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Abstract
We extend the Malitsky-Tam forward-reflected-backward (FRB) splitting method for 
inclusion problems of monotone operators to nonconvex minimization problems. By 
assuming the generalized concave Kurdyka-Łojasiewicz  (KL) property of a quad-
ratic regularization of the objective, we show that the FRB method converges glob-
ally to a stationary point of the objective and enjoys the finite length property. Con-
vergence rates are also given. The sharpness of our approach is guaranteed by virtue 
of the exact modulus associated with the generalized concave KL property. Numeri-
cal experiments suggest that FRB is competitive compared to the Douglas-Rachford 
method and the Boţ-Csetnek inertial Tseng’s method.
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1 Introduction

Consider the general inclusion problem of maximally monotone operators:

where A ∶ ℝ
n
→ 2ℝ

n and B ∶ ℝ
n
→ ℝ

n are (maximally) monotone operators with 
B being Lipschitz continuous. Successful splitting methods for the inclusion prob-
lem (1) are numerous; see, e.g., [1, Chapters 26, 28], including the forward-backward 

(1)find x ∈ ℝ
n such that 0 ∈ A(x) + B(x),
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method with B being cocoercive [2] and Tseng’s method [3]. Recently, Malitsky and 
Tam [4] proposed a forward-reflected-backward (FRB) splitting method for solv-
ing (1). Let 𝜆 > 0 and J�A = (Id + �A)−1 be the resolvent of operator �A ; see, e.g., 
[1]. Given initial points x0, x−1 ∈ ℝ

n , the Malitsky-Tam FRB method with a fixed 
step-size (see [4, Remark 2.1]) iterates

with only one forward step computation required per iteration compared to Tseng’s 
method. In [4] Malitsky and Tam showed that their FRB given by (2) converges to a 
solution of (1).

In this paper, we extend the Malitsky-Tam FRB splitting method to solve the fol-
lowing structured possibly nonconvex minimization problem:

where f ∶ ℝ
n
→ ℝ = (−∞,∞] is proper lower semicontinuous (lsc), and 

g ∶ ℝ
n
→ ℝ has a Lipschitz continuous gradient with constant L > 0 . This class of 

optimization problems is of significantly broad interest in both theory and practical 
applications; see, e.g., [5, 6].

Because both �f , �g are not necessarily monotone, the techniques developed by 
Malitsky and Tam do not apply. To accomplish our goal, we employ the generalized 
concave Kurdyka-Łojasiewicz property  (see Definition  2.2) recently proposed in 
[7] as a key assumption in our analysis, under which the FRB method demonstrates 
pleasant behavior. We show that the sequence produced by FRB converges globally 
to a stationary point of (3) and has finite length property. The sharpest upper bound 
on the total length of iterates is described by using the exact modulus associated 
with the generalized concave KL property. Both sequential and function value con-
vergence rate analysis are carried out. Our approach deviates from the convergence 
mechanism developed in the original FRB paper [4], but follows a similar pattern 
as in many work that devotes to obtaining nonconvex extensions of splitting algo-
rithms; see, e.g., [6, 8–13]. Numerical simulations indicate that FRB is competitive 
compared to the Douglas-Rachford method with a fixed step-size [6] and the Boţ-
Csetnek inertial Tseng’s method [12].

The paper is structured as follows. We introduce notation and basic concepts in 
Sect. 2. The convergence analysis of FRB is presented in Sect. 3. When the merit 
function of FRB has KL exponent � ∈ [0, 1) , we obtain convergence rates for both 
the iterates and function values. Numerical experiments are implemented in Sect. 4. 
We end this paper by providing some directions for future research in Sect. 5.

2  Notation and preliminaries

Throughout this paper, ℝn is the standard Euclidean space equipped with inner 
product  ⟨x, y⟩ = xTy and the Euclidean norm  ‖x‖ =

√
⟨x, x⟩ for x, y ∈ ℝ

n . 
Let ℕ = {0, 1, 2, 3,…} and ℕ∗ = {−1} ∪ ℕ . The open ball centered at x̄ with radius 

(2)xk+1 = J�A(xk − 2�B(xk) + �B(xk−1)),

(3)min
x∈ℝn

F(x) = f (x) + g(x),
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r is denoted by �(x̄;r) . Associated with a subset K ⊆ ℝ
n , its distance function is 

dist(⋅,K) ∶ ℝ
n
→ ℝ = (−∞,∞],

where dist(x,K) ≡ ∞ if K = � . The indicator function of K is defined as �K(x) = 0 if 
x ∈ K and �K(x) = ∞ otherwise. For a function f ∶ ℝ

n
→ ℝ and r1, r2 ∈ [−∞,∞] , 

we set [r1 < f < r2] = {x ∈ ℝ
n ∶ r1 < f (x) < r2} . We say that f is coercive if 

lim
‖x‖→∞

f (x) = ∞.
We will use frequently the following subgradients in the nonconvex setting; see, 

e.g., [14, 15].

Definition 2.1 Let f ∶ ℝ
n
→ ℝ be a proper function. We say that 

 (i) v ∈ ℝ
n is a Fréchet subgradient of f at x̄ ∈ domf  , denoted by v ∈ �̂�f (x̄) , if 

 (ii) v ∈ ℝ
n is a limiting subgradient of f at x̄ ∈ domf  , denoted by v ∈ 𝜕f (x̄) , if 

 where xk
f
�����→ x̄ ⇔ xk → x̄ and f (xk) → f (x̄) . Moreover, we set 

dom�f = {x ∈ ℝ
n ∶ �f (x) ≠ �}.

 (iii) We say that x̄ ∈ dom𝜕f  is a stationary point, if 0 ∈ 𝜕f (x̄).

Recall that the proximal mapping of a proper and lsc f ∶ ℝ
n
→ ℝ with parameter 

𝜆 > 0 is

which is the resolvent J�A with A = �f  when f is convex; see, e.g., [1].
For � ∈ (0,∞] , denote by Φ� the class of functions � ∶ [0, �) → ℝ+ satisfying 

the following conditions: (i) �(t) is right-continuous at t = 0 with �(0) = 0 ; (ii) � 
is strictly increasing on [0, �) . The following concept will be the key in our conver-
gence analysis.

Definition 2.2 [7] Let f ∶ ℝ
n
→ ℝ be proper and lsc. Let x̄ ∈ dom𝜕f  and � ∈ ℝ , 

and let V ⊆ dom𝜕f  be a nonempty subset.
(i) We say that f has the pointwise generalized concave Kurdyka-Łojasiewicz (KL) 

property at x̄ ∈ dom𝜕f  , if there exist neighborhood U ∋ x̄ , � ∈ (0,∞] and concave 
� ∈ Φ� , such that for all x ∈ U ∩ [0 < f − f (x̄) < 𝜂],

where ��
−
 denotes the left derivative. Moreover, f is a generalized concave KL func-

tion if it has the generalized concave KL property at every x ∈ dom�f .

x ↦ dist(x,K) = inf{‖x − y‖ ∶ y ∈ K},

(4)f (x) ≥ f (x̄) + ⟨v, x − x̄⟩ + o(‖x − x̄‖).

(5)v ∈ {v ∈ ℝ
n ∶ ∃xk

f
�����→ x̄,∃vk ∈ �̂�f (xk), vk → v},

(∀x ∈ ℝ
n) Prox�f (x) = argmin

y∈ℝn

�
f (y) +

1

2�
‖x − y‖2

�
,

(6)𝜑�
−

(
f (x) − f (x̄)

)
⋅ dist

(
0, 𝜕f (x)

) ≥ 1,
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(ii) Suppose that f (x) = � on V. We say f has the setwise1 generalized concave 
Kurdyka-Łojasiewicz property on V, if there exist U ⊃ V  , � ∈ (0,∞] and concave 
� ∈ Φ� such that for every x ∈ U ∩ [0 < f − 𝜇 < 𝜂],

Remark 2.3 The generalized concave KL property reduces to the celebrated concave 
KL property when concave desingularizing functions � ∈ Φ� are continuously dif-
ferentiable, which has been employed by a series of papers to establish convergence 
of proximal-type algorithms in the nonconvex setting; see, e.g., [6, 8–13 16] and the 
references therein. The generalized concave KL property allows us to describe the 
optimal  (minimal) concave desingularizing function and obtain sharp convergence 
results; see [7].

Many classes of functions satisfy the generalized concave KL property, for 
instance semialgebraic functions; see, e.g., [17, Corollary 18] and [8, Section 4.3]. 
For more characterizations of the concave KL property, we refer readers to [19]; see 
also the fundamental work of Łojasiewicz [20] and Kurdyka [21].

Definition 2.4 (i) A set E ⊆ ℝ
n is called semialgebraic if there exist finitely many 

polynomials gij, hij ∶ ℝ
n
→ ℝ such that 

E =
⋃p

j=1

⋂q

i=1
{x ∈ ℝ

n ∶ gij(x) = 0 and hij(x) < 0}.

(ii) A function f ∶ ℝ
n
→ ℝ is called semialgebraic if its graph 

gphf = {(x, y) ∈ ℝ
n+1 ∶ f (x) = y} is semialgebraic.

Fact 2.5 [17, Corollary 18] Let f ∶ ℝ
n
→ ℝ be a proper and lsc function and let 

x̄ ∈ dom𝜕f  . If f is semialgebraic, then it has the concave KL property at x̄ with 
�(t) = c ⋅ t1−� for some c > 0 and � ∈ (0, 1).

3  Forward‑reflected‑backward splitting method for nonconvex 
problems

In this section, we prove convergence results of the FRB splitting method in the non-
convex setting. For convex minimization problems, the iteration scheme (2) speci-
fies to

where yk = xk + �
(
∇g(xk−1) − ∇g(xk)

)
 is an intermediate variable introduced for 

simplicity. Since proximal mapping Prox�f  might not be single-valued without con-
vexity of f, we formulate the FRB scheme for solving (3) as follows:

(7)��
−

(
f (x) − �

)
⋅ dist

(
0, �f (x)

) ≥ 1.

xk+1 = Prox�f
(
yk − �∇g(xk)

)
,

1 In the remainder, we shall omit adjectives “pointwise" and “setwise" whenever there is no ambiguity.
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Forward-reflected-backward (FRB) splitting method

1. Initialization: Pick x−1, x0 ∈ ℝ
n and real number 𝜆 > 0.

2. For k ∈ ℕ , compute 

Recall that a proper, lsc function f ∶ ℝ
n
→ ℝ is prox-bounded if there exists 

𝜆 > 0 such that f + 1

2�
‖⋅‖2 is bounded below; see, e.g., [15, Exercise 1.24]. The 

supremum of the set of all such � is the threshold �f  of prox-boundedness for f. In 
the remainder of this paper, we shall assume that

• f ∶ ℝ
n
→ ℝ is proper, lsc, and prox-bounded with threshold 𝜆f > 0.

• g ∶ ℝ
n
→ ℝ has a Lipschitz continuous gradient with constant L > 0.

For 0 < 𝜆 < 𝜆f  , [15, Theorem  1.25] shows that (∀x ∈ ℝ
n) Prox�f (x) is nonempty 

compact, so the above scheme is well-defined. Moreover, it is easy to see that

3.1  Basic properties

After formulating the iterative scheme, we now investigate its basic properties. We 
begin with a merit function for the FRB splitting method, which will play a central 
role in our analysis. Such functions of various forms appear frequently in the conver-
gence analysis of splitting methods in nonconvex settings; see, e.g., [6, 12, 13, 22].

Definition 3.1 (FRB merit function) Let 𝜆 > 0 . Define the FRB merit function 
H ∶ ℝ

n ×ℝ
n
→ ℝ by

We use the Euclidean norm for ℝn ×ℝ
n , i.e., ‖(x, y)‖ =

�
‖x‖2 + ‖y‖2.

The FRB merit function has the decreasing property under a suitable step-size 
assumption.

Lemma 3.2 Let (xk)k∈ℕ∗ be a sequence generated by FRB and define zk = (xk+1, xk) 
for k ∈ ℕ

∗ . Assume that 0 < 𝜆 < min
{

1

3L
, 𝜆f

}
 and inf(f + g) > −∞ . Let 

M1 =
1

4�
−

3L

4
 . Then the following statements hold:

(8)yk = xk + �
(
∇g(xk−1) − ∇g(xk)

)
,

(9)xk+1 ∈ Prox�f
(
yk − �∇g(xk)

)
.

(10)

Prox�f
�
yk − �∇g(xk)

�
= argmin

x∈ℝn

�
f (x) + ⟨x − yk,∇g(xk)⟩ +

1

2�
��x − yk

��
2
�
.

(11)H(x, y) = f (x) + g(x) +
�
1

4�
−

L

4

�
‖x − y‖2.
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(i) For k ∈ ℕ , we have

which means that H(zk) ≤ H(zk−1) . Hence, the sequence 
(
H(zk)

)
k∈ℕ∗ is convergent.

(ii) 
∞∑

k=0

‖‖zk − zk−1
‖‖
2
< ∞ , consequently lim

k→∞

‖‖zk − zk−1
‖‖ = 0.

Proof (i) The sequence (xk)k∈ℕ∗ is well-defined because 𝜆 < 𝜆f  . The FRB iterative 
scheme and (10) imply that

Invoking the descent lemma [1, Theorem 18.15] to g, we have

Summing (13) and (14) yields

where the first equality follows from the identity 
��xk − yk

��
2
= ��xk+1 − yk

��
2
− ��xk+1 − xk

��
2
− 2⟨xk+1 − xk, xk − yk⟩ , and the second 

inequality is implied by (8) and the Cauchy-Schwarz inequality. Moreover, the third 
inequality holds by using the inequality a2 + b2 ≥ 2ab and the Lipschitz continuity 
of ∇g . Recall the product norm identity ‖‖zk − zk−1

‖‖
2
= ‖‖xk+1 − xk

‖‖
2
+ ‖‖xk − xk−1

‖‖
2 . 

It then follows from the inequality above that

Adding 
(

1

4�
−

L

4

)
‖‖xk+1 − xk

‖‖
2 to both sides of the above inequality and applying 

again the product norm identity, one gets

(12)M1
‖‖zk − zk−1

‖‖
2 ≤ H(zk−1) − H(zk),

(13)f (xk+1) ≤ f (xk) + ⟨∇g(xk), xk − xk+1⟩ +
1

2�
��xk − yk

��
2
−

1

2�
��xk+1 − yk

��
2
.

(14)g(xk+1) ≤ g(xk) + ⟨∇g(xk), xk+1 − xk⟩ +
L

2
��xk+1 − xk

��
2
.

f (xk+1) + g(xk+1) ≤ f (xk) + g(xk) +
L

2
��xk+1 − xk

��
2
+

1

2�
��xk − yk

��
2
−

1

2�
��xk+1 − yk

��
2

= f (xk) + g(xk) +
�
L

2
−

1

2�

�
��xk+1 − xk

��
2
+

1

�
⟨xk − xk+1, xk − yk⟩

≤ f (xk) + g(xk) +
�
L

2
−

1

2�

�
��xk+1 − xk

��
2
+ ��xk − xk+1

����∇g(xk−1) − ∇g(xk)
��

≤ f (xk) + g(xk) +
�
L −

1

2�

�
��xk+1 − xk

��
2
+

L

2
��xk − xk−1

��
2
,

f (xk+1) + g(xk+1)

≤ f (xk) + g(xk) +
(
L −

1

2�

)
(‖‖zk − zk−1

‖‖
2
− ‖‖xk − xk−1

‖‖
2
) +

L

2
‖‖xk − xk−1

‖‖
2

= f (xk) + g(xk) +
(
L −

1

2�

)
‖‖zk − zk−1

‖‖
2
−
(
L

2
−

1

2�

)
‖‖xk − xk−1

‖‖
2
.
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which proves (12). Because M1 > 0 , we have H(zk) ≤ H(zk−1) . The convergence 
result then follows from the assumption that inf(f + g) > −∞.

(ii) For integer l > 0 , summing (12) from k = 0 to k = l − 1 yields

Passing to the limit, one concludes that 
∞∑

k=0

‖‖zk − zk−1
‖‖
2
< ∞ .   ◻

Remark 3.3 (Comparison to a known result) Boţ and Csetnek also utilized a merit 
function with similar form for the decreasing property of Tseng’s method [12, 
Lemma 3.2]. The similarity between their approach and ours is not unexpected. 
Indeed, it is pointed out in [23, Section 2.3] that FRB is a modified Tseng’s method. 
The major difference between [12, Lemma 3.2] and Lemma  3.2 is that inequal-
ity (12) asserts that H decreases with respect to a single sequence (xk) generated by 
FRB, while [12, Lemma 3.2] concerns the decreasing property of H with respect to 
two different sequences produced by Tseng’s method.

Next we estimate the lower bound on the gap between iterates. To this end, a 
lemma helps.

Lemma 3.4 For every (x, y) ∈ ℝ
n ×ℝ

n , we have

Proof Apply the subdifferential sum and separable sum rules [15, Exercise 8.8, 
Proposition 10.5].  ◻

Lemma 3.5 Let (xk)k∈ℕ∗ be a sequence generated by FRB and define zk = (xk+1, xk) 
for k ∈ ℕ

∗ . Let M2 =
√
2

�
1

�
+ L +

���
1

�
− L

���
�
 and define for k ∈ ℕ

H(zk) = f (xk+1) + g(xk+1) +
(
1

4�
−

L

4

)
‖‖xk+1 − xk

‖‖
2

≤ f (xk) + g(xk) +
(
L −

1

2�

)
‖‖zk − zk−1

‖‖
2
−
(
L

2
−

1

2�

)
‖‖xk − xk−1

‖‖
2

+
(
1

4�
−

L

4

)
‖‖zk − zk−1

‖‖
2
−
(
1

4�
−

L

4

)
‖‖xk − xk−1

‖‖
2

= f (xk) + g(xk) +
(
1

4�
−

L

4

)
‖‖xk − xk−1

‖‖
2
+
(
3L

4
−

1

4�

)
‖‖zk − zk−1

‖‖
2

= H(zk−1) −M1
‖‖zk − zk−1

‖‖
2
,

l−1∑

k=0

‖‖zk − zk−1
‖‖
2 ≤ M−1

1

(
H(z−1) − H(zl)

) ≤ M−1
1

(
H(z−1) − inf(f + g)

)
.

�H(x, y) =
{
�f (x) + ∇g(x) +

(
1

2�
−

L

2

)
(x − y)

}
×
{(

1

2�
−

L

2

)
(y − x)

}
.

pk+1 =
1

�
(xk − xk+1) + ∇g(xk+1) − 2∇g(xk) + ∇g(xk−1),

Ak+1 = pk+1 +
(
1

2�
−

L

2

)
(xk+1 − xk), Bk+1 =

(
1

2�
−

L

2

)
(xk − xk+1).
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Then 
(
Ak+1,Bk+1

)
∈ �H(zk) and ‖‖‖

(
Ak+1,Bk+1

)‖‖‖ ≤ M2
‖‖zk − zk−1

‖‖.

Proof The FRB scheme and  (10) imply that 0 ∈ �f (xk+1) + ∇g(xk) +
1

�
(xk+1 − yk) . 

Equivalently, 1
�
(xk − xk+1) + ∇g(xk−1) − 2∇g(xk) ∈ �f (xk+1) , which together with the 

subdifferential sum rule [15, Exercise 8.8] implies that

Applying Lemma 3.4 with x = xk+1 and y = xk yields

It then follows that 
(
Ak+1,Bk+1

)
∈ �H(zk) and

where the third inequality follows from the Lipschitz continuity of ∇g with modulus 
L.   ◻

We now connect the properties of FRB merit function with the actual objective 
of (3). Denote by �(z−1) the set of limit points of (zk)k∈ℕ∗.

Theorem 3.6 Let (xk)k∈ℕ∗ be a sequence generated by FRB and define zk = (xk+1, xk) 
for k ∈ ℕ

∗ . Assume that conditions in Lemma  3.2 are satisfied and (zk)k∈ℕ∗ is 
bounded. Suppose that a subsequence (zkl )l∈ℕ of (zk)k∈ℕ∗ converges to some 
z∗ = (x∗, y∗) as l → ∞ . Then the following statements hold:

(i) lim
l→∞

H(zkl ) = f (x∗) + g(x∗) = F(x∗) . In fact, lim
k→∞

H(zk) = F(x∗).

(ii) We have x∗ = y∗ and 0 ∈ �H(x∗, y∗) , which implies 
0 ∈ �F(x∗) = �f (x∗) + ∇g(x∗).

(iii) The set �(z−1) is nonempty, compact and connected, on which the FRB merit 
function H is finite and constant. Moreover, we have  lim

k→∞
dist(zk,�(z−1)) = 0.

Proof (i) By the identity (10), for every k ∈ ℕ
∗

pk+1 ∈ �f (xk+1) + ∇g(xk+1).

�H(zk) =
{
�f (xk+1) + ∇g(xk+1) +

(
1

2�
−

L

2

)
(xk+1 − xk)

}
×
{(

1

2�
−

L

2

)
(xk − xk+1)

}
.

‖‖‖
(
Ak+1,Bk+1

)‖‖‖ ≤ ‖‖Ak+1
‖‖ + ‖‖Bk+1

‖‖

=
‖‖‖‖
pk+1 +

(
1

2�
−

L

2

)
(xk+1 − xk)

‖‖‖‖
+
‖‖‖‖

(
1

2�
−

L

2

)
(xk − xk+1)

‖‖‖‖
≤ ‖‖pk+1‖‖ +

||||
1

�
− L

||||
‖‖xk+1 − xk

‖‖

≤
(
1

�
+ L +

||||
1

�
− L

||||

)
‖‖xk+1 − xk

‖‖ + L‖‖xk − xk−1
‖‖

≤ M2
‖‖zk − zk−1

‖‖,
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Combining the identity ��x∗ − yk
��
2
= ��x∗ − xk+1

��
2
+ ��xk+1 − yk

��
2
+ 2⟨x∗ − xk+1, xk+1 − yk⟩ 

with the above inequality and using the definition yk = xk + �
(
∇g(xk−1) − ∇g(xk)

)
 , 

one gets

Replacing k by kl , passing to the limit and applying Lemma 3.2(ii), we have

where the last inequality is implied by the lower semicontinuity of f, which implies 
that lim

l→∞
f (xkl+1) = f (x∗) . Hence we conclude that

where the last equality holds because of Lemma  3.2(ii). Moreover, Lemma  3.2(i) 
states that the function value sequence 

(
H(zk)

)
k∈ℕ∗ converges, from which the rest of 

the statement readily follows.
(ii) By assumption, we have xkl+1 → x∗ and xkl → y∗ as l → ∞ . Therefore 

0 ≤ ‖y∗ − x∗‖ ≤ ���y
∗ − xkl

��� +
���xkl − xkl+1

��� +
���xkl+1 − x∗

��� → 0 as l → ∞ , which 
means that x∗ = y∗ . Combining Lemma 3.2, Lemma 3.5, statement(i) and the outer 
semicontinuity of z ↦ �H(z) , one gets

as desired.
(iii) Given that (zk)k∈ℕ∗ is bounded, it is easy to see that �(z−1) = ∩l∈ℕ∪k≥lzk is a 

nonempty compact set. By using Lemma 3.2 and a result by Ostrowski [1, Theo-
rem 1.49], the set �(z−1) is connected. Pick z̃ ∈ 𝜔(z−1) and suppose that zkq → z̃ as 
q → ∞ . Then statement(i) implies that H(z̃) = lim

q→∞
H(zkq ) = H(z∗) . Finally, by the 

definition of �(z−1) , we have lim
k→∞

dist(zk,�(z−1)) = 0.  ◻

Theorem  3.6 requires the sequence (zk)k∈ℕ∗ to be bounded. The result below 
provides a sufficient condition to such an assumption.

Theorem 3.7 Let (xk)k∈ℕ∗ be a sequence generated by FRB and define zk = (xk+1, xk) 
for k ∈ ℕ

∗ . Assume that conditions in Lemma 3.2 are satisfied. If f + g is coercive 
(or level bounded), then the sequence (xk)k∈ℕ∗ is bounded, so is (zk)k∈ℕ∗.

Proof Lemma 3.2(i) implies that we have

f (xk+1) + ⟨xk+1 − yk,∇g(xk)⟩ +
1

2�
��xk+1 − yk

��
2 ≤ f (x∗) + ⟨x∗ − yk,∇g(xk)⟩ +

1

2�
��x∗ − yk

��
2
.

f (xk+1) ≤ f (x∗) + ⟨x∗ − xk+1,∇g(xk)⟩ +
1

2�
��x∗ − xk+1

��
2
+

1

�
⟨x∗ − xk+1, xk+1 − yk⟩

≤ f (x∗) + ⟨x∗ − xk+1, 2∇g(xk) − ∇g(xk−1)⟩ +
1

2�
��x∗ − xk+1

��
2
+

1

�
⟨x∗ − xk+1, xk+1 − xk⟩.

lim sup
l→∞

f (xkl+1) ≤ f (x∗) ≤ lim inf
l→∞

f (xkl+1),

lim
l→∞

H(zkl ) = lim
l→∞

(
f (xkl+1) + g(xkl+1) +

(
1

4�
−

L

4

)‖‖‖xkl+1 − xkl
‖‖‖
2
)

= f (x∗) + g(x∗),

0 ∈ �H(x∗, y∗) = �H(x∗, x∗) =
{
�f (x∗) + ∇g(x∗)

}
×
{
0
}
⇒ 0 ∈ �f (x∗) + ∇g(x∗),
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Suppose that (xk)k∈ℕ∗ was unbounded. Then we would have a contradiction by the 
coercivity or level boundedness of f + g .   ◻

3.2  Convergence under the generalized concave KL property

Following basic properties of the FRB method, we now present the main conver-
gence result under the generalized concave KL property. For 𝜀 > 0 and nonempty 
set Ω ⊆ ℝ

n , we define Ω𝜀 = {x ∈ ℝ
n ∶ dist(x,Ω) < 𝜀} . The following lemma will 

be useful soon.

Lemma 3.8 [7, Lemma 4.4] Let f ∶ ℝ
n
→ ℝ be proper lsc and let � ∈ ℝ . Let 

Ω ⊆ dom𝜕f  be a nonempty compact set on which f (x) = � for all x ∈ Ω . The follow-
ing statements hold:

 (i) Suppose that f satisfies the pointwise generalized concave KL property at 
each x ∈ Ω . Then there exist 𝜀 > 0, 𝜂 ∈ (0,∞] and � ∈ Φ� such that f has the 
setwise generalized concave KL property on Ω with respect to U = Ω� , � and 
�.

 (ii) Set U = Ω� and define h ∶ (0, �) → ℝ+ by

Then the function �̃� ∶ [0, 𝜂) → ℝ+,

and �̃�(0) = 0 , is well-defined and belongs to Φ� . The function f has the 
setwise generalized concave KL property on Ω with respect to U, � and �̃� . 
Moreover,

We say �̃� is the exact modulus of the setwise generalized concave KL prop-
erty of f on Ω with respect to U and �.

We are now ready for the main results. Our methodology is akin to the concave 
KL convergence mechanism employed by a vast amount of literature; see, e.g., 
[6, 8–13]. However, we make use of the generalized concave KL property and 
the associated exact modulus, which guarantees the sharpness of our results; see 
Remark 3.10.

H(x1, x0) ≥ f (xk+1) + g(xk+1) +
(
1

4�
−

L

4

)
‖‖xk+1 − xk

‖‖
2 ≥ f (xk+1) + g(xk+1).

h(s) = sup
{
dist−1

(
0, 𝜕f (x)

)
∶ x ∈ U ∩ [0 < f − 𝜇 < 𝜂], s ≤ f (x) − 𝜇

}
.

t ↦ ∫
t

0

h(s)ds, ∀t ∈ (0, �),

�̃� = inf
{
𝜑 ∈ Φ𝜂 ∶ 𝜑 is a concave desingularizing function of f onΩwith respect toU and 𝜂

}
.
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Theorem  3.9 (Global convergence of FRB) Let (xk)k∈ℕ∗ be a sequence gener-
ated by FRB and define zk = (xk+1, xk) for k ∈ ℕ

∗ . Assume that (zk)k∈ℕ∗ is bounded, 
inf(f + g) > −∞ , and 0 < 𝜆 < min

{
1

3L
, 𝜆f

}
 . Suppose that the FRB merit function H 

has the generalized concave KL property on �(z−1) . Then the following statements 
hold:

(i) The sequence (zk)k∈ℕ∗ is Cauchy and has finite length. To be specific, there 
exist M > 0 , k0 ∈ ℕ , 𝜀 > 0 and � ∈ (0,∞] such that for i ≥ k0 + 1

where �̃� ∈ Φ𝜂 is the exact modulus associated with the setwise generalized concave 
KL property of H on �(z−1) with respect to � and �.

(ii) The sequence (xk)k∈ℕ∗ has finite length and converges to some x∗ with 
0 ∈ �F(x∗).

Proof (i) By the boundedness assumption, assume without loss of generality that 
zk → z∗ = (x∗, y∗) for some z∗ ∈ ℝ

n ×ℝ
n . Then Theorem  3.6 implies that x∗ = y∗ 

and H(zk) → F(x∗) = H(z∗) as k → ∞ . Recall from Lemma  3.2 that we have 
H(zk+1) ≤ H(zk) for k ∈ ℕ

∗ , therefore one needs to consider two cases.
Case 1: Suppose that there exists k0 such that H(z∗) = H(zk0 ) . Then Lemma 3.2(i) 

implies that zk0+1 = zk0 and xk0+1 = xk0 . The desired results then follows from a sim-
ple induction.

Case 2: Assume that H(z∗) < H(zk) for every k. By assumption and Lemma 3.8, 
there exist 𝜀 > 0 and � ∈ (0,∞] such that the FRB merit function H has the set-
wise generalized concave KL property on �(z−1) with respect to 𝜀 > 0 and 𝜂 > 0 and 
the associated exact modulus �̃� . On one hand, by the fact that H(zk) → H(z∗) , there 
exists k1 such that zk ∈ [0 < H − H(z∗) < 𝜂] for k > k1 . On the other hand, Theo-
rem 3.6(iii) implies that there exists k2 such that dist(zk,𝜔(z−1)) < 𝜀 for all k > k2 . 
Put k0 = max(k1, k2) . Then for k > k0 , we have zk ∈ 𝜔(z−1)𝜀 ∩ [0 < H − H(z∗) < 𝜂] . 
Hence for k > k0

Invoking Lemma 3.5 yields

For simplicity, define for k > l

By the concavity of �̃� and (16), one has

(15)
∞∑

k=i

‖‖zk+1 − zk
‖‖ ≤ ‖‖zi − zi−1

‖‖ +M�̃�
(
H(zi) − H(z∗)

)
.

(�̃�)�
−

(
H(zk) − H(z∗)

)
⋅ dist(0, 𝜕H(zk)) ≥ 1.

(16)M2(�̃�)
�
−

(
H(zk) − H(z∗)

)‖‖zk − zk−1
‖‖ ≥ 1.

Δk,k+1 = �̃�
(
H(zk) − H(z∗)

)
− �̃�

(
H(zk+1) − H(z∗)

)
.
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Applying Lemma 3.2 to (17) implies that

Put M =
M2

M1

 . Note that a2 + b2 ≥ 2ab for a, b ≥ 0 . Then the above inequality gives

Pick i ≥ k0 + 1 . Summing (18) from i to an arbitrary j > i yields

where the second inequality is implied by the definition of Δk,k+1 , implying

from which (15) readily follows. Moreover, one gets from the above inequality that 
for i ≥ k0 + 1 and j > i,

Recall from Theorem  3.6(i)&(ii) that H(zi) → H(z∗) and from Lemma  3.2(ii) that 
‖‖zi − zi−1

‖‖ → 0 as i → ∞ . Passing to the limit, one concludes that (zk)k∈ℕ∗ is Cauchy.
(ii) The statement follows from the definition of (zk)k∈ℕ∗ and Theorem 3.6(ii).  ◻

Remark 3.10 (i) Note that iterates distance was shown to be only square-summable 
in the original FRB paper [4, Theorem 2.5]. Therefore the finite length property is 
even new in the convex setting.

(ii) Unlike the usual concave KL convergence analysis, our approach uses the 
generalized concave KL property and the associated exact modulus to describe the 

(17)

Δk,k+1 = �̃�
(
H(zk) − H(z∗)

)
− �̃�

(
H(zk+1) − H(z∗)

)

≥ (�̃�)�
−

(
H(zk) − H(z∗)

)
⋅ [H(zk) − H(zk+1)]

≥ H(zk) − H(zk+1)

M2
‖‖zk − zk−1

‖‖
.

Δk,k+1 ≥
‖‖zk+1 − zk

‖‖
2

‖‖zk − zk−1
‖‖

⋅

M1

M2

.

(18)2‖‖zk+1 − zk
‖‖ ≤ 2

√
MΔk,k+1

‖‖zk − zk−1
‖‖ ≤ MΔk,k+1 +

‖‖zk − zk−1
‖‖.

2

j∑

k=i

‖‖zk+1 − zk
‖‖ ≤

j∑

k=i

‖‖zk − zk−1
‖‖ +M

j∑

k=i

Δk,k+1

≤
j∑

k=i

‖‖zk+1 − zk
‖‖ + ‖‖zi − zi−1

‖‖ +M�̃�
(
H(zi) − H(z∗)

)
−M�̃�

(
H(zj+1) − H(z∗)

)

≤
j∑

k=i

‖‖zk+1 − zk
‖‖ + ‖‖zi − zi−1

‖‖ +M�̃�
(
H(zi) − H(z∗)

)
,

j∑

k=i

‖‖zk+1 − zk
‖‖ ≤ ‖‖zi − zi−1

‖‖ +M�̃�
(
H(zi) − H(z∗)

)
,

‖‖‖zi+j − zi
‖‖‖ ≤

j−1∑

k=i

‖‖zk+1 − zk
‖‖ ≤ ‖‖zi − zi−1

‖‖ +M�̃�(H(zi) − H(z∗)).
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sharpest upper bound of 
∑∞

k=−1
��zk+1 − zk

�� . To see this, note that the usual analysis 
would yield a similar bound as (15) with �̃� replaced by a concave desingularizing 
function associated with the concave KL property of H. Lemma 3.8 states that �̃� is 
the infimum of all associated concave desingularizing functions. Hence the upper 
bound (15) is the sharpest; see also [7] for a similar sharp result of the celebrated 
PALM algorithm.

A key assumption of Theorem  3.9 is the concave KL property of the FRB 
merit function H on �(z−1) . The class of semialgebraic functions provides rich 
examples of functions satisfying such an assumption.

Corollary 3.11 Let (xk)k∈ℕ∗ be a sequence generated by FRB. Assume that (xk)k∈ℕ∗ is 
bounded, inf(f + g) > −∞ , and 0 < 𝜆 < min

{
1

3L
, 𝜆f

}
 . Suppose further that f and g 

are both semialgebraic functions. Then (xk)k∈ℕ∗ converges to some x∗ with 0 ∈ �F(x∗) 
and has the finite length property.

Proof Recall from [8, Section 4.3] that the class of semialgebraic functions is closed 
under summation and notice that the quadratic function (x, y) ↦ (

1

4�
−

L

4
)‖x − y‖2 is 

semialgebraic. Then Fact 2.5 implies that the FRB merit function H is concave KL. 
Applying Theorem 3.9 then completes the proof.   ◻

Assuming that the FRB merit function admits KL exponent � ∈ [0, 1) , we 
establish the following convergence rate result. Our analysis is standard and 
follows from the usual KL convergence rate methodology; see, e.g., [24, Theo-
rem 2], [16, Remark 6] and [10, Lemma 4]. We provide a proof here for the sake 
of completeness.

Theorem  3.12 (Convergence rate of FRB) Let (xk)k∈ℕ∗ be a sequence generated 
by FRB and define zk = (xk+1, xk) for k ∈ ℕ

∗ . Assume that (zk)k∈ℕ∗ is bounded, 
inf(f + g) > −∞ , and 0 < 𝜆 < min

{
1

3L
, 𝜆f

}
 . Let M, k0 and x∗ be those given in 

Theorem 3.9. Suppose that the FRB merit function H has KL exponent � ∈ [0, 1) at 
(x∗, x∗) . Then the following statements hold:

(i) If � = 0 , then (xk)k∈ℕ∗ converges to x∗ in finite steps.

(ii) If � ∈
(
0,

1

2

]
 , then there exist Q1 ∈ (0, 1) and c1 > 0 such that

for k sufficiently large.

(iii) If � ∈
(

1

2
, 1

)
 , then there exists Q2 > 0 such that

for k sufficiently large.

‖‖xk − x∗‖‖ ≤ c1Q
k
1
,

‖‖xk − x∗‖‖ ≤ Q2k
−

1−�

2�−1 ,
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Proof Let z∗ = (x∗, x∗) . Then Theorem 3.9 shows that zk → z∗ as k → ∞ . Assume 
without loss of generality that H(z∗) = 0 and H(zk) > 0 for all k. Before proving the 
desired statements, we will first develop several inequalities which will be used later. 
We have shown in Theorem 3.9 that for k > k0,

which by Lemma 3.5 and our assumption further implies that

Furthermore, define for k ∈ ℕ

which is well-defined due to Theorem 3.9. Assume again without loss of generality 
that 𝜎k−1 − 𝜎k =

‖‖zk − zk−1
‖‖ < 1 for every k (recall Lemma 3.2). Rearranging  (19) 

gives

By (15), we have for k > k0

where the last inequality follows from  (20) and C = cM((1 − �)cM2)
1−�

�  . Clearly 
‖‖xk − x∗‖‖ ≤ ‖‖zk − z∗‖‖ ≤ �k . Hence, in order to prove the desired statements, it suf-
fices to estimate �k.

(i) Let � = 0 and suppose that (zk)k∈ℕ∗ converges in infinitely many steps. 
Then (19) means that for every k > k0

Passing to the limit and applying Lemma 3.2, one gets 1 ≤ 0 , which is absurd.
(ii) If � ∈

(
0,

1

2

]
 , then 1−�

�
≥ 1 and (�k−1 − �k)

1−�

� ≤ �k−1 − �k . Hence (21) implies 
that for k > k0

from which the desired result readily follows by setting Q1 =
C+1

C+2
 and 

c1 =
(

C+1

C+2

)−k0
�k0.

(iii) If 1
2
< 𝜃 < 1 , then 0 <

1−𝜃

𝜃
< 1 and (�k−1 − �k)

1−�

� ≥ �k−1 − �k . It follows 
from (21) that �k ≤ (1 + C)(�k−1 − �k)

1−�

�  . Define h(t) = t
−

�

1−� for t > 0 . Then

1 ≤ (�̃�)�
−

(
H(zk)

)
⋅ dist(0, 𝜕H(zk)) ≤ 𝜑�

−

(
H(zk)

)
⋅ dist(0, 𝜕H(zk)),

(19)1 ≤ (1 − �)c
(
H(zk)

)−�‖‖(Ak+1,Bk+1)
‖‖ ≤ (1 − �)cM2

(
H(zk)

)−�‖‖zk − zk−1
‖‖.

�k =

∞∑

i=k

‖‖zi+1 − zi
‖‖,

(20)H(zk)
1−� ≤ [

(1 − �)cM2

] 1−�

� (�k−1 − �k)
1−�

� .

(21)�k ≤ �k−1 − �k + cM(H(zk))
1−� ≤ �k−1 − �k + C(�k−1 − �k)

1−�

� ,

1 ≤ cM2
‖‖zk − zk−1

‖‖.

�k ≤ (C + 1)(�k−1 − �k) ⇒ �k ≤ C + 1

C + 2
�k−1 ≤

(
C + 1

C + 2

)k−k0
�k0 ,
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Let R > 1 be a fixed real number. Next we consider two cases for k > k0 . If 
h(�k) ≤ Rh(�k−1) then (22) implies that

Set v = 1−2𝜃

1−𝜃
< 0 . Then the above inequality can be rewritten as

If h(𝜎k) > Rh(𝜎k−1) then 𝜎k <
(

1

R

) 1−𝜃

𝜃

𝜎k−1 = q𝜎k−1 , where q =
(

1

R

) 1−�

�

∈ (0, 1) . 
Hence

Set c2 = min
{
(qv − 1)𝜎v

k0
,−

v

R
(1 + C)−

𝜃

1−𝜃

}
> 0 . Combining (23) and (24) yields

Summing the above inequality from k0 + 1 to any k > k0 , one gets

where the last inequality holds because k − k0 ≥ k

k0+1
 for k > k0 + 1 . Hence

from which the desired statement follows by setting Q2 =
(

c2

k0+1

) 1

v.  ◻

The following corollary asserts that convergence rates can be directly deduced 
from the KL exponent of the objective under certain conditions, which is a conse-
quence of [25, Theorem 3.6], Theorems 3.6 and 3.12.

Corollary 3.13 Let (xk)k∈ℕ∗ be a sequence generated by FRB and suppose that all 
conditions of Theorem 3.9 are satisfied. Let x∗ be as in Theorem 3.9. Assume further 
that F has KL exponent � ∈ [

1

2
, 1) at x∗ . Then the following statements hold:

(i) If � =
1

2
 , then there exist Q1 ∈ (0, 1) and c1 > 0 such that

(22)1 ≤ (1 + C)
�

1−� (�k−1 − �k)h(�k).

1 ≤ R(1 + C)
�

1−� (�k−1 − �k)h(�k−1) ≤ R(1 + C)
�

1−� �
�k−1

�k

h(t)dt

= R(1 + C)
�

1−�
1 − �

1 − 2�

(
�

1−2�

1−�

k−1
− �

1−2�

1−�

k

)
.

(23)�v
k
− �v

k−1
≥ −

v

R
(1 + C)−

�

1−� .

(24)𝜎k < q𝜎k−1 ⇒ 𝜎v
k
> qv𝜎v

k−1
⇒ 𝜎v

k
− 𝜎v

k−1
> (qv − 1)𝜎v

k−1
> (qv − 1)𝜎v

k0
.

𝜎v
k
− 𝜎v

k−1
≥ c2,∀k > k0.

𝜎v
k
− 𝜎v

k0
=

k∑

i=k0+1

(𝜎v
i
− 𝜎v

i−1
) ≥ (k − k0)c2 ⇒ 𝜎v

k
>

k

k0 + 1
c2,

𝜎k < k
1

v

(
C2

k0 + 1

) 1

v

,
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for k sufficiently large.

(ii) If � ∈
(

1

2
, 1

)
 , then there exists Q2 > 0 such that

for k sufficiently large.

Proof The FRB merit function H has KL exponent � at (x∗, x∗) by our assumption 
and [25, Theorem 3.6]. Applying Theorem 3.12 completes the proof.   ◻

Following similar techniques in [18, 26], we now deduce convergence rates of 
the merit function value sequence.

Theorem 3.14 (Convergence rate of merit function value) Let (xk)k∈ℕ∗ be a sequence 
generated by FRB and define zk = (xk+1, xk) for k ∈ ℕ

∗ . Assume that (zk)k∈ℕ∗ is 
bounded, inf(f + g) > −∞ , and 0 < 𝜆 < min

{
1

3L
, 𝜆f

}
 . Let x∗ be the limit given in 

Theorem 3.9(ii). Suppose that the FRB merit function H has KL exponent � ∈ [0, 1) 
at z∗ = (x∗, x∗) . Define ek = H(zk) − F(x∗) for k ∈ ℕ . Then (ek)k∈ℕ converges to 0 
and the following statements hold:

(i) If � = 0 , then (ek)k∈ℕ converges in finite steps.

(ii) If � ∈
(
0,

1

2

]
 , then there exist ĉ1 > 0 and Q̂1 ∈ [0, 1) such that for k sufficiently 

large,

(iii) If � ∈
(

1

2
, 1

)
 , then there exists ĉ2 > 0 such that for k sufficiently large,

Proof We learn from Theorems 3.6 and 3.9 that the sequence 
(
H(zk)

)
k∈ℕ

 is decreas-
ing, H(zk) → H(z∗) = F(x∗) and zk → z∗ as k → ∞ . Therefore (ek)k∈ℕ converges to 0 
and ek ≥ 0 for all k. By the KL exponent assumption, there exist c > 0 and k0 such 
that for k ≥ k0

Therefore by using Lemmas 3.2 and 3.5

‖‖xk − x∗‖‖ ≤ c1Q
k
1

‖‖xk − x∗‖‖ ≤ Q2k
−

1−�

2�−1 ,

ek ≤ ĉ1Q̂
k
1
.

ek ≤ ĉ2k
−

1

2𝜃−1 .

dist
(
0, �H(zk)

) ≥
(
H(zk) − H(z∗)

)�

c(1 − �)
=

e�
k

c(1 − �)
.
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where C =
M1

c2(1−�)2M2
2

 . Applying [18, Lemma 10] completes the proof.   ◻

Corollary 3.15 (Convergence rate of objective function value) Let (xk)k∈ℕ∗ be a 
sequence generated by FRB and define zk = (xk+1, xk) for k ∈ ℕ

∗ . Assume that 
(zk)k∈ℕ∗ is bounded, inf(f + g) > −∞ , and 0 < 𝜆 < min

{
1

3L
, 𝜆f

}
 . Let x∗ be the limit 

given in Theorem 3.9(ii). Suppose that the FRB merit function H has KL exponent 
� ∈ [0, 1) at z∗ = (x∗, x∗) . Then the following statements hold:

(i) If � = 0 , then F(xk) converges to F(x∗) in finite steps.

(ii) If � ∈
(
0,

1

2

]
 , then there exit c̄1 > 0 and Q̄1 ∈ [0, 1) such that for k sufficiently 

large

(iii) If � ∈
(

1

2
, 1

)
 , then there exists c̄2 > 0 such that for k sufficiently large,

Proof Observe that

It suffices to apply Theorems 3.12 and 3.14.   ◻

Let ProjC be the projection mapping associated with a nonempty closed subset 
C ⊆ ℝ

n.

Example 3.16 Let C ⊆ ℝ
n be a nonempty, closed and convex set and let D ⊆ ℝ

n 
be nonempty and closed. Suppose that C ∩ D ≠ ∅ and either C or D is compact. 
Assume further that both C and D are semialgebraic. Consider the minimization 
problem  (3) with f = �D and g =

1

2
dist2(⋅,C) . Let 0 < 𝜆 <

1

3
 , and let (xk)k∈ℕ∗ be a 

sequence generated by FRB and zk = (xk+1, xk) for k ∈ ℕ
∗ . Then the following state-

ments hold:
(i) There exists x∗ ∈ ℝ

n such that xk → x∗ and 0 ∈ �F(x∗).
(ii) Suppose, in addition, that

ek−1 − ek = H(zk−1) − H(zk) ≥ M1
‖‖zk − zk−1

‖‖
2 ≥ M1

M2
2

dist(0, �H(zk))
2 ≥ Ce2�

k
,

|F(xk) − F(x∗)| ≤ c̄1Q̄
k
1
.

|F(xk) − F(x∗)| ≤ c̄2k
−

1−𝜃

2𝜃−1 .

(25)�F(xk) − F(x∗)� ≤ �H(xk, xk−1) − F(x∗)� +
����
1

4�
−

L

4

����
‖xk − xk−1‖2

(26)≤ �H(xk, xk−1) − F(x∗)� +
����
1

2�
−

L

2

����
(‖xk − x∗‖2 + ‖xk−1 − x∗‖2).

(27)NC(ProjC(x
∗)) ∩

(
− ND(x

∗)
)
= {0}.
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Then x∗ ∈ C ∩ D . Moreover, there exist Q1 ∈ (0, 1) and c1 > 0 such that

for k sufficiently large.

Proof (i) By the compactness assumption, the function f + g is coercive. Hence 
Theorem 3.7 implies that (xk)k∈ℕ∗ is bounded. We assume that sets C, D are semi-
algebraic, then so are functions f and g; see [8, Section 4.3] and [9, Lemma 2.3]. 
Moreover, note that �f = ∞ and g admits a Lipschitz continuous gradient with con-
stant L = 1 ; see [15, Exercise 1.24] and [1, Corollary 12.31]. The desired result then 
follows from Corollary 3.11.

(ii) Taking the fact that 0 ∈ �F(x∗) into account and applying the subdifferential 
sum rule [15, Exercise 8.8], one gets

The constraint qualification (27) then implies that x∗ = ProjC(x
∗) and consequently 

x∗ ∈ C . Moreover, the FRB scheme together with the closedness of D ensures 
that x∗ ∈ D , hence x∗ ∈ C ∩ D . Consequently, notice that the constraint qualifica-
tion (27) amounts to

Then a direct application of [27, Theorem  5] guarantees that F has KL exponent 
� =

1

2
 at x∗ . The desired result follows immediately from Corollary 3.13.  ◻

4  Numerical experiments

In this section, we apply the FRB splitting method to nonconvex feasibility prob-
lems. Let C = {x ∈ ℝ

n ∶ Ax = b} for A ∈ ℝ
m×n , b ∈ ℝ

m , r = ⌈m∕5⌉ , l = 106 , and 
D = {x ∈ ℝ

n ∶ ‖x‖0 ≤ r, ‖x‖∞ ≤ l} . Similarly to [6, Section 5], we consider the mini-
mization problem (3) with

Clearly C is semialgebraic. As for D, first notice that ℝn × {i} for i ∈ ℝ and gph‖⋅‖0 
are semialgebraic; see [16, Example 3]. Then

which means that {x ∈ ℝ
n ∶ ‖x‖0 ≤ r} is a finite union of intersections of semial-

gebraic sets, hence semialgebraic; see also [28, Formula 27(d)]. On the other hand, 
one has ‖x‖∞ ≤ l ⇔ max1≤i≤n(�xi� − l) ≤ 0 , which means that the box [−l, l]n is 

‖‖xk − x∗‖‖ ≤ c1Q
k
1
,

x∗ − ProjC(x
∗) ∈ −ND(x

∗).

NC(x
∗) ∩

(
− ND(x

∗)
)
= {0}.

f (x) = �D and g(x) =
1

2
dist2(x,C).

‖x‖0 ≤ r ⇔ ∃i ∈ {0,… , r} such that ‖x‖0 = i.

⇔ ∃i ∈ {0,… , r} such that x ∈ Proj
ℝn

�
gph‖⋅‖0 ∩ (ℝn × {i})

�
,
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semialgebraic. Altogether, the set D, which is intersection of semialgebraic sets, is 
semialgebraic. Hence, when specified to the problem above, FRB converges to a sta-
tionary point thanks to Example 3.16.

We find a projection onto D by the formula given below, which is a consequence of 
[29, Proposition 3.1] and was already observed by Li and Pong [6]. We provide a proof 
for the sake of completeness.

Proposition 4.1 Let z = (z1,… , zn) ∈ ℝ
n . For every i, set z̃∗

i
= Proj[−l,l](zi) , 

v∗
i
= |zi|2 − |z̃∗

i
− zi|2 , and let I∗ ⊆ {1,… , n} be the set of indices corresponding 

to the r largest elements of v∗
i
, i = 1,… , n . Define z∗ ∈ ℝ

n by z∗
i
= z̃∗

i
 if i ∈ I∗ and 

z∗
i
= 0 otherwise. Then z∗ ∈ ProjD(z).

Proof Apply [29, Proposition 3.1] with �i = | ⋅ −zi|2 and Xi = [−l, l] .   ◻

We shall benchmark FRB against the Douglas-Rachford method with fixed step-
size (DR) [6] by Li and Pong, inertial Tseng’s method (iTseng) [12] by Boţ and Cset-
nek, and DR equipped with step-size heuristics (DRh) [6] by Li and Pong. These split-
ting algorithms for nonconvex optimization problems are known to converge globally 
to a stationary point of  (3) under appropriate assumptions on the concave KL prop-
erty of merit functions; see [6, Theorems 1–2, Remark 4, Corollary 1] and [12, Theo-
rem 3.1]. The convergence of DR and iTseng in our setting are already proved in [6, 
Proposition 2] and [12, Corollary 3.1], respectively.

We implement FRB with the following specified scheme for the problem of finding 
an r-sparse solution of a linear system {x ∈ ℝ

n ∶ Ax = b}

where the step-size � = 0.9999 ⋅
1

3
 (recall Example 3.16). The inertial type Tseng’s 

method studied in [12, Scheme (6)] is applied with a step-size �� = 0.1316 given by 
[12, Lemma 3.3] and a fixed inertial term � =

1

8
:

As for DR and DRh, we employ the schemes specified by [6, Scheme (7)] and [6, 
Section 5] with the exact same step-sizes, respectively. All algorithms are initialized 
at the origin, and we terminate FRB and iTseng when

We adopt the termination criteria from [6, Section 5] for DR and DRh, where the 
same tolerance of 10−8 is applied. Similar to [6, Section  5], our problem data is 
generated through creating random matrices A ∈ ℝ

m×n with entries following the 
standard Gaussian distribution. Then we generate a vector x̂ ∈ ℝ

r randomly with 
the same distribution, project it onto the box [−106, 106]r , and create a sparse vector 

xk+1 ∈ ProjD
(
xk − �A†A(2xk − xk−1) + �A†b

)

pk+1 ∈ ProjD
(
xk − ��A†(Axk − b) + �(xk − xk−1)

)
,

xk+1 = pk + ��A†A(xk − pk).

max
{‖‖xk+1 − xk

‖‖, ‖‖xk − xk−1
‖‖
}

max
{
1, ‖‖xk+1‖‖, ‖‖xk‖‖, ‖‖xk−1‖‖

} < 10−8.
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x̃ ∈ ℝ
n whose r entries are chosen randomly to be the respective values of the pro-

jection of x̂ onto [−106, 106]r . Finally, we set b = Ax̃ to guarantee C ∩ D ≠ ∅.
Results of our experiments are presented in Table  1 below. For each problem 

of the size (m, n), we randomly generate 50 instances using the strategy described 
above, and report ceilings of the average number of iterations (iter), the minimal 
objective value at termination ( fvalmin ), and the number of successes (succ). Here 
we say an experiment is “successful", if the objective function value at termination 
is less than 10−12 , which means that the algorithm actually hits a global minimizer 
rather than just a stationary point. We observed the following:

– Among algorithms with a fixed step-size (FRB, DR, and iTseng), FRB outper-
forms the others in terms of both the number of iterations and successes, and 
it also has the smallest termination values. Moreover, it’s worth noting that our 
simulation results align with Malitsky and Tam’s observation that FRB con-
verges faster than Tseng’s method on a specific problem [4, Remark 2.8].

– DRh has the most number of successes and the best precision at termination (see 
fvalmin ), but tend to be slower on “easy" problems (large m).

Therefore, FRB is a competitive method for finding a sparse solution of a linear sys-
tem, at least among the aforementioned algorithms with a fixed step-size.2

5  Conclusion and future work

We established convergence of the Malitsky-Tam FRB splitting algorithm in the 
nonconvex setting. Under the generalized concave KL property, we showed that 
FRB converges globally to a stationary point of (3) and admits finite length property, 
which is even new in the convex setting. The sharpness of our results is demon-
strated by virtue of the exact modulus associated with the generalized concave KL 
property. We also analyzed both function value and sequential convergence rates of 
FRB when desingularizing functions associated with the generalized concave KL 
property have the Łojasiewicz form. Numerical simulations suggest that FRB is a 
competitive method compared to DR and inertial Tseng’s methods.

As for future work, it is tempting to analyze convergence rate using the exact 
modulus, as the usual KL convergence rate analysis assumes desingularizing func-
tions of the Łojasiewicz form, which could be an overestimation. Another direction 
is to improve FRB through heuristics or other step-size strategies such as FISTA. 
Finally, as anonymous referees kindly pointed out, inertia techniques have been 
widely adopted to improve nonconvex proximal-type algorithms in the KL frame-
work; see, e.g., [12, 30] and the references therein. Therefore, it is also tempting to 
explore an inertial type FRB for nonconvex optimization problems.

2 We also performed simulations with much larger problem size ( n = 4000, 5000, 6000 ), in which case 
FRB, DR, and iTseng tend to stuck at stationary points while DRh can still hit global minimizers. We 
believe that this is due to its heuristics; see also [6, Section 5].
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