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Abstract
The augmented Lagrangian method (ALM) provides a benchmark for solving the 
canonical convex optimization problem with linear constraints. The direct exten-
sion of ALM for solving the multiple-block separable convex minimization prob-
lem, however, is proved to be not necessarily convergent in the literature. It has thus 
inspired a number of ALM-variant algorithms with provable convergence. This 
paper presents a novel parallel splitting method for the multiple-block separable 
convex optimization problem with linear equality constraints, which enjoys a larger 
step size compared with the existing parallel splitting methods. We first show that 
a fully Jacobian decomposition of the regularized ALM can contribute a descent 
direction yielding the contraction of proximity to the solution set; then, the new iter-
ate is generated via a simple correction step with an ignorable computational cost. 
We establish the convergence analysis for the proposed method, and then demon-
strate its numerical efficiency by solving an application problem arising in statistical 
learning.
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1  Introduction

Our discussion starts with the following canonical convex minimization problem 
with linear equality constraints:

where � ∶ ℜn
→ ℜ ∪ {+∞} is a closed proper convex but not necessarily smooth 

function; X ⊆ ℜn is a closed convex set; A ∈ ℜl×n and b ∈ ℜl . Among algorithms 
for solving (1.1), the augmented Lagrangian method (ALM) introduced in [24, 29] 
turns out to be a fundamental tool in both theoretical and algorithmic aspects, and 
its associated iterative scheme reads as

where

denotes the augmented Lagrangian function of (1.1); � ∈ ℜl is the Lagrange multi-
plier and 𝛽 > 0 is a penalty parameter for the linear constraints. As analyzed in [30], 
the classic ALM is indeed an application of the proximal point algorithm (PPA) 
in [26] to the dual of (1.1). Throughout our discussion, the penalty parameter � is 
assumed to be fixed for simplification.

In this paper, we focus on a special case of (1.1), where its objective function is 
the sum of m subfunctions without coupled variables:

Here, �i ∶ ℜni → ℜ ∪ {+∞} (i = 1,… ,m) are closed proper convex functions and 
they are not necessarily smooth; Xi ⊆ ℜni (i = 1,… ,m) are closed convex sets; ∑m

i=1
ni = n ; Ai ∈ ℜl×ni (i = 1,… ,m) and b ∈ ℜl . Obviously, the model (1.3) cor-

responds to (1.1) with x = (x1;… ;xm) , A = (A1,… ,Am) and �(x) =
∑m

i=1
�i(xi) . In 

practice, the generic model (1.3) finds a multitude of applications in, e.g., [4, 31] for 
some image reconstruction problems, [32, 35] for the matrix recovery model and the 
Potts based image segmentation problem, and [5, 6, 33] for a number of problems 
arising in distributed optimization and statistical learning. We also refer to, e.g., [25, 
34], for more applications in other communities. Throughout our discussion, the 
solution set of (1.3) is assumed to be nonempty and the matrices Ai (i = 1,… ,m) 
are assumed to be full column-rank. In addition, we assume each xi-subproblem

(1.1)min {�(x) | Ax = b, x ∈ X},

(1.2)(ALM)

{
x
k+1 = argmin

{
L�(x, �

k) | x ∈ X
}
,

�k+1 = �k − �(Ax
k+1 − b),

L�(x, �) ∶= �(x) − �T (Ax − b) +
�

2
‖Ax − b‖2

2

(1.3)min

{
m∑
i=1

�i(xi)
|||||

m∑
i=1

Aixi = b; xi ∈ Xi, i = 1, 2,… ,m

}
.

(1.4)x∗
i
= argmin

�
�i(xi) +

�

2
‖Aixi − qi‖22 � xi ∈ Xi

�
,
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with any given qi ∈ ℜl and 𝛽 > 0 , has a closed-form solution or can be easily solved 
with a high precision (see, e.g., [27], for specific supported examples).

Applying the classical ALM (1.2) straightforwardly to (1.3), the resulting scheme 
then reads as

where

However, note there are coupled terms in the quadratic term ‖∑m

i=1
Aixi − b‖2

2
 . The 

xi-subproblems ( i = 1,… ,m ) generally can not be tackled simultaneously. Exploit-
ing the separable structure of the objective function � , a common-used separable 
strategy for x-subproblem is the following Gaussian decomposition iterative scheme:

Clearly, each xi-subproblem in (1.6) possesses the favorable composition (1.4) and 
can be treated individually. In particular, for the case m = 2 , the method (1.6) cor-
responds to the classical alternating direction method of multipliers (ADMM) pro-
posed in [9, 10], which is indeed an application of the Douglas-Rachford splitting 
method (see [8]). The generic scheme (1.6) is thus named the direct extension of 
ADMM (D-ADMM) in [7, 10]. For the case m ≥ 3 , the D-ADMM has been shown 
to be empirically efficient for various applications, see, e.g., [28, 32] and references 
cited therein. However, a counterexample in [7] reveals that the D-ADMM (1.6) is 
not necessarily convergent. It has immediately inspired a number of works such as 
[11, 13, 17–19, 23, 25, 31–33]. Especially, the ADMM with Gaussian back substi-
tution in [12, 17, 19], which needs only an additional back substitution step based 
on the D-ADMM, turns out to be a convergent yet numerically well-preforming 
method.

�
(xk+1

1
,… , xk+1

m
) = argmin

�
L�(x1, x2,… , x

m
, �k) � x

i
∈ X

i
, i = 1,… ,m

�
,

�k+1 = �k − �
�∑m

i=1
A
i
x
k+1
i

− b
�
,

(1.5)

L�(x1, x2,… , xm, �) =

m∑
i=1

�i(xi) − �T

(
m∑
i=1

Aixi − b

)
+

�

2

‖‖‖‖‖

m∑
i=1

Aixi − b
‖‖‖‖‖

2

2

.

(1.6)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩

x
k+1
1

= argmin
�
L�(x1, x

k

2
,… , xk

m−1
, xk

m
, �k) � x1 ∈ X1

�
,

x
k+1
2

= argmin
�
L�(x

k+1
1

, x2,… , xk
m−1

, xk
m
, �k) � x2 ∈ X2

�
,

⋮

x
k+1
m

= argmin
�
L�(x

k+1
1

, xk+1
2

,… , xk+1
m−1

, x
m
, �k) � x

m
∈ X

m

�
,

�k+1 = �k − �
�∑m

i=1
A
i
x
k+1
i

− b
�
.
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We now turn our attention to another common-used splitting strategy for the x-sub-
problem in the generic ALM scheme (1.2). Applying the full Jacobian-decomposition 
of x-subproblem to (1.2), it immediately leads to the following so-named direct exten-
sion of ALM (abbreviated as D-ALM):

It is obvious that each xi-subproblem in the above D-ALM can be solved in a par-
allel way. In practice, there are many applications (see [36]) in the medical image 
processing field such as the Potts-model based image segmentation problem 
and its variants, can be solved efficiently by using the D-ALM. However, as ana-
lyzed in [14], the D-ALM is proved to be not necessarily convergent in theory. Let 
w ∶= (x1;… ;xm;�) . To ensure the convergence, in [14], the authors regard first the 
output of the D-ALM as a predictor w̃k (i.e., (x̃k

1
;… ;x̃k

m
;𝜆̃k) ∶= (xk+1

1
;… ;xk+1

m
;𝜆k+1) ), 

then the new iterate wk+1 is updated via

Since the modification is simple, the variant is also named the parallel splitting 
ALM (denoted by P-ALM) in [14]. It is easy to verify that, as the increase of m, the 
step size � would be tiny (for example, if m = 3 , then � ∈ (0, 0.268) ), which would 
adversely affect the convergence efficiency in the real computations. In [18], by add-
ing extra regularization terms to the D-ALM, it directly leads to the following paral-
lel splitting ADMM-like scheme (denoted by PS-ADMM):

in which 𝜏 > m − 2 . Clearly, it would correspond to a huge regularization term (or 
equivalently, a tiny step size) as the increase of m. Recent works such as [15, 16, 20] 
have demonstrated that relaxation of regularization term allows a bigger step size to 
potentially accelerate the convergence. Hence, it is necessary to reduce such a regu-
larization factor �.

(D-ALM)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎧
⎪⎪⎨⎪⎪⎩

x
k+1
1

= argmin
�
L�(x1, x

k

2
,… , xk

m−1
, xk

m
, �k) � x1 ∈ X1

�
,

x
k+1
2

= argmin
�
L�(x

k

1
, x2,… , xk

m−1
, xk

m
, �k) � x2 ∈ X2

�
,

⋮

x
k+1
m

= argmin
�
L�(x

k

1
, xk

2
,… , xk

m−1
, x

m
, �k) � x

m
∈ X

m

�
,

�k+1 = �k − �
�∑m

i=1
A
i
x
k+1
i

− b
�
.

wk+1 = wk − 𝛼(wk − w̃k) with 𝛼 ∈ (0, 2(1 −
√
m∕(m + 1))).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x
k+1
1

= argmin
�
L�(x1, x

k

2
,… , xk

m−1
, xk

m
, �k) � x1 ∈ X1

�
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x
k+1
2

= argmin{L�(x
k+1
1

, x2,… , xk
m−1

, xk
m
, �k)

+
�

2
�‖A2(x2 − x

k

2
)‖2

2
� x2 ∈ X2},

⋮

x
k+1
m

= argmin
�
L�(x

k+1
1

, xk
2
,… , xk

m−1
, x

m
, �k)

+
�

2
�‖A

m
(x

m
− x

k

m
)‖2

2
� x

m
∈ X

m

�
,

�k+1 = �k − �(
∑m

i=1
A
i
x
k+1
i

− b),
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The primary purpose of the paper is to present a novel parallel splitting ALM-
based algorithm for the multiple-block separable convex programming problem 
(1.3). More concretely, our new method begins with the following fully parallel 
regularized ALM-based scheme:

where 𝜏 > (m − 4)∕4 . As can be seen easily, the scheme (1.7) possesses a fully par-
allel splitting structure for both xi-subproblems ( i = 1,… ,m ) and �-subproblem. It 
thus belongs to the category of parallel operator splitting schemes. Furthermore, as 
will be shown in Sect. 3.1, the scheme (1.7) can provide a descent direction yielding 
the contraction of proximity to the solution set of (1.3). It is thus inspired to generate 
the new iterate wk+1 via

where � ∈ (0, 1) and the correction matrix M will be defined in (2.11). Note that 
the step size � is a constant. The correction step (1.8), as the initialization of next 
iteration, could be handled easily. Moreover, we give a more practical and succinct 
scheme (3.7) to replace the method (1.7)–(1.8) in Sect. 3.3.

The novel algorithm (1.7)–(1.8) enjoys great advantages in mainly two folds: 
first, compared with the P-ALM, the constant step size � ∈ (0, 1) can be taken 
more broadly; second, it reduces the regularization factor � from (m − 2) to 
(m − 4)∕4 compared with the PS-ADMM, so it provides a wider choice of the 
regularization term to potentially accelerate the convergence. Also, we show the 
global convergence of the proposed method, and then illustrate its efficiency by 
extensive numerical experiments.

The rest of the paper is organized as follows. In Sect. 2, we summarize some 
preliminaries and fundamental matrices, which will be useful for further analy-
sis. Then, we propose the novel method in Sect. 3 and establish its convergence 
analysis in Sect.  4. The numerical efficiency of the proposed method is further 
demonstrated in Sect. 5. Some conclusions are drawn in Sect. 6.

(1.7)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x̃
k

1
= argmin{L𝛽(x1, x

k

2
,… , xk

m−1
, xk

m
, 𝜆k)

+
𝜏

2
𝛽‖A1(x1 − x

k

1
)‖2

2
� x1 ∈ X1},

x̃
k

2
= argmin{L𝛽(x

k

1
, x2,… , xk

m−1
, xk

m
, 𝜆k)

+
𝜏

2
𝛽‖A2(x2 − x

k

2
)‖2

2
� x2 ∈ X2},

⋮

x̃
k

m
= argmin

�
L𝛽(x

k

1
, xk

2
,… , xk

m−1
, x

m
, 𝜆k)

+
𝜏

2
𝛽‖A

m
(x

m
− x

k

m
)‖2

2
� x

m
∈ X

m

�
,

𝜆̃k = 𝜆k − 𝛽
�∑m

i=1
A
i
x
k

i
− b

�
,

(1.8)wk+1 = wk + 𝛼d(wk, w̃k) ∶= wk − 𝛼M(wk − w̃k),
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2 � Preliminaries

In this section, we summarize some preliminary results that will be used fre-
quently throughout our discussion. The analysis of the paper is based on the fol-
lowing elementary lemma (its proof can be found in, e.g., [2]).

Lemma 1  Let X ⊆ ℜn be a closed convex set, �(x) and �(x) be convex functions. If 
�(x) is differentiable on an open set which contains X  , and the solution set of the 
convex minimization problem min{�(x) + �(x) | x ∈ X} is nonempty, then we have

if and only if

2.1 � A variational characterization of (1.3)

To begin with, using the similar techniques in, e.g., [22], we show first how to stand 
for the optimality condition of (1.3) in the variational inequality context. By attaching 
the Lagrange multiplier � ∈ ℜl to the linear constraints, the Lagrange function of (1.3) 
reads as

and it is defined on the set Ω ∶= X1 × X2 ×⋯ × Xm ×ℜl . Suppose the pair 
(x∗

1
, x∗

2
,… , x∗

m
, �∗) ∈ Ω is a saddle point of (2.1). Then, for any � ∈ ℜl and 

xi ∈ Xi (i = 1,… ,m) , we have

In view of Lemma 1, it is equivalent to finding (x∗
1
,… , x∗

m
, �∗) such that

Furthermore, if we set

x∗ ∈ argmin {�(x) + �(x) | x ∈ X}

x∗ ∈ X, �(x) − �(x∗) + (x − x∗)T∇�(x∗) ≥ 0, ∀ x ∈ X.

(2.1)L(x1, x2,… , xm, �) =

m∑
i=1

�i(xi) − �T

(
m∑
i=1

Aixi − b

)
,

L(x∗
1
, x∗

2
,… , x∗

m
, �) ≤ L(x∗

1
, x∗

2
,… , x∗

m
, �∗) ≤ L(x1, x2,… , xm, �

∗).

(2.2)

⎧⎪⎪⎨⎪⎪⎩

�1(x1) − �1(x
∗
1
) + (x1 − x

∗
1
)T (−AT

1
�∗) ≥ 0, ∀ x1 ∈ X1,

⋮

�
m
(x

m
) − �

m
(x∗

m
) + (x

m
− x

∗
m
)T (−AT

m
�∗) ≥ 0, ∀ x

m
∈ X

m
,

(� − �∗)T
�∑m

i=1
A
i
x
∗
i
− b

�
≥ 0, ∀ � ∈ ℜl.
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the inequalities (2.2) can be compactly rewritten as

In the later sections, we denote by Ω∗ the solution set of (2.4), which is assumed to 
be nonempty. On the one hand, since the operator F(w) in (2.3) is affine with a skew-
symmetric matrix, we obtain

which means F is monotone. On the other hand, the objective function �(x) is not 
necessarily differentiable. With this regard, we also name (2.4) the mixed monotone 
variational inequality. In the following, we say (2.4) the variational inequality (VI) 
for short.

2.2 � A variational characterization of (1.7)

The associated VI-structure of the introduced parallel splitting scheme (1.7) can 
be deduced by the following fundamental lemma.

Lemma 2  Let {w̃k} be the sequence generated by (1.7) for solving (1.3). Then, we 
have

where

Proof  To begin with, for each xi-subproblem in (1.7), it follows from the fundamen-
tal Lemma 1 that x̃k

i
∈ Xi , and x̃k

i
 satisfies

(2.3)

x =

⎛
⎜⎜⎝

x1
⋮

xm

⎞
⎟⎟⎠
, �(x) =

∑m

i=1
�i(xi), A = (A1,A2,… ,Am),

w =

⎛
⎜⎜⎜⎝

x1
⋮

xm
�

⎞⎟⎟⎟⎠
and F(w) =

⎛
⎜⎜⎜⎝

−AT
1
�

⋮

−AT
m
�∑m

i=1
Aixi − b

⎞⎟⎟⎟⎠
,

(2.4)VI(Ω,F, �) ∶ w∗ ∈ Ω, �(x) − �(x∗) + (w − w∗)TF(w∗) ≥ 0, ∀ w ∈ Ω.

(2.5)(w − w̄)T (F(w) − F(w̄)) ≡ 0, ∀ w, w̄ ∈ Ω,

(2.6)𝜃(x) − 𝜃(x̃k) + (w − w̃k)TF(w̃k) ≥ (w − w̃k)TQ(wk − w̃k), ∀ w ∈ Ω,

(2.7)Q =

⎛
⎜⎜⎜⎜⎝

(1 + �)�AT
1
A1 ⋯ 0 0

⋮ ⋱ ⋮ ⋮

0 ⋯ (1 + �)�AT
m
Am 0

−A1 ⋯ − Am
1

�
Il

⎞
⎟⎟⎟⎟⎠
.



838	 S. Xu, B. He 

1 3

Since 𝜆̃k = 𝜆k − 𝛽(Axk − b) in (1.7), we obtain

Therefore, the xi-subproblem in (1.7) satisfies

For the �-subproblem in (1.7), it is easy to see that Axk − b +
1

𝛽
(𝜆̃k − 𝜆k) = 0 , which 

is also equivalent to

Using the notations in (2.3), the assertion of the lemma follows immediately by add-
ing (2.8) and (2.9). 	�  ◻

2.3 � Some basic matrices

We list some fundamental matrices which will be useful for further discussion. 
Recall the matrix Q defined in (2.7). Setting S = QT + Q , we get

Note that the matrices Ai (i = 1,… ,m) are assumed to be full column-rank. 
Clearly, the matrix S is symmetric, and S ≻ 0 provided 𝜏 > (m − 4)∕4 . Throughout, 

𝜃i(xi) − 𝜃i(x̃
k
i
) + (xi − x̃k

i
)T{

−AT
i

(
𝜆k − 𝛽

(
Aix̃

k
i
+
∑
j≠i

Ajx
k
j
− b

))
+ 𝜏𝛽AT

i
Ai(x̃

k
i
− xk

i
)

}
≥ 0, ∀ xi ∈ Xi.

− AT
i

(
𝜆k − 𝛽

(
Aix̃

k
i
+
∑
j≠i

Ajx
k
j
− b

))
+ 𝜏𝛽AT

i
Ai(x̃

k
i
− xk

i
)

= −AT
i
[𝜆k − 𝛽(Axk − b)] + 𝛽AT

i
Ai(x̃

k
i
− xk

i
) + 𝜏𝛽AT

i
Ai(x̃

k
i
− xk

i
)

= −AT
i
𝜆̃k + (1 + 𝜏)𝛽AT

i
Ai(x̃

k
i
− xk

i
).

(2.8)
𝜃i(xi) − 𝜃i(x̃

k
i
)

+ (xi − x̃k
i
)T
{
−AT

i
𝜆̃k + (1 + 𝜏)𝛽AT

i
Ai(x̃

k
i
− xk

i
)
}
≥ 0, ∀ xi ∈ Xi.

(2.9)(𝜆 − 𝜆̃k)T{Ax̃k − b −A(x̃k − xk) +
1

𝛽
(𝜆̃k − 𝜆k)} = 0, ∀ 𝜆 ∈ ℜ

l.

(2.10)

S = QT + Q =

⎛
⎜⎜⎜⎜⎝

2(1 + �)�AT
1
A1 ⋯ 0 − AT

1

⋮ ⋱ ⋮ ⋮

0 ⋯ 2(1 + �)�AT
m
Am − AT

m

−A1 ⋯ − Am
2

�
Il

⎞
⎟⎟⎟⎟⎠

= diag

⎛⎜⎜⎜⎝

⎛⎜⎜⎜⎝

AT
1

⋮

AT
m

Il

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝

2(1 + �)�Il ⋯ 0 − Il
⋮ ⋱ ⋮ ⋮

0 ⋯ 2(1 + �)�Il − Il
−Il ⋯ − Il

2

�
Il

⎞⎟⎟⎟⎟⎠
diag

⎛⎜⎜⎜⎝

⎛⎜⎜⎜⎝

A1

⋮

Am

Il

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠
.
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𝜏 > (m − 4)∕4 is required to guarantee the positive definiteness of the matrix S. Fur-
thermore, we define M = Q−TS , and thus

Note that these inverses (AT
i
Ai)

−1 (i = 1,… ,m) are just for algebraically showing the 
correction step explicitly, and they can be completely avoided (see Sect.  3.3). We 
also set

and

3 � Algorithm

Based on the framework of contraction method (see, e.g., [3]), we present the novel 
parallel algorithm (1.7)–(1.8) in this section.

3.1 � A descent direction of the distance function induced by (1.7)

Recall the VI-structure of (1.7). The predictor w̃k generated by (1.7) satisfies

Without loss of generality, we assume wk ≠ w̃k throughout our discussion. Other-
wise, it follows from (2.4) that w̃k would be an optimal solution. Let w∗ be an arbi-
trary solution of (2.4). Setting w = w∗ in (3.1), we have

(2.11)

M =
1

1 + �
diag((AT

1
A1)

−1,… , (AT
m
Am)

−1, Il)

⎛
⎜⎜⎜⎜⎜⎜⎝

(2� + 1)AT
1
A1 − AT

1
A2 ⋯ − AT

1
Am

1

�
AT
1

−AT
2
A1 (2� + 1)AT

2
A2 ⋯ − AT

2
Am

1

�
AT
2

⋮ ⋮ ⋱ ⋮ ⋮

−AT
m
A1 − AT

m
A2 ⋯ (2� + 1)AT

m
Am

1

�
AT
m

−(1 + �)�A1 − (1 + �)�A2 ⋯ − (1 + �)�Am 2(1 + �)Il

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(2.12)H = QS−1QT ,

(2.13)M̄ =

⎛
⎜⎜⎜⎜⎜⎜⎝

2𝜏+1

1+𝜏
Il −

1

1+𝜏
Il ⋯ −

1

1+𝜏
Il

1

(1+𝜏)𝛽
Il

−
1

1+𝜏
Il

2𝜏+1

1+𝜏
Il ⋯ −

1

1+𝜏
Il

1

(1+𝜏)𝛽
Il

⋮ ⋮ ⋱ ⋮ ⋮

−
1

1+𝜏
Il −

1

1+𝜏
Il ⋯

2𝜏+1

1+𝜏
Il

1

(1+𝜏)𝛽
Il

−𝛽Il − 𝛽Il ⋯ − 𝛽Il 2Il

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(3.1)𝜃(x) − 𝜃(x̃k) + (w − w̃k)TF(w̃k) ≥ (w − w̃k)TQ(wk − w̃k), ∀ w ∈ Ω.

(w̃k − w∗)TQ(wk − w̃k) ≥ 𝜃(x̃k) − 𝜃(x∗) + (w̃k − w∗)TF(w̃k)

(2.5)
= 𝜃(x̃k) − 𝜃(x∗) + (w̃k − w∗)TF(w∗) ≥ 0.
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Using w̃k − w∗ = (w̃k − wk) + (wk − w∗) and wTQw =
1

2
wT (QT + Q)w , the above 

inequality can be rewritten as

Taking the nonsingularity of the matrices Q and H (see (2.7) and (2.12)) into consid-
eration, the inequality (3.2) can be further reformulated as

Therefore, for any fixed w∗ ∈ Ω∗,

is a descent direction of the unknown distance function ‖w − w∗‖2
H

 at the point wk . 
According to the same analysis in [21], such a direction is able to yield the contrac-
tion of proximity to the solution set of (1.3) if an appropriate step size is taken. 
Hence, we generate the new iterate wk+1 via

It remains to find a step size �k to make the update wk+1 closer to Ω∗.

3.2 � A befitting step size ̨
k
 in the correction step (3.3)

We now turn to choose an appropriate step size �k in the correction step (3.3). 
Since

we have

Maximizing the quadratic term q(�) , it follows that

(3.2)(wk − w∗)TQ(wk − w̃k) ≥ (wk − w̃k)TQ(wk − w̃k)
(2.10)
=

1

2
‖wk − w̃k‖2

S
.

�
∇
�
1

2
‖w − w∗‖2

H

����w=wk , −H−1Q(wk − w̃k)
�

= −(wk − w∗)TQ(wk − w̃k) ≤ −
1

2
‖wk − w̃k‖2

S
.

d(wk, w̃k) ∶= −H−1Q(wk − w̃k) = −Q−TS(wk − w̃k) = −M(wk − w̃k)

(3.3)wk+1 = wk + 𝛼kd(w
k, w̃k) = wk − 𝛼kM(wk − w̃k).

‖wk+1 − w∗‖2
H

= ‖wk − 𝛼Q−TS(wk − w̃k) − w∗‖2
H

= ‖wk − w∗‖2
H
− 2𝛼(wk − w∗)TQ(wk − w̃k) + 𝛼2‖wk − w̃k‖2

S

(3.2)

≤ ‖wk − w∗‖2
H
− 𝛼‖wk − w̃k‖2

S
+ 𝛼2‖wk − w̃k‖2

S
,

‖wk − w∗‖2
H
− ‖wk+1 − w∗‖2

H
≥ 𝛼‖wk − w̃k‖2

S
− 𝛼2‖wk − w̃k‖2

S
=∶ q(𝛼).

𝛼∗
k
=

‖wk − w̃k‖2
S

2‖wk − w̃k‖2
S

=
1

2
.
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Meanwhile, note that q(�) is a lower bounded quadratic contraction function. Refer 
to the similar technique in [14], we can introduce a relaxation factor � ∈ (0, 2) and 
thus �k ∶= ��∗

k
∈ (0, 1) , which means a fixed step size �k ∈ (0, 1) can be taken in 

(3.3). Consequently, the correction step (3.3), as an update process, can be tackled 
easily.

3.3 � The practical computing scheme for the new method (1.7)–(1.8)

Since the matrix M defined in (2.11) contains some inverses (AT
i
Ai)

−1 (i = 1,… ,m) , 
the corrector (3.3) is relatively complicated. Refer to the similar analysis in [23], 
these inverses are just for algebraically showing the correction step explicitly, and 
they can be completely avoided in computation empirically. More concretely, note 
that the variables (A1x

k
1
,… ,Amx

k
m
, �k) is essentially required in each iteration of 

(1.7). Using the same technique in, e.g., [19, 23], the correction step (3.3) can be 
replaced with

where the matrix M̄ is defined in (2.13), and it can be concretely written as

We now give a succinct representation of (3.5) for easy-implementation. Recall 
𝜆̃k = 𝜆k − 𝛽(Axk − b) in (1.7). By substituting it into (3.5), it follows that

and

(3.4)

⎛⎜⎜⎜⎝

A1x
k+1
1

⋮

Amx
k+1
m

𝜆k+1

⎞
⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎝

A1x
k
1

⋮

Amx
k
m

𝜆k

⎞
⎟⎟⎟⎠
− 𝛼M̄

⎛
⎜⎜⎜⎝

A1x
k
1
− A1x̃

k
1

⋮

Amx
k
m
− Amx̃

k
m

𝜆k − 𝜆̃k

⎞
⎟⎟⎟⎠
,

(3.5)

⎧⎪⎨⎪⎩

Aix
k+1
i

= Aix
k
i
− 𝛼

�
2𝜏+1

1+𝜏
Ai(x

k
i
− x̃k

i
) −

1

1+𝜏

�∑
j≠i Aj(x

k
j
− x̃k

j
)

−
1

𝛽
(𝜆k − 𝜆̃k)

��
, i = 1,… ,m,

𝜆k+1 = 𝜆k − 𝛼
�
−𝛽A(xk − x̃k) + 2(𝜆k − 𝜆̃k)

�
.

Aix
k+1
i

= Aix
k
i
− 𝛼

{
2𝜏 + 1

1 + 𝜏
Ai(x

k
i
− x̃k

i
) −

1

1 + 𝜏

[∑
j≠i

Aj(x
k
j
− x̃k

j
) −

1

𝛽
(𝜆k − 𝜆̃k)

]}

= Aix
k
i
− 𝛼

{
2𝜏 + 1

1 + 𝜏
Ai(x

k
i
− x̃k

i
) −

1

1 + 𝜏

[∑
j≠i

Aj(x
k
j
− x̃k

j
) − (Axk − b)

]}

= Aix
k
i
− 𝛼

{
2Ai(x

k
i
− x̃k

i
) +

1

1 + 𝜏

(
Ax̃k − b

)}
,
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Therefore, the practical correction step (3.5) can be reformulated concisely as

It further leads to the following more practical and succinct scheme to replace the 
proposed algorithm (1.7)–(1.8):

in which � ∈ (0, 1) and 𝜏 > (m − 4)∕4 . Figure 1 shows an ideal parallel implementa-
tion mechanism of the proposed algorithm (3.7) for the case where each xi-subprob-
lem needs a high computational cost. In such a case, every xi-subproblem can be 
solved in an independent CPU platform.

𝜆k+1 = 𝜆k − 𝛼
{
−𝛽A(xk − x̃k) + 2(𝜆k − 𝜆̃k)

}

= 𝜆k − 𝛼
{
−𝛽A(xk − x̃k) + 2𝛽(Axk − b)

}

= 𝜆k − 𝛼𝛽
{
Axk +Ax̃k − 2b

}
.

(3.6)

⎧
⎪⎨⎪⎩

�
for i = 1,… ,m, do:

Aix
k+1
i

= Aix
k
i
− 𝛼

�
2Ai(x

k
i
− x̃k

i
) +

1

1+𝜏
(Ax̃k − b)

�
,

𝜆k+1 = 𝜆k − 𝛼𝛽(Axk +Ax̃k − 2b).

(3.7)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(Parallel)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x̃
k

1
= argmin

�
L𝛽(x1, x

k

2
,… , xk

m−1
, xk

m
, 𝜆k)

+
𝜏

2
𝛽‖A1(x1 − x

k

1
)‖2

2
� x1 ∈ X1

�
,

x̃
k

2
= argmin

�
L𝛽(x

k

1
, x2,… , xk

m−1
, xk

m
, 𝜆k)

+
𝜏

2
𝛽‖A2(x2 − x

k

2
)‖2

2
� x2 ∈ X2

�
,

⋮

x̃
k

m
= argmin

�
L𝛽(x

k

1
, xk

2
,… , xk

m−1
, x

m
, 𝜆k)

+
𝜏

2
𝛽‖A

m
(x

m
− x

k

m
)‖2

2
� x

m
∈ X

m

�
,

(Update)

⎧⎪⎨⎪⎩

fori = 1,… ,m, do:

A
i
x
k+1
i

= A
i
x
k

i
− 𝛼

�
2A

i
(xk

i
− x̃

k

i
) +

1

1+𝜏
(Ax̃

k − b)
�
,

𝜆k+1 = 𝜆k − 𝛼𝛽(Ax
k +Ax̃

k − 2b),

Fig. 1   An ideal parallel implementation mechanism of the proposed algorithm (3.7)
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4 � Convergence

We establish the convergence analysis of the proposed method (1.7)–(1.8) in this 
section. The technique of analysis is motivated by the work in [19, 23]. As we 
have mentioned, 𝜏 > (m − 4)∕4 is required to guarantee the positive definiteness 
of the matrices S and H. To show the global convergence of the novel algorithm 
(1.7)–(1.8), we first prove a lemma, followed by a theorem.

Lemma 3  Let {w̃k} and {wk} be the sequences generated by the algorithm (1.7)–(1.8) 
for (1.3). Then, for any constant � ∈ (0, 1), we have

Proof  It follows from (3.3) that

and the proof is complete. 	� ◻

Theorem 1  Let {w̃k} and {wk} be the sequences generated by the method (1.7)–(1.8) 
for solving (1.3). Then, for any � ∈ (0, 1), we obtain limk→∞ wk = w∞ where w∞ 
belongs to Ω∗.

Proof  First of all, it follows from (4.1) that the generated sequence {wk} satisfies

which means the sequence {wk} is bounded. Furthermore, summing (4.1) over 
k = 0, 1,… ,∞ , we obtain

and thus

This indicates the sequence {w̃k} is also bounded. Let w∞ be a cluster point of {w̃k} , 
where {w̃kj} is a subsequence which converges to w∞ . Then, it follows from (2.6) that

(4.1)‖wk − w∗‖2
H
− ‖wk+1 − w∗‖2

H
≥ 𝛼(1 − 𝛼)‖wk − w̃k‖2

S
.

‖wk+1 − w∗‖2
H

= ‖wk − 𝛼Q−TS(wk − w̃k) − w∗‖2
H

= ‖wk − w∗‖2
H
− 2𝛼(wk − w∗)TQ(wk − w̃k) + 𝛼2‖wk − w̃k‖2

S

(3.2)

≤ ‖wk − w∗‖2
H
− 𝛼(1 − 𝛼)‖wk − w̃k‖2

S
,

‖wk+1 − w∗‖2
H
≤ ‖wk − w∗‖2

H
− 𝛼(1 − 𝛼)‖wk − w̃k‖2

S

≤ ‖wk − w∗‖2
H
≤ ⋯ ≤ ‖w0 − w∗‖2

H
,

∞�
k=0

𝛼(1 − 𝛼)‖wk − w̃k‖2
S
≤

∞�
k=0

(‖wk − w∗‖2
H
− ‖wk+1 − w∗‖2

H
)

≤ ‖w0 − w∗‖2
H
,

(4.2)lim
k→∞

‖wk − w̃k‖2
S
= 0.
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Note the matrix Q is nonsingular. It follows from the continuity of �(x) and F(w) that

which means w∞ is a solution of the VI(Ω,F, � ) (2.4). On the one hand, according to 
(4.2), we have limk→∞ wkj = w∞ . On the other hand, it follows from (4.1) that

which means it is impossible that the sequence {wk} has more than one cluster point. 
Therefore, we have limk→∞ wk = w∞ and the proof is complete. 	�  ◻

Remark 1  Refer to the same techniques in, e.g., [19, 23], we can easily show a 
worst-case O(1∕N) convergence rate measured by iteration complexity for the novel 
method (1.7)–(1.8) by using the essential Lemma 2. Since the techniques are com-
pletely similar, the analysis of the convergence rate is omitted here.

5 � Numerical experiments

We report the numerical results of the proposed algorithm (1.7)–(1.8) (practi-
cal scheme is indeed (3.7)) in this section. All codes are written in a Python 3.9 
and implemented in a laptop with Intel Core CPU 2.20 GHz (i7-8750H) and 16 
GB memory. The preliminary numerical results affirmatively demonstrate that the 
proposed method can perform more efficiently than some known parallel spitting 
algorithms.

5.1 � The test model

The latent variable Gaussian graphical model selection (LVGGMS) problem in [6] 
is a typical three-block separable convex minimization model arising in statistical 
learning. As stated in [1], the mathematical form of the LVGGMS model reads as

where C ∈ ℜn×n is the covariance matrix obtained from the observation, � and � 
stand for two given positive weight parameters, ‖Y‖1 = ∑

i,j �Yi,j� and tr(⋅) represents 
the trace of a matrix.

We first show the implementation of the proposed scheme (3.7) for tackling the 
LVGGMS model (5.1). Since the update (3.6) is simple, we only focus on the detail 
of the resulting xi-subproblems ( i = 1, 2, 3 ). Let

𝜃(x) − 𝜃(x̃kj ) + (w − w̃kj )TF(w̃kj ) ≥ (w − w̃kj )TQ(wkj − w̃kj ), ∀ w ∈ Ω.

w∞ ∈ Ω, �(x) − �(x∞) + (w − w∞)TF(w∞) ≥ 0, ∀w ∈ Ω,

(4.3)‖wk+1 − w∞‖2
H
≤ ‖wk − w∞‖2

H
,

(5.1)
min F(X, Y , Z) ∶= ⟨X,C⟩ − log det(X) + �‖Y‖1 + �tr(Z)

s.t. X − Y + Z = 0, Z ⪰ 0,
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be the augmented Lagrangian function of (5.1). The corresponding scheme of the 
x-subproblem in (3.7) then reads as

For the X-subproblem in (5.2), according to the first-order optimal condition, it is 
equivalent to solving the nonlinear equation system

Multiplying X to both sides, it follows that

Let UDUT = C − ��Xk − �Yk + �Zk − Λk be an eigenvalue decomposition. Plug-
ging it back into (5.3) and setting P = UTXU , we have

and thus obtain

Therefore, we can derive that X̃k = U diag(P)UT is a solution of (5.3). For the 
Y-subproblem in (5.2), since

the Y-subproblem can be solved via the soft shrinkage operator (see [32]) immedi-
ately. Finally, for the Z-subproblem in (5.2), note that

L�(X, Y , Z,Λ) =⟨X,C⟩ − log det(X) + �‖Y‖1 + �tr(Z)

− ⟨Λ,X − Y + Z⟩ + �

2
‖X − Y + Z‖2

F

(5.2)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

X̃k = argmin

�
L𝛽(X, Y

k, Zk,Λk) +
𝜏𝛽

2
‖X − Xk‖2

F
�� X ∈ ℜ

n×n

�
,

Ỹk = argmin

�
L𝛽(X

k, Y , Zk,Λk) +
𝜏𝛽

2
‖Y − Yk‖2

F
�� Y ∈ ℜ

n×n

�
,

Z̃k = argmin

�
L𝛽(X

k, Yk, Z,Λk) +
𝜏𝛽

2
‖Z − Zk‖2

2
�� Z ⪰ 0, Z ∈ ℜ

n×n

�
.

C − X−1 + �

(
X − Yk + Zk −

1

�
Λk

)
+ ��(X − Xk) = 0.

(5.3)(1 + �)�X2 + (C − ��Xk − �Yk + �Zk − Λk)X − I = 0.

(1 + �)�PP + DP − I = 0,

Pii =
1

2�(1 + �)

(
−Dii +

√
D2

ii
+ 4(1 + �)�

)
.

Ỹk = argmin
Y

�
𝜈‖Y‖1 + 𝛽

2
‖Xk − Y + Zk −

1

𝛽
Λk‖2

F
+

𝜏

2
𝛽‖Y − Yk‖2

F

�

= argmin
Y

�
‖Y‖1 + 𝛽(1 + 𝜏)

2𝜈

����Y −
1

1 + 𝜏
(Xk + 𝜏Yk + Zk −

1

𝛽
Λk)

����
2

F

�
,
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Let VD1V
T =

1

1+�
(−Xk + Yk + �Zk +

1

�
Λk −

�

�
I) be an eigenvalue decomposition. 

Then, we can easily verify that Z̃k = V max(D1, 0)V
T is a solution of the Z-subprob-

lem (where max(D1, 0) is taken component-wisely).

5.2 � Numerical results

We evaluate the numerical performance of the proposed method (3.7) in this subsec-
tion. Some parallel splitting algorithms including the parallel augmented Lagrangian 
method (denoted by P-ALM) proposed in [14] and the parallel splitting ADMM-
like method (denoted by PS-ADMM) proposed in [18] are compared. In addition, 
as a reference, the numerical results of the direct extension of ADMM (denoted by 
D-ADMM) is also listed.

In our experiments, we take � = 0.005 and � = 0.05 (refer to [1]), and the covari-
ance matrix C is randomly generated according to S. Boyd’s Homepage (see http://​web.​
stanf​ord.​edu/​~boyd/​papers/​admm/​covsel/​covsel_​examp​le.​html). Moreover, refer to [1], 
the following two stopping conditions are taken:

Clearly, the feasibility errors IER and CER can be regarded as the primal and dual 
errors of the mentioned algorithms, respectively. When the proposed method (3.7) is 
applied for solving (5.1), it is convergent provided 𝜏 > (3 − 4)∕4 , and we consider 
three special cases: � = 0 , � = 1∕3 and � = 1 . Moreover, the initial values are cho-
sen as (X0, Y0, Z0,Λ0) = (In, 2In, In, �n×n) in our experiments. Meanwhile, taking the 
high communication cost between different CPU platforms into consideration, what 
we emphasize here is that the tested algorithms are implemented by a serial way, 
rather than a parallel way. In the following tables and figures, the numerical perfor-
mance of the tested methods is evaluated by the following parameters:

•	 Iter: the required iteration number;
•	 Time: the total computing time in seconds;
•	 CPU: the maximum total running time of subproblems in seconds.

Note that the D-ADMM enjoys a Gaussian decomposition structure. The CPU time 
is indeed the total computing time for the D-ADMM.

In Table 1, we report the numerical results of the proposed method (3.7) for solv-
ing the LVGGMS model (5.1) with n = 100 when various stop stopping conditions 
are adopted. As can be seen easily, both the feasibility errors IER and CER have a 

Z̃k = argmin
Z⪰0

�
𝜇tr(Z) +

𝛽

2

����X
k − Yk + Z −

1

𝛽
Λk

����
2

F

+
𝜏

2
𝛽‖Z − Zk‖2

2

�

= argmin
Z⪰0

������
Z −

1

1 + 𝜏

�
−Xk + Yk + 𝜏Zk +

1

𝛽
(Λk − 𝜇I)

������

2

2

�
.

IER(k) ∶= max
�‖Xk − Xk+1‖∞, ‖Yk − Yk+1‖∞, ‖Zk − Zk+1‖∞

�
< Tol,

CER(k) ∶= ‖Xk − Yk + Zk‖F < Tol.

http://web.stanford.edu/%7eboyd/papers/admm/covsel/covsel_example.html
http://web.stanford.edu/%7eboyd/papers/admm/covsel/covsel_example.html
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Table 1   Numerical results of the novel method (3.7) for solving the LVGGMS model (5.1) with n = 100

� � IER(k) < 10−9 CER(k) < 10−9

Iter CPU Time CER Iter CPU Time IER

� = 0 0.05 344 3.90 9.77 7.57e−8 487 5.55 13.91 1.29e−11
0.08 232 2.61 6.58 4.54e−8 311 3.52 8.81 2.08e−11
0.09 210 2.34 5.86 4.15e−8 279 3.13 7.92 2.29e−11
0.10 193 2.14 5.44 3.56e−8 252 2.82 7.14 2.63e−11
0.11 178 1.98 5.01 3.18e−8 230 2.58 6.49 2.87e−11
0.12 165 1.84 4.63 2.93e−8 211 2.35 5.94 3.23e−11
0.13 154 1.72 4.32 2.65e−8 195 2.18 5.55 3.52e−11
0.14 144 1.60 4.00 2.50e−8 182 2.04 5.12 3.54e−11
0.15 135 1.50 3.77 2.40e−8 169 1.87 4.71 4.09e−11
0.16 128 1.41 3.58 2.09e−8 159 1.75 4.41 4.05e−11
0.17 121 1.34 3.38 2.03e−8 149 1.65 4.19 4.61e−11
0.18 117 1.29 3.25 1.56e−8 141 1.56 3.88 4.74e−11
0.19 113 1.24 3.12 1.29e−8 134 1.47 3.75 6.13e−11
0.20 109 1.20 3.04 1.21e−8 127 1.40 3.54 1.19e−10
0.25 150 1.63 4.18 3.46e−9 162 1.77 4.43 2.61e−10

� =
1

3

0.05 206 2.31 5.84 1.43e−8 257 2.89 7.38 6.62e−11

0.08 140 1.56 3.94 8.08e−9 165 1.85 4.65 1.09e−10
0.09 126 1.39 3.52 7.47e−9 147 1.62 4.16 1.26e−10
0.10 115 1.27 3.18 6.56e−9 133 1.48 3.72 1.34e−10
0.11 106 1.18 3.07 5.87e−9 121 1.35 3.41 1.52e−10
0.12 98 1.07 2.73 5.38e−9 111 1.21 3.06 1.64e−10
0.13 92 1.01 2.55 4.72e−9 103 1.13 2.85 1.86e−10
0.14 97 1.06 2.68 1.92e−9 101 1.11 2.82 4.89e−10
0.15 114 1.25 3.13 9.45e−10 114 1.24 3.17 9.64e−10
0.16 128 1.40 3.59 7.27e−10 126 1.39 3.49 1.15e−9
0.17 140 1.54 3.91 6.60e−10 137 1.52 3.81 1.29e−9
0.18 151 1.66 4.20 6.33e−10 147 1.61 4.05 1.47e−9
0.19 162 1.80 4.54 5.85e−10 157 1.73 4.35 1.58e−9
0.20 173 1.90 4.84 5.29e−10 167 1.84 4.69 1.62e−9
0.25 223 2.47 6.25 4.17e−10 211 2.31 5.90 2.26e−9

� = 1 0.05 156 1.74 4.38 1.66e−8 193 2.14 5.43 5.56e−11
0.08 103 1.13 2.87 1.05e−8 122 1.35 3.40 7.98e−11
0.09 94 1.02 2.57 8.48e−9 108 1.20 3.06 1.06e−10
0.10 111 1.22 3.06 2.20e−9 117 1.29 3.25 3.95e−10
0.11 132 1.47 3.72 1.53e−9 136 1.52 3.83 5.56e−10
0.12 150 1.64 4.12 1.28e−9 153 1.68 4.25 6.51e−10
0.13 166 1.83 4.68 1.21e−9 168 1.85 4.71 7.95e−10
0.14 182 2.01 5.08 1.08e−9 183 2.01 5.12 8.74e−10
0.15 197 2.18 5.57 1.02e−9 198 2.17 5.56 9.09e−10
0.16 212 2.32 5.94 9.45e−9 212 2.33 5.95 9.84e−10
0.17 227 2.50 6.37 8.62e−9 225 2.47 6.33 1.11e−9
0.18 241 2.68 6.78 8.33e−9 239 2.65 6.68 1.13e−9
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similar changing pattern with the change of � for the various regularization parame-
ters � . In particular, the cases where � = 1∕3 and � ∈ (0, 12, 0.14) perform more sta-
bly and efficiently, and they need only a reduced iterations and computational time 
(both Time and CPU) in terms of the feasibility errors IER and CER.

To show the comparisons between the novel method (3.7) and other operator spit-
ting methods, we list first some efficient parameters for the above mentioned split-
ting algorithms. Using the same parameter adjustment strategy (trial-and-error) as 
the novel method (3.7), the toned parameters of the mentioned methods for solving 
the LVGGMS problem are given in Table 2.

In Table 3, we report the numerical results of the above tested algorithms for the 
LVGGMS problem (5.1) with various settings of n. As shown in Table 3, it is clear that 
the D-ADMM needs less required iterations and the proposed method (3.7) needs less 
CPU time than other algorithms. Compared with P-ALM and PS-ADMM, the novel 
method needs also fewer required iterations to reach different stopping criteria, which 
verifies empirically our theoretical motivation of this study (our purpose is to present a 
more efficient parallel spitting method). In addition, it can be seen easily from Table 3 
that the D-ALM is divergent for the LVGGMS model (5.1), which can be further 
numerically illustrated that the direct extension of ALM is not necessarily convergent.

To further visualize the numerical comparison between the new method and the 
other splitting algorithms, in Fig. 2, we plot their respective feasibility errors with 
respect to iterations and CPU time for the case n = 100 . Computational results in 
Fig. 2 demonstrate that the proposed method has steeper convergence curves than 
PS-ADMM and P-ALM both in iterations and CPU time. In particular, it can bee 
seen from Fig. 2 that the new method is faster than D-ADMM, even though the lat-
ter needs a less required iterations. For other settings of n, since their convergence 
curves are similar as the case n = 100 , we opt to skip them for succinctness.

Table 1   (continued)

Bold value denote the required minimum number of iterations under various stopping criteria

Table 2   Toned values of parameters of the above mentioned operator spiting methods for the LVGGMS 
model (5.1)

Method Other parameters �

IER CER

New method Regularization factor � = 1∕3 � = 0.13 � = 0.14

D-ADMM – � = 0.15 � = 0.15

GS-ADMM Back-substitution factor � = 0.95 � = 0.15 � = 0.15

PS-ADMM Regularization factor � = 1.001 � = 0.07 � = 0.08

P-ALM Relaxation factor � = 1.95 � = 0.10 � = 0.11

� � IER(k) < 10−9 CER(k) < 10−9

Iter CPU Time CER Iter CPU Time IER

0.19 256 2.83 7.25 7.49e−9 252 2.76 6.98 1.21e−9
0.20 270 2.97 7.56 7.14e−9 265 2.82 7.24 1.28e−9
0.25 338 3.75 9.52 5.85e−9 327 3.64 9.38 1.64e−9
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Fig. 2   First column: convergence curves of the IER and CER with iteration numbers; second column: 
convergence curves of the IER and CER with CPU time ( n = 100)

Table 3   Numerical results of the tested algorithms for solving the LVGGMS problem (5.1) with various 
n 

Here, “div” is used to denote the tested method is numerically divergent

n New method D-ADMM PS-ADMM P-ALM D-ALM

Iter CPU Iter CPU Iter CPU Iter CPU

IER < 10−9

 100 92 1.01 67 1.81 121 1.35 323 3.62 div
 300 228 27.19 141 34.12 278 34.10 689 83.11 div
 400 165 36.62 104 45.77 205 47.81 520 114.88 div
 500 107 33.88 75 47.53 120 38.83 382 136.32 div
CER < 10−9

 100 101 1.11 79 2.22 143 1.58 436 4.91 div
 300 241 28.32 179 43.33 299 36.07 933 117.25 div
 400 176 38.74 132 58.19 240 54.20 693 158.18 div
 500 110 34.45 81 51.55 139 44.38 475 164.59 div
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6 � Conclusions

We propose a novel parallel splitting ALM-based algorithm for solving the multi-
ple-block separable convex programming problem with linear equality constraints, 
where the objective function can be expressed as the sum of some individual sub-
functions without coupled variables. By adding a simple update (1.8) to the fully 
parallel regularized ALM (1.7), convergence of the novel method can be guaranteed 
provided a reduced parameter of the regularization terms, which allows bigger step 
sizes and thus potentially results in fewer required iterations in the real computa-
tions. The numerical results on the LVGGMS problem affirmatively illustrates that 
the proposed method has an acceleration effect compared with some known parallel 
splitting algorithms.
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