of the search point u

t
 involves

a fixed search point x . Since each inner iteration of the ProxAG procedure requires
one evaluation of ∇h and no evaluation of ∇f , the number of gradient evaluations of
∇h will be greater than that of ∇f as long as Tk > 1 . On the other hand, if �k ≡ �k and

(2.1)
min
u∈X

gk(u) + h(u) + �V(xk−1, u), or equivalently, min
u∈X

lf (xk, u) + h(u) + �V(xk−1, u),

(2.2)

x
k
= (1 − 𝛾k)xk−1 + 𝛾kxk−1,

x̃k ≈ argmin
u∈X

lf (xk, u) + h(u) + 𝛽V(xk−1, u) (also compute xk from solving the subproblem),

xk = (1 − 𝜆k)xk−1 + 𝜆kx̃k.

368 G. Lan, Y. Ouyang

1 3

Tk ≡ 1 in the AGS method, and �t ≡ 1 , and pt ≡ qt ≡ 0 in the ProxAG procedure,
then (2.5) becomes

In this case, the AGS method reduces to a variant of Nesterov’s optimal gradient
method (see, e.g., [32, 36]). Note that concept of Nesterov’s accelerated gradient
method (with some modification) is applied twice in both the k = 1,… ,N itera-
tions for solving the original problem and in solving the proximal subproblem (2.2)
approximately. The idea may lead to different combinations such as non-accelerated
+ accelerated, accelerated + non-accelerated, and accelerated + accelerated. In this
paper, we show that the total number of gradient evaluations of ∇f and ∇h can be
bounded by O(

√

L∕�) and O(
√

M∕�) respectively. To the best of our knowledge,
such complexity can only be achieved through the last combination. It is possible to
adapt the convergence analysis to the former two; however, for these two combina-
tions, the bound of one of the gradient evaluations will deteriorate to a worse O(1∕�)
order.

Algorithm 1 Accelerated gradient sliding (AGS) algorithm for solving (1.6)
Choose x0 ∈ X. Set x0 = x0.
for k = 1, . . . , N do

xk = (1 − γk)xk−1 + γkxk−1, (2.3)

gk(·) = f(xk), , (2.4)

(xk , x̃k) = ProxAG(gk, xk−1, xk−1, λk, βk, Tk) (2.5)

xk = (1 − λk)xk−1 + λk x̃k. (2.6)

end for
Output xN .

procedure (x+, x̃+) = ProxAG(g, x, x, λ, β, γ, T)
Set ũ0 = x and u0 = x.
for t = 1, . . . , T do

ut = (1− λ)x+ λ(1− αt)ũt−1 + λαtut−1, (2.7)

ut = argmin
u∈X

g(u) + lh(ut, u) + βV (x, u) + (βpt + qt)V (ut−1, u), (2.8)

ũt = (1− αt)ũt−1 + αtut, (2.9)

end for
Output x+ = uT and x̃+ = ũT .

end procedure

Our goal in the remaining part of this section is to establish the convergence of
the AGS method and to provide theoretical guidance to specify quite a few param-
eters, including {�k} , {�k} , {Tk} , {�k} , {�t} , {pt} , and {qt} , used in the generic state-
ment of this algorithm. In particular, we will provide upper bounds on the number
of outer and inner iterations, corresponding to the number of gradient evaluations
of ∇f and ∇h , respectively, performed by the AGS method to find an �-solution to
(1.6). It should be noted that, although we use several notations for different param-
eters, we are not leaving the task of choosing parameters to the readers. Actually, the
several notations of different parameters are only used to describe the framework of
the proposed AGS method. The exact values of all the parameters will be provided
in the sequel, and AGS requires no more than the knowledge of two Lipschitz con-
stants L and M.

xk = x̃k = argmin
u∈X

gk(u) + lh(xk, u) + 𝛽kV(xk−1, u).

369

1 3

Accelerated gradient sliding for structured convex…

2.2 Approximate error measure and technical lemmas

In our convergence analysis, we measure the quality of the output solution com-
puted at the k-th call to the ProxAG procedure by the following (approximate) error
measure:

Indeed, if x∗ is an optimal solution to (1.6), then Qk(x, x
∗) provides a linear approxi-

mation for the functional optimality gap �(x) − �(x∗) = f (x) − f (x∗) + h(x) − h(x∗)
obtained by replacing f with gk . The following result describes some relationship
between �(x) and Qk(⋅, ⋅).

Lemma 2.1 For any u ∈ X , we have

Proof By the Lipschitz smoothness assumption (1.2), definition of � and gk in (1.6)
and (2.4) respectively, and the convexity of f (⋅) , we have

 ◻

For convergence analysis, we need the following two technical results. The first
one below characterizes the solution of optimization problems involving prox-func-
tions. The proof of this result can be found, for example, in Lemma 2 of [14].

Lemma 2.2 Suppose that a convex set Z ⊆ ℝ
n , a convex function q ∶ Z → ℝ , points

z, z� ∈ Z and scalars �1,�2 ∈ ℝ+ are given. Also let V(z, u) be a prox-function. If

then for any u ∈ Z, we have

(2.10)Qk(x, u) ∶= gk(x) − gk(u) + h(x) − h(u).

(2.11)
�(xk) − �(u) ≤ (1 − �k)[�(xk−1) − �(u)] + Qk(xk, u)

− (1 − �k)Qk(xk−1, u) +
L

2
‖xk − x

k
‖

2.

�(xk) − (1 − �k)�(xk−1) − �k�(u)

(1.2)(1.6)

≤ lf (xk, xk) +
L

2
‖xk − x

k
‖

2 + h(xk)

− (1 − �k)lf (xk, xk−1) − (1 − �k)h(xk−1) − �klf (xk, u) − �kh(u)

(2.4)
= gk(xk) +

L

2
‖xk − x

k
‖

2 + h(xk)

− (1 − �k)gk(xk−1) − (1 − �k)h(xk−1) − �kgk(u) − �kh(u)

= Qk(xk, u) − (1 − �k)Qk(xk−1, u) +
L

2
‖xk − x

k
‖

2.

u∗ ∈ Argmin
u∈Z

q(u) + �1V(z, u) + �2V(z
�, u),

370 G. Lan, Y. Ouyang

1 3

The second technical result slightly generalizes Lemma 3 of [22] to provide a
convenient way to study sequences with sublinear rates of convergence.

Lemma 2.3 Let ck ∈ (0, 1) , k = 2, 3,… and C1 > 0 be given, and define

If the sequence {�k}k≥0 satisfies

then for any k ≥ 1 we have

In particular, the above inequality becomes equality when the relations in (2.12) are
all equality relations.

Proof The result follows from dividing both sides of (2.12) by Ck and then summing
up the resulting inequalities or equalities. ◻

It should be noted that, although (2.12) and (2.13) are stated in the form of inequali-
ties, we can derive some useful formulas by setting them to be equalities. For example,
let {�t} be the parameters used in the ProxAG procedure (see (2.7) and (2.9)) and con-
sider the sequence {�t}t≥1 defined by

By Lemma 2.3 (with k = t , Ck = �t , ck = �t , �k ≡ 1 , and Bk = �t) and observing that
�1 = 1 , we have the following weighted sum result regarding the sum of �i∕�i’s:

Similarly, applying Lemma 2.3 to each component of the recursion
ũt = (1 − 𝛼t)ũt−1 + 𝛼tut in (2.9) (with k = t , Ck = �t , ck = �t , 𝛿k = ũt , and Bk = �tut),
we have a weighted sum description of ũt below:

q(u∗) + �1V(z, u
∗) + �2V(z

�, u∗)

≤ q(u) + �1V(z, u) + �2V(z
�, u) − (�1 + �2)V(u

∗, u).

Ck ∶= (1 − ck)Ck−1, k ≥ 2.

(2.12)�k ≤ (1 − ck)�k−1 + Bk, k = 1, 2,… ,

(2.13)�k ≤ Ck

[

1 − c1

C1

�0 +

k
∑

i=1

Bi

Ci

]

.

(2.14)𝛬t =

{

1 t = 1,

(1 − 𝛼t)𝛬t−1 t > 1.

(2.15)

1 =�t

[

1 − �1

�1

+

t
∑

i=1

�i

�i

]

= �t(1 − �1) + �t

t
∑

i=1

�i

�i

or equivalently,
�t

1 − �t(1 − �1)

t
∑

i=1

�i

�i

= 1.

371

1 3

Accelerated gradient sliding for structured convex…

In view of (2.15) and the fact that ũ0 = x in the description of the ProxAG proce-
dure, the above relation indicates that ũt is a convex combination of x and {ui}ti=1.

2.3 Convergence properties of the ProxAG procedure

With the help of the technical results in the previous subsection, we are now
ready to derive some important convergence properties for the ProxAG proce-
dure in terms of the error measure Qk(⋅, ⋅) . For the sake of notational convenience,
when we work on the k-th call to the ProxAG procedure, we drop the subscript k
in (2.10) and just denote

In a similar vein, we also define

Comparing the above notations with (2.3) and (2.6), we can observe that x and x+ ,
respectively, represent x

k
 and xk in the k-th call to the ProxAG procedure.

Lemma 2.4 Consider the k-th call to the ProxAG procedure in Algorithm 1 and let
�t and x+ be defined in (2.14) and (2.18) respectively. If the parameters satisfy

then

where

Proof Let us fix any arbitrary u ∈ X and denote

Our proof consists of two major parts. We first prove that

(2.16)ũt = 𝛬t

[

(1 − 𝛼1)ũ0 +

t
∑

i=1

𝛼i

𝛬i

ui

]

.

(2.17)Q(x, u) ∶= g(x) − g(u) + h(x) − h(x).

(2.18)x ∶= (1 − 𝛾)x + 𝛾x and x
+
∶= (1 − 𝜆)x + 𝜆x̃+.

(2.19)� ≤ 1,�T (1 − �1) = 1 −
�

�

, and �pt + qt ≥
�M�t

�

,

(2.20)Q(x
+
, u) − (1 − �)Q(x, u) ≤ �T

T
∑

t=1

�t(u)

�t

, ∀u ∈ X,

(2.21)
�t(u) ∶=���t[V(x, u) − V(x, ut) + ptV(ut−1, u) − (1 + pt)V(ut, u)]

+ ��tqt[V(ut−1, u) − V(ut, u)].

(2.22)v ∶= (1 − 𝜆)x + 𝜆u, and ut ∶= (1 − 𝜆)x + 𝜆ũt.

(2.23)Q(x
+
, u) − (1 − �)Q(x, u) ≤ Q(uT , v) −

(

1 −
�

�

)

Q(u0, v),

372 G. Lan, Y. Ouyang

1 3

and then estimate the right-hand-side of (2.23) through the following recurrence
property:

The result in (2.20) then follows as an immediate consequence of (2.23) and (2.24).
Indeed, by Lemma 2.3 applied to (2.24) (with k = t , Ck = �t , ck = �t , �k = Q(ut, v) ,
and Bk = �t(u)), we have

where last inequality follows from (2.19) and the fact that �1 = 1 in the definition of
�t in (2.14). The above relation together with (2.23) then clearly imply (2.20).

We start with the first part of the proof regarding (2.23). By the definition of Q in
(2.17) and the linearity of g(⋅) , we have

Now, noting that by the relation between u and v in (2.22), we have

In addition, by (2.22) and the convexity of h(⋅) , we obtain

or equivalently,

Applying (2.26) and (2.27) to (2.25), and using the definition of Q in (2.17), we
obtain

(2.24)Q(ut, v) − (1 − �t)Q(ut−1, v) ≤ �t(u).

Q(uT , v) ≤ �T

[

1 − �1

�1

Q(u0, v) +

T
∑

t=1

�t(u)

�t

]

=

(

1 −
�

�

)

Q(u0, v) + �T

T
∑

t=1

�t(u)

�t

,

(2.25)

Q(x
+
, u) − (1 − �)Q(x, u)

= g(x
+
) − (1 − �)g(x) − �g(u) + h(x

+
) − (1 − �)h(x) − �h(u)

= g(x
+
− (1 − �)x − �u) + h(x

+
) − (1 − �)h(x) − �h(u)

= g(x
+
− x + �(x − u)) + h(x

+
) − h(x) + �(h(x) − h(u)).

(2.26)�(x − u) =
�

�

(�x − �u) =
�

�

(x − v).

�

�

[h(v) − (1 − �)h(x) − �h(u)] ≤ 0,

(2.27)�(h(x) − h(u)) ≤
�

�

(h(x) − h(v)).

Q(x
+
, u) − (1 − �)Q(x, u)

≤ g
(

x
+
− x +

�

�

(x − v)
)

+ h(x
+
) − h(x) +

�

�

(h(x) − h(v))

= g(x
+
) −

(

1 −
�

�

)

g(x) −
�

�

g(v) + h(x
+
) −

(

1 −
�

�

)

h(x) −
�

�

h(v)

≤ Q(x
+
, v) −

(

1 −
�

�

)

Q(x, v).

373

1 3

Accelerated gradient sliding for structured convex…

Noting that ũ0 = x and x̃+ = ũT in the description of the ProxAG procedure, by the
definitions of x+ and ut in (2.18) and (2.22) we have x+ = uT and u0 = x respectively.
Therefore, the above relation is equivalent to (2.23), and we conclude the first part
of the proof.

For the second part of the proof regarding (2.24), first note that by the definitions
of u

t
 , ũt , and v in (2.7), (2.9), and (2.22) respectively,

By a similar argument as the above, we also have

Now observe that by the definition of Q in (2.17), the convexity of h(⋅) , and the
smoothness inequality (1.7) regarding constant M,

Summarizing the above three relations, we have

Moreover, it follows from Lemma 2.2 applied to the optimization problem in the
definition of ut in (2.8) that

Also by the relation between the prox-function V and norm in (1.11) and our
assumption (2.19), we have

Combining the above three relations, we conclude (2.24). ◻

ut − (1 − 𝛼t)ut−1 − 𝛼tv = (ut − ut−1) + 𝛼t(ut−1 − v)

= 𝜆(ũt − ũt−1) + 𝜆𝛼t(ũt−1 − u) = 𝜆(ũt − (1 − 𝛼t)ũt−1) − 𝜆𝛼tu

= 𝜆𝛼t(ut − u).

ut − u
t
= 𝜆(ũt − (1 − 𝛼t)ũt−1) − 𝜆𝛼tut−1 = 𝜆𝛼t(ut − ut−1).

Q(ut, v) − (1 − �t)Q(ut−1, v)

(2.17)
= ��t(g(ut) − g(u)) + h(ut) − (1 − �t)h(ut−1) − �th(v)

(1.7)

≤ ��t(g(ut) − g(u)) + lh(ut, ut) +
M

2
‖ut − u

t
‖

2

− (1 − �t)lh(ut, ut−1) − �tlh(ut, v)

= ��t(g(ut) − g(u)) + ⟨∇h(u
t
), ut − (1 − �t)ut−1 − �tv⟩ +

M

2
‖ut − u

t
‖

2.

Q(ut, v) − (1 − �t)Q(ut−1, v)

≤ ��t(g(ut) − g(u)) + ��t⟨∇h(ut), ut − u)⟩ +
M�

2
�
2
t

2
‖ut − ut−1‖

2

= ��t

�

g(ut) − g(u) + lh(ut, ut) − lh(ut, u) +
M��t

2
‖ut − ut−1‖

2

�

.

g(ut) − g(u) + lh(ut, ut) − lh(ut, u)

≤ �(V(x, u) − V(ut, u) − V(x, ut)) + (�pt + qt)(V(ut−1, u) − V(ut, u) − V(ut−1, ut)).

M��t

2
‖ut − ut−1‖

2
≤

M��t

2�
V(ut−1, ut) ≤ (�pt + qt)V(ut−1, ut).

374 G. Lan, Y. Ouyang

1 3

In the following proposition, we provide certain sufficient conditions under
which the right-hand-side of (2.20) can be properly bounded. As a consequence,
we obtain a recurrence relation for the ProxAG procedure in terms of Q(xk, u).

Proposition 2.1 Consider the k-th call to the ProxAG procedure. If (2.19) holds,
and

for any 1 ≤ t ≤ T − 1 , then we have

where x+ and x are defined in (2.18).

Proof To prove the proposition it suffices to estimate the right-hand-side of (2.20).
We make three observations regarding the results (2.20) and (2.21) of Lemma 2.4.
First, by the weight sum result of �i∕�i ’s in (2.15),

Second, by the prox-function and norm relation (1.11), the weighted sum results
(2.15) and (2.16), the assumption of parameters in (2.19), the convexity of ‖ ⋅ ‖2 , and
the fact that ũ0 = x and x̃+ = ũT in the ProxAG procedure, we have

(2.28)
�tqt

�t

=
�t+1qt+1

�t+1

and
�t(1 + pt)

�t

=
�t+1pt+1

�t+1

(2.29)
Q(x

+
, u) − (1 − �)Q(x, u) ≤ ��T [�(1 + pT) + qT]

�

V(x, u) − V(x+, u)
�

−
��

2�
‖x

+
− x‖2,

���T

T
∑

t=1

�t

�t

V(x, u) = ��(1 − �T (1 − �1))V(x, u).

𝜆𝛽𝛬T

T
�

t=1

𝛼t

𝛬t

V(x, ut)
(1.11)(2.19)

≥
𝜈𝛾𝛽

2
⋅

𝛬T

(1 − 𝛬T (1 − 𝛼1))

T
�

t=1

𝛼t

𝛬t

‖x − ut‖
2

≥
𝜈𝛾𝛽

2

�

�

�

�

�

�

x −
𝛬T

1 − 𝛬T (1 − 𝛼1)

T
�

i=1

𝛼t

𝛬t

ut

�

�

�

�

�

�

2

(2.15)(2.16)
=

𝜈𝛾𝛽

2

�

�

�

�

x −
ũT − 𝛬T (1 − 𝛼1)ũ0

1 − 𝛬T (1 − 𝛼1)

�

�

�

�

2

=
𝜈𝛾𝛽

2

�

�

�

�

�

x −
𝜆

𝛾

ũT −

�

1 −
𝜆

𝛾

�

ũ0

�

�

�

�

�

2

=
𝜈𝛽

2𝛾
�

�

𝛾x − 𝜆x̃+ − (𝛾 − 𝜆)x�
�

2

=
𝜈𝛽

2𝛾
‖x − x

+
‖

2,

375

1 3

Accelerated gradient sliding for structured convex…

where the last equality follows from the definitions of x and x+ in (2.18). Third, by
the assumption of parameters in (2.28), the fact that �1 = 1 in (2.14), and the rela-
tions that u0 = x and uT = x+ in the ProxAG procedure, we have

Using the above three observations in the result of Lemma 2.4 in (2.20), we have

Comparing the above equation with our goal (2.29), it suffices to show that

By the last relation in our assumption (2.28), the weighted sum result of �i∕�i ’s in
(2.15), and the fact that �1 = 1 , we have

The above implies that �t(1 + pt) = �t�1p1 + 1 − �t(1 − �1) for any 1 ≤ t ≤ T . ◻

2.4 Main convergence results of the AGS method

With the help of the above proposition and Lemma 2.1, we are now ready to
establish the convergence of the AGS method. The following sequence will the
used in the analysis of the AGS method:

���T

T
∑

t=1

�t

�t

[ptV(ut−1, u) − (1 + pt)V(ut, u)] + ��T

T
∑

t=1

�tqt

�t

[V(ut−1, u) − V(ut, u)]

= ���T

[

�1p1V(u0, u) −

T−1
∑

i=1

(

�t(1 + pt)

�t

−
�t+1pt+1

�t+1

)

V(ut, u)

−
�T (1 + pT)

�T

V(uT , u)

]

+ ��TqT [V(u0, u) − V(uT , u)]

= ��

[

�T�1p1V(u0, u) − �T (1 + pT)V(uT , u)
]

+ ��TqT [V(u0, u) − V(uT , u)]

= ��

[

�T�1p1V(x, u) − �T (1 + pT)V(x
+, u)

]

+ ��TqT [V(x, u) − V(x+, u)].

Q(x
+
, u) − (1 − �)Q(x, u)

≤ ��

�

(1 − �T (1 − �1) + �T�1p1)V(x, u) − �T (1 + pT)V(x
+, u)

�

+ ��TqT [V(x, u) − V(x+, u)] −
��

2�
‖x − x

+
‖

2.

�T (1 + pT) = �T�1p1 + 1 − �T (1 − �1).

�t(1 + pt)

�t

=
�t+1pt+1

�t+1

=
�tpt

�t

+
�t

�t

= … =
�1p1

�1

+

t
∑

i=1

�i

�i

= �1p1 +
1 − �t(1 − �1)

�t

.

(2.30)𝛤k =

{

1 k = 1

(1 − 𝛾k)𝛤k−1 k > 1.

376 G. Lan, Y. Ouyang

1 3

Theorem 2.1 Suppose that the parameters of the k-th call to the ProxAG procedure
in Algorithm 1 satisfy

for any 1 ≤ t ≤ T − 1 . If

then

where �k is defined in (2.30).

Proof Note that (2.31) is simply a summary of assumptions (2.19) and (2.28) for
Proposition 2.1. It follows from Proposition 2.1 that for all u ∈ X,

Substituting the above bound to the result (2.11) in Lemma 2.1, and using the
assumption (2.32), we have

which, in view of Lemma 2.3 (with ck = �k , Ck = �k , and �k = �(xk) − �(u)), then
implies that

where the last equality follows from the fact that �1 = 1 in (2.32). ◻

(2.31)
� ≤ 1,�T (1 − �1) =1 −

�

�

, �pt + qt ≥
�M�t

�

,
�tqt

�t

=
�t+1qt+1

�t+1

and
�t(1 + pt)

�t

=
�t+1pt+1

�t+1

.

(2.32)�1 = 1 and �k ≥
L�k

�

,

(2.33)�(xk) − �(u) ≤ �k

k
∑

i=1

�i�Ti
(�i(1 + pTi) + qTi)

�i

(V(xi−1, u) − V(xi, u)),

Qk(xk, u) − (1 − �k)Qk(xk−1, u) ≤ �k�Tk
(�k(1 + pTk) + qTk)(V(xk−1, u)

− V(xk, u)) −
��k

2�k
‖xk − x

k
‖

2.

�(xk) − �(u) ≤ (1 − �k)[�(xk−1) − �(u)] + �k�Tk
(�k(1 + pTk)

+ qTk)(V(xk−1, u) − V(xk, u)),

�(xk) − �(u) ≤ �k

[

1 − �1

�1

(�(x0) − �(u))

+

k
∑

i=1

�i�Ti
(�i(1 + pTi) + qTi)

�i

(V(xi−1, u) − V(xi, u))

]

= �k

k
∑

i=1

�i�Ti
(�i(1 + pTi) + qTi)

�i

(V(xi−1, u) − V(xi, u)),

377

1 3

Accelerated gradient sliding for structured convex…

There are many possible selections of parameters that satisfy the assumptions
of the above theorem. In the following corollaries we describe two different ways
to specify the parameters of Algorithm 1 that lead to the optimal complexity
bounds in terms of the number of gradient evaluations of ∇f and ∇h.

Corollary 2.1 Consider problem (1.6) with the Lipschitz constants in (1.2) and
(1.7) satisfing M ≥ L . Suppose that the parameters of Algorithm 1 are set to

Also assume that the parameters in the first call to the ProxAG procedure (k = 1) are
set to

and the parameters in the remaining calls to the ProxAG procedure (k > 1) are set to

Then the numbers of gradient evaluations of ∇f and ∇h performed by the AGS
method to compute an �-solution of (1.6) can be bounded by

and

respectively, where x∗ is a solution to (1.6).

Proof Let us start with verification of (2.31) and (2.32) for the purpose of applying
Theorem 2.1. We will consider the first call to the ProxAG procedure (k = 1) and the
remaining calls (k > 1) separately.

When k = 1 , by (2.34) we have �1 = �1 = 1 , and �1 = 3L∕� , hence (2.32) holds
immediately. By (2.35) we can observe that �t = 2∕(t(t + 1)) satisfies (2.14), and
that

In addition, by (2.34) and (2.35) we have � = � = 1 and �1 = 1 in (2.31), and that

(2.34)

𝛾k =
2

k + 1
, Tk ≡ T ∶=

�
�

M

L

�

, 𝜆k =

⎧

⎪

⎨

⎪

⎩

1 k = 1,
𝛾k(T + 1)(T + 2)

T(T + 3)
k > 1,

and 𝛽k =
3L𝛾k

𝜈k𝜆k
.

(2.35)�t =
2

t + 1
, pt =

t − 1

2
, and qt =

6M

�t
,

(2.36)�t =
2

t + 2
, pt =

t

2
, and qt =

6M

�k(t + 1)
.

(2.37)Nf ∶=

√

30LV(x0, x
∗)

��

(2.38)Nh ∶=

√

30MV(x0, x
∗)

��

+

√

30LV(x0, x
∗)

��

�tqt

�t

≡
6M

�

, and
�t(1 + pt)

�t

=
t(t + 1)

2
=

�t+1pt+1

�t+1

.

378 G. Lan, Y. Ouyang

1 3

Therefore (2.31) holds.
For the case when k > 1 , from (2.34) and noting that k, T ≥ 1 , we have

Applying the above relation to the definition of �k in (2.34) we have (2.32). It now
suffices to verify (2.31) in order to apply Theorem 2.1. We can observe from (2.36)
that �t = 6∕(t + 1)(t + 2) satisfies (2.14), �tqt∕�t ≡ 2M∕(�k) , and that

Applying (2.34), (2.36), (2.39), and noting that k ≥ 2 and that �T = 6∕(T + 1)(T + 2)
with T ≥ 1 , we can verify in (2.31) that

Therefore, the conditions in (2.31) are satisfied.
We are now ready to apply Theorem 2.1. In particular, noting that �t(1 + pt) ≡ 1

from (2.35) and (2.36), we obtain from the result (2.33) of Theorem 2.1 (with
u = x∗) that

where

Substituting (2.34) and (2.35) to (2.41), and noting that �i = 2∕(i(i + 1)) by (2.30),
we have

𝛽pt + qt ≥ qt =
6M

𝜈t
>

2M

𝜈(t + 1)
=

𝜆M𝛼t

𝜈

.

(2.39)
3

k
>

3𝛾k

2
=

3𝜆k

2

(

1 −
2

(T + 1)(T + 2)

)

≥
3𝜆k

2

(

1 −
2

2 ⋅ 3

)

= 𝜆k.

�t(1 + pt)

�t

=
(t + 1)(t + 2)

6
=

�t+1pt+1

�t+1

.

𝜆 =
𝛾(T + 1)(T + 2)

T(T + 3)
=

2

k + 1

(

1 +
2

T(T + 3)

)

≤
2

3

(

1 +
2

1 ⋅ 4

)

= 1,

𝛬T (1 − 𝛼1) =
2

(T + 1)(T + 2)
= 1 −

T(T + 3)

(T + 1)(T + 2)
= 1 −

𝛾

𝜆

,

𝛽pt + qt > qt =
2M

𝜈(t + 1)
⋅

3

k
>

2𝜆M

𝜈(t + 1)
≥

𝜆M𝛼t

𝜈

.

(2.40)�(xk) − �
∗
≤ �k

k
∑

i=1

�i(V(xi−1, x
∗) − V(xi, x

∗)),

(2.41)�i ∶=
�i(�i + �Ti

qTi)

�i

,

379

1 3

Accelerated gradient sliding for structured convex…

Applying the above two results regarding �i to (2.40), and noting that 𝜉1 > 𝜉2 , we
have

where the last inequality is due to the fact that T ≥
√

M∕L.
From the above inequality, the number of calls to the ProxAG procedure for com-

puting an �-solution of (1.6) is bounded by Nf in (2.37). This is also the bound for
the number of gradient evaluations of ∇f . Moreover, the number of gradient evalua-
tions of ∇h is bounded by

 ◻

In the above corollary, the constant factors in (2.37) and (2.38) are both
√

30 .
In the following corollary, we provide a slightly different set of parameters for
Algorithm 1 that results in a smaller constant factor for (2.37).

Corollary 2.2 Consider problem (1.6) with the Lipschitz constants in (1.2) and
(1.7) satisfing M ≥ L . Suppose that the parameters in the first call to the ProxAG
procedure (k = 1) are set to

and that the parameters in the k-th call (k > 1) are set to

𝜉1 = 𝛽1 + 𝛼TqT =
3L

𝜈

+
12M

𝜈T(T + 1)
, and

𝜉i =
𝜆i𝛽i

𝛤i

+
𝜆i𝛼Ti

qTi

𝛤i

=
3L𝛾i

𝜈i𝛤i

+
𝛾i

𝛤i

(Ti + 1)(Ti + 2)

Ti(Ti + 3)

2

Ti + 2

6M

𝜈i(Ti + 1)

≡
3L

𝜈

+
12M

𝜈T(T + 3)
,∀i > 1.

�(xk) − �
∗
≤ �k

[

�1(V(x0, x
∗) − V(x1, x

∗)) +

k
∑

i=2

�i(V(xi−1, x
∗) − V(xi, x

∗))

]

= �k

[

�1(V(x0, x
∗) − V(x1, x

∗)) + �2(V(x1, x
∗) − V(xk, x

∗))
]

≤ �k�1V(x0, x
∗)

=
2

k(k + 1)

(

3L

�

+
12M

�T(T + 1)

)

V(x0, x
∗)

≤
30L

�k(k + 1)
V(x0, x

∗),

TNf ≤

(
√

M

L
+ 1

)

Nf =

√

30MV(x0, x
∗)

��

+

√

30LV(x0, x
∗)

��

= Nh.

(2.42)�t =
2

t + 1
, pt =

t − 1

2
, and qt =

7LT(T + 1)

4�t
,

380 G. Lan, Y. Ouyang

1 3

If the other parameters in Algorithm 1 satisfy

where � is defined in (2.43), then the numbers of gradient evaluations of ∇f and ∇h
performed by the AGS method to find an �-solution to problem (1.6) can be bounded
by

and

respectively.

Proof Let us verify (2.31) and (2.32) first, so that we could apply Theorem 2.1. We
consider the case when k = 1 first. By the definition of �k and �k in (2.44), it is clear
that (2.32) is satisfied when k = 1 . Also, by (2.42) we have that �t = 2∕(t(t + 1)) in
(2.14),

Moreover, by (2.42) and (2.44), we can verify in (2.31) that

Therefore the relations in (2.31) are all satisfied.
Now we consider the case when k > 1 . By the definition of �t in (2.14) and our

setting of parameters in (2.43), we observe that �t = (1 − �)t−1 for all t ≥ 1 . Moreo-
ver, from the definition of Tk in (2.44), we can also observe that

(2.43)pt ≡ p ∶=

√

M

L
, �t ≡ � ∶=

1

p + 1
, and qt ≡ 0.

(2.44)

𝛾k =
2

k + 1
, Tk ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�

�

8M

7L

�

, k = 1

�

ln(3)

− ln(1 − 𝛼)

�

, k > 1,

𝜆k ∶=

�

1, k = 1
𝛾k

1 − (1 − 𝛼)Tk
, k > 1,

and 𝛽k ∶=

⎧

⎪

⎨

⎪

⎩

L

𝜈

, k = 1

9L𝛾k

2𝜈k𝜆k
, k > 1,

(2.45)Nf ∶= 3

√

LV(x0, x
∗)

��

(2.46)

Nh ∶= (1 + ln 3)Nf

(
√

M

L
+ 1

)

≤ 7

(
√

MV(x0, x
∗)

��

+

√

LV(x0, x
∗)

��

)

,

�tqt

�t

≡
7LT1(T1 + 1)

4�
, and

�t(1 + pt)

�t

=
t(t + 1)

2
=

�t+1pt+1

�t+1

.

𝜆 = 𝛾 = 1,𝛬T1
(1 − 𝛼1) = 0 = 1 −

𝛾

𝜆

, and 𝛽pt + qt ≥ qt >
7LT2

4𝜈t
=

8M

4𝜈t
>

M𝛼t

𝜈

.

381

1 3

Accelerated gradient sliding for structured convex…

Four relations can be derived based on the aforementioned two observations, (2.43),
and (2.44). First,

which leads to (2.32). Second,

Third, noting that k ≥ 2 , we have

Fourth,

The last three relations imply that (2.31) holds.
Summarizing the above discussions regarding both the cases k = 1 and k > 1 ,

applying Theorem 2.1, and noting that �t(1 + pt) ≡ 1 , we have

It should be observed from the definition of �k in (2.44) that �i ∶= 2∕(i(i + 1)) satis-
fies (2.30). Using this observation, applying (2.42), (2.43), and (2.44) to the above
equation we have

Therefore, (2.47) becomes

(1 − �)Tk ≤
1

3
.

𝛽k =
9L(1 − (1 − 𝛼)Tk)

2𝜈k
≥

3L

𝜈k
>

L𝛾k

𝜈

,

�tqt

�t

≡ 0,
�t(1 + pt)

�t

=
1

(1 − �)t−1
=

�t+1pt+1

�t+1

.

�k

1 − �Tk
(1 − �)

= �k =
�k

1 − (1 − �)Tk
≤

3�k

2
=

3

k + 1
≤ 1.

𝜈𝛽kp

𝜆kM𝛼

=
9L𝛾kp(p + 1)

2k𝜆2
k
M

=
9Lp(p + 1)

(

1 − (1 − 𝛼)Tk
)2

2k𝛾kM

=
9(k + 1)

4k
⋅

(

Lp(p + 1)

M

)

⋅

(

1 − (1 − 𝛼)Tk
)2

>

9

4
⋅ 1 ⋅

4

9
= 1.

(2.47)

�(xk) − �(u) ≤ �k

k
∑

i=1

�i(V(xi−1, u) − V(xi, u)), ∀u ∈ X, where �i ∶=
�i(�i + �Ti

qTi)

�i

.

𝜉1 = 𝛽1 + 𝛼T1
qT1 =

L

𝜈

+
7L

2𝜈
=

9L

2𝜈
and 𝜉i =

𝜆i𝛽i

𝛤i

≡
9L

2𝜈
, ∀i > 1.

(2.48)�(xk) − �(u) ≤
9L

�k(k + 1)
(V(x0, u) − V(xk, u)) ≤

9L

�k(k + 1)
V(x0, u).

382 G. Lan, Y. Ouyang

1 3

Setting u = x∗ in the above inequality, we observe that the number of calls to the
ProxAG procedure for computing an �-solution of (1.6) is bounded by Nf in (2.45).
This is also the bound for the number of gradient evaluations of ∇f . Moreover, by
(2.43), (2.44), and (2.45) we conclude that the number of gradient evaluations of ∇h
is bounded by

Here the second inequity is from the property of logarithm functions that
− ln(1 − �) ≥ � for � ∈ [0, 1) . ◻

The major difference between the convergence results of Corollaries 2.1 and 2.2
are their constants in the bound of number of gradient and operator evaluations. In
particular, Corollary 2.1 has a slightly better bound in Nh and Corollary 2.2 has a
slightly better bound in Nf , while both the bounds are in the same order. Since M ≥ L
in (1.2) and (1.7), the results obtained in Corollaries 2.1 and 2.2 indicate that the
number of gradient evaluations of ∇f and ∇h that Algorithm 1 requires for comput-
ing an �-solution of (1.6) can be bounded by O(

√

L∕�) and O(
√

M∕�) , respectively.
Such a result is particularly useful when M is significantly larger, e.g., M = O(L∕�) ,
since the number of gradient evaluations of ∇f would not be affected at all by the
large Lipschitz constant of the whole problem. It is interesting to compare the above
result with the best known so-far complexity bound under the traditional black-box
oracle assumption. If we treat problem (1.6) as a general smooth convex optimiza-
tion and study its oracle complexity, i.e., under the assumption that there exists an
oracle that outputs ∇�(x) for any test point x (and ∇�(x) only), it has been shown
that the number of calls to the oracle cannot be smaller than O(

√

(L +M)∕�) for
computing an �-solution [28, 32]. Under such “single oracle” assumption, the com-
plexity bounds in terms of gradient evaluations of ∇f and ∇h are intertwined, and
a larger Lipschitz constant M will result in more gradient evaluations of ∇f , even
though there is no explicit relationship between ∇f and M. However, the results in
Corollaries 2.1 and 2.2 suggest that we can study the oracle complexity of problem
(1.6) based on the assumption of two separate oracles: one oracle Of to compute
∇f for any test point x, and the other one Oh to compute ∇h(y) for any test point y.

Nf
∑

k=1

Tk = T1 +

Nf
∑

k=2

Tk ≤

(
√

8M

7L
+ 1

)

+ (Nf − 1)

(

ln 3

− ln(1 − 𝛼)
+ 1

)

≤

(
√

8M

7L
+ 1

)

+ (Nf − 1)
(

ln 3

𝛼

+ 1
)

=

(
√

8M

7L
+ 1

)

+ (Nf − 1)

((
√

M

L
+ 1

)

ln 3 + 1

)

< (1 + ln 3)Nf

(
√

M

L
+ 1

)

< 7

(
√

MV(x0, x
∗)

𝜈𝜀

+

√

LV(x0, x
∗)

𝜈𝜀

)

.

383

1 3

Accelerated gradient sliding for structured convex…

In particular, these two oracles do not have to be called at the same time, and hence
it is possible to obtain separate complexity bounds O(

√

L∕�) and O(
√

M∕�) on the
number of calls to Of and Oh , respectively.

2.5 Strongly convex extensions

We now consider a special case of (1.6) where f is strongly convex. More specifi-
cally, we assume that there exists 𝜇 > 0 such that

Under the above assumption, we develop a multi-stage AGS algorithm that can skip
computation of ∇f from time to time, and compute an �-solution of (1.6) with

gradient evaluations of ∇f (see Alagorithm 2). It should be noted that, under the
traditional black-box setting [28, 32] where one could only access ∇�(x) for each
inquiry x, the number of evaluations of ∇�(x) required to compute an �-solution is
bounded by

Algorithm 2 The multi-stage accelerated gradient sliding (M-AGS) algorithm
Choose v0 ∈ X, accuracy ε, iteration limit N0, and initial estimate ∆0 such that φ(v0)− φ∗ ≤ ∆0.
for s = 1, . . . , S do

Run the AGS algorithm with x0 = vs−1, N = N0, and parameters in Corollary 2.2, and let vs = xN .
end for
Output vS .

Theorem 2.2 below describes the main convergence properties of the M-AGS
algorithm.

Theorem 2.2 Suppose that M ≥ L in (1.7) and (2.49), and that the prox-function
V(⋅, ⋅) grows quadratically (i.e., (1.12) holds). If the parameters in Algorithm 2 are
set to

then its output vS must be an �-solution of (1.1). Moreover, the total number of gradi-
ent evaluations of ∇f and ∇h performed by Algorithm 2 can be bounded respectively
by

(2.49)
�

2
‖x − u‖2 ≤ f (x) − lf (u, x) ≤

L

2
‖x − u‖2, ∀x, u ∈ X.

(2.50)O

(√

L

�

log
1

�

)

(2.51)O

(√

L +M

�

log
1

�

)

.

(2.52)N0 = 3

√

2L

��

and S = log2 max

{

�0

�

, 1

}

,

384 G. Lan, Y. Ouyang

1 3

and

Proof With input x0 = vs−1 and N = N0 , we conclude from (2.48) in the proof of
Corollary 2.2 (with u = x∗ a solution to problem (1.6)) that

where the last inequality follows from (2.52). Using the facts that the input of the
AGS algorithm is x0 = vs−1 and that the output is set to vs = xN , and the relation
(1.12), we conclude

where the last inequality is due to the strong convexity of �(⋅) . It then follows from
the above relation, the definition of �0 in Algorithm 2, and (2.52) that

Comparing Algorithms 1 and 2, we can observe that the total number of gradient
evaluations of ∇f in Algorithm 2 is bounded by N0S , and hence we have (2.53).
Moreover, comparing (2.45) and (2.46) in Corollary 2.2, we conclude (2.54). ◻

In view of Theorem 2.2, the total number of gradient evaluations of ∇h required
by the M-AGS algorithm to compute an �-solution of problem (1.6) is the same as
the traditional result (2.51). However, by skipping the gradient evaluations of ∇f
from time to time in the M-AGS algorithm, the total number of gradient evaluations
of ∇f is improved from (2.51) to (2.50). Such an improvement becomes more sig-
nificant as the ratio M/L increases.

3 Application to composite bilinear saddle point problems

Our goal in this section is to show the advantages of the AGS method when applied
to our motivating problem, i.e., the composite bilinear saddle point problem in (1.1).
In particular, we show in Sect. 3.1 that the AGS algorithm can be used to solve (1.1)
by incorporating the smoothing technique in [30] and derive new complexity bounds
in terms of the number of gradient computations of ∇f and operator evaluations of
K and KT . Moreover, we demonstrate in Sect. 3.2 that even more significant saving

(2.53)Nf ∶= 3

√

2L

��

log2 max

{

�0

�

, 1

}

(2.54)

Nh ∶= (1 + ln 3)Nf

(
√

M

L
+ 1

)

< 9

(√

L

𝜈𝜇

+

√

M

𝜈𝜇

)

log2 max

{

𝛥0

𝜀

, 1

}

.

�(xN) − �
∗
≤

9L

�N0(N0 + 1)
V(x0, x

∗) ≤
�

2
V(x0, x

∗),

�(vs) − �
∗
≤

�

4
‖vs−1 − x∗‖2 ≤

1

2
(�(vs−1) − �

∗),

�(vS) − �
∗
≤

1

2S
(�(v0) − �

∗) ≤
�0

2S
≤ �.

385

1 3

Accelerated gradient sliding for structured convex…

on gradient computation of ∇f can be obtained when f is strongly convex in (1.1) by
incorporating the multi-stage AGS method.

3.1 Saddle point problems

Our goal in this section is to extend the AGS algorithm from composite smooth
optimization to nonsmooth optimization. By incorporating the smoothing tech-
nique in [30], we can apply AGS to solve the composite saddle point problem (1.1).
Throughout this section, we assume that the dual feasible set Y in (1.1) is bounded,
i.e., there exists y0 ∈ Y such that

is finite, where W(⋅, ⋅) is the prox-function associated with Y with modulus �.
Let �

�
 be the smooth approximation of � defined in (1.3). It can be easily shown

(see [30]) that

Therefore, if � = �∕(2�) , then an (�∕2)-solution to (1.3) is also an �-solution to
(1.1). Moreover, it follows from Theorem 1 in [30] that problem (1.3) is given in
the form of (1.6) (with h(x) = h

�
(x)) and satisfies (1.7) with M = ‖K‖2∕(��) . Using

these observations, we are ready to summarize the convergence properties of the
AGS algorithm for solving problem (1.1).

Proposition 3.1 Let 𝜀 > 0 be given and assume that 2‖K‖2𝛺 > 𝜀𝜔L. If we apply
the AGS method in Algorithm 1 to problem (1.3) (with h = h

�
 and � = �∕(2�)), in

which the parameters are set to (2.42)–(2.44) with M = ‖K‖2∕(��) , then the total
number of gradient evaluations of ∇f and linear operator evaluations of K (and KT)
in order to find an �-solution of (1.1) can be bounded by

and

respectively.

Proof By (3.1) we have �∗
�
≤ �

∗ and �(x) ≤ �
�
(x) + �� for all x ∈ X , and hence

Using the above relation and the fact that � = �∕(2�) we conclude that if
�
�
(x) − �

∗
�
≤ �∕2 , then x is an �-solution to (1.1). To finish the proof, it suffices to

� ∶= max
v∈Y

W(y0, v)

(3.1)�
�
(x) ≤ �(x) ≤ �

�
(x) + ��, ∀x ∈ X.

(3.2)Nf ∶= 3

(
√

2LV(x0, x
∗)

��

)

(3.3)NK ∶= 14

�
�

2LV(x0, x
∗)

��

+
2‖K‖

√

V(x0, x
∗)�

√

���

�

,

�(x) − �
∗
≤ �

�
(x) − �

∗
�
+ ��, ∀x ∈ X.

386 G. Lan, Y. Ouyang

1 3

consider the complexity of AGS for computing an �∕2-solution of (1.3). By Cor-
ollary 2.2, the total number of gradient evaluations of ∇f is bounded by (3.2). By
Theorem 1 in [30], the evaluation of ∇h

�
 is equivalent to 2 evaluations of linear

operators: one computation of form Kx for computing the maximizer y∗(x) for prob-
lem (1.4), and one computation of form KTy∗(x) for computing ∇h

�
(x) . Using this

observation, and substituting M = ‖K‖2∕(��) to (2.46), we conclude (3.3). ◻

According to Proposition 3.1, the total number of gradient evaluations of ∇f and
linear operator evaluations of both K and KT are bounded by

and

respectively, for computing an �-solution of the saddle point problem (1.1). There-
fore, if L ≤ O(‖K‖2∕�) , then the number of gradient evaluations of ∇f will not be
affected by the dominating term O(‖K‖∕�) . This result significantly improves the
best known so-far complexity results for solving the bilinear saddle point prob-
lem (1.1) in [30] and [23]. Specifically, it improves the complexity regarding number
of gradient computations of ∇f from O(1∕�) in [30] to O(1∕

√

�) , and also improves
the complexity regarding operator evaluations involving K from O(1∕�2) in [23] to
O(1∕�).

3.2 Strongly convex composite saddle point problems

In this subsection, we still consider the SPP in (1.1), but assume that f is strongly con-
vex (i.e., (2.49) holds). In this case, it has been shown previously in the literature that
O(‖K‖∕

√

�) first-order iterations, each one of them involving the computation of
∇f , and the evaluation of K and KT , are needed in order to compute an �-solution of
(1.1) (e.g., [29]). However, we demonstrate in this subsection that the complexity with
respect to the gradient evaluation of ∇f can be significantly improved from O(1∕

√

�)
to O(log(1∕�)).

Such an improvement can be achieved by properly restarting the AGS method
applied to to solve a series of smooth optimization problem of form (1.3), in which the
smoothing parameter � changes over time. The proposed multi-stage AGS algorithm
with dynamic smoothing is stated in Algorithm 3.

(3.4)O

(

√

L

�

)

(3.5)O

�

�

L

�

+
‖K‖

�

�

387

1 3

Accelerated gradient sliding for structured convex…

Algorithm 3 The multi-stage AGS algorithm with dynamic smoothing
Choose v0 ∈ X, accuracy ε, smoothing parameter ρ0, iteration limit N0, and initial estimate ∆0 of (1.1) such that ψ(v0)−ψ∗ ≤
∆0.
for s = 1, . . . , S do

Run the AGS algorithm to problem (1.3) with ρ = 2−s/2ρ0 (where h = hρ in AGS). In the AGS algorithm, set x0 = vs−1,
N = N0, and parameters in Corollary 2.2, and let vs = xN .
end for
Output vS .

Theorem 3.1 describes the main convergence properties of Algorithm 3.

Theorem 3.1 Let 𝜀 > 0 be given and suppose that the Lipschitz constant L in (2.49)
satisfies

Also assume that the prox-function V(⋅, ⋅) grows quadratically (i.e., (1.12) holds). If
the parameters in Algorithm 3 are set to

then the output vS of this algorithm must be an �-solution (1.1). Moreover, the total
number of gradient evaluations of ∇f and operator evaluations involving K and KT
performed by Algorithm 3 can be bounded by

and

respectively.

Proof Suppose that x∗ is an optimal solution to (1.1). By (2.48) in the proof of Cor-
ollary 2.2, in the s-th stage of Algorithm 3 (calling AGS with input x0 = vs−1 , output
vs = xN , and iteration number N = N0), we have

where the last two inequalities follow from (3.6) and (1.12), respectively. Moreover,
by (3.1) we have �(vs) ≤ �

�
(vs) + �� and �∗ = �(x∗) ≥ �

�
(x∗) , hence

�‖K‖2 max

�
�

15�0

�

, 1

�

≥ 2��0L.

(3.6)N0 = 3

√

2L

��

, S = log2 max

{

15�0

�

, 1

}

, and �0 =
4�0

�2S∕2
,

(3.7)Nf ∶= 3

√

2L

��

log2 max

{

15�0

�

, 1

}

NK ∶= 18

�

L

��

log2 max

�

15�0

�

, 1

�

+
56

√

�‖K‖
√

��0��

⋅max

�
�

15�0

�

, 1

�

,

�
�
(vs) − �

�
(x∗) = �

�
(xN) − �

�
(x∗)

≤
9L

�N0(N0 + 1)
V(x0, x

∗) ≤
�

2
V(x0, x

∗) ≤
�

4
‖x0 − x∗‖2 =

�

4
‖vs−1 − x∗‖2,

388 G. Lan, Y. Ouyang

1 3

Combing the above two equations and using the strong convexity of �(⋅) , we have

where the last equality is due to the selection of � in Algorithm 3. Reformulating the
above relation as

and summing the above inequalities from s = 1,… , S , we have

where the first inequality follows from the fact that �(v0) − �
∗ ≤ �0 and the last

equality is due to (3.6). By (3.6) and the above result, we have �(vS) − �
∗ ≤ � .

Comparing the descriptions of Algorithms 1 and 3, we can clearly see that the total
number of gradient evaluations of ∇f in Algorithm 3 is given N0S , hence we have
(3.7).

To complete the proof it suffices to estimate the total number of operator evalu-
ations involving K and KT . By Theorem 1 in [30], in the s-th stage of Algorithm 3,
the number of operator evaluations involving K is equivalent to twice the number of
evaluations of ∇h

�
 in the AGS algorithm, which, in view of (2.46) in Corollary 2.2,

is given by

where we used the relation M = ‖K‖2∕(��) (see Sect. 3.1) in the first equality and
relations � = 2−s∕2�0 and N = N0 from Algorithm 3 in the last equality. It then fol-
lows from the above result and (3.6) that the total number of operator evaluations
involving K in Algorithm 3 can be bounded by

�(vs) − �
∗
≤ �

�
(vs) − �

�
(x∗) + ��.

�(vs) − �
∗
≤

�

4
‖vs−1 − x∗‖2 + �� ≤

1

2
[�(vs−1) − �

∗] + ��

=
1

2
[�(vs−1) − �

∗] + 2−s∕2�0�,

2s[�(vs) − �
∗] ≤ 2s−1[�(vs−1) − �

∗] + 2s∕2�0�,

2S(𝜓(vS) − 𝜓
∗) ≤ 𝛥0 + 𝜌0𝛺

S
�

s=1

2s∕2

= 𝛥0 + 𝜌0𝛺

√

2(2S∕2 − 1)
√

2 − 1
< 𝛥0 +

7

2
𝜌0𝛺2S∕2 = 15𝛥0,

2(1 + ln 3)N

�
�

M

L
+ 1

�

= 2(1 + ln 3)N

⎛

⎜

⎜

⎝

�

‖K‖2

��L
+ 1

⎞

⎟

⎟

⎠

= 2(1 + ln 3)N0

⎛

⎜

⎜

⎝

�

2s∕2‖K‖2

�0�L
+ 1

⎞

⎟

⎟

⎠

,

389

1 3

Accelerated gradient sliding for structured convex…

 ◻

By Theorem 3.1, the total number of operator evaluations involving K per-
formed by Algorithm 3 to compute an �-solution of (1.6) can be bounded by

which matches with the best-known complexity result (e.g., [29]). However, the total
number of gradient evaluations of ∇f is now bounded by

which drastically improves existing results from O(1∕
√

�) to O(log(1∕�)).

4 Numerical experiments

For preliminary numerical experiments of the proposed AGS method, we consider
the following total-variation (TV) regularized image reconstruction problem:

Here x ∈ ℝ
n is the n-vector form of a two-dimensional image to be reconstructed,

‖Dx‖2,1 is the discrete form of the TV semi-norm where D is the finite difference
operator, A is a measurement matrix describing the physics of data acquisition, and
b is the observed data. It should be noted that problem (4.1) is equivalent to

S
�

s=1

2(1 + ln 3)N0

⎛

⎜

⎜

⎝

�

2s∕2‖K‖2

𝜌0𝜔L
+ 1

⎞

⎟

⎟

⎠

= 2(1 + ln 3)N0S +
2(1 + ln 3)N0‖K‖

√

𝜌0𝜔L

S
�

s=1

2s∕4

= 2(1 + ln 3)N0S +
3
√

2(1 + ln 3)
√

𝛺‖K‖2S∕4

√

𝜇𝛥0𝜈𝜔

⋅

21∕4(2S∕4 − 1)

21∕4 − 1

< 2(1 + ln 3)N0S +
56

√

𝛺‖K‖
√

𝜇𝛥0𝜈𝜔

⋅ 2S∕2

< 18

�

L

𝜈𝜇

log2 max

�

15𝛥0

𝜀

, 1

�

+
56

√

𝛺‖K‖
√

𝜇𝛥0𝜈𝜔

⋅max

�
�

15𝛥0

𝜀

, 1

�

.

O

�

�

L

�

log
1

�

+
‖K‖
√

�

�

,

O

(√

L

�

log
1

�

)

,

(4.1)min
x∈ℝn

�(x) ∶=
1

2
‖Ax − b‖2 + �‖Dx‖2,1.

390 G. Lan, Y. Ouyang

1 3

where Y ∶= {y ∈ ℝ
2n ∶ ‖y‖2,∞ ∶= maxi=1,…,n ‖(y

(2i−1), y(2i))T‖2 ≤ 1} . The above
form can be viewed as a special case of the bilinear SPP (1.1) with

and the associated constants are L = �max(A
TA) and ‖K‖ = �

√

8 (see, e.g., [5]).
Therefore, as discussed in Sect. 3.1, such problem can be solved by AGS after
incorporating the smoothing technique in [30] and approximate the above problem
to the form (1.3).

In this experiment, the dimension of A ∈ ℝ
m×n is set to m = ⌈n∕3⌉ . Each com-

ponent of A is generated from a Bernoulli distribution, namely, it takes equal prob-
ability for the values 1∕

√

m and −1∕
√

m respectively. We generate b from a ground
truth image xtrue with b = Axtrue + � , where � ∼ N(0, 0.001In) . Two ground truth
images xtrue are used in the experiment, namely, the 256 by 256 (n = 65536) image
“Cameraman” and the 135 by 198 (n = 26730) image “Onion”. Both of them are
built-in test images in the MATLAB image processing toolbox.

The parameters of Algorithm 1 are set to Proposition 3.1 for solving the above
bilinear SPP through smoothing. In order to demonstrate the efficiency of the AGS
algorithm, we compare it with Nesterov’s accelerated gradient method (NEST) in
[32]. Note that AGS and NEST are both applied to the smoothed problem (1.3).
We compare the performance of AGS and NEST for each test image with different
smoothing parameter � in (1.3), and TV regularization parameter � in (4.1). For both
algorithms, the prox-functions V(x, u) and W(y, v) are set to Euclidean distances
‖x − u‖2

2
∕2 and ‖y − v‖2

2
∕2 respectively. In order to perform a fair comparison, we

run NEST for 200 iterations first, and then run AGS with the same amount of CPU
time. The performances of AGS and NEST are compared through their respective
relative errors (�AGS − �

∗)∕�∗ and (�NEST − �
∗)∕�∗ , where �AGS and �NEST are the

objective values of (4.1) corresponding to the approximated solutions computed by
AGS and NEST respectively. Here the optimal objective value �∗ is approximated
by running AGS with 2000 evaluation of ∇f .

Tables 1 and 2 show the comparison between AGS and NEST in terms of gra-
dient evaluations of ∇f , operator evaluations of K and KT , and objective values
(4.1). It should be noted that in 200 iterations of the NEST algorithm, the num-
ber of gradient evaluations of ∇f and operator evaluations of K and KT are given
by 200 and 400, respectively. We can make a few observations about the results
reported in these tables. First, by skipping gradient evaluations of ∇f , AGS is
able to perform more operator evaluation of K and KT during the same amount
of CPU time. Noting the complexity bounds (3.4) and (3.5), we can observe that
the extra amount of operator evaluations K and KT can possibly result in better
approximate solutions obtained by CGS in terms of objective values. It should be
noted that in problem (4.1), A is a dense matrix while D is a sparse matrix. There-
fore, a very large number of extra evaluations of K and KT can be performed for
each skipped gradient evaluation of ∇f . Second, for the smooth approximation

min
x∈ℝn

1

2
‖Ax − b‖2 +max

y∈Y
�⟨Dx, y⟩,

f (x) ∶=
1

2
‖Ax − b‖2,K ∶= �D, and J(y) ≡ 0,

391

1 3

Accelerated gradient sliding for structured convex…

problem (1.3), the Lipschitz constant M of h
�
 is given by M = ‖K‖2∕�� . There-

fore, for the cases with � being fixed, larger values of � result in larger norm ‖K‖ ,
and consequently larger Lipschitz constant M. Moreover, for the cases when � is
fixed, smaller values of � also lead to larger Lipschitz constant M. For both cases,
as the ratio of M/L increases, we would skip more and more gradient evaluations
of ∇f , and allocate more CPU time for operator evaluations of K and KT , which
results in more significant performance improvement of AGS over NEST. Such

Table 1 Numbers of gradient evaluations of ∇f and ∇h performed by the AGS method for solving (4.1)
with ground truth image “Cameraman”, after running the same amount of CPU time as 200 iterations of
NEST. Here �AGS and �NEST are the objective values of (4.1) corresponding to approximated solutions
obtained by AGS and NEST, respectively

Problem # AGS
evaluations
of ∇f

AGS evalua-
tions of K and
KT

Relative error
(�AGS − �

∗)∕�∗

Relative error
(�NEST − �

∗)∕�∗

Relative error
(�PD − �

∗)∕�∗

� = 1, � = 10
−5 111 40061 1e−5 1.1e1 5.8e−2

� = 10
−1, � = 10

−5 185 6844 1.3e−5 1.0e1 4.7e−1

� = 10
−2, � = 10

−5 198 989 7.5e−3 4.2e−1 2.9e0

� = 10
−1, � = 10

−7 112 40422 3.6e−4 4.6e1

� = 10
−1, � = 10

−6 158 18166 4.3e−5 3.3e1

� = 10
−1, � = 10

−5 185 6844 1.3e−5 1.0e1

� = 10
−1, � = 10

−4 194 2328 8.1e−6 4.5e−1

� = 10
−1, � = 10

−3 199 994 2.4e−4 4.3e−3

� = 10
−1, � = 10

−2 199 398 4.9e−2 4.9e−2

Table 2 Numbers of gradient evaluations of ∇f and ∇h performed by the AGS method for solving (4.1)
with ground truth image “Onion”, after running the same amount of CPU time as 200 iterations of
NEST. Here �AGS and �NEST are the objective values of (4.1) corresponding to approximated solutions
obtained by AGS and NEST, respectively

Problem # AGS
evaluations
of ∇f

AGS evalua-
tions of K and
KT

Relative error
(�AGS − �

∗)∕�∗

Relative error
(�NEST − �

∗)∕�∗

Relative error
(�PD − �

∗)∕�∗

� = 1, � = 10
−5 23 16586 3.0e−4 7.1e0 6.7e−2

� = 10
−1, � = 10

−5 162 5993 3.4e−5 1.1e1 3.8e−1

� = 10
−2, � = 10

−5 196 979 5.2e−3 5.5e−1 3.1e0

� = 10
−1, � = 10

−7 67 24177 6.1e−3 4.3e1

� = 10
−1, � = 10

−6 122 14026 2.0e−4 3.2e1

� = 10
−1, � = 10

−5 162 5993 3.4e−5 1.1e1

� = 10
−1, � = 10

−4 189 2268 8.6e−6 3.3e−1

� = 10
−1, � = 10

−3 193 964 7.4e−6 3.0e−3

� = 10
−1, � = 10

−2 199 398 1.6e−2 1.6e−2

392 G. Lan, Y. Ouyang

1 3

observations are also consistent with our previous theoretical complexity analysis
regarding AGS and NEST for solving composite bilinear saddle point problems.

Noting that problem (4.1) is a common problem in imaging science, we also com-
pare AGS and NEST with the best result among a few commonly used primal-dual
(PD) algorithms in the field. Specifically, we use �PD to denote the best objective
value computed by the following algorithms: a modified version of primal-dual
hybrid gradient (PDHG) method [1, 37] (see, e.g., [7] for an introduction on PDHG
algorithms), an overrelaxed primal-dual method [12, 15], and an inertial primal-dual
method [25]. Our implementation of the PD algorithms is based on [8] since it stud-
ies all the aforementioned algorithms (see Algorithms 1–3 within).1 Since our main
objective in this experiment is to demonstrate the effectiveness of AGS over NEST
on evaluations of ∇f and ∇h , we do not list all the results computed by the afore-
mentioned PD algorithms, but only simply use �PD to denote the smallest objec-
tive value computed by all PD algorithms among all possible relaxation and inertial
parameters under either ergodic or non-ergodic iterates. We can observe that AGS
outperforms PD algorithms significantly in all the experiments.

5 Concluding remarks

We propose an accelerated gradient sliding (AGS) method for solving certain classes
of structured convex optimization. The main feature of the proposed AGS method is
that it could skip gradient computations of a smooth component in the objective
function from time to time, while still maintaining the overall optimal rate of conver-
gence for these probems. In particular, for minimizing the summation of two smooth
convex functions, the AGS method can skip the gradient computation of the func-
tion with a smaller Lipschitz constant, resulting in sharper complexity results than
the best known so-far complexity bound under the traditional black-box assumption.
Moreover, for solving a class of bilinear saddle-point problem, by applying the AGS
algorithm to solve its smooth approximation, we show that the number of gradient
evaluations of the smooth component may be reduced to O(1∕

√

�) , which improves
the previous O(1∕�) complexity bound in the literature. More significant savings on
gradient computations can be obtained when the objective function is strongly con-
vex, with the number of gradient evaluations being reduced further to O(log(1∕�)) .
Numerical experiments further confirm the potential advantages of these new opti-
mization schemes for solving structured convex optimization problems.

A few potential future works are in place. First, although the theoretical perfor-
mance of the proposed AGS method is better than Nesterov’s accelerated gradient
method when M ≫ L , the complexities developed in Corollaries 2.1 and 2.2 have
slightly worse universal constant factors than that of Nesterov’s method. Specifi-
cally, for the non-strongly convex smooth case of problem (1.6), applying a version

1 See Sect. s 7.1.3 in [8] for the settings on relaxation and inertial parameters; note that � = 2 and
� = 1∕3 are not applicable for problem (4.1). The stepsize parameter in [8] are chosen as the following:
� = 1∕‖K‖ , and � is the largest value that satisfies convergence conditions (16), (23), or (26) in [8].

393

1 3

Accelerated gradient sliding for structured convex…

of Nesterov’s method to solve problem (e.g., Theorem 2.2.2 in [32]) we can obtain
an �-solution within 2

√

(M + L)V(x0, x
∗)∕(��) gradient evaluations of both f and h.

Theoretically, the bounds for gradient evaluations of f from Nesterov’s method is
worse than that in Corollary 2.1 when M ≥ 8L . However, when M ≤ 7L , the bounds
for both gradient evaluations of f and h from Nesterov’s method are better than that
of the proposed AGS method. Similar observations can be made for Corollary 2.1
and also later for Corollary 3.1. Since the main purpose of this paper is to develop
a theoretical possibility of solving composite convex optimization using two sepa-
rated gradient oracles instead of treating them jointly, the authors leave it as a future
work to study whether the proposed AGS method can be further improved so that its
performance is similar or better than that of Nesterov’s method when M ≤ 7L . Sec-
ond, it should be noted that the proposed AGS method does not address the sliding
of strongly convex smooth optimization problems in the most straightforward way.
Specifically, the proposed M-AGS algorithm described in Algorithm 2 is a multi-
stage restarting scheme that applies the AGS algorithms O(log(1∕�)) times. It is a
potential future work to study whether one could directly exploit the strong con-
vexity and develop an algorithm that incorporates the strong convexity parameters
into the update rules of the parameters. Third, in Algorithm 3 we use an adaptive
strategy for choosing the smoothing parameter � . Such strategy is a key factor that
contributes to the improved convergence properties of Algorithm 3 in strongly con-
vex problems. It is interesting to study whether such adaptive smoothness parameter
strategy can also be applied to the non-strongly convex cases to improve practical
performance while maintaining the same theoretical convergence properties.

References

 1. Arrow, K., Hurwicz, L., Uzawa, H.: Studies in Linear and Non-linear Programming. Stanford Mathemati-
cal Studies in the Social Sciences. Stanford University Press (1958). http:// books. google. com/ books?
id= jWi4A AAAIA AJ

 2. Auslender, A., Teboulle, M.: Interior gradient and proximal methods for convex and conic optimization.
SIAM J. Optim. 16(3), 697–725 (2006)

 3. Becker, S., Bobin, J., Candès, E.: NESTA: a fast and accurate first-order method for sparse recovery. SIAM
J. Imaging Sci. 4(1), 1–39 (2011)

 4. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to
the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7(3), 200–217
(1967)

 5. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis.
20(1), 89–97 (2004)

 6. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to
imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

 7. Chambolle, A., Pock, T.: An introduction to continuous optimization for imaging. Acta Numerica 25, 161–
319 (2016)

 8. Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal-dual algorithm. Math.
Program. 159(1), 253–287 (2016)

 9. Chen, Y., Lan, G., Ouyang, Y.: Accelerated schemes for a class of variational inequalities. arXiv preprint
arXiv: 1403. 4164 (2014)

 10. Chen, Y., Lan, G., Ouyang, Y.: Optimal primal-dual methods for a class of saddle point problems.
SIAM J. Optim. 24(4), 1779–1814 (2014)

 11. d’Aspremont, A.: Smooth optimization with approximate gradient. SIAM J. Optim. 19(3), 1171–1183
(2008)

 12. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algo-
rithm for maximal monotone operators. Math. Program. 55(1–3), 293–318 (1992)

http://books.google.com/books?id=jWi4AAAAIAAJ
http://books.google.com/books?id=jWi4AAAAIAAJ
http://arxiv.org/abs/1403.4164

394 G. Lan, Y. Ouyang

1 3

 13. Esser, E., Zhang, X., Chan, T.: A general framework for a class of first order primal-dual algorithms for
convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010)

 14. Ghadimi, S., Lan, G.: Optimal stochastic approximation algorithms for strongly convex stochastic com-
posite optimization i: a generic algorithmic framework. SIAM J. Optim. 22(4), 1469–1492 (2012)

 15. He, B., Yuan, X.: Convergence analysis of primal-dual algorithms for a saddle-point problem: from
contraction perspective. SIAM J. Imaging Sci. 5(1), 119–149 (2012)

 16. He, B., Yuan, X.: On the O(1/n) convergence rate of the Douglas-Rdachford alternating direction
method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)

 17. He, N., Juditsky, A., Nemirovski, A.: Mirror prox algorithm for multi-term composite minimization and
alternating directions. arXiv preprint arXiv: 1311. 1098 (2013)

 18. He, Y., Monteiro, R.D.: Accelerating block-decomposition first-order methods for solving generalized
saddle-point and nash equilibrium problems. Optimization-online preprint (2013)

 19. He, Y., Monteiro, R.D.: An accelerated hpe-type algorithm for a class of composite convex-concave
saddle-point problems. Submitt. SIAM J. Optim. (2014)

 20. Hoda, S., Gilpin, A., Pena, J., Sandholm, T.: Smoothing techniques for computing nash equilibria of
sequential games. Math. Oper. Res. 35(2), 494–512 (2010)

 21. Juditsky, A., Nemirovski, A., Tauvel, C.: Solving variational inequalities with stochastic mirror-prox
algorithm. Stoch. Syst. 1, 17–58 (2011)

 22. Lan, G.: Bundle-level type methods uniformly optimal for smooth and nonsmooth convex optimization.
Math. Program. 149(1), 1–45 (2015)

 23. Lan, G.: Gradient sliding for composite optimization. Math. Program. 159(1–2), 201–235 (2016)
 24. Lan, G., Lu, Z., Monteiro, R.D.: Primal-dual first-order methods with O(1∕�) iteration-complexity for

cone programming. Math. Program. 126(1), 1–29 (2011)
 25. Lorenz, D.A., Pock, T.: An inertial forward-backward algorithm for monotone inclusions. J. Math.

Imaging Vis. 51(2), 311–325 (2015)
 26. Monteiro, R.D., Svaiter, B.F.: Iteration-complexity of block-decomposition algorithms and the alternat-

ing direction method of multipliers. SIAM J. Optim. 23(1), 475–507 (2013)
 27. Nemirovski, A.: Prox-method with rate of convergence O(1∕t) for variational inequalities with Lipschitz

continuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Optim.
15(1), 229–251 (2004)

 28. Nemirovski, A., Yudin, D.: Problem Complexity and Method Efficiency in Optimization. Wiley-Inter-
science Series in Discrete Mathematics, Wiley, New York (1983)

 29. Nesterov, Y.: Excessive gap technique in nonsmooth convex minimization. SIAM J. Optim. 16(1), 235–
249 (2005)

 30. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103(1), 127–152 (2005)
 31. Nesterov, Y.E.: A method for unconstrained convex minimization problem with the rate of convergence

O(1∕k2) . Doklady AN SSSR 269, 543–547 (1983)
 32. Nesterov, Y.E.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic

Publishers, Norwell (2004)
 33. Ouyang, H., He, N., Tran, L., Gray, A.G.: Stochastic alternating direction method of multipliers. In:

Proceedings of the 30th International Conference on Machine Learning (ICML-13), pp. 80–88 (2013)
 34. Ouyang, Y., Chen, Y., Lan, G., Eduardo Pasiliao, J.: An accelerated linearized alternating direction

method of multipliers. SIAM J. Imaging Sci. 8(1), 644–681 (2015)
 35. Ouyang, Y., Xu, Y.: Lower complexity bounds of first-order methods for convex-concave bilinear sad-

dle-point problems. Math. Program. 185(1), 1–35 (2021)
 36. Tseng, P.: On accelerated proximal gradient methods for convex-concave optimization. Submitt. SIAM

J. Optim. (2008)
 37. Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restora-

tion. UCLA CAM Report, pp. 08–34 (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://arxiv.org/abs/1311.1098

	Accelerated gradient sliding for structured convex optimization
	Abstract
	1 Introduction
	1.1 Notation, assumption and terminology

	2 Accelerated gradient sliding for composite smooth optimization
	2.1 The accelerated gradient sliding algorithm
	2.2 Approximate error measure and technical lemmas
	2.3 Convergence properties of the ProxAG procedure
	2.4 Main convergence results of the AGS method
	2.5 Strongly convex extensions

	3 Application to composite bilinear saddle point problems
	3.1 Saddle point problems
	3.2 Strongly convex composite saddle point problems

	4 Numerical experiments
	5 Concluding remarks
	References

