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Abstract
In this paper we study the formulation of inverse problems as constrained minimi-
zation problems and their iterative solution by gradient or Newton type methods. 
We carry out a convergence analysis in the sense of regularization methods and dis-
cuss applicability to the problem of identifying the spatially varying diffusivity in 
an elliptic PDE from different sets of observations. Among these is a novel hybrid 
imaging technology known as impedance acoustic tomography, for which we pro-
vide numerical experiments.

Keywords Inverse problems · Iterative regularization · Coefficient identification in 
elliptic PDEs · Impedance acoustic tomography

1 Introduction

Inverse problems usually consist of a model

where the operator A acts on the state u of a system and contains unknown param-
eters x, and an observation equation

quantifying the additionally available information that is supposed to allow for iden-
tifying the parameters x; by a slight notation overload, we will often summarize 
(x, u) into a single element, which we again call x.

The classical formulation of an inverse problem is as an operator equation

(1)A(x, u) = 0

(2)C(x, u) = y
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where usually x is the searched for parameter (some coefficient, initial or boundary 
conditions in a PDE or ODE model) but—in an all-at-once formulation—might as 
well include the state, i.e., the PDE solution. In a conventional reduced setting 
F = C◦S is the concatenation of an observation operator C with a parameter-to-state 
map S satisfying A(x, S(x)) = 0 , whereas an all-at-once setting considers the inverse 

problem as a system 
{

A(x, u) = 0

C(x, u) = y
 , which by the above mentioned replacement 

x ∶= (x, u) takes the form (3), see, e.g. [14, 15]. All-at-once approaches have been 
studied for PDE constrained optimization already for many years in, e.g., [25–28, 
30, 31] due to their computational advantages: The iterates need not be feasible with 
respect to the PDE constraint which safes computational effort and potentially 
allows for larger steps. However, this looseness can also lead to convergence prob-
lems and we will actually see this in the most challenging of our numerical test 
cases, namely the severely ill-posed problem of electric impedance tomography EIT. 
In this sense we here do not intend to favor any of the formulations but clearly point 
to their chances and limitations.

We here follow the idea of generalizing this to a formulation of an inverse 
problem as a constrained minimization problem

where in a reduced setting, x is the parameter and in an all-at-once-setting x = (x, u) 
contains both parameter and state. In what follows, it will not be necessary to distin-
guish between these two cases notationally.

Straightforward instances for equivalent minimization based formulations of 
(1), (2) are, e.g.,

or in the context of (3) comprising both the reduced F(x) = C(S(x)) and the all-at-

once F(x, u) =
(
A(x, u)

C(x, u)

)
 setting simply

For further examples of such formulations, see., e.g., [16, 32]. In particular we point 
to the variational formulation of EIT according to Kohn and Vogelius, see, e.g, [24], 
which will be extended to further diffusion/impendance identification problems in 
Sect. 4.

Advantages of such minimization based formulations lie in their great versatil-
ity, the straightforward addition of regularization by adding penalty terms (Tik-
honov’s method) or imposing constraints (Ivanov’s method), as well as the appli-
cability of efficient optimization methods.

(3)F(x) = y

(4)min J(x) s.t. x ∈ M,

(5)
min

1

2
‖C(x, u) − y‖2 s.t. A(x, u) = 0,

min
1

2
‖A(x, u)‖2 s.t. C(x, u) = y,

(6)min
1

2
‖F(x) − y‖2.
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As an alternative to applying standard optimization tools to regularized ver-
sions of such minimization based formulations, we here study regularization by 
iterative methods, that take into account ill-posedness by being stopped early 
enough to prevent dominance of the propagated noise.

If J is differentiable then the first order optimality condition for a minimizer of 
(4) is

Here J is a proper functional acting on a Banach space X, and we make the normali-
zation assumption

for x† solving the inverse problem, i.e., we assume to know the minimal value of J 
(but of course not the minimizer, which is what we intend to retrieve).

In case of (6), condition (8) means attainability of the exact data, which is in 
fact a very natural condition in inverse problems, where one assumes the noise-
less version of the observations C(x†, u†) to be caused by the true parameter x† in 
the model A(x†, u†) = 0.

Typically inverse problems also in the form (4) are ill-posed in the sense that 
solutions to (4) do not depend continuously on the data y that enters the defini-
tion of the cost function J and/or of the feasible set M. Since in a realistic setting 
the data is contaminated with measurement noise, i.e., only y� ≈ y is given, regu-
larization needs to be employed. We first of all do so by possibly adding some 
regularizing constraints—in particular we think of bound constraints in the sense 
of Ivanov regularization—and/or by relaxing constraints like fit to the data in the 
sense of Morozov regularization. In the context of (5), this, e.g., means that we 
replace M = {x ∈ X ∶ Cx = y} by M̃𝛿 = {x ∈ X ∶ ‖Cx − y𝛿‖ ≤ 𝜏𝛿 and R̃(x) ≤ 𝜌} , 
for the noise level � ≥ ‖y − y�‖ , some constants 𝜏 > 1 , 𝜌 > 0 and some functional 
R̃ satisfying R̃(x†) ≤ 𝜌.

Thus we consider the partly regularized problem

which we intend to solve iteratively, where further regularization is incorporated by 
early stopping and potentially also by adding regularizing terms during the iteration. 
As in the above example of M̃𝛿 , we will generally assume x† to be feasible also for 
this modified problem, and also approximately minimal

A typical choice of the bound in (10) in case of (6) is �(�) ∼ �2 , where � is the noise 
level, cf. Remark 2. With (9) we formally stay in the same setting as in (4) and, like 
in (8), assume

(7)⟨∇J(x†), x − x†⟩ ≥ 0 for all x ∈ M.

(8)J ≥ 0 on M and J(x†) = min
x∈M

J(x) = 0

(9)min J𝛿(x) s.t. x ∈ M̃𝛿

(10)
x† ∈ M̃𝛿 and J𝛿(x†) ≤ 𝜂(𝛿) for all 𝛿 ∈ (0, 𝛿),

where 𝜂(𝛿) > 0 and 𝜂(𝛿) → 0 as 𝛿 → 0.
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The key difference to (4) lies in the fact that J� and M̃𝛿 might depend on the noise 
level and this will in fact be crucial since we will study convergence as � tends to 
zero.

Since we consider formulations of inverse problems as constrained minimi-
zation problems, an essential step is to extend iterative regularization methods 
such as gradient or Newton type methods, to more general cost functions and 
constrained minimization problems. Clearly, the optimization literature on New-
ton and gradient methods is vast, however, their application to ill-posed prob-
lems requires special consideration. In particular, second order sufficient condi-
tions will typically fail to hold here. To see this, consider the Hessian of the cost 
function (6) at a solution J��(x†)(h, h) = ‖F�(x†)h‖2 . Assuming its uniform posi-
tivity amounts to demanding bounded invertibitily of F�(x†) , which usually does 
not hold for ill-posed problems. Along with these two paradigms concerning the 
search direction, we will consider two approaches for guaranteeing feasibility of 
the sequence, namely projection onto the admissible set in the context of gradient 
methods in Sect. 2 and sequential quadratic programming SQP type constrained 
minimization in Sect. 3.

Some key references for gradient, i.e., Landweber type iterative methods are [5] 
on projected Landweber iteration for linear inverse problems, [9] on (unconstrained) 
nonlinear Landweber iteration, and more recently [23] on gradient type methods 
under very general conditions on the cost function or the forward operator, respec-
tively. Extensions with a penalty term (also allowing for the incorporation of con-
straints) for linear inverse problems can be found in [4]; For nonlinear problems we 
also point to [13, 33], however, they do not seem to be applicable to constrained 
problems, since the penalty term is assumed to be p-convex and thus cannot be an 
indicator function.

Newton type methods for the solution of nonlinear ill-posed problems have been 
extensively studied in Hilbert spaces (see, e.g., [3, 19] and the references therein) 
and more recently also in a in Banach space setting (see, e.g., [29] and the refer-
ences therein). In particular, the iteratively regularized Gauss–Newton method [2] or 
the Levenberg–Marquardt method [8] easily allow to incorporate constraints in their 
variational form. Projected Gauss–Newton type methods for constrained ill-posed 
problems have been considered in, e.g., [18].

The remainder of this paper is organized as follows. In Sect. 2 we will study a 
projected version of Landweber iteration, thus a gradient type method in a Hilbert 
space setting and prove its convergence under certain convexity assumptions on the 
cost function. Section 3 turns to a general Banach space setting and discusses New-
ton SQP methods as well as their convergence. Finally, in Sect.  4 we investigate 
applicability to the identification of a spatially varying diffusion coefficient in an 
elliptic PDE from different sets of boundary conditions which leads to three dif-
ferent inverse problems: Inverse groundwater filtration (often also used as a model 
problem and denoted by a-problem), impedance acoustic tomography and electrical 
impedance tomography. Numerical experiments in Sect. 5 illustrate our theoretical 
findings.

(11)J𝛿 ≥ 0 on M̃𝛿 .
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The message of this paper is supposed to be two fold: First of all, we show that 
for inverse problems formulated by constrained minimization, besides the approach of 
regularizing and then applying state-of-the-art iterative optimization tools (regularize, 
then iterate) there is also the option of applying iterative methods to the un- or only 
partly regularized problem (regularize by iteration; more precisely, by early stopping). 
Secondly, by means of the mentioned diffusion identification problems we wish to 
demonstrate the large variety of possible minimization formulations arising even in the 
context of a single elliptic PDE, and to highlight some of the chances and limitations 
related to these various formulations.

2  A projected gradient method

In this section, we consider the projected gradient method for (9)

and extend some of the results from [23] to the constrained setting, or from a dif-
ferent viewpoint, extend some of the results from [5] to the nonlinear setting. In 
(12), 𝜇k > 0 is a stepsize parameter and ∇J�(xk) ∈ X is the Riesz representation of 
J�

�
(xk) ∈ X∗ as in this section we restrict ourselves to a Hilbert space setting. The 

reason for this is the fact that in general Banach spaces, J� �(xk) would have to be 
transported back into X by some (nonlinear, e.g. in Lp with p ≠ 2 ) duality mapping, 
which adds nonlinearity and therefore, among others, complicates the choice of 
the step size, see e.g. [21] for the unconstrained least squares case (6). Moreover, 
throughout this section we will assume M̃𝛿 to be closed and convex and denote by 
PM̃𝛿 the metric (in the Hilbert space setting considered in this section also orthogo-
nal) projection onto M̃𝛿 , which is characterized by the variational inequality

With z ∶= xk ∈ M̃𝛿 , this immediately implies

hence

and thus, using the Cauchy–Schwarz inequality, the estimate

Moreover, as well known for (projected) gradient methods, under the Lipschitz type 
condition on the gradient

for 𝜇k ≤ 𝜇 <
2

L
 , from (14) we get monotonicity of the cost function values

(12)x̃k+1 = xk − 𝜇k∇J
𝛿(xk), xk+1 = PM̃𝛿 (x̃k+1)

(13)x = PM̃𝛿 (x̃) ⇔
�
x ∈ M̃𝛿 and ∀z ∈ M̃𝛿 ∶ ⟨x̃ − x, z − x⟩ ≤ 0

�

0 ≥ ⟨x̃k+1 − xk+1, xk − xk+1⟩ = ⟨xk − xk+1 − 𝜇k∇J
𝛿(xk), xk − xk+1⟩

(14)‖xk+1 − xk‖2 ≤ −�k⟨∇J�(xk), xk+1 − xk⟩

(15)‖xk+1 − xk‖ ≤ �k‖∇J�(xk)‖.

(16)J𝛿(x) − J𝛿(x+) − ⟨∇J𝛿(x)(x − x+) ≥ −
L

2
‖x − x+‖2 for all x, x+ ∈ M̃𝛿
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and square summability of the steps

Monotonicity of the error under additional convexity assumptions easily follows 
from nonexpansivity of the projection, which yields

This can be further estimated under a monotonicity condition on ∇J� (i.e., convexity 
condition on J�)

(which for � = 0 follows from convexity of J� , i.e., monotonicity of ∇J� ) and assum-
ing approximate stationarity

Using (18), (19), we get from (17), that for all k ≤ k∗ − 1 with k∗ defined by

the estimate

for 𝜏 >
1

𝛾
 , 0 < 𝜇 ≤ 𝜇k ≤ �̄� < 2(𝛾 −

1

𝜏
) holds. Hence we get summability

J�(xk) − J�(xk+1) ≥
�

1

�k

−
L

2

�
‖xk+1 − xk‖2

∞�

k=0

‖xk+1 − xk‖2 ≤ 1
1

�
−

L

2

J�(x0).

(17)

‖xk+1 − x†‖2 − ‖xk − x†‖2 = ‖PM̃𝛿 (x̃k+1) − PM̃𝛿 (x†)‖2 − ‖xk − x†‖2

≤ ‖x̃k+1 − x†‖2 − ‖xk − x†‖2 = ‖x̃k+1 − xk‖2 + 2⟨x̃k+1 − xk, xk − x†⟩
= 𝜇2

k
‖∇J𝛿(xk)‖2 − 2𝜇k⟨∇J𝛿(xk), xk − x†⟩.

(18)⟨∇J𝛿(x) − ∇J𝛿(x†), x − x†⟩ ≥ 𝛾‖∇J𝛿(x)‖2 for all x ∈ M̃𝛿

(19)⟨∇J𝛿(x†), x − x†⟩ ≥ −𝜂(𝛿) for all x ∈ M̃𝛿 ,

(20)k∗ = k∗(�) = min{k ∶ ‖∇J�(xk)‖2 ≤ ��(�)}

(21)

‖xk+1 − x†‖2 − ‖xk − x†‖2

≤ �2
k
‖∇J�(xk)‖2 − 2�k⟨∇J�(xk) − ∇J�(x†)⟩ + 2�k�(�)

≤ −�k

�
2 −

�k

�
−

2

��

�
⟨∇J�(xk) − ∇J�(x†), xk − x†⟩

≤ −�k

�
2� − �k −

2

�

�
‖∇J�(xk)‖2 ≤ 0

(22)

k∗�

k=0

⟨∇J𝛿(xk) − ∇J𝛿(x†), xk − x†⟩ ≤ 1

𝜇

�
2 −

�̄�

𝛾
−

2

𝜏𝛾

�‖x0 − x†‖2.

k∗�

k=0

‖∇J𝛿(xk)‖2 ≤ 1

𝜇

�
2𝛾 − �̄� −

2

𝜏

�‖x0 − x†‖2
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Alternatively, we can further estimate (17) under a condition following from (18), 
(19) and comprising both convexity and approximate stationarity

which for k ≤ k∗ − 1 implies

as well as

Using (23)–(24) we get from (17)

for 𝜏 >
1

𝛾
 , 0 < 𝜇 ≤ 𝜇k ≤ �̄� <

2𝛾

1+
1

𝛾𝜏−1

 , hence summability

which via (24) also implies summability of ‖∇J�(xk)‖2.

The estimates (22), (26) imply convergence of the gradient to zero as k → ∞ in 
the noise free case and finiteness of the stopping index k∗ in case of noisy data. 
In the noiseless case � = 0 Opial’s Lemma (Lemma  2 in the Appendix) with 
S = {x∗ ∈ X ∶ ∀x ∈ M ∶ ⟨∇J(x∗), x − x∗⟩ ≥ 0} , due to monotonicity of ‖xk − x∗‖ 
and the Bolzano–Weierstrass Theorem, implies weak convergence of xk as k → ∞ to 
a stationary point. In case of noisy data, one could think of applying the continuous 
version of Opial’s Lemma (Lemma 3 in the Appendix) with t ∶= 1

�
 , x(t) ∶= xk∗(�) . 

However, we do not have monotonicity of the final iterates xk∗(�) as a function of � . 
Still, in case of uniqueness, that is, if S is a singleton S = {x†} , then boundedness 
of the sequence ‖xk∗(�) − x∗‖ by ‖x0 − x∗‖ together with a subsequence-subsequence 
argument yields its weak convergence of xk∗(�) to x† as � → 0.

For this purpose, we have to impose certain continuity assumptions on the cost 
function and the constrains, namely

(23)⟨∇J𝛿(x), x − x†⟩ ≥ 𝛾‖∇J𝛿(x)‖2 − 𝜂(𝛿) for all x ∈ M̃𝛿

(�� − 1)�(�) ≤ ⟨∇J�(xk), xk − x†⟩,

(24)
�
1 +

1

��−1

�
⟨∇J�(xk), xk − x†⟩ ≥ �‖∇J�(xk)‖2.

(25)

‖xk+1 − x†‖2 − ‖xk − x†‖2 ≤ −�k

�
2 −

�k

�

�
1 +

1

��−1

��
⟨∇J�(xk), xk − x†⟩

≤ −�k

�
2�

1+
1

��−1

− �k

�
‖∇J�(xk)‖2 ≤ 0

k∗�

k=0

⟨∇J𝛿(xk), xk − x†⟩ ≤ 1

𝜇

�
2 −

�̄�

𝛾

�
1 +

1

𝛾𝜏−1

��‖x0 − x†‖2.

(26)

k∗�

k=0

‖∇J𝛿(xk)‖2 ≤
�
1 +

1

𝛾𝜏−1

�
1

𝛾𝜇

�
2 −

�̄�

𝛾

�
1 +

1

𝛾𝜏−1

��‖x0 − x†‖2.
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which in the noiseless case becomes

Proposition 1 Let (8), (11), (23) hold, and let the sequence of iterates xk be defined 
by (12) with k∗ defined by (20). 

 (i) In the noiseless case � = 0 , we assume that M and ∇J satisfy (28). Then the 
sequence (xk)k∈ℕ converges weakly to a solution x∗ ∈ M of the first order 
optimality condition (7) as k → ∞.

 (ii) In the noisy case 𝛿 > 0 , we assume that (10), (19), and (27) hold. Then the 
family (xk∗(𝛿))𝛿∈(0,𝛿] converges weakly subsequentially to a stationary point x† 
according to (7) as � → 0 . If this stationary point is unique, then the whole 
sequence converges weakly to x†.

The same assertions hold with stationarity (7) (with (27)) replaced by

(a) minimality, i.e., x† (and z) ∈ argmin {J(x) ∶ x ∈ M} or by
(b) ‖∇J(x†)‖ = 0 (and ‖∇J(z)‖ = 0).

Note that cases (a), (b) make uniqueness easier than (7).

Remark 1 Strong convergence can be shown for the modified projected Landweber 
method from [5, Section 3.2]. However, this requires a source condition to hold.

Remark 2 Let us finally comment on the convexity condition (23) and the continuity 
conditions (27), (28).

In the special case J�(x) = 1

2
‖F(x) − y�‖2 cf. (6), condition (23) becomes

which follows, e.g., from

(27)

For any sequence (zn)n∈ℕ ⊆ X, (𝛿n)n∈ℕ ∈ (0, 𝛿], 𝛿n → 0 as n → ∞
�
∀n ∈ ℕ ∶ zn ∈ M̃𝛿n and zn ⇀ z and ∇J𝛿n (zn) → 0

�

⇒

�
z ∈ M and ∀x ∈ M ∶ ⟨∇J(z), x − z⟩ ≥ 0

�

(28)

For any sequence (zn)n∈ℕ ⊆ X
�
∀n ∈ ℕ ∶ zn ∈ M and zn ⇀ z and ∇J(zn) → 0

�

⇒

�
z ∈ M and ∀x ∈ M ∶ ⟨∇J(z), x − z⟩ ≥ 0

�

(29)⟨F(x) − y� ,F�(x)(x − x†)⟩ ≥ �‖F�(x)∗(F(x) − y�)‖2 − �(�)
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with ‖F(x†) − y�‖2 ≤ 4��(�) . Here D(F) does not necessarily need to be the maxi-
mal domain of F and therefore can be chosen to be a sufficiently small closed ball 
(hence weakly closed) to enable—together with an appropriate scaling—the uni-
form boundedness condition on F′ in (30). Condition (30) is closely related to the 
usual normalization and tangential cone conditions for Landweber iteration, see, 
e.g., [9, 23]. It is, e.g., satisfied for linear F as well as for some specific coefficient 
identification problems, see, e.g., [9] for the reduced setting, [14] for the all-at-once 
setting, and [20] for some time dependent problems in both reduced and all-at-once 
formulation.

In the same case (6), with M̃𝛿 ∶= D(F) , condition (27) can be verified under 
usual assumptions on F cf. e.g., [6, 7] as well: We assume existence of a constant K 
such that

where the latter is supposed to hold for any sequence (zn)n∈ℕ ⊆ D(F) and means 
weak sequential closedness of x ↦ F�(x)∗(F(x) − y) at zero value. The pre-
requisite of (27) in this setting reads zn ⇀ z and F�(zn)

∗(F(zn) − y�n ) → 0 , 
and due to F�(zn)

∗(F(zn) − y�n ) = F�(zn)
∗(F(zn) − y) + F�(zn)

∗(y − y�n ) , under 
these assumptions implies ‖F�(zn)

∗(y − y�n )‖ ≤ K‖y − y�n‖ → 0 , hence 
F�(zn)

∗(F(zn) − y) → 0 , and therefore F�(z)∗(F(z) − y) = 0 , from which 
⟨∇J(z), x − z⟩ = ⟨∇F�(z)∗(F(z) − y), x − z⟩ ≥ 0 trivially follows.

3  An SQP type constrained Newton method

A quadratic approximation of the cost function combined with a Tikhonov type addi-
tive regularization term yields the iteration scheme

with

(30)
‖F�(x)‖ ≤ 1 and

⟨F(x) − F(x†) − F�(x)(x − x†),F(x) − y�⟩ ≤ (1 − � − �)‖F(x) − y�‖2

x ∈ D(F)

(31)

‖F�(x)‖ ≤ K x ∈ D(F) and
�
zn ⇀ z and F�(zn)

∗(F(zn) − y) → 0

�
⇒

�
z ∈ D(F) and F�(z)∗(F(z) − y) = 0

�
,

(32)
xk+1 ∈ Xk+1(𝛼) ∶= argminx∈M̃𝛿Q

𝛿

k
(x) + 𝛼kR(x)

where Q𝛿

k
(x) = J𝛿(xk) + G𝛿(xk)(x − xk) +

1

2
H𝛿(xk)(x − xk)

2

(33)
G𝛿(xk) ∶ X → ℝ linear , H𝛿(xk) ∶ X2 → ℝ bilinear ,

R ∶ X → [0,∞] proper with domain dom (R) ⊇
⋃

𝛿∈(0,𝛿)

M̃𝛿 ∪M
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where G� and H� should be viewed as (approximations to) the gradient and Hessian 
of J, G�(xk) ≈ J�

�
(xk) , H�(xk) ≈ J�

��
(xk) , and R is a regularization functional. Since 

we do not necessarily neglect terms in J� ��(xk) , this differs from the iteratively regu-
larized Gauss–Newton method IRGNM studied, e.g., in [2, 17, 22], cf. (35) below.

As opposed to Landweber iteration, where each step on its own is stable, for New-
ton’s method one has to regularize in each step due to unboundedness of the inverse of 
the Hessian. To allow the bias due to regularization to vanish as the Newton iteration 
proceeds, we choose the sequence of regularization parameters �k such that it tends to 
zero as k → ∞.

Here X is a general Banach space.
To guarantee existence of minimizers, besides (33) we will make the following 

assumption

Assumption 1 For some topology T0 on X

• for all r ≥ R(x†) , the sublevel set M̃𝛿
r
∶= {x ∈ M𝛿 ∶ R(x) ≤ r} is T0 compact.

• the mapping Q�
k
+ �kR is T0 lower semicontinuous.

Uniqueness of a minimizer of (32) will not necessarily hold; the sequence 
(xk)k∈{1,…,k∗}

 will therefore be defined by an arbitrary selection of minimizers of (32).
The overall iteration is stopped according to the discrepancy principle

for some constant 𝜏 > 1.
As far as the sequence of regularization parameters �k is concerned, we will 

choose it a priori or a posteriori, see (37), (44) below.
A special case of this with

(note that H� in general does not coincide with the Hessian of J� , since the term con-
taining F′′ is skipped ) in Hilbert space is the iteratively regularized Gauss–Newton 
method for the operator equation formulation (3) of the inverse problem, see, e.g., 
[2, 17, 22].

Another special case we will consider is the quadratic one

with f � ∈ X , Ḡ𝛿 ∈ L(X,ℝ) = X∗ , H̄𝛿 ∈ L(X2,ℝ) , where trivially Q�
k
 coincides with 

J�.
To provide a convergence analysis, we start with the case of an a priori choice of 

�k

(34)k∗ = k∗(�) = min{k ∶ J�(xk) ≤ ��(�)}

(35)
J�(x) =

1

2
‖F(x) − y�‖2, G�(x)h = J�

�
(x)h = ⟨F(x) − y� ,F�(x)h⟩,

H�(x)(h,�) = ⟨F�(x)h,F�(x)�⟩

(36)J𝛿(x) = f 𝛿 + Ḡ𝛿x +
1

2
H̄𝛿x2, G𝛿(x)h = Ḡ𝛿h, H𝛿(x)(h,�) = H̄𝛿(h,�)

(37)�k = �0�
k
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for some � ∈ (0, 1) and make, among others, the following assumption.

Assumption 2 For some topology T  on X,

• the sublevel set {x ∈
⋃

𝛿∈(0,𝛿) M̃
𝛿 ∶ R(x) ≤ R} =

⋃
𝛿∈(0,𝛿) M̃

𝛿
R
 is T  compact, with 

R = (1 +
a−b

�(a−b)−c

�b+c

(a�−b)
)R(x†) +

a−b

�(a−b)−c

�b+c

�0
J(x0) with � as in (34), �0 as in (37), 

and a, b, c as in (38);
• M is T  closed with respect to the family of sets (M̃𝛿)𝛿∈(0,𝛿) in the following sense: 

• lim�→0 supx∈M� (J(x) − J�(x)) ≤ 0;
• J is T  lower semicontinuous.

Comparably to the tangential cone condition in the context of nonlinear Landwe-
ber iteration [9] and more recently also the IRGNM [22] we impose a restriction on 
the nonlinearity/nonconvexity of J

with a > b ≥ 0 , c ≥ 0 , A discussion of this assumption can be found in Remark 5 
below; in view of Taylor’s Theorem, typical values of the constants would be a ∼ 1 , 
b ∼ 0 , c ∼ 1.

Theorem 1 Let conditions (10), (11), (33), (38), and Assumptions 1, 2 hold, assume 
that �k is chosen a priori according to (37), and k∗ is chosen according to the dis-
crepancy principle (34), with the following constraints on the constants

Then

• For any 𝛿 ∈ (0, 𝛿) , and any x0 ∈
⋂

𝛿∈(0,𝛿) M̃
𝛿 ∩M,

– the iterates xk are well-defined for all k ≤ k∗(�) and k∗(�) is finite;
– for all k ∈ {1,… , k∗(�)} we have

For any sequence (zn)n∈ℕ ⊆ X, (𝛿n)n∈ℕ ∈ (0, 𝛿], 𝛿n → 0 as n → ∞
(
∀n ∈ ℕ ∶ zn ∈ M̃𝛿n and zn

T

⟶z
)
⇒ z ∈ M

(38)

G�(x)(x+ − x+) + 1
2
H�(x)

(

(x+ − x)2 − (x − x+)2
)

≥ aJ�(x+) − bJ�(x) − cJ�(x+)

for all x, x+ ∈ M̃� , x+ = x†, � ∈ (0, �̄),

1 > 𝜃 >
b

a
, 𝜏 >

c

a − b
.

J�(xk) ≤ b

a
J�(xk−1) +

1

a
�kR(x†) +

c

a
�;
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– for all k ∈ {1,… , k∗(�)} we have

• As � → 0 , the final iterates xk∗(�) tend to a solution of the inverse problem (4) T  
-subsequentially, i.e., every sequence xk∗(�j) with �j → 0 as j → ∞ has a T  con-
vergent subsequence and the limit of every T  convergent subsequence solves (4).

Proof For any k ≤ k∗ − 1 , existence of a minimizer follows from Assumption  1 
by the direct method of calculus of variations. To this end, note that by x† ∈ M̃𝛿 , 
implying

and the lower bound

which yields

for r = R(x†) +
1

�
(bJ�(xk) + cJ�(x†)) , it suffices to restrict the search for a minimizer 

to the set M̃𝛿
r
 as defined in Assumption 1.

For a hence existing minimizer xk+1 , its minimality together with feasibility of x† 
for (32) yields

which with (38) implies

thus, with the a priori choice (37), and (10), abbreviating Jk = J�(xk) , Rk = R(xk) , 
R

† = R(x†)

Inductively, with R ≥ 0 , we conclude that for all k ≤ k∗

Using the minimality of k∗ according to (34), we get, for all k ≤ k∗ − 1 , that �(�) ≤ Jk

�
 

and therefore, together with (42)

R(xk) ≤ R

min
x∈M̃𝛿

Qk(x) + 𝛼R(x) ≤ Qk(x
†) + 𝛼R(x†),

Qk(x) ≥ Qk(x
†) + aJ�(x) − bJ�(xk) − cJ�(x†) ≥ Qk(x

†) − bJ�(xk) − cJ�(x†),

M̃𝛿

r
⊇ {x ∈ M̃𝛿 ∶ Qk(x) + 𝛼R(x) ≤ Qk(x

†) + 𝛼R(x†)}

(39)
G�(xk)(xk+1 − xk) +

1

2
H�(xk)(xk+1 − xk)

2 + �kR(xk+1)

≤ G�(xk)(x
† − xk) +

1

2
H�(xk)(x

† − xk)
2 + �kR(x†),

(40)aJ�(xk+1) + �kR(xk+1) ≤ bJ�(xk) + cJ�(x†) + �kR(x†)

(41)Jk+1 +
�0

a
�kRk+1 ≤ b

a
Jk +

�0

a
�kR† +

c

a
�(�).

(42)
Jk ≤

(
b

a

)k

J0 +
�0

a
R

†

k−1∑

j=0

(
b

a

)j

�k−1−j +
c

a
�(�)

k−1∑

j=0

(
b

a

)j

≤ (
b

a

)k

J0 +
�0

a�−b
R

†�k +
c

a−b
�(�).
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Inserting this back into (41) with J� ≥ 0 , after multiplication by a
�k

 and again using 
(34) yields

for all k ≤ k∗ − 1.
From (42), which holds for all k ≤ k∗ and 𝜏 >

c

a−b
 , as well as b

a
< 𝜃 , we conclude 

that the stopping index according to (34) is reached after finitely many, namely at 

most 
log

((
�−

c

a−b

)
�(�)

)
−log

(
J0+

�0

a�−b
R

†
)

log �
 steps.

Setting k = k∗ − 1 in (43) yields R(xk∗(�)) ≤ R , which implies T  convergence of a 
subsequence xj of xk∗(�) to some x̄ , which by Assumption 2 lies in M.

By definition of k∗ and (10) we have J(xk∗(�)) ≤ ��(�)(�) + J(xk∗(�)) − J�(xk∗(�)) → 0 
as � → 0 ; T  lower semicontinuity therefore yields J(x̄) = 0 . ♢

We now consider convergence with an a posteriori choice of �k according to 
the discrepancy principle type rule (which can also be interpreted as an inexact 
Newton condition)

with 0 < 𝜎 < 𝜎 < 1 ; note that in (44), the denominator of �k(�k) will be positive and 
bounded away from zero by ��(�) for all k ≤ k∗(�) − 1 by (34). In order to obtain 
well-definedness of �k(�) as a function of � , we will assume that the mapping

is single valued, which is, e.g., the case if the minimizer of Q�
k
(x) + �R(x) over M̃𝛿 is 

unique. The latter can be achieved, e.g., by assuming convexity of Q�
k
—choosing H� 

as a positive semidefinite approximation of the (not necessarily positive semidefi-
nite) true Hessian J� ′′—and strict convexity of R . To numerically determine �k such 
that it satisfies (44), some iterative procedure such as the bisection method can be 
applied. For the a posteriori choice (44) we have to slightly modify the setting to 
guarantee existence of �k such that (44) holds. The latter is possible if for some 
appropriate point x∗ , the quotient Q

�
k
(x∗)

J� (xk)
 is large enough

(
1 −

c

�(a−b)

)
Jk ≤

(
b

a

)k

J0 +
�0

a�−b
R

†�k.

(43)
Rk+1 ≤ b

�k
Jk +R

† +
c

�k

Jk

�
≤ R

† +
�b+c

��0
�−kJk

≤ R
† +

a−b

�(a−b)−c

�b+c

�0

((
b

a�

)k

J0 +
�0

a�−b
R

†

)
= R

(44)� ≤ �k(�k) ∶=
Q�

k
(Xk+1(�k))

J�(xk)
≤ �

𝛼 ↦ Q𝛿

k
(Xk+1(𝛼)) with Xk+1(𝛼) = argmin x∈M̃𝛿 (Q𝛿

k
(x) + 𝛼R(x))

(45)𝜎 <
Q𝛿

k
(x∗)

J𝛿(xk)
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as we will show below. This leads us to the following case distinction for updating 
the iterates

Here x∗ ∈
⋂

𝛿∈(0,𝛿) M̃
𝛿 ∩M is a point of attraction of R in the sense of the following 

assumption.

Assumption 3 For some topology T1 on X,

• R(x∗) = 0 and for any sequence (xj)j∈ℕ ⊆ X

• sublevel sets of R are T1 compact;
• R is T1 lower semicontinuous;
• the mapping x ↦ G�(xk)(x − xk) +

1

2
H�(xk)(x − xk)

2 is T1 continuous
• M̃𝛿 is T1 closed.

A simple example of a functional R satisfying this assumption is some power 
of the norm distance from the a priori guess x∗ , R(x) = ‖x − x∗‖p , for some 
p ∈ [1,∞) along with the weak or weak* topology T1 , provided X is reflexive or 
the dual of a separable space.

Lemma 1 The mappings � ↦ R(xk+1(�)) and � ↦ −Qk(xk+1(�)) , where 
xk+1(�) ∈ Xk+1(�) (cf. (32)) are monotonically decreasing.

If additionally Assumption 3 and (38) hold, and the mapping � ↦ Qk(Xk+1(�)) is 
single valued, then the mapping � ↦ �k(�) is well-defined and continuous on (0,∞).

Proof For two values � , �̃� , minimality implies

which implies

Hence, � ↦ R(xk+1(�)) is monotonically decreasing and

that is, � ↦ Qk(xk+1(�)) is monotonically increasing.

If (45) holds, choose �k according to (44) and xk+1 as in (32)

otherwise set xk+1 = x∗.

(46)R(xj) → 0 ⇒ xj
T1
⟶x∗

Qk(xk+1(𝛼)) + 𝛼R(xk+1(𝛼)) ≤ Qk(xk+1(�̃�)) + 𝛼R(xk+1(�̃�))

= Qk(xk+1(�̃�)) + �̃�R(xk+1(�̃�)) + (𝛼 − �̃�)R(xk+1(�̃�))

≤ Qk(xk+1(𝛼)) + �̃�R(xk+1(𝛼)) + (𝛼 − �̃�)R(xk+1(�̃�))

0 ≥ (𝛼 − �̃�)(R(xk+1(𝛼)) −R(xk+1(�̃�))).

Qk(xk+1(𝛼)) − Qk(xk+1(�̃�)) ≤ 𝛼(R(xk+1(�̃�)) −R(xk+1(𝛼))) ≤ 0 for 𝛼 ≤ �̃�
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To prove continuity of the mapping � ↦ Qk(xk+1(�)) under the assumption that 
this mapping is single valued, consider �̄� > 0 and a sequence (�

�
)
�∈ℕ converging to 

�̄� > 0 . Minimality and (38) yield

which by strict positivity of �̄� implies boundedness of (R(xk+1(��)))�∈ℕ . By 
Assumption 3 there exists a T1 convergent subsequence (xk+1(��j

))j∈ℕ whose limit x̄ 
lies in M̃𝛿 and even in Xk+1(�) , due to the fact that Qk(xk+1(𝛼�j

)) → Qk(x̄) and the 
estimate

A subsequence-subsequence argument together with T1 continuity of Qk and the 
assumed single valuedness of the mapping � ↦ Qk(Xk+1(�)) implies conver-
gence Qk(xk+1(𝛼�)) → Qk(xk+1(�̄�)) , hence, after division by J�(xk) , convergence 
𝜎k(xk+1(𝛼�)) → 𝜎k(xk+1(�̄�)) . ♢

To prove convergence of the iterates, we need a slightly stronger condition 
than (38), namely

with a, b, a, b ≥ 0 . Note that (47) implies (a − a)J�(x+) + (b − b)J�(x) ≥ 0 , hence 
by nonnegativity of J� and the fact that J�(x†) ≤ � can get arbitrarily close to zero, 
a ≥ a and b ≥ b . In fact, (47) implies (38) with a = a , b = b − b , c = a.

Theorem  2 Let conditions (10), (11), (33), (47), and Assumptions 1, 2, 3 hold, 
assume that �k is chosen a posteriori according to (44) if (45) holds (otherwise set 
xk+1 ∶= x∗ ), and k∗ is chosen according to the discrepancy principle (34), with the 
following constraints on the constants

Then

• For any 𝛿 ∈ (0, 𝛿) , and any x0 ∈
⋂

𝛿∈(0,𝛿) M̃
𝛿,

�
�
R(xk+1(��)) ≤ Qk(x

†) + �
�
R(x†) − Qk(xk+1(��))

≤ −aJ�(xk+1(��)) + bJ�(xk) + cJ�(x†) + �
�
R(x†)

≤ bJ�(xk) + cJ�(x†) + �
�
R(x†),

Qk(x̄) + �̄�R(x̄) ≤ lim inf
j→∞

(
Qk(xk+1(𝛼�j

)) + 𝛼
�j
R(xk+1(𝛼�j

))
)

≤ lim inf
j→∞

(
Qk(xk+1(�̄�)) + 𝛼

�j
R(xk+1(�̄�))

)

= Qk(xk+1(�̄�)) + �̄�R(xk+1(�̄�)).

(47)
aJ𝛿(x+) − bJ𝛿(x) ≤ G𝛿(x)(x+ − x) +

1

2
H𝛿(x)(x+ − x)2

≤ aJ𝛿(x+) − bJ𝛿(x) for all x, x+ ∈ M̃𝛿 , 𝛿 ∈ (0, 𝛿),

(48)1 +
ā

𝜏
< 𝜎 + b, 𝜎 + b < 1 + a.
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– the iterates xk are well-defined for all k ≤ k∗(�) and k∗(�) is finite;
– for all k ∈ {1,… , k∗(�)} and q =

𝜎−1+b

a
< 1 we have

– for all k ∈ {1,… , k∗(�)} and x† satisfying (10) we have

• As � → 0 , the final iterates xk∗(�) tend to a solution of the inverse problem (4) T  
-subsequentially, i.e., every sequence xk∗(�j) with �j → 0 as j → ∞ has a T  con-
vergent subsequence and the limit of every T  convergent subsequence solves 
(4).

Proof Existence of minimizers xk+1(�) of (32) with 𝛼 > 0 in place of �k follows like 
in the a priori setting of Theorem 1, using the fact that (47) implies (38).

To prove that �k satisfying (44) exists under condition (45), we first of all verify 
the upper bound with � = 0 (which actually does not require (45)). To this end, we 
make use of minimality (39) and the upper bound in (47) to conclude

so that by (34), for any k ∈ {1,… , k∗ − 1}

On the other hand, minimality and the fact that x∗ ∈ M̃𝛿 together with the lower 
bound in (47) and R(x∗) = 0 yield

which by nonnegativity of aJ�(xk+1(�)) yields

which by Assumption 3 implies T1 convergence of xk+1(�) to x∗ , thus, by (45) 
lim�→∞ �k(�) ≥ � . The Intermediate Value Theorem together with continuity of the 
mapping � ↦ �k(�) according to Lemma 1 implies existence of an � ∈ (0,∞) such 
that � ≤ �k(�) ≤ �.

J�(xk) ≤ qJ�(xk−1);

R(xk) ≤ R(x†) and x† solves (4).

𝜎k(𝛼) ≤
J𝛿(xk) + G𝛿(xk)(x

† − xk) +
1

2
H𝛿(xk)(x

† − xk)
2 + 𝛼(R(x†) −R(xk+1(𝛼)))

J𝛿(xk)

≤ 1 − b + ā
J𝛿(x†)

J𝛿(xk)
+ 𝛼

R(x†) −R(xk+1(𝛼))

J𝛿(xk)
,

lim
𝛼↘0

𝜎k(𝛼) ≤ 1 − b +
ā

𝜏
< 𝜎.

aJ�(xk+1(�)) − bJ�(xk) + �R(xk+1(�))

≤ G�(xk)(xk+1(�) − xk) +
1

2
H�(xk)(xk+1(�) − xk)

2 + �R(xk+1(�))

≤ G�(xk)(x
∗ − xk) +

1

2
H�(xk)(x

∗ − xk)
2

R(xk+1(�)) ≤ 1

�

(
bJ�(xk) + G�(xk)(x

∗ − xk) +
1

2
H�(xk)(x

∗ − xk)
2
)

→ 0 as � → ∞
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In both cases we get geometric decay of the cost function values: If (45) is satis-
fied, this follows from the lower bound in (47) and the upper bound in (44)

Otherwise, negation of (45) and the fact that in that case we set xk+1 = x∗ , together 
with the lower bound in (47) directly yields

This implies that k∗ is finite, more precisely k∗ ≤ log(��)−log(J� (x0))

log(q)
.

To establish the bound on R(xk+1) , we again employ minimality (39) together 
with (47), which in case (45) with (44) yields

hence, due to (34), �(b + � − 1) ≥ a,

If (45) fails to hold then we set xk+1 = x∗ , hence get R(xk+1) = 0.
The rest of the proof is the same as for Theorem 1. ♢

Remark 3 The computational cost for each Newton step (as compared to a gradient 
method) is determined by the effort spent on evaluating the action of the Hessian 
(approximation) H�(xk) on a vector and on solving systems with H�(xk) as a sys-
tem matrix—again usually based on iterative methods and matrix-vector products. 
For example, when usung the exact Hessian as H�(xk) in a reduced formulation of 
the inverse problem, each matrix-vector product amounts to numerically solving a 
possibly large number of linearized versions of the PDE model; this effort can be 
reduced to just one PDE solve by means of adjoint methods. On the other hand, 
setting H�(xk) just to a multiple of the identity, one can even end up with a plain 
gradient method. However, in view of Taylor’s Theorem one is more likely to satisfy 
condition (38) with a better Hessian approximation. In practice, a limited memory 
BFGS method can probably be viewed as standard and only needs gradient informa-
tion; note however, that for the cost functions in our numerical examples it would 

J�(xk+1) ≤ 1

a

(
bJ�(xk) + G�(xk)(xk+1 − xk) +

1

2
H�(xk)(xk+1 − xk)

2
)

≤ � − 1 + b

a
J�(xk).

J�(xk+1) = J�(x∗) ≤ 1

a

(
bJ�(xk) + G�(xk)(x

∗ − xk) +
1

2
H�(xk)(x

∗ − xk)
2
)

≤ � − 1 + b

a
J�(xk).

�J�(xk) + �kR(xk+1)

≤ J�(xk) + G�(xk)(xk+1 − xk) +
1

2
H�(xk)(xk+1 − xk)

2 + �kR(xk+1)

≤ J�(xk) + G�(xk)(x
† − xk) +

1

2
H�(xk)(x

† − xk)
2 + �kR(x†)

≤ aJ�(x†) + (1 − b)J�(xk) + �kR(x†),

R(xk+1) ≤ R(x†) +
1

�k

(
aJ�(x†) − (b + � − 1)J�(xk)

) ≤ R(x†).
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also be possible to find analytical expressions for the Hessian, cf., e.g., (58), whose 
action on a vector can be evaluated by means of, e.g., a finite element method.

The advantages of method (32) lie in its versatility: Besides the various options of 
choosing H�(xk) , it also works in general Banach spaces and with quite general regu-
larization functionals R . In case of a quadratic functional R , note that as opposed 
to the IRGNM considered, e.g., in [17, 22, 29], where depending on the choice of 
the data misfit term, the cost function can become nonlinear, we always deal with a 
quadratic overall cost function here.

Remark 4 Note that the conditions (48) on the constants can be satisfied by choosing 
� sufficiently large and 𝜎 < 𝜎 in an appropriate way, provided the constants in (47) 
satisfy

since then we can choose �, � to satisfy 1 − b < 𝜎 < 𝜎 < 1 + a − b , so that (48) can 
be achieved by making � large enough.

Remark 5 Condition (47) is motivated by the fact that

with equality in case of a quadratic functional J� (36) from which (again using non-
negativity of J� ) we expect values a ≤ 1 , b ≥ 1 , a ≥ 1 , b ≤ 1 where these constants 
can be chosen the closer to one the closer J� is to a quadratic functional. Also note 
that (47) holds with a = b = a = b in the quadratic case (36) independently of the 
definiteness of the Hessian, so does not necessarily relate to convexity of J� . Indeed, 
while nonnegativity of the Hessian would be enforced by assuming J� ≥ 0 on all of 
X, we only assume this to hold on M̃𝛿 cf. (11).

A sufficient condition for (47) (with a = 1 − c̃ , b = 1 + c̃ , a = 1 + c̃ , b = 1 − c̃ ) is

which, in its turn is implied by the weak tangential cone condition in the Hilbert 
space least squares setting (35)

with c̃ = (1 +
√
2)ctc ; cf. (30). This can be seen by using the fact that the left hand 

side in (50) just equals the left hand side in (49) with (35), and by estimating the 
right hand side with � ∶= ‖F(x+) − y�‖ , � ∶= ‖F(x) − y�‖ as follows

b < a + b,

G�(x)(x+ − x) +
1

2
H�(x)(x+ − x)2 ≈ J�(x+) − J�(x),

(49)
c̃(J𝛿(x+) + J𝛿(x)) ≥ |J𝛿(x+) − J𝛿(x) − G𝛿(x)(x+ − x) −

1

2
H𝛿(x)(x+ − x)2|

for all x, x+ ∈ M̃𝛿 , 𝛿 ∈ (0, 𝛿),

(50)

�⟨F(x+) − F(x) − F�(x)(x+ − x),F(x) − y𝛿⟩� ≤ ctc‖F(x+) − F(x)‖ ‖F(x) − y𝛿‖
for all x, x+ ∈ M̃𝛿 , 𝛿 ∈ (0, 𝛿),
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Condition (50) with x+ = x† is also sufficient for condition (29) from the previ-
ous section with � = 1 − ctc − � provided (1 + ctc)‖F(x) − y�‖ ≤ 2

√
��(�) and 

‖F�(x)‖ ≤ 1 as the estimate

following from (50) with the triangle inequality and Young’s inequality shows.
In order to further relate the assumptions (38), (47) made for Newton’s method 

with those (18), (23) for the projected gradient method, we will now point out that 
actually also the sufficient condition (49) involves some convexity.

For this purpose we consider the noise free case � = 0 for simplicity of exposition 
and use the fact that for n ∈ ℕ0 , a functional J ∈ Cn(X) and elements x, x̃, h ∈ X , the 
identity

holds. Thus we can rewrite the left hand sides of the nonlinearity conditions (18), 
(49) as

and, with J(x†) = 0

where, assuming J�(x†) = 0 (as is the case in the examples from Sect. 4)

‖F(x+) − F(x)‖ ‖F(x) − y�‖ ≤ (� + �)� ≤ 1 +
√
2

2
(�2 + �2)

= (1 +
√
2)(J�(x+) + J�(x)).

⟨F�(x)(x − x†),F(x) − y�⟩ ≥ ⟨F(x) − F(x†),F(x) − y�⟩
− ctc‖F(x) − F(x†)‖ ‖F(x) − y�‖

= ‖F(x) − y�‖2 − ⟨F(x†) − y� ,F(x) − y�⟩
− ctc(‖F(x) − y� − (F(x†) − y�)‖ ‖F(x) − y�‖

≥ (1 − ctc)‖F(x) − y�‖2 − (1 + ctc)‖F(x†) − y�‖ ‖F(x) − y�‖

≥ (1 − ctc − �)‖F(x) − y�‖2 −
(1 + ctc)

2

4�
‖F(x†) − y�‖2

(J(n−1)(x̃) − J(n−1)(x))[hn−1] = ∫
1

0

J(n)[x + 𝜃(x̃ − x))[x̃ − x, hn−1] d𝜃

(51)
⟨∇J(x) − ∇J(x†), x − x†⟩ = J�(x) − J�(x†)[x − x†]

= ∫
1

0

J��(x† + �(x − x†))[(x − x†)]2 d�,

J(x+) + J(x) = (J(x+) − J(x†)) + (J(x) − J(x†))

(52)
J(x) − J(x†) = ∫

1

0

(
J�(x† + �(x − x†)) − J�(x†)

)
[x − x†] d�

= ∫
1

0 ∫
1

0

�J��(x† + ��(x − x†))[(x − x†)2] d� d�
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and likewise for x replaced by x+ . Similarly, using the identities ∫ 1

0
d� = 1 , ∫ 1

0
∫ 1

0
� d� d� =

1

2
 , one sees that for the right hand side in (49) with G ∶= J� , 

H ∶= J�� , the identity

holds.
Since the left hand sides in (18), (49) both have to be nonnegative (in some uni-

form sense) we see from (51) and (52) (and setting x+ = x† in (49) to see necessity) 
that J′′ needs to be positive definite (in some uniform sense) in order for (18), (49) to 
hold. This amounts to a convexity condition on J.

Remark 6 Alternatively to (32) one could consider the projected versions (based on 
unconstrained minimization)

see [18] which, however, analogously to the projected Landweber iteration from [5, 
Section 3.2] only converges under a sufficiently strong source condition.

4  Application in diffusion/impedance identification

Following the seminal idea from [24] we consider variational formulations of the prob-
lem of identifying the spatially varying parameter � in the elliptic PDE

from observations of � . Depending on what kind of observations we consider, this 
problem arises in several applications that we will consider here, namely 

(a) in classical electrical impedance tomography EIT, where it is known as Calde-
ron’s problem and � plays the role of an electrical conductivity,

(b) in impedance acoustic tomography IAT, a novel hybrid imaging method, again 
for reconstructing � as a conductivity;

(c) but also as a simplified version of the inverse groundwater filtration problem 
GWF of recovering the diffusion coefficient � in an aquifer.

Although we will finally be only able to verify the crucial conditions (18), (49) for 
GWF, we stick to the electromagnetic context notation wise, since in our numerical 
experiments we will focus on a version of EIT that is known as impedance acoustic 

J(x+) − J(x) − J�(x)(x+ − x) −
1

2
J��(x)(x+ − x)2

= ∫
1

0 ∫
1

0 ∫
1

0

�2�J���(x† + ���(x − x†))[(x − x†)3] d� d� d�

(53)
x̃k+1 ∈ argmin x∈XJ

𝛿(xk) + G(xk)(x − xk) +
1

2
H(xk)(x − xk)

2 + 𝛼kR(x)

xk+1 = Proj M̃𝛿 (x̃k+1)

(54)∇ ⋅ (�∇�) = 0 in �



589

1 3

Iterative regularization for constrained minimization…

tomography IAT, see, e.g., [34]. In Sect. 5 we will also allow for experiments with sev-
eral excitations (and corresponding measurements), hence consider

However for simplicity of notation, we will focus on the case I = 1 , i.e., (54), in this 
section. The observations are, depending on the application

where for EIT and IAT we will consider the more realistic complete electrode model 
in Sect.  5. Concerning GWF, measurements are actually done on the piezometric 
head itself, however this allows to recover an approximation of its gradient by means 
of regularized numerical differentiation, see, e.g. [10] and the references therein.

Regularization is here only introduced via imposing simple bound constraints 
� ∈ [�, �] , that is, Ivanov regularization. Besides the availability of efficient 
optimization methods for solving such problems, see e.g. [11] and the refer-
ences therein and the straightforward use of known physical bounds, this has the 
advantage of leading to piecewise constant solutions, a fact that can be explained 
by some bang-bang principle. This is relevant when identifying inclusions in a 
homogeneous background, which is the case that we focus on in our numerical 
experiments.

Considering a smooth and simply connected bounded domain 𝛺 ⊆ ℝ
2 and using 

the vector fields � (the electric field), � (the current density), where ∇ =

(
�1
�2

)
 , 

∇⊥ =

(
−𝜕2
𝜕1

)
 we can equivalently rephrase (54) as

for some potential � (note that we are using the opposite sign convention as com-
pared to the usual engineering notation). The cost function part pertaining to this 
model is, analogously to [24], therefore often called the Kohn–Vogelius functional

where we denote the infinitesimal area element by d� to avoid confusion with the 
abbreviation xk for the iterates in the first three sections of this paper. Alternatively, 
we will consider the output least squares type cost function term

Note that (56) is quadratic with respect to � , thus quadratic with respect to �.
Excitation is imposed via the current j through the boundary, i.e., as Dirichlet 

boundary condition on �.

∇ ⋅ (�∇�i) = 0 in �, i ∈ {1,… , I}.

v = �|�� (the voltage at the boundary) in EIT,

H = �|∇�|2 (the power density) in IAT,

p = � or g = ∇� (the piezometric head or its gradient) in GWF,

𝜎� = �, � = ∇𝜙, � = ∇⊥𝜓 ,

(55)JKV
mod

(�,�, �) =
1

2 ∫
�

����
√
�� −

1√
�
�
����

2

d�,

(56)JLS
mod

(�,�, �) =
1

2 ∫
�

|�� − �|2 d�.
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To incorporate the observations, we will consider the functionals

where again for GWF the use of the Hs(�) norm or flux data can be justified by 
some pre-smoothing procedure applied to the given measurements.

Using these functionals as building blocks and incorporating the excitation via 
injection of the current j through the boundary we can write the above parameter 
identification problems in several minimization based formulations. We will now 
list a few of them, where j sometimes appears explicitly, sometimes in tangentially 
integrated form, meaning that for a parameterization �  of the boundary �� (normal-
ized to ‖�̇�‖ = 1 ) we define �(� (s)) = ∫ s

0
j(� (r)) dr so that � ⋅ 𝜈 = ∇⊥𝜓 ⋅ 𝜈 =

d𝛼

ds
= j . 

Moreover we will sometimes work with smooth extensions �0 , �0 of v, � to the inte-
rior of � . While, as already mentioned, the observation functional will depend on 
the application, we always have both JKV

mod
 and JLS

mod
 at our disposal to incorporate 

the model, thus will only write Jmod below. There will also be versions based on an 
elimination of � by writing, for fixed �,� , the minimizer of Jmod with respect to � 
under the constraint � ≤ � ≤ � as

Alternatively to eliminating � it is also possible to eliminate �,� by writing them as 
�(�) , �(�) minimizing Jmod with respect to �,� . This together with the integrated 
current � leads to boundary value problems for the elliptic PDE (54) and a similar 
PDE for �

(57)

JEIT
obs

(�;v) =
1

2 ∫
��

(� − v)2 d� for EIT,

JIAT
obs1

(�, �;H) =
1

2 ∫
�

(� ⋅ � −H)2 d� or JIAT
obs2

(�,�;H)

=
1

2 ∫
�

(����2 −H)2 d� for IAT,

JGWF
obs1

(�;p) =
1

2
‖� − p‖2

Hs(�)
or JGWF

obs2
(�;g)

= ‖� − g‖2
L2(�)

for GWF,

�(�, �) = max
{
�, min

{
�,

|�|
|�|

}}
pointwise in �.

𝜙(𝜎) solves

{
∇ ⋅ (𝜎∇𝜙) = 0 in 𝛺

𝜙 = v on 𝜕𝛺

𝜙N(𝜎) solves

{
∇ ⋅ (𝜎∇𝜙) = 0 in 𝛺

∇𝜙 ⋅ 𝜈 = j on 𝜕𝛺 ∫
𝛺
𝜙 d𝛺 = 0

𝜓(𝜎) solves

{
∇⊥

⋅

(
1

𝜎
∇⊥𝜓

)
= 0 in 𝛺

𝜓 = 𝛼 on 𝜕𝛺

�(𝜎) =
∇⊥𝜓(𝜎)

𝜎
pointwise in 𝛺
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(the latter two lines imply that ∇⊥
⋅ �(𝜎) = 0 so existence of � such that �(�) = ∇� ) 

and corresponds to the classical reduced formulation of the inverse problem. Note 
that �(�) is only defined in case of v being observed, i.e., for EIT.

EIT:

IAT:

GWF:

(i)min
𝜎,𝜙,𝜓

{
Jmod(𝜎,∇𝜙,∇

⊥𝜓) + 𝛽JEIT
obs

(𝜙;v) ∶ 𝜎 ∈ L2

[𝜎,𝜎]
(𝛺), 𝜙 ∈ H1

♢
(𝛺),𝜓 ∈ H1

0
(𝛺) + 𝜓0

}

(ii)min
𝜎,𝜙,𝜓

{
Jmod(𝜎,∇𝜙,∇

⊥𝜓) ∶ 𝜎 ∈ L2

[𝜎,𝜎]
(𝛺), 𝜙 ∈ H1

0
(𝛺) + 𝜙0, 𝜓 ∈ H1

0
(𝛺) + 𝜓0

}

(iii)min
𝜙,𝜓

{Jmod(𝜎(∇𝜙,∇
⊥𝜓),∇𝜙,∇⊥𝜓) + 𝛽JEIT

obs
(𝜙;v) ∶ 𝜙 ∈ H1

♢
(𝛺),𝜓 ∈ H1

0
(𝛺) + 𝜓0}

(iv)min
𝜙,𝜓

{Jmod(𝜎(∇𝜙,∇
⊥𝜓),∇𝜙,∇⊥𝜓) ∶ 𝜙 ∈ H1

0
(𝛺) + 𝜙0,𝜓 ∈ H1

0
(𝛺) + 𝜓0}

(v)min
𝜎

{
Jmod(𝜎,∇𝜙(𝜎),∇

⊥𝜓(𝜎)) ∶ 𝜎 ∈ L2

[𝜎,𝜎]
(𝛺)

}

(vi)min
𝜎

{
JEIT
obs

(𝜙N(𝜎);v) ∶ 𝜎 ∈ L2

[𝜎,𝜎]
(𝛺)

}

(i) min
𝜎,𝜙,𝜓

{
Jmod(𝜎,∇𝜙,∇

⊥𝜓)

+ 𝛽

{
JIAT
obs1

(∇𝜙,∇⊥𝜓 ;H)

JIAT
obs2

(𝜎,∇𝜙;H)
∶ 𝜎 ∈ L2

[𝜎,𝜎]
(𝛺),𝜙 ∈ H1

♢
(𝛺),𝜓 ∈ H1

0
(𝛺) + 𝜓0

}

(ii) min
𝜙,𝜓

{
Jmod(𝜎(∇𝜙,∇

⊥𝜓),∇𝜙,∇⊥𝜓)

+ 𝛽

{
JIAT
obs1

(∇𝜙,∇⊥𝜓 ;H)

JIAT
obs2

(𝜎,∇𝜙;H)
∶ 𝜙 ∈ H1

♢
(𝛺),𝜓 ∈ H1

0
(𝛺) + 𝜓0

}

(iii) min
𝜎

{{
JIAT
obs1

(�(𝜎),∇⊥𝜓(𝜎);H)

JIAT
obs2

(𝜎,�(𝜎);H)
∶ 𝜎 ∈ L2

[𝜎,𝜎]
(𝛺)

}

(i) min
𝜎,𝜙,𝜓

{
Jmod(𝜎,∇𝜙,∇

⊥𝜓)

+ 𝛽

{
JGWF
obs1

(𝜙;p)

JGWF
obs2

(∇𝜙;g)
∶ 𝜎 ∈ L2

[𝜎,𝜎]
(𝛺), 𝜙 ∈ H1

♢
(𝛺),𝜓 ∈ H1

0
(𝛺) + 𝜓0

}

(ii) min
𝜙,𝜓

{
Jmod(𝜎(∇𝜙,∇

⊥𝜓),∇𝜙,∇⊥𝜓)

+ 𝛽

{
JGWF
obs1

(𝜙;p)

JGWF
obs2

(∇𝜙;g)
∶ 𝜙 ∈ H1

♢
(𝛺),𝜓 ∈ H1

0
(𝛺) + 𝜓0

}

(iii) min
𝜎

{
JGWF
obs2

(�(𝜎);g) ∶ 𝜎 ∈ L2
[𝜎,𝜎]

(𝛺)
}
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where

and 𝛽 > 0 is a fixed parameter; we will simply set it to one in our computa-
tions. Note that Jmod(𝜎,�(𝜎),∇⊥𝜓(𝜎)) = 0 , therefore, the model term does not 
appear in the last instances of IAT and GWF, respectively. However, due to the 
bound constraints incorporated into the definition of �(�,�) , a nonzero value of 
Jmod(𝜎(𝜙,𝜓),∇𝜙,∇⊥𝜓) is possible, which is why it appears in the third and fourth 
instances of EIT. The sixth instance of EIT is just the classical reduced formulation.

As far as convexity is concerned, the Hessians of the functionals in (55), (56), (57) 
compute as

Thus, the Hessians of JKV
mod

 , JLS
mod

 , JIAT
obs1

 , JIAT
obs2

 can only be guaranteed to be positive at 
their minimal points, whereas those of JEIT

obs
 , JGWF

obs1
 , JGWF

obs2
 are always positive. Since 

JEIT
obs

 only acts on the boundary, its additive combination with JKV
mod

 or JLS
mod

 cannot be 
expected to yield a globally convex functional. Likewise, combinations of JIAT

obs1
 or 

JIAT
obs2

 with JKV
mod

 or JLS
mod

 cannot be expected to be overall convex. This corresponds to 
the known fact that also for other formulations of EIT and IAT, the usual nonlinear-
ity/convexity conditions fail to hold.

A combination satisfying the nonlinearity assumption (49) and therefore also (47), 
(18) is GWF with

L2
[�,�]

(�) = {� ∈ L2(�) ∶ � ≤ � ≤ �}, H1

♢
(�) =

{
� ∈ H1(�) ∶ �

�

� d� = 0

}
,

(58)

JKV
��

mod
(�,�, �)[(h, �,�)2] = ∫

�

�����
h

√
�
3 � +

√
�� −

1√
�
�
����

2

+ 2
h

�

�√
�� −

1√
�
�

�
⋅ �

�
d�

JLS
��

mod
(�,�, �)[(h, �,�)2] = ∫

�

�
�h� + �� − ��2 + h(�� − �) ⋅ �

�
d�

JEIT
��

obs
(�;v)[u2] = ∫

��

u2 d�

JIAT
��

obs1
(�, �;H)[(�,�)2] = ∫

�

�� ⋅ � + � ⋅ ��2 + (� ⋅ � −H)� ⋅ � d�

JIAT
��

obs2
(�,�;H)[(h, �)2] = ∫

�

(�h�� + 2�� ⋅ �)2

+ (����2 −H)2(h� ⋅ � + ��v�2) d�
JGWF��

obs1
(�;p)[u2] = ‖u‖2

Hs(�)

JGWF��

obs2
(�;g)[�2] = ‖�‖2

L2(�)
.

J𝛿(𝜎,𝜙,𝜓) = JLS
mod

(𝜎,∇𝜙,∇⊥𝜓) + 𝛽JGWF
obs

(∇𝜙;g𝛿).
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To verify this, we show that (29), (50) is satisfied for F(𝜎,𝜙,𝜓) =

(
𝜎∇𝜙 − ∇⊥𝜓

∇𝜙

)
 

by estimating (with the abbreviations � = ∇� , � = ∇⊥𝜓)

which directly implies (50) with ctc =
𝜎−𝜎

supx∈M̃𝛿 ‖F�(x)‖ and hence (29) with 
� = 1 − ctc − � provided (1 + ctc)‖F(x) − y�‖ ≤ 2

√
��(�) . In order to obtain a finite 

value of

we choose M̃𝛿 to be a bounded subset of L∞(�) ×W1,∞(�) × H1(�) with an a priori 
bound satisfied by the exact solution of the inverse problem.

5  Numerical results for IAT, GWF, and EIT

In this section, we will provide some numerical results for the problem of identifying 
the conductivity � in (54). As already mentioned, we will work with the more realistic 
complete electrode model (CEM) instead of idealized continuous boundary excitation 
and observations. Moreover, we will focus on the hybrid tomographic application IAT 
and we will only show one set of reconstructions of GWF and EIT. More extensive 
numerical tests for IAT but also for GWF and EIT can be found in the PhD thesis [12].

5.1  The complete electrode model and setting for the cost functions

In the complete electrode model (CEM) current is fed in through a finite number of 
electrodes, e1,… , eL , see Fig.  1. In case of boundary measurements, as relevant for 
EIT, they are also taken at these electrodes.

Let Ji , Ei , i = 1, 2,… , I , be the current density and the electric field in the ith meas-
urement, and let �i , �i be the potentials for Ji , Ei ; then they must satisfy 

�⟨F(x+) − F(x) − F�(x)(x+ − x),F(x) − y�⟩�

= �
�

(�+ − �)(�+ − �)(�� − �) d�

≤ ‖�+ − �‖L∞(�)‖�+ − �‖L2(�)‖�� − �‖L2(�)

≤ (� − �)
�

‖�+�+ − J+ − �� + J‖2
L2(�)

+ ‖�+ − �‖2
L2(�)

⋅

�
‖�� − �‖2

L2(�)
+ ‖� − g�‖2

L2(�)

= (� − �)‖F(x+) − F(x)‖ ‖F(x) − y�‖

sup
x∈M̃𝛿

‖F�(x)‖ = sup
(𝜎,𝜙,𝜓)∈M̃𝛿

sup
(h,�,�)∈L2(𝛺)5⧵{0}

∫
𝛺
(h∇𝜙 + 𝜎� − �) ⋅ (𝜎∇𝜙 − ∇⊥𝜓) d𝛺

‖(h, �,�)‖L2(𝛺)5

(59a)
√
𝜎∇𝜙i −

1√
𝜎
∇⊥𝜓i = 0 in 𝛺,
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∀i = 1, 2,… , I , where

j
�,i , v�,i are the applied current and measured voltage on e

�
 at the ith measurement,

{z
�
}L
�=1

 is the set of positive contact impedances.

By assuming �(ea
i
) = 0 and using (59c), (59d) (59b), we get

where j̄
�,i = −

∑�

k=1
jk,i , v̄�,i(x) = −z

�

�
−
∑�−1

k=1
jk,i

�
+ v

�,ide
�
(x) and de

�
(x) is the 

length of e
�
 from ea

�
 to x.

In the case of EIT, the data (j
�,i, v�,i)�,i ∈ ℝ

2LI can be considered as 
(j̄
�,i, v̄�,i)�,i ∈

∏I

i=1

∏L

�=1
(L2(g

�
) × L2(e

�
)) and the cost function part corresponding 

to observations is chosen as JEIT
obs

∶ H1(�)2I → ℝ,

(59b)𝜙i + z
𝓁
∇⊥𝜓i ⋅ 𝜈 = v

𝓁,i on e
𝓁
,𝓁 = 1, 2,… , L,

(59c)∫e
𝓁

∇⊥𝜓i ⋅ 𝜈 ds = j
𝓁,i for 𝓁 = 1, 2,… , L,

(59d)∇⊥𝜓i ⋅ 𝜈 = 0 on 𝜕𝛺� ∪L
𝓁=1

e
𝓁
,

𝜓i|g
�
= j̄

�,i, ∀� ∈ {1,… , L},

∫
x

ea
�

𝜙i ds − z
�
𝜓i(x) = v̄

�,i(x), ∀x ∈ e
�
,∀� ∈ {1,… , L},

g1g2

g3

g4

ea1

eb1

e1

ea2eb2
e2

ea3
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ea4

eb4e4
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Fig. 1  Left: Electrodes (in boldface red) on the boundary with L = 4 ; right: finite element discretization 
with 8 electrodes (Color figure online)
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where � = (�i)i , � = (�i)i , j̄ = (j̄
�,i)�,i , v̄ = (v̄

�,i)�,i and 
∫ �i|e

�
∶ e

�
→ ℝ, x ↦ ∫ x

ea
�

�i ds.
In the cases of IAT and GWF, instead of (j

�,i, v�,i)�,i , we observe 
H = (Hi)i = (�|∇�i|2)i or p = (pi)i = (�i)i , respectively and the cost function part 
corresponding to these observations is JIAT

obs
∕JGWF

obs
∶ L2(�) × H1(�)I → ℝ,

In all three cases EIT, IAT, GWF, we choose the cost function part corresponding to 
the model as JKV

mod
∶ L2(�) × H1(�)2I → ℝ,

and combine it with the observation part to

on the admissible sets

As in the previous section, besides the resulting all-at-once versions [cf. EIT (i), (ii) 
and IAT (i)] we also consider some of the reduced versions of the cost function. [For 
GWF we will only show results with the all-at-once version (i)]

The first version involves eliminating � from the cost function [cf. EIT (iii), (iv) 
and IAT (ii)], by defining, for given �,� , the corresponding � by

(60)

JEIT
obs

(𝛷,𝛹 ;j̄, v̄) =
1

2

I∑

i=1

L∑

�=1

(

∫g
�

|𝜓i − j̄
�,i|2 ds

+ ∫e
�

||||∫ 𝜙i|e
�
− z

�
𝜓i − v̄

�,i

||||

2

ds

)
,

(61)

JIAT
obs

(�,�;H) =
1

2

I∑

i=1
∫
�

|||�|∇�i|2 −Hi
|||
2

d�,

JGWF
obs1

(�,�;p) =
1

2

I∑

i=1
∫
�

||�i − pi
||
2
d�.

(62)JKV
mod

(𝜎,𝛷,𝛹 ) =
1

2

I�

i=1
∫
𝛺

������

√
𝜎∇𝜙i −

1√
𝜎
∇⊥𝜓i

������

2

d𝛺

(63)JIAT (�,�,� ) = JKV
mod

(�,�,� ) + JIAT
obs

(�,�;H)

(64)JGWF(�,�,� ) = JKV
mod

(�,�,� ) + JGWF
obs1

(�;p)

(65)JEIT (𝜎,𝛷,𝛹 ) = JKV
mod

(𝜎,𝛷,𝛹 ) + JEIT
obs

(𝛷,𝛹 ;j̄, v̄)

MIAT
ad

= MGWF
ad

= MEIT
ad

= L2
[�,�]

(�) × H1
♢
(�) × H1

0
(�) +�0.
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or explicitly

For the case of IAT, we set

for the case of EIT,

and in all cases

Note that in spite of the minimizing pre-definition of �(�,� ) , the model cost func-
tion part may be nonzero due to the constraints and therefore still needs to be taken 
into account.

The second alternative cost function involves eliminating (�,� ) from the cost 
function [cf. EIT (v), (vi) and IAT (iii)] by means of the weak form of the CEM 
PDE (59)

and ∇⊥𝜓i = 𝜎∇𝜙i,∀i ∈ {1,… , I} , which leads to JKV
mod

(�,�(�),� (�)) = 0 . Hence, 
we have, for the case of IAT,

for the case of EIT,

(66)

𝜎(𝛷,𝛹 ) = argmin 𝜎

⎧
⎪
⎨
⎪⎩

1

2

I�

i=1
∫
𝛺

������

√
𝜎∇𝜙i −

1√
𝜎
∇⊥𝜓i

������

2

d𝛺 ∶ 𝜎 ∈ L2
[𝜎,𝜎]

(𝛺)

⎫
⎪
⎬
⎪⎭

= argmin 𝜎

�
I�

i=1
∫
𝛺

�
𝜎�∇𝜙i�2 +

1

𝜎
�∇⊥𝜓i�2

�
d𝛺 ∶ 𝜎 ∈ L2

[𝜎,𝜎]
(𝛺)

�

𝜎(𝛷,𝛹 ) = min

⎧
⎪
⎨
⎪⎩

𝜎, max

⎧
⎪
⎨
⎪⎩

𝜎,

����
∑I

i=1
�∇⊥𝜓i�2

∑I

i=1
�∇𝜙i�2

⎫
⎪
⎬
⎪⎭

⎫
⎪
⎬
⎪⎭

.

(67)JIAT
�

(�,� ;H) = JKV
mod

(�(�,� ),�,� ) + �JIAT
obs

(�(�,� ),�;H)

(68)JEIT
𝜎

(𝛷,𝛹 ;j̄, v̄) = JKV
mod

(𝜎(𝛷,𝛹 ),𝛷,𝛹 ) + 𝛽JEIT
obs

(𝛷,𝛹 ;j̄, v̄)

MIAT
�,ad

= MEIT
�,ad

= H1
♢
(�) × H1

0
(�) +�0.

(69)
∫
�

�∇�i ⋅ ∇p d� +

L∑

𝓁=1

1

z
𝓁
∫e

𝓁

(�i − v
𝓁,i)(p − �

𝓁
) ds

=

L∑

𝓁=1

j
𝓁,i�𝓁 ,∀(p, �) ∈ H1(�) ×ℝ

L,

(70)JIAT
(�,� )

(�;H) = JIAT
obs

(�,�(�);H) =
1

2

I∑

i=1
∫
�

(
�|∇�i(�)|2 −Hi

)2

d�;
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where v(�) = (v
�,i(�))i∈{1,…,I},�∈{1,…,L} is the solution to (69) and

Summarizing, our tests comprise three different formulations: all-at-once, eliminate 
� , eliminate (�,� ) . The latter corresponds to the conventional reduced approach, 
whereas the former two are new.

5.2  Implementation using the finite element method in Matlab

In order to generate synthetic data by solving the CEM PDE (59) we use the 
finite element method. In all our computations, � is the unit circle in ℝ2 with 
eight identical electrodes ( L = 8 ) denoted by e1,… , e8 attached equidistantly 
on its boundary (see Fig.  1). The domain � is discretized by a regular finite 
element mesh defined by nodes Pk, k ∈ {1,… ,Nnode = 913} and elements 
�h, h ∈ {1,… ,Nelement = 432} . The ansatz spaces L2(�) for � and H1(�) for �,� 
are approximated by piecewise constant and continuous piecewise quadratic finite 
element spaces L̃2(𝛺) and H̃1(𝛺) , respectively.

With L = 8 electrodes, there are Nmeas = 28 possible combinations of excita-
tions—we will use some of them to reconstruct � later. At the ith measurement, 
we impose the injected current (j

�,i)
L
�=1

 with

at the electrodes and then solve the Galerkin discretized weak form (cf. (69))

to find (�ex
i
, (vex

�,i
)) and the corresponding exact data

The synthetic measured data is generated by adding random noise such that

(71)JEIT
(�,� )

(�;v) =
1

2

I∑

i=1

L∑

�=1

||v�,i(�) − v
�,i
||
2
,

MIAT
(�,� ),ad

= MEIT
(�,� ),ad

= L2
[�,�]

(�)

⎧
⎪
⎨
⎪⎩

j
�1,i

= 1, j
�2,i

= −1, if �1 < �2 and {�1,�2} is the ith element of

the family of 2-elements subsets of {1,… , 8},

j
�,i = 0, otherwise,

(72)∫
𝛺

𝜎ex∇𝜙i ⋅ ∇p dx +

L∑

𝓁=1

1

z
𝓁
∫e

𝓁

(𝜙i − v
𝓁,i)(p − 𝜉

𝓁
) ds =

L∑

𝓁=1

j
𝓁,i𝜉𝓁 ,

∀(p, 𝜉) ∈ H̃1(𝛺) ×ℝ
L,∀i ∈ {1,… ,Nmeas}

H
ex = (�ex|∇�ex

1
|2,… , �ex|∇�ex

Nmeas
|2) for IAT; (j

�,i, v
ex
�,i
)
�,i for EIT.

|H�

i
−H

ex
i
| ≤ �|Hex

i
|, ∀i for IAT; |v�

�,i
− vex

�,i
| ≤ �|vex

�,i
| for EIT,
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which in an obvious way defines the noisy versions J� , J�
�
 , J�

�,�
 and M� , M�

�,ad
 , 

M�

(�,� ),ad
 of the cost functions and admissible sets, respectively. In our tests we con-

sider three values of � : � = 0 , � = 0.01 and � = 0.1.
To avoid an inverse crime, we used a coarser mesh in our reconstructions.
In (69) we set the value of contact impedances z

�
 , � ∈ {1,… , L} , to 0.1.

The test case considered in all of our computational results is defined by a con-
stant inclusion on a constant background

where Br(p1, p2) ⊂ ℝ
2 is the ball centered at (p1, p2) with radius r. For IAT we also 

show results with two inclusions

With each of the three above mentioned cost function combinations (all-at-once, 
eliminated � , eliminated (�,� ) , the iterates xk = (�k,�k,�k) , or xk = (�k,�k) , or 
xk = �k , are defined by the projected gradient method (12) from Sect. 2 where �k 
is found by an Armijo back tracking line search. Details on computation of the gra-
dients of the various cost functions can be found in [12]. The iteration is stopped 
by the discrepancy principle (20) in the noisy case and as soon as the step size fell 
below a value �� (which we set to 1010 in our tests) in case of exact data.

5.3  Numerical results for IAT

We consider four cases of excitations, namely

• I = 1 , with j1,1 = 1 , j5,1 = −1 and jk,1 = 0 otherwise;
• I = 2 , with j1,1 = j3,2 = 1 , j5,1 = j7,2 = −1 , and jk,i = 0 otherwise;
• I = 4 , with j1,1 = j3,2 = j2,3 = j4,4 = 1 , j5,1 = j7,2 = j6,3 = j8,4 = −1 and jk,i = 0 

otherwise.
• I = 28 , with all (

8

2
) combinations of setting jk,i = 1 , j

�,i = −1 for 
k ≠ � ∈ {1,… , 8}

The starting value is set to the mean value of the maximal and minimal value 
for the conductivity �0 =

1

2
(� + �) and �0,�0 , if necessary, are gained from the 

weak form (69) where � is replaced by �0.
Tables  1,  2 and  3 show the data about the number of iterations, the error 

‖�end − �ex‖L2(�) , the CPU time (in seconds) and the CPU time for each iteration 
for various versions of cost functions.

In Figs. 2, 3 and 4, we display some pictures of reconstructions.

𝜎ex(x) =

{
5, in 𝛺h if 𝛺h ⊂ B0.5(−0.3,−0.1)

2, otherwise,

(73)𝜎ex2incl(x) =

⎧
⎪
⎨
⎪⎩

5, in 𝛺h if 𝛺h ⊂ B0.5(−0.3,−0.1)

4.25, in 𝛺h if 𝛺h ⊂ B0.3(0.4, 0.5)

2, otherwise,
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Evidently, reconstructions improve with more information—that is, larger I—
and better quality data—that is, lower � . Also, the computationally more expen-
sive “eliminate (�,� ) ” version that requires solution of elliptic boundary value 
problems provides better results than the cheaper “eliminate � ” or all-at-once 
versions. This is clearly visible in the relative errors (column 3 of Tables  1,  2 
and 3) and CPU times (last two columns of Tables 1, 2 and 3). Surprisingly, in 
spite of the fact that IAT cannot be shown to satisfy the assumption (49) due to 

Table 1  IAT, all-at-once version (62), (61)

All-at-once version 
IAT

Number of iterations L2 error ‖�end − �ex‖ CPU-time (in 
seconds)

CPU-time 
per itera-
tion

I = 1 � = 0 5,025,130 0.65872 943,527 0.18776
� = 0.01 4,959,452 0.66537 930,984 0.18772
� = 0.1 5,178,542 0.80676 984,851 0.19018

I = 2 � = 0 1,109,245 0.38757 266,270 0.24005
� = 0.01 1,114,829 0.38746 264,697 0.23743
� = 0.1 1,520,239 0.56700 344,894 0.22687

I = 4 � = 0 301,651 0.31070 73,664 0.24420
� = 0.01 308,170 0.31496 74,474 0.24166
� = 0.1 326,561 0.41261 79,693 0.24404

I = 28 � = 0 249,816 0.30535 82,681 0.33097
� = 0.01 245,306 0.30675 81,263 0.33127
� = 0.1 292,914 0.32676 96,378 0.32903

Table 2  IAT, eliminating-� version (67)

Eliminating-� version, IAT Number of 
iterations

L2 error ‖�end − �ex‖ CPU-time (in 
seconds)

CPU-time 
per itera-
tion

I = 1 � = 0 2224 0.58289 583 0.26228
� = 0.01 1230 0.79777 319 0.25946
� = 0.1 840 0.94467 215 0.25636

I = 2 � = 0 3488 0.36050 1232 0.35321
� = 0.01 2894 0.37353 920 0.31786
� = 0.1 2645 0.45520 959 0.36274

I = 4 � = 0 2730 0.32427 801 0.29349
� = 0.01 3393 0.32152 1254 0.36959
� = 0.1 1836 0.43352 562 0.30589

I = 28 � = 0 3330 0.33032 1451 0.43561
� = 0.01 3251 0.33105 1427 0.43900
� = 0.1 3300 0.34439 1511 0.45787
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nonlinearity of the observation operator, results are better for IAT than for GWF, 
see Fig. 8, to be compared with Fig. 2

Finally, we also show some reconstructions of two inclusions in Figs. 5, 6 and 
7.

5.4  Numerical results for GWF

Based on the same set of excitation combinations and the same starting value (see 
the beginning of Sect. 5.3), we generated the reconstructions displayed in Fig. 8. 
As already mentioned above, they are actually worse than those obtained in the 
(more nonlinear) IAT problem and the use of the CEM clearly leads to boundary 
artefacts.

5.5  Numerical results for EIT

We close with a few plots of reconstructions for EIT. Here, since we only have bound-
ary observations, in order to gain enough information, it is necessary to use all measure-
ments I = 28 . Moreover, the all-at-once and eliminating-� versions failed to converge, 
so we here only provide results with the classical reduced version of EIT corresponding 
to the eliminating (�,� ) version (71). Starting from the constant value �0 =

1

2

(
� + �

)
 

we obtain the reconstructions in Fig. 9 for noise levels of zero, one and ten per cent. 
Note that in view of the exponential ill-posedness of this inverse problem, the quality 
of reconstructions is more than reasonable for this level of data contamination. The 
reasons for failure of the all-at-once and eliminating-� versions for EIT are at least two 
fold: First of all, the looser bond between parameter � and states (�,� ) in these ver-
sions would necessitate additional regularization of the state (recall that we here only 

Table 3  IAT, eliminating-(�,� ) version (70)

Eliminating-(�,� ) 
version, IAT

Number of iterations L2 error ‖�end − �ex‖ CPU-time (in 
seconds)

CPU-time 
per itera-
tion

I = 1 � = 0 225,302 2.73e−09 147,936 0.65661
� = 0.01 100,041 0.01845 83,302 0.83268
� = 0.1 79,377 0.22434 38,043 0.47927

I = 2 � = 0 55,066 1.68e−10 30,161 0.54772
� = 0.01 61,162 0.01669 61,202 1.00065
� = 0.1 38,162 0.17407 41,314 1.08260

I = 4 � = 0 13,782 4.38e−11 10,469 0.75958
� = 0.01 19,889 0.01441 27,064 1.36076
� = 0.1 15,169 0.12203 19,721 1.30006

I = 28 � = 0 13,868 4.38e−11 49,005 3.53365
� = 0.01 23,540 0.00744 96,096 4.08226
� = 0.1 28,721 0.06732 120,978 4.21217
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regularize � by imposing bounds)—which could be easily added, but we did not do so 
here in order to keep comparability of the three different examples. Secondly, this effect 
is most severe in this example due to its exponential ill-posedness.
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Fig. 2  Reconstructions of � from all-at-once version of cost function IAT (62), (61), in cases I = 1 , 
I = 2 , I = 4 , I = 28 (top to bottom) for � = 0 , � = 0.01 , � = 0.1 (left to right)
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Fig. 3  Reconstructions of � from eliminating-� version of cost function IAT (67), in cases I = 1 , I = 2 , 
I = 4 , I = 28 (top to bottom) for � = 0 , � = 0.01 , � = 0.1 (left to right)
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Fig. 4  Reconstructions of � from eliminating-� − � version of cost function IAT (70), in cases I = 1 , 
I = 2 , I = 4 , I = 28 (top to bottom) for � = 0 , � = 0.01 , � = 0.1 (left to right)
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Fig. 5  Reconstructions of � from all-at-once version of cost function IAT (62), (61), in cases I = 1 , 
I = 2 , I = 4 , I = 28 (top to bottom) for � = 0 , � = 0.01 , � = 0.1 (left to right) for the two inclusions 
example (73)
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Fig. 6  Reconstructions of � from eliminating-� version of cost function IAT (67), in cases I = 1 , I = 2 , 
I = 4 , I = 28 (top to bottom) for � = 0 , � = 0.01 , � = 0.1 (left to right) for the two inclusions example 
(73)



606 B. Kaltenbacher, K. Van Huynh 

1 3

Fig. 7  Reconstructions of � from eliminating-� − � version of cost function IAT (70), in cases I = 1 , 
I = 2 , I = 4 , I = 28 (top to bottom) for � = 0 , � = 0.01 , � = 0.1 (left to right) for the two inclusions 
example (73)
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Fig. 8  Reconstructions of � from all-at-once version of cost function GWF (62), (61), in cases I = 1 , 
I = 2 , I = 4 , I = 28 (top to bottom) for � = 0 , � = 0.01 , � = 0.1 (left to right)
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The latter, together with some regularity loss in the solution due to the CEM, is the 
reason for boundary artefacts showing up at the highest noise level.

More details in particular on numerical tests for EIT can be found in the PhD thesis 
[12].

6  Conclusions and remarks

In this paper we have provided convergence results on the iterative solution methods 
(gradient or Newton type) for minimization based formulations of inverse problems. 
We apply these to the identification of a spatially varying diffusion coefficient in an 
elliptic PDE from different kinds of measurements, in particular corresponding to 
the electrical impedance tomography EIT, the impedance acoustic tomography IAT 
problem, and the inverse groundwater filtration problem GWF. We provide numeri-
cal results for these three test cases, thereby mainly focusing on IAT. Future work 
will, e.g., be concerned with investigations on the convexity conditions: How can 
an additive combination of functionals and constraints help to satisfy them, e.g., for 
EIT or IAT?

Also a comparison of the Newton type method analyzed in Sect. 3 with the gradi-
ent type method from Sect. 2 should be carried out. Clearly the Newton type method 
is more demanding both from an implementation and from a computational cost (per 
step) point of view. However, this might still pay off in view of the fact that it can be 
expected to reach the desired error tolerance already after a much smaller number of 
steps.

Appendix

Lemma 2 ([1, Lemma A.3]; Opial, discrete) Let S be a non empty subset of a Hilbert 
space X, and (xk)k∈ℕ a sequence of elements of X. Assume that
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Fig. 9  Reconstructions of � from eliminating-(�,� ) version of cost function EIT (71), in case I = 28 , 
� = 0 , � = 0.01 , � = 0.1 (left to right)
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 (i) for every z ∈ S , limk→∞ ‖xk − z‖ exists;
 (ii) every weak sequential limit point of (xk)k∈ℕ , as k → ∞ , belongs to S.

Then xk converges weakly as k → ∞ to a point in S.
Lemma 3 ([1, Lemma A.2]; Opial, continuous) Let S be a non empty subset of a Hil-
bert space X, and x ∶ [0,∞) → X a map. Assume that

 (i) for every z ∈ S , limt→∞ ‖x(t) − z‖ exists;
 (ii) every weak sequential limit point of x(t), as t → ∞ , belongs to S.

Then x(t) converges weakly as t → ∞ to a point in S.
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