
Vol.:(0123456789)

Computational Optimization and Applications (2022) 82:89–106
https://doi.org/10.1007/s10589-022-00361-3

1 3

Local saddle points for unconstrained polynomial
optimization

Wenjie Zhao1 · Guangming Zhou1

Received: 6 January 2021 / Accepted: 21 February 2022 / Published online: 14 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
This paper gives an algorithm for computing local saddle points for unconstrained
polynomial optimization. It is based on optimality conditions and Lasserre’s hierar-
chy of semidefinite relaxations. It can determine the existence of local saddle points.
When there are several different local saddle point values, the algorithm can get
them from the smallest one to the largest one.

Keywords Saddle point · Polynomial optimization · Lasserre’s hierarchy ·
Semidefinite relaxation

Mathematics Subject Classification 90C22 · 90C47 · 49K35 · 65K05

1 Introduction

Let f(x, y) be a continuous function in (x, y) ∈ X × Y , where X ⊆ ℝn and Y ⊆ ℝm are
two sets (n and m are positive integers). A pair (x∗, y∗) ∈ X × Y is said to be a saddle
point of f(x, y) over X × Y if

Saddle point problems can be applied to wide fields, such as game theory and equi-
librium theory [25, 27, 28, 41], robust optimization [3], optimal control problems
[44], generative adversarial nets in deep learning [15], etc. We refer to [5] for the
basic theory of saddle point problems.

f (x∗, y) ⩽ f (x∗, y∗) ⩽ f (x, y∗), ∀(x, y) ∈ X × Y .

 * Guangming Zhou
 zhougm@xtu.edu.cn

 Wenjie Zhao
 zhaowj@smail.xtu.edu.cn

1 School of Mathematics and Computational Science & Hunan Key Laboratory for Computation
and Simulation in Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan,
China

http://orcid.org/0000-0002-7427-1781
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-022-00361-3&domain=pdf

90 W. Zhao, G. Zhou

1 3

There exists much work on saddle point problems based on subgradients [30],
primal-dual method [8, 17], perturbations [20], variational inequalities [9, 31],
Uzawa method [13], Krylov subspace method [40], splitting iteration [2], precondi-
tioners for saddle point problems [4, 7, 12, 16] and other approaches. These classical
methods focus on convex-concave type saddle point problems. Dauphin, Pascanu,
Gulcehre, Cho, Ganguli, Bengio studied the saddle point problems for non-convex
optimization [11, 39]. Nie, Yang and Zhou [38] proposed a numerical method for
obtaining saddle points of polynomial optimization. Zhou, Wang and Zhao [45] pro-
posed an approach for computing saddle points of rational functions. The polyno-
mials or rational functions in [38, 45] are not limited to the convex-concave types.
Recently, Adolphs, Daneshmand, Lucchi and Hofmann [1] defined local saddle
points.

Definition 1.1 A pair (x∗, y∗) ∈ X × Y is said to be a local saddle point for continu-
ous function f(x, y) if there exists 𝜏 > 0 such that

for all (x, y) ∈ (X ∩ B(x∗, �)) × (Y ∩ B(y∗, �)) , where

In Definition 1.1, let f (x, y) ∈ ℝ[x, y] be a polynomial in (x, y) ∈ X × Y , where
X ∶= ℝn and Y ∶= ℝm , if there exist 𝜏 > 0 and (x∗, y∗) ∈ ℝn ×ℝm such that

for all (x, y) ∈ B(x∗, �) × B(y∗, �) (resp., (x, y) ∈ ℝn ×ℝm), we say (x∗, y∗) is a local
(resp., global) saddle point of the polynomial f(x, y).

In this paper, we focus on computing local saddle points for unconstrained pol-
ynomial optimization. Suppose that a polynomial has finitely many local saddle
points. We propose an algorithm based on second-order optimality conditions and
Lasserre’s hierarchy of relaxations for computing them and their corresponding
local saddle point values. If a polynomial does not have local saddle points, the algo-
rithm can detect the nonexistence. In addition, under the assumption that the polyno-
mial has finitely many critical points, the algorithm can terminate after finitely many
iterations.

The remaining of this paper is organized as follows. We describe the basic the-
ory of polynomial optimization in Sect. 2. In Sect. 3, after the second-order opti-
mality conditions and Lasserre’s hierarchy of relaxations are introduced, we give
an algorithm for solving local saddle points of unconstrained polynomial optimiza-
tion. Convergent results and proofs are given in Sect. 4. Some examples are given to
illustrate that the algorithm is effective in Sect. 5. Conclusions and discussions are
shown in Sect. 6.

f (x∗, y) ⩽ f (x∗, y∗) ⩽ f (x, y∗)

B(x∗, �) ∶= {x ∈ ℝn � ‖x − x∗‖2 ⩽ �}, B(y∗, �) ∶= {y ∈ ℝm � ‖y − y∗‖2 ⩽ �}.

(1.1)f (x∗, y) ⩽ f (x∗, y∗) ⩽ f (x, y∗)

91

1 3

Local saddle points for unconstrained polynomial optimization

2 Preliminaries

2.1 Notation

Let ℕ , ℕ+ , ℝ and ℂ be the set of nonnegative integers, positive integers, real num-
bers and complex numbers, respectively. For n,m ∈ ℕ+ , ℝn and ℝm denote n and m
dimension Euclidean space, respectively. ℝ[x] ∶= ℝ[x1, x2,… , xn] is the ring of pol-
ynomials in x ∶= (x1, x2,… , xn) with real coefficients, and ℝ[x]d represents the set
of polynomials in ℝ[x] with their degrees not more than d. ℝ[x, y] and ℝ[x, y]d can
be defined similarly. For n ∈ ℕ+ , let ℕn

d
∶= {� ∈ ℕn | �1 + �2 +⋯ + �n ⩽ d} . The

symbol deg(f) stands for the degree of the polynomial f. The norm ‖⋅‖ is the standard
Euclidean norm. ⌈k⌉ indicates the smallest integer not less than k. We denote by tr (A)
the trace of matrix A. The superscript T means the transpose of a matrix or vector.
We write A ≻ 0 , A ⪰ 0 , A ≺ 0 and A ⪯ 0 to express that the matrix A is positive def-
inite, positive semidefinite, negative definite and negative semidefinite, respectively.
The symbol diag (D1,D2,… ,Dn) denotes the block diagonal matrix whose diagonal
square blocks are D1,D2,… ,Dn . ∇xf = (fx1 , fx2 ,… , fxn) denotes the gradient vector
of the polynomial f(x, y) in x ∶= (x1, x2,… , xn) , where fxi is the partial derivative of
f(x, y) with respect to xi . ∇yf and fyi are defined similarly. ∇2

x
f (resp., ∇2

y
f) stands for

the Hessian matrix of the polynomial f(x, y) in x (resp., y).
For x = (x1, x2,… , xn) ∈ ℝn , � = (�1, �2,… , �n) ∈ ℕn and d ∈ ℕ , we define the

following symbols

A polynomial p(x) ∈ ℝ[x]d can be written as

where vec(p) means the column coefficient vector of the polynomial p(x) with
respect to the basis [x]d.

2.2 Sum of squares, ideals, quadratic modules and moments

A polynomial s(x) is a sum of squares (SOS) if it can be written as
s(x) = s2

1
(x) + s2

2
(x) +⋯ + s2

l
(x) for some polynomials s1(x), s2(x),… , sl(x) ∈ ℝ[x] .

The symbol Σ[x] denotes the set of SOS polynomials, and its k-th truncation is
Σ[x]k ∶= Σ[x] ∩ℝ[x]k . Obviously, if a polynomial is SOS, then it is nonnegative
everywhere, but the inverse is not necessarily true.

A subset I ⊂ ℝ[x] is an ideal if it satisfies f + g ∈ I for all f ∈ I, g ∈ I and fh ∈ I
for all f ∈ I, h ∈ ℝ[x] . For a tuple p = (p1, p2,… , pl1) of polynomials in ℝ[x] , I (p)
denotes the smallest ideal which contains all pi , i.e., I (p) is defined as

x� ∶= x
�1
1
x
�2
2
… x�n

n
, [x]d ∶= (1, x1, x2,… , xn, x1x2, x1x3,… , xd

n
) T .

p(x) =
∑
�∈ℕn

d

p�x
� = vec(p) T [x]d,

I (p) ∶= {p1h1 + p2h2 +⋯ + pl1hl1 | hi ∈ ℝ[x], i = 1, 2,… , l1}.

92 W. Zhao, G. Zhou

1 3

We often need its truncation in computation, which is defined as

The real and complex varieties of an ideal I ∈ ℝ[x] are defined respectively as

For some nonnegative polynomials q1, q2,… , ql2 ∈ ℝ[x] , the quadratic module of
the tuple q = (q1, q2,… , ql2) is defined as

The truncation of quadratic module Q (q) is defined as

Let ℝℕn
d be the space of real sequences indexed by � ∈ ℕn

d
 . A truncated multi-

sequence (tms) z ∈ ℝℕn
d , labelled as (z)d ∶= (z�)�∈ℕn

d
 , gives a Riesz linear functional

such that

Let u(x) ∈ ℝ[x] with deg(u) ⩽ 2k . The k-th localizing matrix of u(x) generated by a
tms z ∈ ℝℕn

2k , is the symmetric matrix L(k)
u
(z) satisfying

for all a(x), b(x) ∈ ℝ[x]k−⌈deg(u)∕2⌉ . For example, when n = 2 , k = 2 and
u(x) = 2 − 3x1x2 , for z ∈ ℝℕ2

4 , we have

When u(x) = 1 , L(k)
u
(z) is called the moment matrix, and it is denoted as

For example, when n = 2 and k = 1 , for z ∈ ℝℕ2
2 , we have

I 2k(p) ∶= {p1h1 + p2h2 +⋯ + pl1hl1 | hi ∈ ℝ[x],

deg(pihi) ⩽ 2k, i = 1, 2,… , l1}.

V ℝ(I) ∶= {u ∈ ℝn | f (u) = 0, ∀f ∈ I},

V ℂ(I) ∶= {v ∈ ℂn | f (v) = 0, ∀f ∈ I}.

Q (q) ∶= {s0 + s1q1 + s2q2 +⋯ + sl2ql2 | si ∈ Σ[x], i = 0, 1, 2,… , l2}.

Q k(q) ∶= {s0 + s1q1 + s2q2 +⋯ + sl2ql2 | s0 ∈ Σ[x]2k,

si ∈ Σ[x]2k−deg(qi), i = 1, 2,… , l2}.

Lz ∶ f (x) =
∑
�∈ℕn

d

f�x
�

⟼ Lz(f) =
∑
�∈ℕn

d

f�z� .

Lz(uab) = vec(a) T
(
L(k)
u
(z)

)
vec(b)

L(2)
u
(z) =

⎡⎢⎢⎣

2z00 − 3z11 2z10 − 3z21 2z01 − 3z12
2z10 − 3z21 2z20 − 3z31 2z11 − 3z22
2z01 − 3z12 2z11 − 3z22 2z02 − 3z13

⎤⎥⎥⎦
.

Mk(z) ∶= L
(k)

1
(z).

M1(z) =

⎡⎢⎢⎣

z00 z10 z01
z10 z20 z11
z01 z11 z02

⎤⎥⎥⎦
.

93

1 3

Local saddle points for unconstrained polynomial optimization

Let H be an l × l symmetric matrix, whose each element Hij is a polynomial in ℝ[x] .
The k-th localizing matrix of H generated by the tms z ∈ ℝℕn

2k is the block symmet-
ric matrix L(k)

H
(z) , which is defined as

and each block L(k)
Hij
(z) is a standard localizing matrix of the polynomial Hij.

Let Σ[x]l×l be the cone of all sums of s1s
T
1
+ s2s

T
2
+⋯ + srs

T
r

 with
s1, s2,… , sr ∈ ℝ[x]l . When l = 1 , Σ[x]l×l is Σ[x] . The quadratic module of H is

The k-th truncation of Q (H) is defined as

If there exists r(x) ∈ I (p) + Q (q) + Q (H) such that {x | r(x) ⩾ 0} defines a compact
set in ℝn , I (p) + Q (q) + Q (H) is said to be archimedean. If I (p) + Q (q) + Q (H) is
archimedean, then the set 𝕂 ∶= {x | p1(x) = 0,… , pl1 (x) = 0, q1(x) ⩾ 0,… , ql2 (x) ⩾

0, H ⪰ 0} is compact. The converse is in general not true. However, if � is compact
set, and let 𝕂 ⊆ {x � N − ‖x‖2 ⩾ 0} where N ⩾ 0 , then I (p) + Q (q,N − ‖x‖2) + Q (H)
is archimedean. If I (p) + Q (q) + Q (H) is archimedean and the polynomial
�(x) ∈ ℝ[x] is strictly positive over � , then �(x) ∈ I (p) + Q (q) + Q (H) . Polyno-
mial optimization is closely related to truncated moment problems. Optimizers can
be extracted from Lasserre’s hierarchy of relaxations. We refer to the work [14, 33,
37].

3 Computation of local saddle points

3.1 Optimality conditions

There exists classical work on second-order optimality conditions for unconstrained
optimization. Let �(x) be a polynomial in x, if there are 𝜏 > 0 and x∗ such that �(x∗) is
the smallest value of �(x) on B(x∗, �) , then x∗ is a local minimizer of �(x) , and �(x∗) is
a local minimum. If x∗ is a local minimizer of the polynomial �(x) , then

Conversely, if there exists x∗ such that

then x∗ is a local minimizer of the polynomial �(x).

L
(k)

H
(z) ∶=

(
L
(k)

Hij
(z)

)
1⩽i⩽l,1⩽j⩽l

,

Q (H) ∶= Σ[x] +
{
tr (HS) | S ∈ Σ[x]l×l

}
.

Q k(H) ∶= Σ[x]2k +

{
tr (HS)

||||
S ∈ Σ[x]l×l, deg(HijSij) ⩽ 2k,

∀ 1 ⩽ i ⩽ l, 1 ⩽ j ⩽ l

}
.

∇x�(x
∗) = 0, ∇2

x
�(x∗) ⪰ 0.

∇x𝜙(x
∗) = 0, ∇2

x
𝜙(x∗) ≻ 0,

94 W. Zhao, G. Zhou

1 3

We detect local saddle points by the second-order optimality conditions. If the poly-
nomial f(x, y) has local saddle points, then it has finitely many local saddle point values.
This is shown in Proposition 4.1.

Suppose that (x�, y�) is a minimizer of the problem

According to the second-order sufficient optimality condition, if ∇2
x
f (x�, y�) ≻ 0 and

∇2
y
f (x�, y�) ≺ 0 , then (x�, y�) is a local saddle point of the polynomial f(x, y) and f1 is

corresponding local saddle point value. Otherwise, according to the inequality (1.1),
if x′ is a minimizer of

for some small 𝜏 > 0 , and y′ is a maximizer of

for some small 𝜏 > 0 , then (x�, y�) is a local saddle point of the polynomial f(x, y)
and f1 is corresponding local saddle point value. If 𝜏 > 0 is very small, but x′ is not
a minimizer of the problem (3.2) or y′ is not a maximizer of the problem (3.3), it
is mostly open how to identify if it is a local saddle point or not, because detecting
local optimality is NP-hard [29].

We assume that fr−1 (r ⩾ 2) is obtained. We consider the following problem for
detecting new local saddle points by adding the new constraint f (x, y) ⩾ fr−1 + � with
some 𝛿 > 0

Analogously, suppose (x��, y��) is a minimizer of (3.4). According to the second-order
sufficient optimality condition, if ∇2

x
f (x��, y��) ≻ 0 and ∇2

y
f (x��, y��) ≺ 0 , then (x��, y��)

is a local saddle point of f(x, y) and fr is corresponding local saddle point value.
Otherwise, according to the inequality (1.1), if x′′ is a minimizer of

(3.1)

⎧
⎪⎨⎪⎩

f1 ∶= min f (x, y)

subject to ∇xf (x, y) = 0, ∇2
x
f (x, y) ⪰ 0,

∇yf (x, y) = 0, ∇2
y
f (x, y) ⪯ 0.

(3.2)

⎧
⎪⎨⎪⎩

min f (x, y�)

subject to ∇xf (x, y
�) = 0, ∇2

x
f (x, y�) ⪰ 0,

‖x − x�‖2 ⩽ �

(3.3)

⎧⎪⎨⎪⎩

max f (x�, y)

subject to ∇yf (x
�, y) = 0, ∇2

y
f (x�, y) ⪯ 0,

‖y − y�‖2 ⩽ �

(3.4)

⎧⎪⎨⎪⎩

fr ∶= min f (x, y)

subject to ∇xf (x, y) = 0, ∇2
x
f (x, y) ⪰ 0,

∇yf (x, y) = 0, ∇2
y
f (x, y) ⪯ 0,

f (x, y) − fr−1 − � ⩾ 0.

95

1 3

Local saddle points for unconstrained polynomial optimization

for some small 𝜏 > 0 , and y′′ is a maximizer of

for some small 𝜏 > 0 , then (x��, y��) is a local saddle point of f(x, y), and fr is corre-
sponding local saddle point value. If 𝜏 > 0 is very small, but x′′ is not a minimizer
of the problem (3.5) or y′′ is not a maximizer of the problem (3.6), it is mostly open
how to identify if it is a local saddle point or not.

We assume that fr−1 (r ⩾ 2) is obtained. In order to avoid losing local saddle points
arising from inappropriate � , we introduce a new maximization problem

It is obvious that f �
r
⩾ fr−1 . Note that if f 𝛿

r
> fr−1 , then a smaller positive value for

� is required. Therefore, the criterion for choosing a suitable positive value for � is
f �
r
= fr−1 , which can guarantee that there is no other minimum of the problem (3.1)

between fr−1 and fr . We refer to the paper [36] for details.
When we solve the problem (3.2), (3.3), (3.5) and (3.6), a suitable value for � is very

important for checking local saddle points. There is not a good approach for choosing a
suitable value for � , but in general it can not be too tiny. In practice, the value like 0.01
or 0.05 is small enough.

3.2 Lasserre’s hierarchy of semidefinite relaxations

The optimization problems (3.1)–(3.7) are solved by Lasserre’s hierarchy of relaxa-
tions. In this section, we illustrate how to solve the problems (3.1) and (3.4) in detail.
The other problems can be solved by same approach, so we do not give details for the
other problems. The theory of Lasserre’s hierarchy of relaxations can be found in [22,
23].

For convenience, we introduce the following notation,

(3.5)

⎧
⎪⎨⎪⎩

min f (x, y��)

subject to ∇xf (x, y
��) = 0, ∇2

x
f (x, y��) ⪰ 0,

f (x, y��) − fr−1 − � ⩾ 0,

‖x − x��‖2 ⩽ �

(3.6)

⎧
⎪⎨⎪⎩

max f (x��, y)

subject to ∇yf (x
��, y) = 0, ∇2

y
f (x��, y) ⪯ 0,

f (x��, y) − fr−1 − � ⩾ 0,

‖y − y��‖2 ⩽ �

(3.7)

⎧⎪⎨⎪⎩

f �
r
∶= max f (x, y)

subject to ∇xf (x, y) = 0, ∇2
x
f (x, y) ⪰ 0,

∇yf (x, y) = 0, ∇2
y
f (x, y) ⪯ 0,

fr−1 + � − f (x, y) ⩾ 0.

96 W. Zhao, G. Zhou

1 3

Applying the Lasserre’s hierarchy of relaxations to (3.1), we get the following
problem

in which k is called relaxation order, and k ⩾ max{df , dG, dH} . The relaxation prob-
lem (3.8) can be reformulated as a semidefinite programming problem (SDP), which
can be solved by many SDP solvers using interior point methods, such as SeDuMi
[42], SDPT3 [43], etc. According to Lasserre’s hierarchy of relaxations, the inequal-
ity �k

1
⩽ f1 holds for every k because the feasible region of (3.8) is larger than that

of (3.1). However, as the relaxation order k increases, more constraints are added
to the relaxation problem (3.8), so the sequence {�k

1
} is monotonically increasing,

namely

Suppose z∗ is a minimizer of (3.8), if z∗ has a flat truncation [33], which means there
exists a positive integer t such that

where max{df , dG, dH} ⩽ t ⩽ k , s ∶= max{1, dG, dH} , then we can get at least
r ∶= rank (Mk(z

∗)) minimizers of (3.1). According to Theorem 1.1 in [10] or
Proposition 2.1 in [36], if z∗ is feasible for (3.8) and (3.9), then z∗ admits a unique
r-atomic measure support in the feasible set of (3.1), which means there exist
𝜇1 > 0,𝜇2 > 0,… ,𝜇r > 0 and r distinct points p1, p2,… , pr in feasible set of (3.1)
such that

where �1 + �2 +⋯ + �r = 1 . If the rank condition (3.9) holds, then f1 = �k
1
 and all

points p1, p2,… , pr are the minimizers of (3.1). They can be obtained by solving
some singular value decompositions and eigenvalue problems. One can refer to [18]
for more details.

The dual problem of (3.8) is

g(x, y) ∶= f (x, y) − fr−1 − �, Hf ∶= diag (∇2
x
f ,−∇2

y
f),

df ∶= ⌈deg(f)∕2⌉, dg ∶= ⌈deg(g)∕2⌉,
dG ∶= max{

�
deg(fxi)∕2

�
,
�
deg(fyj)∕2

�
, i = 1, 2,… , n, j = 1, 2,… ,m},

dH ∶= max{
�
deg((Hf)ij)∕2

�
, 1 ⩽ i ⩽ m + n, 1 ⩽ j ⩽ m + n}.

(3.8)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�k
1
∶= min Lz(f)

subject to Mk(z) ⪰ 0, z0 = 1,

L
(k)

fxi
(z) = 0, i = 1, 2,… , n,

L
(k)

fyj
(z) = 0, j = 1, 2,… ,m,

L
(k)

Hf
(z) ⪰ 0.

�k
1
⩽ �k+1

1
⩽ �k+2

1
⩽ ⋯ ⩽ f1.

(3.9)rank (Mt(z
∗)) = rank (Mt−s(z

∗)),

z∗ = �1[p1]2k + �2[p2]2k +⋯ + �r[pr]2k,

97

1 3

Local saddle points for unconstrained polynomial optimization

The problem (3.10) is also equivalent to a semidefinite programming (SDP) prob-
lem. In terms of weak duality, the inequality �k

1
⩽ �k

1
 holds for every k. When the

Slater condition holds for the problem (3.8), i.e., there exists an interior point in the
feasible set of (3.8), then (3.10) achieves its optimal value, and �k

1
= �k

1
 for every k.

Besides, the feasible region of (3.10) will expand as k increases, so the sequence
{�k

1
} is monotonically increasing, that is

If the archimedean condition holds [33], i.e., there exists �(x, y) ∈ I 2k(∇f) + Q k(Hf)
for some k such that �(x, y) ⩾ 0 defines a compact set in (x, y), then �k

1
→ f1 as

k → +∞.
Applying Lasserre’s hierarchy of relaxations to (3.4), we get the following opti-

mization problem

where k ⩾ max{df , dG, dH , dg} . Likewise, if a minimizer z̃∗ of (3.11) has a flat trun-
cation [33], i.e., there exists a positive integer t̃ such that

where max{df , dG, dH , dg} ⩽ t̃ ⩽ k , and s̃ ∶= max{1, dG, dH , dg} , then we can get at
least r ∶= rank (Mk(z

∗)) minimizers of (3.4).
The dual problem of (3.11) is

For the above problems (3.11) and (3.13), we can obtain some conclusions similar
to (3.8) and (3.10).

3.3 An algorithm

We now give an algorithm for computing local saddle points for unconstrained poly-
nomial optimization. It can detect the existence of local saddle points. If there exist
several distinct local saddle point values, we can get them from the smallest one to
the largest one.

(3.10)
{

�k
1
∶= max �

subject to f − � ∈ I 2k(∇f) + Q k(Hf).

�k
1
⩽ �k+1

1
⩽ �k+2

1
⩽ ⋯ ⩽ f1.

(3.11)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�k
r
∶= min Lz(f)

subject to Mk(z) ⪰ 0, z0 = 1,

L
(k)

fxi
(z) = 0, i = 1, 2,… , n,

L
(k)

fyj
(z) = 0, j = 1, 2,… ,m,

L
(k)

Hf
(z) ⪰ 0, L(k)

g
(z) ⪰ 0,

(3.12)rank (Mt̃(z̃
∗)) = rank (Mt̃−s̃(z̃

∗)),

(3.13)
{

�k
r
∶= max �

subject to f − � ∈ I 2k(∇f) + Q k(g) + Q k(Hf).

98 W. Zhao, G. Zhou

1 3

Algorithm 3.1 Let 𝛿0 > 0 , 𝜏 > 0 , S ∶= � , r ∶= 1.

Step 1 If the problem (3.1) is infeasible, then there is no local saddle point and
stop. Otherwise, we get the minimum f1 and the set of minimizers C1.

Step 2 For a point (x�
1,i
, y�

1,i
) ∈ C1 , if ∇2

x
f (x�

1,i
, y�

1,i
) ≻ 0 and ∇2

y
f (x�

1,i
, y�

1,i
) ≺ 0 , then

let S ∶= S ∪ {(x�
1,i
, y�

1,i
)} , and continue to verify the rest of points in C1 .

Otherwise, go to Step 3.
Step 3 Solve the problem (3.2) replaced y′ with y′

1,i
 and get the minimum �1 .

If f (x�
1,i
, y�

1,i
) > 𝜂1 , then (x�

1,i
, y�

1,i
) is not a local saddle point. Update

C1 ∶= C1�{(x
�
1,i
, y�

1,i
)} and go back to Step 2. Otherwise, go to Step 4.

Step 4 Solve the problem (3.3) replaced x′ with x′
1,i

 and get the maxi-
mum �1 . If f (x�

1,i
, y�

1,i
) < 𝜈1 , then (x�

1,i
, y�

1,i
) is not a local saddle point.

Update C1 ∶= C1�{(x
�
1,i
, y�

1,i
)} and go back to Step 2. Otherwise, let

S ∶= S ∪ {(x�
1,i
, y�

1,i
)} , and go back to Step 2 to verify the rest of points in

C1 . If all points in C1 are verified, then let r ∶= r + 1 , � ∶= �0 , and go to
Step 5.

Step 5 Solve the problem (3.7), and get the maximum f �
r
 , then go to Step 6.

Step 6 If f 𝛿
r
> fr−1 , then let � ∶= �∕2 and go back to Step 5. If f �

r
= fr−1 , then go

to Step 7.
Step 7 If the problem (3.4) is infeasible, then there is no local saddle point value

that is not less than fr−1 and stop. Otherwise, we get the minimum fr and
the set of minimizers Cr.

Step 8 For a point (x�
r,i
, y�

r,i
) ∈ Cr , if ∇2

x
f (x�

r,i
, y�

r,i
) ≻ 0 and ∇2

y
f (x�

r,i
, y�

r,i
) ≺ 0 , then

let S ∶= S ∪ {(x�
r,i
, y�

r,i
)} , and continue to verify the rest of points in Cr .

Otherwise, go to Step 9.
Step 9 Solve the problem (3.5) replaced y′′ with y′

r,i
 and get the minimum

�r . If f (x�
r,i
, y�

r,i
) > 𝜂r then (x�

r,i
, y�

r,i
) is not a local saddle point. Update

Cr ∶= Cr�{(x
�
r,i
, y�

r,i
)} and go back to Step 8. Otherwise, go to Step 10.

Step 10 Solve the problem (3.6) replaced x′′ with x′
r,i

 and get the maxi-
mum �r . If f (x�

r,i
, y�

r,i
) < 𝜈r , then (x�

r,i
, y�

r,i
) is not a local saddle point.

Update Cr ∶= Cr�{(x
�
r,i
, y�

r,i
)} and go back to Step 8. Otherwise, let

S ∶= S ∪ {(x�
r,i
, y�

r,i
)} , then go back to Step 8 to verify the rest of points in

Cr . If all points in Cr are verified, then let r ∶= r + 1 , � ∶= �0 , and go back
to Step 5.

In Step 1, we compute the smallest minimum f1 and the set of minimizers C1
via the second-order necessary optimality condition if the problem (3.1) is feasi-
ble. In Step 2–4, we use the second-order sufficient optimality condition and the
definition of local saddle point to verify whether each minimizer in C1 is a local
saddle point or not. In Step 5–6, solving the problem (3.4) can obtain a suitable
value for � . Further, by Step 7, we obtain the minimum fr and the set of minimiz-
ers Cr of the problem (3.4) if the problem (3.4) is feasible. In Step 8–10, we verify
whether each point in Cr is a local saddle point or not by the second-order suffi-
cient optimality condition and the definition of local saddle point.

99

1 3

Local saddle points for unconstrained polynomial optimization

4 Convergence properties

The first result aims to prove that a polynomial has finitely many local saddle
point values.

Proposition 4.1 If a polynomial f(x, y) has local saddle points, then it has finitely
many local saddle point values.

Proof If (x∗, y∗) is a local saddle point of the polynomial f(x, y), then

So (x∗, y∗) is a critical point of f(x, y), and f (x∗, y∗) is a critical value. In terms of the
proof of Theorem 8 in [32] or Lemma 3.2 in [34], the polynomial f(x, y) has finitely
many critical values. Meanwhile, the local saddle point (x∗, y∗) also satisfies

so the set of local saddle point values of f(x, y) is finite. ◻

The finite termination of Algorithm 3.1 is given as follows.

Theorem 4.2 For the polynomial f(x, y), let Cr be the minimizers of (3.1)
for r = 1 , and the minimizers of (3.4) for r ⩾ 2 . Let Sr be the set of points in Cr
such that f (x∗

r,i
, y�

r,i
) = f (x�

r,i
, y�

r,i
) and f (x�

r,i
, y∗

r,i
) = f (x�

r,i
, y�

r,i
) for r ⩾ 1 . If

∇f (x, y) = 0,∇2
x
f (x, y) ⪰ 0,∇2

y
f (x, y) ⪯ 0 has finitely many real solutions, then Algo-

rithm 3.1 will stop after finitely many iterations. If Sr is not empty, then each point
(x∗, y∗) ∈ Sr is a local saddle point of f(x, y) and f (x∗, y∗) is a local saddle point
value.

Proof If the problem (3.1) is infeasible, i.e., the set C1 is empty, then the original
problem does not have a local saddle point. If there exists a positive integer r ⩾ 1
make Cr nonempty, according to the assumption, then these sets Cr are always finite.
Therefore, the algorithm will terminate after finitely many iterations. If Sr is not
empty, it means each (x∗, y∗) ∈ Sr is feasible for optimization problems both (3.2)
and (3.3) for r = 1 or both (3.5) and (3.6) for r ⩾ 2 . In terms of the inequality (1.1),
each point (x∗, y∗) in Sr is a local saddle point of the polynomial f(x, y), and f (x∗, y∗)
is a local saddle point value. ◻

Remark For a generic polynomial f(x, y), the polynomial system ∇f (x, y) = 0 has
finitely many complex solutions, thus Algorithm 3.1 will have finite convergence
[38, Theorem 3.3].

Some properties related to the relaxation (3.8), its dual (3.10) and the prob-
lem (3.1) are listed as follows.

∇f (x∗, y∗) = 0.

∇2
x
f (x∗, y∗) ⪰ 0, ∇2

y
f (x∗, y∗) ⪯ 0,

100 W. Zhao, G. Zhou

1 3

Theorem 4.3 Let f1 , �k1 and �k
1
 be the optimal value of (3.1), (3.8) and (3.10), respec-

tively. Suppose I (∇f) + Q (Hf) is archimedean, then

 (i) If (3.8) is infeasible, then (3.1) is infeasible;
 (ii) If V ℝ(∇f) is finite, and (3.1) is infeasible, then (3.10) is unbounded for all k

big enough and (3.8) is infeasible;
 (iii) If V ℝ(∇f) is finite, and (3.1) is feasible, then �k

1
= �k

1
= f1 for some k;

 (iv) If V ℝ(∇f) is finite, and (3.1) is feasible, then all minimizers of (3.8) hold the
flat truncation condition (3.9) with respect to the feasible set of (3.1) for all k
big enough.

Proof (i) The conclusion is obvious, because (3.8) is a relaxation problem of (3.1).
(ii) Because V ℝ(∇f) is finite, V ℝ(∇f) is compact, then the ideal I (∇f) is archi-

medean. Since −‖(∇f)‖2 ⩾ 0 defines a compact set in ℝm+n . If (3.1) is infeasible,
then −Hf is non-negative semidefinite matrix for all x ∈ V ℝ(∇f) . According to Cor-
ollary 3.16 in [21], we can get

Hence, for all k big enough, (3.10) is unbounded, by weak duality, which means (3.8)
is infeasible.

(iii) When V ℝ(∇f) is finite, V ℝ(∇f) can be written as {w1,w2,… ,wL} , where
L is a positive integer and wi ≠ wj for all i ≠ j . Let t1, t2,… , tL be the interpolating
polynomials such that ti(wj) = 0 for i ≠ j and ti(wj) = 1 for i = j.

For each wi , if f (wi) − f1 ⩾ 0 , let

If f (wi) − f1 < 0 , then Hf is non-positive semidefinite matrix. Hence, there exists
a eigenvalue 𝜆 < 0 of Hf , and its eigenvector is denoted by v. Let h(x, y) ∶= vTHf v
and

Hence, each Qi ∈ Q (Hf) . Let Q ∶= Q1 + Q2 +⋯ + QL , so Q ∈ Q N1
(Hf) for some

N1 > 0 . The polynomial

By Corollary 4.1.8 in [6], there exist an integer l > 0 and q ∈ Σ[x, y] ⊆ Q (Hf) such
that

−1 ∈ I (∇f) + Q (Hf).

Qi ∶= (f (wi) − f1)t
2
i
.

Qi ∶=
(f (wi) − f1

h(wi)

)
ht2

i
.

p ∶= f − f1 − Q ∈ {b ∈ ℝ[x, y] | b(u, v) = 0, ∀(u, v) ∈ V ℝ(∇f)},

p2l + q ∈ I (∇f).

101

1 3

Local saddle points for unconstrained polynomial optimization

Applying Lemma 2.1 in [35] to p, q, with ∇f , Hf and any c ⩾ 1∕2l , then there
exists N∗ > N1 such that for all 𝜖 > 0 , p + � = �� + �� , where �� ∈ I 2N∗ (∇f) ,
�� ∈ Q N∗ (Hf) . So we have

which means that for arbitrary 𝜖 > 0 , �k
1
= f1 − � is feasible in (3.10) for k = N∗ .

�k
1
⩽ f1 for arbitrary k and {… , �k

1
, �k+1

1
, �k+2

1
,…} is a monotonically increasing

sequence, so �k
1
= f1 as k → +∞ . According to �k

1
⩽ �k

1
⩽ f1 , so �k

1
= �k

1
= f1 for some

k ∈ ℕ+.
(iv) Because V ℝ(∇f) is finite, according to Proposition 4.6 in [24], there exists k

big enough, each z is feasible for (3.8), the truncation (z)2k is flat with respect to
∇f = 0 . Because dG = dH + 1 , and L(k)

Hf
(z) ⪰ 0 , (z)2k is also flat with respect to

Hf ⪰ 0 , so the conclusion is proved. ◻

We will show some results of the relaxation (3.11), its dual (3.13) and the
problem (3.4).

Theorem 4.4 Let fr , �kr and �k
r
 be the optimal value of (3.4), (3.11) and (3.13),

respectively. Suppose I (∇f) + Q (g) + Q (Hf) is archimedean, then

 (i) If (3.11) is infeasible, then (3.4) is infeasible;
 (ii) If V ℝ(∇f) ∩ {(x, y) | g(x, y) ⩾ 0} is finite, and (3.4) is infeasible, then (3.13)

is unbounded for all k big enough and (3.11) is infeasible;
 (iii) If V ℝ(∇f) ∩ {(x, y) | g(x, y) ⩾ 0} is finite, and (3.4) is feasible, then �k

r
= �k

r
= fr

for some k;
 (iv) If V ℝ(∇f) ∩ {(x, y) | g(x, y) ⩾ 0} is finite, and (3.4) is feasible, then all mini-

mizers of (3.11) hold the flat truncation condition (3.12) with respect to the
feasible set of (3.4) for all k big enough.

Proof (i) The conclusion is obvious, because (3.11) is a relaxation problem of (3.4).
(ii) Because V ℝ(∇f) ∩ {(x, y) | g(x, y) ⩾ 0} is finite, V ℝ(∇f) ∩ {(x, y) | g(x, y) ⩾ 0}

is compact, then I (∇f) + Q (g) is archimedean. Because (3.4) is infeasible, −Hf
is non-negative semidefinite matrix for all x ∈ V ℝ(∇f) ∩ {(x, y) | g(x, y) ⩾ 0} .
According to Corollary 3.16 in [21], we can get

Hence, for all k big enough, (3.13) is unbounded, by weak duality, which
means (3.11) is infeasible.

(iii) The proof is similar to that of the item (iii) in Theorem 4.3.
(iv) The proof is similar to that of the item (iv) in Theorem 4.3, which can be

proved by Remark 4.9 in [24]. ◻

f − (f1 − �) = �� + (�� + Q), �� + Q ∈ Q N∗ (Hf),

−1 ∈ I (∇f) + Q (g) + Q (Hf).

102 W. Zhao, G. Zhou

1 3

5 Numerical experiments

In this section, we apply Algorithm 3.1 to solve local saddle points of uncon-
strained polynomial optimization, and global saddle point is computed by Algo-
rithm 3.1 in [38]. All examples of this section are computed in MATLAB R2016b
on a Lenovo laptop with dual core CPU @ 2.5GHz and RAM 4.0 GB. All prob-
lems of Lasserre’s hierarchy of relaxations are solved by MATLAB software
package YALMIP [26] and GloptiPoly 3 [19], in which the semidefinite opti-
mization solver SeDuMi [42] is called.

Example 5.1 Consider the function over (x, y) ∈ ℝ ×ℝ

Applying Algorithm 3.1, after 2 iterations, local saddle point values f ∗
1
 and f ∗

2
 were

found, as shown in Table 1.
Since the problem (3.11) is infeasible for r = 3 and f �

3
= f ∗

2
 , which means f ∗

2
 is

the biggest local saddle point value. Hence, we got 2 local saddle point values and 4
local saddle points. Moreover, we got that the example has no global saddle point by
Algorithm 3.1 in [38].

Example 5.2 Consider the function over (x, y) ∈ ℝ ×ℝ

Applying Algorithm 3.1, after 3 iterations, local saddle point values f ∗
1
 , f ∗

2
 and f ∗

3

were found, as shown in Table 2.
Since the problem (3.11) is infeasible for r = 4 and f �

4
= f ∗

3
 , which means f ∗

3
 is

the biggest local saddle point value. Hence, we got 3 local saddle point values and 3
local saddle points. Moreover, we got that the example has no global saddle point by
Algorithm 3.1 in [38].

f (x, y) = −4x2 +
21

10
x4 −

1

3
x6 − xy + 4y2 − 4y4.

f (x, y) = x4y2 − x2y4 + x3y − xy3 + x − y.

Table 1 The numerical results
of Example 5.1

r f ∗
r

Local saddle points

1 −2.2295 (−1.2961,−0.6051), (1.2961, 0.6051)

2 −0.5437 (−1.1092, 0.7683), (1.1092,−0.7683)

Table 2 The numerical results
of Example 5.2

r f ∗
r

Local saddle points

1 −2.0436 (−1.2435, 0.8657)

2 0 (−0.6958,−0.6958)

3 2.0436 (0.8657,−1.2435)

103

1 3

Local saddle points for unconstrained polynomial optimization

Example 5.3 Consider the function over (x, y) ∈ ℝ2 ×ℝ2

Applying Algorithm 3.1, after 1 iteration, we got local saddle point value
f ∗
1
≈ 1.9346 and local saddle point

Since the problem (3.11) is infeasible for r = 2 and f �
2
= f ∗

1
 , which means f ∗

1
 is the

biggest local saddle point value. Hence, we got 1 local saddle point value and 1 local
saddle point. Moreover, we got that the example has no global saddle point by Algo-
rithm 3.1 in [38].

Example 5.4 Consider the function over (x, y) ∈ ℝ2 ×ℝ2

Applying Algorithm 3.1, after 2 iterations, local saddle point values f ∗
1
 and f ∗

2
 were

found, as shown in Table 3.
Since the problem (3.11) is infeasible for r = 3 and f �

3
= f ∗

2
 , which means f ∗

2
 is

the biggest local saddle point value. Hence, we got 2 local saddle point values and 2
local saddle points. Moreover, we got the global saddle point

and its saddle point value 18.2221 by Algorithm 3.1 in [38].

Example 5.5 Consider the function over (x, y) ∈ ℝ3 ×ℝ3

Applying Algorithm 3.1, since the problem (3.8) is infeasible for r = 1 , we got that
the example has no local saddle point.

Example 5.6 Consider the function over (x, y) ∈ ℝ3 ×ℝ3

f (x, y) = x3
1
y1 + x3

2
y2 − x1y

3
1
− x2y

3
2
+ x2

1
y1 + x2

2
y2 − x1y

2
1
− x2y

2
2
+

x1y1 + x2y2 + x1 + x2 − y1 − y2.

(−0.7189,−0.7189,−1.2503,−1.2503).

f (x, y) = x6
1
+ x6

2
− y6

1
− y6

2
− 5(x3

1
x2
2
+ x2

2
y3
1
+ y1x

4
2
) + 6x2

1
x2
2
+ 6y3

1
y2+

6x1x2y1y2 − 7(x1x2y1 + x2y1y2) + (x1 + x2 + y1 + y2 − 1)2.

(−0.7087, 0.5995,−1.6767,−1.3325)

f (x, y) = (x1 + x2 + x3 + y1 + y2 + y3)
2 + x1x2y1y2 + x2x3y2y3+

x1x3y1y3 + x2
1
y2
3
+ x2

2
y2
1
+ x2

3
y2
2
.

Table 3 The numerical results
of Example 5.4

r f ∗
r

Local saddle points

1 18.2221 (−0.7087, 0.5995,−1.6767,−1.3325)

2 20.1531 (1.0880,−0.1122,−1.6630,−1.4138)

104 W. Zhao, G. Zhou

1 3

Applying Algorithm 3.1, after 1 iteration, we got local saddle point value
f ∗
1
≈ −0.3681 and local saddle point

Since the problem (3.11) is infeasible for r = 2 and f �
2
= f ∗

1
 , which means f ∗

1
 is the

biggest local saddle point value. Hence, we got 1 local saddle point value and 1 local
saddle point. Moreover, we got that the local saddle point is just the global saddle
point by Algorithm 3.1 in [38].

6 Conclusions and discussions

The paper concentrates on detecting local saddle points of unconstrained polynomial
optimization. An algorithm based on second-order optimality conditions is proposed
for getting local saddle points, in which all polynomial optimization problems of
the algorithm are solved by Lasserre’s hierarchy of relaxations. The algorithm can
detect the nonexistence if a polynomial does not have local saddle points. When
a polynomial has several local saddle points, the algorithm can get them from the
smallest local saddle point value to the largest one. Besides, we give the finite termi-
nation of the algorithm.

Finally, for future work, one can consider the problem: for a polynomial on con-
straints, how can we get its saddle points?

Acknowledgements The authors would like to thank the editors and anonymous referees for the valuable
advice. Wenjie Zhao was supported by Postgraduate Scientific Research Innovation Project of Hunan
Province (CX20210605). Guangming Zhou was supported by Natural Science Foundation of China
(12071399) and Key Projects of Hunan Provincial Education Department (18A048).

Data Availability Statement Data sharing is not applicable to this article as no datasets are generated or
analyzed during the study of this article.

References

 1. Adolphs, L., Daneshmand, H., Lucchi, A., Hofmann, T.: Local saddle point optimization: A curva-
ture exploitation approach. Presented at the (2019)

 2. Bai, Z., Golub, G.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for sad-
dle-point problems. IMA J. Numer. Anal. 27(1), 1–23 (2007)

 3. Tal, A., Ghaoui, L., Nemirovski, A.: Robust optimization, vol. 28. Princeton University Press (2009)
 4. Benzi, M., Gander, M., Golub, G.: Optimization of the Hermitian and skew-Hermitian splitting iter-

ation for saddle-point problems. BIT Numer. Math. 43(5), 881–900 (2003)
 5. Bertsekas, D., Nedic, A., Ozdaglar, A.: Convex Analysis and Optimization. Athena Scientific (2003)
 6. Bochnak, J., Coste, M., Roy, M.: Real algebraic geometry, vol. 36. Springer (1998)

f (x, y) =

3∑
i=1

x4
i
+

3∑
i=1

(xi − 1)2 −

3∑
i=1

y4
i
−

3∑
i=1

(yi − 1)2+

x2
3
y1y2 + 2x2

2
y1y3 + 3x2

1
y2y3 − y2

3
x1x2 − 5y2

2
x1x3 − 4y2

1
x2x3.

(0.5785, 0.6043, 0.6936, 0.4363, 0.4233, 0.6357).

105

1 3

Local saddle points for unconstrained polynomial optimization

 7. Botchev, M., Golub, G.: A class of nonsymmetric preconditioners for saddle point problems. SIAM
J. Matrix Anal. Appl. 27(4), 1125–1149 (2006)

 8. Chen, Y., Lan, G., Ouyang, Y.: Optimal primal-dual methods for a class of saddle point problems.
SIAM J. Optim. 24(4), 1779–1814 (2014)

 9. Cox, B., Juditsky, A., Nemirovski, A.: Decomposition techniques for bilinear saddle point prob-
lems and variational inequalities with affine monotone operators. J. Optim. Theory Appl. 172(2),
402–435 (2017)

 10. Curto, R., Fialkow, L.: Truncated k-moment problems in several variables. J. Oper. Theory, pp 189–
226 (2005)

 11. Dauphin, Y., Pascanu, R., Gulcehre, C., et al.: Identifying and attacking the saddle point problem
in high-dimensional non-convex optimization. In: Advances in Neural Information Processing Sys-
tems, pp. 2933–2941 (2014)

 12. Dollar, H., Wathen, A.: Approximate factorization constraint preconditioners for saddle-point matri-
ces. SIAM J. Sci. Comput. 27(5), 1555–1572 (2006)

 13. Elman, H., Golub, G.: Inexact and preconditioned Uzawa algorithms for saddle point problems.
SIAM J. Numer. Anal. 31(6), 1645–1661 (1994)

 14. Fialkow, L., Nie, J.: The truncated moment problem via homogenization and flat extensions. J.
Funct. Anal. 263(6), 1682–1700 (2012)

 15. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. In: Advances in
Neural Information Processing Systems, pp. 2672–2680 (2014)

 16. Greif, C., Schötzau, D.: Preconditioners for saddle point linear systems with highly singular (1, 1)
blocks. ETNA, Special Volume on Saddle Point Problems 22, 114–121 (2006)

 17. He, B., Yuan, X.: Convergence analysis of primal-dual algorithms for a saddle-point problem: from
contraction perspective. SIAM J. Imag. Sci. 5(1), 119–149 (2012)

 18. Henrion, D., Lasserre, J.: Detecting global optimality and extracting solutions in gloptipoly. In: Pos-
itive Polynomials in Control, pp. 293–310. Springer (2005)

 19. Henrion, D., Lasserre, J., Löfberg, J.: Gloptipoly 3: moments, optimization and semidefinite pro-
gramming. Optim. Methods Softw. 24(4–5), 761–779 (2009)

 20. Kallio, M., Ruszczynski, A.: Perturbation methods for saddle point computation. (1994)
 21. Klep, I., Schweighofer, M.: Pure states, positive matrix polynomials and sums of Hermitian squares.

Indiana Univ. Math. J. 59(3), 857–874 (2010)
 22. Lasserre, J.: Global optimization with polynomials and the problem of moments. SIAM J. Optim.

11(3), 796–817 (2001)
 23. Lasserre, J.: Moments, positive polynomials and their applications, vol. 1. World Scientific (2010)
 24. Lasserre, J., Laurent, M., Rostalski, P.: Semidefinite characterization and computation of zero-

dimensional real radical ideals. Found. Comput. Math. 8(5), 607–647 (2008)
 25. Brown, K., Shoham, Y.: Essentials of game theory: a concise multidisciplinary introduction. Synth.

Lect. Artificial Intell. Mach. Learn. 2(1), 1–88 (2008)
 26. Löfberg, J.: Yalmip: A toolbox for modeling and optimization in matlab. Presented at the (2004)
 27. Mamer, J., Schilling, K.: Finite approximations to a zero-sum game with incomplete information.

Int. J. Game Theory 19(1), 101–106 (1990)
 28. Megahed, A.: A differential game related to terrorism: min-max zero-sum two persons differential

game. Neural Comput. Appl. 30(3), 865–870 (2018)
 29. Murty, K., Kabadi, S.: Some NP-complete problems in quadratic and nonlinear programming. Math.

Program. 39(2), 117–129 (1987)
 30. Nedić, A., Ozdaglar, A.: Subgradient methods for saddle-point problems. J. Optim. Theory Appl.

142(1), 205–228 (2009)
 31. Nemirovski, A.: Prox-method with rate of convergence o(1∕t) for variational inequalities with Lip-

schitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM J.
Optim. 15(1), 229–251 (2004)

 32. Nie, J., Demmel, J., Sturmfels, B.: Minimizing polynomials via sum of squares over the gradient
ideal. Math. Program. 106(3), 587–606 (2006)

 33. Nie, J.: Certifying convergence of Lasserre’s hierarchy via flat truncation. Math. Program. 142(1–2),
485–510 (2013)

 34. Nie, J.: An exact Jacobian SDP relaxation for polynomial optimization. Math. Program. 137(1–2),
225–255 (2013)

 35. Nie, J.: Polynomial optimization with real varieties. SIAM J. Optim. 23(3), 1634–1646 (2013)

106 W. Zhao, G. Zhou

1 3

 36. Nie, J.: The hierarchy of local minimums in polynomial optimization. Math. Program. 151(2), 555–
583 (2015)

 37. Nie, J.: Linear optimization with cones of moments and nonnegative polynomials. Math. Program.
153(2), 247–274 (2015)

 38. Nie, J., Yang, Z., Zhou, G.: The saddle point problem of polynomials. arXiv preprint, p. 1809.01218
(2018)

 39. Pascanu, R., Dauphin, Y., Ganguli, S., Bengio, Y.: On the saddle point problem for non-convex opti-
mization. Presented at the (2014)

 40. Rozlozník, M., Simoncini, V.: Krylov subspace methods for saddle point problems with indefinite
preconditioning. SIAM J. Matrix Anal. Appl. 24(2), 368–391 (2002)

 41. Singh, S., Kearns, M., Mansour, Y.: Nash convergence of gradient dynamics in general-sum games.
In UAI, pp. 541–548 (2000)

 42. Sturm, J.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optim.
Methods Softw. 11(1–4), 625–653 (1999)

 43. Toh, K., Todd, M., Tütüncü, R.: On the implementation and usage of SDPT3–a matlab software
package for semidefinite-quadratic-linear programming, Version 4.0, pp. 715–754, Springer (2012)

 44. Vasilyev, F., Khoroshilova, E., Antipin, A.: An extragradient method for finding the saddle point in
an optimal control problem. Mosc. Univ. Comput. Math. Cybern. 34(3), 113–118 (2010)

 45. Zhou, G., Wang, Q., Zhao, W.: Saddle points of rational functions. Comput. Optim. Appl. 75, 817–
832 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Local saddle points for unconstrained polynomial optimization
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Sum of squares, ideals, quadratic modules and moments

	3 Computation of local saddle points
	3.1 Optimality conditions
	3.2 Lasserre’s hierarchy of semidefinite relaxations
	3.3 An algorithm

	4 Convergence properties
	5 Numerical experiments
	6 Conclusions and discussions
	Acknowledgements
	References

