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Abstract
In this paper, we study a class of fractional semi-infinite polynomial programming 
(FSIPP) problems, in which the objective is a fraction of a convex polynomial and 
a concave polynomial, and the constraints consist of infinitely many convex poly-
nomial inequalities. To solve such a problem, we first reformulate it to a pair of 
primal and dual conic optimization problems, which reduce to semidefinite pro-
gramming (SDP) problems if we can bring sum-of-squares structures into the conic 
constraints. To this end, we provide a characteristic cone constraint qualification for 
convex semi-infinite programming problems to guarantee strong duality and also the 
attainment of the solution in the dual problem, which is of its own interest. In this 
framework, we first present a hierarchy of SDP relaxations with asymptotic conver-
gence for the FSIPP problem whose index set is defined by finitely many polynomial 
inequalities. Next, we study four cases of the FSIPP problems which can be reduced 
to either a single SDP problem or a finite sequence of SDP problems, where at least 
one minimizer can be extracted. Then, we apply this approach to the four corre-
sponding multi-objective cases to find efficient solutions.
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1 Introduction

In this paper, we consider the fractional semi-infinite polynomial programming 
(FSIPP) problem in the following form:

where f,  g, �1,… ,�s ∈ ℝ[x] and p ∈ ℝ[x, y] . Here, ℝ[x] (resp. ℝ[x, y] ) denotes 
the ring of real polynomials in x = (x1,… , xm) (resp., x = (x1,… , xm) and 
y = (y1,… , yn) ). Denote by � and � the feasible set and the optimal solution set 
of (1), respectively. In this paper, we assume that � ≠ ∅ and make the following 
assumptions on (1):

(A1): � is compact; f, −g , each �i and p(⋅, y) for each y ∈ � are all convex 
in x;
(A2): Either f (x) ≥ 0 and g(x) > 0 for all x ∈ � ; or g(x) is affine and 
g(x) > 0 for all x ∈ �.

The feasible set � is convex by (A1), while the objective of (1) is generally not 
convex. The assumption (A2) ensures that the objective of (1) is well-defined. It 
is commonly adopted in the literature about fractional optimization problems [24, 
36, 44], and can be satisfied by many practical optimization models [4, 36, 49]. If 
� is noncompact, the technique of homogenization can be applied (c.f. [53]).

Over the last several decades, due to a great number of applications in many 
fields, semi-infinite programming (SIP) has attracted a great interest and has been 
a very active research area [14, 15, 22, 35]. Numerically, SIP problems can be 
solved by different approaches including, for instance, discretization methods, 
local reduction methods, exchange methods, simplex-like methods, feasible point 
methods etc; see [14, 22, 35] and the references therein for details. A main dif-
ficulty in solving general SIP problems is that the feasibility test of a given point 
is equivalent to globally solving a lower level subproblem which is generally non-
linear and nonconvex.

To the best of our knowledge, there are only limited research results devoted 
to semi-infinite polynomial optimization by exploiting features of polynomial 
optimization problems. For instance, Parpas and Rustem [40] proposed a discre-
tization-like method to solve minimax polynomial optimization problems, which 
can be reformulated as semi-infinite polynomial programming (SIPP) problems. 
Using polynomial approximation and an appropriate hierarchy of semidefinite 
programming (SDP) relaxations, Lasserre [29] presented an algorithm to solve 
the generalized SIPP problems. Based on an exchange scheme, an SDP relaxation 
method for solving SIPP problems was proposed in [53]. By using representations 
of nonnegative polynomials in the univariate case, an SDP method was given in 

(1)

⎧
⎪⎪⎨⎪⎪⎩

r⋆ ∶= min
x∈ℝm

f (x)

g(x)

s.t. 𝜓1(x) ≤ 0,… ,𝜓s(x) ≤ 0,

p(x, y) ≤ 0, ∀y ∈ � ⊂ ℝ
n,
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[54] for linear SIPP problems with the index set being closed intervals. For con-
vex SIPP problems, Guo and Sun [16] proposed an SDP relaxation method by 
combining the sum-of-squares representation of the Lagrangian function with 
high degree perturbations [30] and Putinar’s representation [42] of the constraint 
polynomial on the index set.

In this paper, in a way similar to [16], we will derive an SDP relaxation method 
for the FSIPP problem (1). Different from [16], we treat the problem in a more sys-
tematical manner. We first reformulate the FSIPP problem to a conic optimization 
problem and its Lagrangian dual, which involve two convex cones of polynomials in 
the variables and the parameters, respectively (Sect. 3). Under suitable assumptions 
on these cones, approximate minimum and minimizers of the FSIPP problem can be 
obtained by solving the conic reformulations. If we can bring sum-of-squares struc-
tures into these cones, the conic reformulations reduce to a pair of SDP problems 
and become tractable. To this end, inspired by Jeyakumar and Li [23], we provide 
a characteristic cone constraint qualification for convex semi-infinite programming 
problems to guarantee the strong duality and the attachment of the solution in the 
dual problem, which is of its own interest. We remark that this constraint qualifica-
tion, which is crucial for some applications (see Sect. 5.2), is weaker than the Slater 
condition used in [16].

In what follows, we first present a hierarchy of SDP relaxations for the FSIPP 
problem whose index set is defined by finitely many polynomial inequalities 
(Sect.  4). This is done by introducing appropriate quadratic modules to the conic 
reformulations. The asymptotic convergence of the optimal values of the SDP 
relaxations to the minimum of the FSIPP problem can be established by Putinar’s 
Positivstellensatz [42]. Moreover, when the FSIPP problem has a unique minimizer, 
this minimizer can be approximated from the optimal solutions to the SDP relaxa-
tions. By means of existing complexity results of Putinar’s Positivstellensatz, we can 
derive some convergence rate analysis of the SDP relaxations. We also present some 
discussions on the stop criterion for such SDP relaxations. Next, we restrict our 
focus on four cases of FSIPP problems for which the SDP relaxation method is exact 
or has finite convergence and at least one minimizer can be extracted (Sect. 5). The 
reason for this restriction is due to some applications of the FSIPP problem where 
exact minimum and minimizers are required. In particular, we study the application 
of our SDP method to the corresponding multi-objective FSIPP problems, where 
the objective function is a vector valued function with each component being a frac-
tional function. We aim to find efficient solutions (see Definition 5.1) to such prob-
lems. Some sufficient efficiency conditions and duality results for such problems can 
be found in [8, 52, 55, 56]. However, as far as we know, very few algorithmic devel-
opments are available for such problems in the literature because of the difficulty of 
checking feasibility of a given point.

This paper is organized as follows. Some notation and preliminaries are given 
in Sect. 2. The FSIPP problem is reformulated as a conic optimization problem in 
Sect. 3. We present a hierarchy of SDP relaxations for FSIPP problems in Sect. 4. 
In Sect. 5, we consider four specified cases of the FSIPP problems and the applica-
tion of the SDP method to the multi-objective cases. Some conclusions are given in 
Sect. 6.
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2  Notation and preliminaries

In this section, we collect some notation and preliminary results which will be used 
in this paper. The symbol ℕ (resp., ℝ , ℝ+ ) denotes the set of nonnegative integers 
(resp., real numbers, nonnegative real numbers). For any t ∈ ℝ , ⌈t⌉ denotes the small-
est integer that is not smaller than t. For u ∈ ℝ

m , ‖u‖ denotes the standard Euclid-
ean norm of u. For � = (�1,… , �n) ∈ ℕ

n , |�| = �1 +⋯ + �n . For k ∈ ℕ , denote 
ℕ
n
k
= {� ∈ ℕ

n ∣ |�| ≤ k} and |ℕn
k
| its cardinality. For variables x ∈ ℝ

m , y ∈ ℝ
n and 

� ∈ ℕ
m, � ∈ ℕ

n , x� , y� denote x�1
1
⋯ x

�m
m  , y�1

1
⋯ y

�n
n  , respectively. For h ∈ ℝ[x] , we 

denote by deg(h) its (total) degree. For k ∈ ℕ , denote by ℝ[x]k (resp., ℝ[y]k ) the set of 
polynomials in ℝ[x] (resp., ℝ[y] ) of degree up to k. For A = ℝ[x], ℝ[y], ℝ[x]k, ℝ[y]k , 
denote by A∗ the dual space of linear functionals from A to ℝ.

A polynomial h ∈ ℝ[x] is said to be a sum-of-squares (s.o.s) of polynomials if it 
can be written as h =

∑l

i=1
h2
i
 for some h1,… , hl ∈ ℝ[x] . The symbols Σ2[x] and Σ2[y] 

denote the sets of polynomials that are s.o.s in ℝ[x] and ℝ[y] , respectively. Notice that 
not every nonnegative polynomial can be written as s.o.s, see [43]. We recall the fol-
lowing properties about polynomials nonnegative on certain sets, which will be used in 
this paper.

Theorem  2.1 (Hilbert’s theorem) Every nonnegative polynomial h ∈ ℝ[x] can be 
written as s.o.s in the following cases: (i) m = 1 ; (ii) deg(h) = 2 ; (iii) m = 2 and 
deg(h) = 4.

Theorem  2.2 (The S-lemma) Let h,   q ∈ ℝ[x] be two quadratic polynomials and 
assume that there exists u0 ∈ ℝ

m with q(u0) > 0 . The following assertions are equiv-
alent: (i) q(x) ≥ 0 ⇒ h(x) ≥ 0 ; (ii) there exists � ≥ 0 such that h(x) ≥ �q(x) for all 
x ∈ ℝ

m.

Proposition 2.1 [45, Example 3.18] Let q ∈ ℝ[x] and the set K = {x ∈ ℝ
m ∣ q(x) ≥ 0} 

be compact. If h ∈ ℝ[x] is nonnegative on K and the following conditions hold

 (i) h has only finitely many zeros on K, each lying in the interior of K;

 (ii) the Hessian ∇2h is positive definite on each of these zeros, 

then h = �0 + �1q for some �0, �1 ∈ Σ2[x].
For h, h1,… , h� ∈ ℝ[x] , let us recall some background about Lasserre’s hierarchy 

[27] for the polynomial optimization problem

Let H ∶= {h1,… , h�} and h0 = 1 for convenience. We denote by

(2)h⋆ ∶= min
x∈ℝm

h(x) s.t. x ∈ S ∶= {x ∈ ℝ
m ∣ h1(x) ≥ 0,… , h𝜅(x) ≥ 0} ≠ �.
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the quadratic module generated by H and denote by

its k-th quadratic module. It is clear that if h ∈ �������(H) , then h(x) ≥ 0 for any 
x ∈ S . However, the converse is not necessarily true.

Definition 2.1 We say that �������(H) is Archimedean if there exists 
� ∈ �������(H) such that the inequality �(x) ≥ 0 defines a compact set 
in ℝm; or equivalently,   if for all � ∈ ℝ[x], there is some N ∈ ℕ such that 
N ± � ∈ �������(H) (c.f.,  [46]).

Note that for any compact set S we can always force the associated quadratic module 
to be Archimedean by adding a redundant constraint M − ‖x‖2

2
≥ 0 in the description 

of S for a sufficiently large M.

Theorem 2.3 [42, Putinar’s Positivstellensatz] Suppose that �������(H) is Archi-
medean. If a polynomial � ∈ ℝ[x] is positive on S,  then � ∈ �������k(H) for some 
k ∈ ℕ.

For a polynomial �(x) =
∑

�∈ℕm ��x
� ∈ ℝ[x] where �� denotes the coefficient of 

the monomial x� in � , define the norm

We have the following result for an estimation of the order k in Theorem 2.3.

Theorem  2.4 [39, Theorem  6] Suppose that �������(H) is Archimedean and 
S ⊆ (−𝜏S, 𝜏S)

m for some 𝜏S > 0 . Then there is some positive c ∈ ℝ (depending 
only on hj’s) such that for all � ∈ ℝ[x] of degree d with minx∈S 𝜓(x) > 0, we have 
� ∈ �������k(H) whenever

For an integer k ≥ max{⌈deg(h)∕2⌉, k0} where 
k0 ∶= max{⌈deg(hi)∕2⌉, i = 1,… , �} , the k-th Lasserre’s relaxation for (2) is

�������(H) ∶=

{
�∑
j=0

hj�j
||| �j ∈ Σ2[x], j = 0, 1,… , �

}

�������k(H) ∶=

{
�∑
j=0

hj�j
||| �j ∈ Σ2[x], deg(hj�j) ≤ 2k, j = 0, 1,… , �

}

(3)‖�‖ ∶= max
�∈ℕm

��������
�

� .

k ≥ c exp

��
d2md

‖�‖�d
S

minx∈S �(x)

�c�
.

(4)hdual

k
∶= inf

L
L(h) s.t. L ∈ (�������k(H))∗, L(1) = 1,



444 F. Guo, L. Jiao 

1 3

and its dual problem is

For each k ≥ k0 , (4) and (5) can be reduced to a pair of primal and dual SDP prob-
lems, and we always have hprimal

k
≤ hdual

k
≤ h⋆ (c.f. [27]). The convergence of hdual

k
 and 

h
primal

k
 to h⋆ as k → ∞ can be established by Putinar’s Positivstellensatz [27, 42] under 

the Archimedean condition. If there exists an integer k⋆ such that hprimal

k
= hdual

k
= h⋆ 

for each k ≥ k⋆ , we say that Lasserre’s hierarchy for (2) has finite convergence. 
To certify hdual

k
= h⋆ when it occurs, a sufficient condition on a minimizer of (4) 

called flat extension condition [9] is available. A weaker condition called flat trun-
cation condition was proposed by Nie in [37]. Precisely, for a linear functional 
L ∈ (ℝ[x]2k)

∗ , denote by �k(L) the associated k-th moment matrix which is 
indexed by ℕm

k
 , with (�, �)-th entry being L(x�+�) for �, � ∈ ℕ

m
k
.

Condition 2.1 [37, flat truncation condition] A minimizer L
⋆ ∈ (ℝ[x]2k)

∗ 
of (4) satisfies the following rank condition  :   there exists an integer k′ with 
max{⌈deg(h)∕2⌉, k0} ≤ k� ≤ k such that

Nie [37, Theorem 2.2] proved that Lasserre’s hierarchy has finite convergence 
if and only if the flat truncation holds, under some generic assumptions. In par-
ticular, we have the following proposition.

Proposition 2.2 [37, c.f. Theorem 2.2] Suppose that the set {x ∈ ℝ
m ∣ h(x) = h⋆} is 

finite,  the set of global minimizers of (2) is nonempty,  and for k big enough the opti-
mal value of (5) is achievable and there is no duality gap between (4) and (5). Then,  
for k sufficiently large,  hprimal

k
= hdual

k
= h⋆ if and only if every minimizer of (4) satis-

fies the flat truncation condition.

Moreover, if a minimizer L⋆ ∈ (ℝ[x]2k)
∗ of (2) satisfies the flat extension 

condition or the flat truncation condition, we can extract finitely many global 
minimizers of (2) from the moment matrix �k(L

⋆) by solving a linear algebra 
problem (c.f. [9, 20]). Such procedure has been implemented in the software 
GloptiPoly [21] developed by Henrion, Lasserre and Löfberg.

We say that a linear functional L ∈ (ℝ[x])∗ has a representing measure � if 
there exists a Borel measure � on ℝm such that

For k ∈ ℕ , we say that L ∈ (ℝ[x]k)
∗ has a representing measure � if the above holds 

for all � ∈ ℕ
m
k
 . By [9, Theorem 1.1], Condition 2.1 implies that L⋆ has an atomic 

representing measure. Each atom of the measure is a global minimizer of (2) and 
can be extracted by the procedure presented in [20].

(5)h
primal

k
∶= sup

�
� s.t. h − � ∈ �������k(H).

rank �k�−k0
(L⋆) = rank�k� (L

⋆).

L(x�) = ∫
ℝm

x�d�(x), ∀� ∈ ℕ
m.
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We end this section by introducing some important properties on convex 
polynomials.

Definition 2.2 A polynomial h ∈ ℝ[x] is coercive whenever the lower level set 
{x ∈ ℝ

m ∣ h(x) ≤ �} is a (possibly empty) compact set,  for all � ∈ ℝ.

Proposition 2.3 [25, Lemma 3.1] Let h ∈ ℝ[x] be a convex polynomial. If 
∇2h(u�) ≻ 0 at some point u� ∈ ℝ

m, then h is coercive and strictly convex on ℝm.

Recall also a subclass of convex polynomials in ℝ[x] introduced by Helton and 
Nie [19].

Definition 2.3 [19] A polynomial h ∈ ℝ[x] is s.o.s-convex if its Hessian ∇2h is an 
s.o.s-matrix,  i.e.,  there is some integer r and some matrix polynomial H ∈ ℝ[x]r×m 
such that ∇2h(x) = H(x)TH(x).

In fact, Ahmadi and Parrilo [2] has proved that a convex polynomial h ∈ ℝ[x] is 
s.o.s-convex if and only if m = 1 or deg(h) = 2 or (m, deg(h)) = (2, 4) . In particular, 
the class of s.o.s-convex polynomials contains the classes of separable convex poly-
nomials and convex quadratic functions.

The significance of s.o.s-convexity is that it can be checked numerically by solv-
ing an SDP problem (see [19]), while checking the convexity of a polynomial is 
generally NP-hard (c.f. [1]). Interestingly, an extended Jensen’s inequality holds for 
s.o.s-convex polynomials.

Proposition 2.4 [28, Theorem  2.6] Let h ∈ ℝ[x]2d be s.o.s-convex,   and let 
L ∈ (ℝ[x]2d)

∗ satisfy L(1) = 1 and L(�) ≥ 0 for every � ∈ Σ2[x] ∩ℝ[x]2d . Then, 

The following result plays a significant role for the SDP relaxations of (1) in 
Sect. 5.

Lemma 2.1 [19, Lemma 8] Let h ∈ ℝ[x] be s.o.s-convex. If h(u) = 0 and ∇h(u) = 0 
for some u ∈ ℝ

m, then h is an s.o.s polynonmial.

3  Conic reformulation of FSIPP

In this section, we first reformulate the FSIPP problem (1) to a conic optimiza-
tion problem and its Lagrangian dual, which involve two convex subcones of ℝ[x] 
and ℝ[y] , respectively. Under suitable assumptions on these cones, we show that 
approximate minimum and minimizers of (1) can be obtained by solving the conic 
reformulations.

L(h(x)) ≥ h(L(x1),… ,L(xm)).
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3.1  Problem reformulation

Consider the problem

Note that, under (A1-2), (6) is clearly a convex semi-infinite programming problem 
and its optimal value is 0.

Now we consider the Lagrangian dual of (6). In particular, the constraints 
p(x, y) ≤ 0 for all y ∈ � means that for each u ∈ � , p(u, y) ∈ ℝ[y] belongs to the 
cone of nonpositive polynomials on � . The polar of this cone is taken as the cone 
of finite nonnegative measures supported on � , which we denote by M(�) . There-
fore, we can define the Lagrangian function Lf ,g(x,�, �) ∶ ℝ

m ×M(�) ×ℝ
s
+
→ ℝ 

by

Then, the Lagrangian dual of (6) reads

See [7, 22, 35, 47] for more details.
Consider the strong duality and dual attainment for the dual pair (6) and (8):

(A3): ∃𝜇⋆ ∈ M(�) and 𝜂⋆ ∈ ℝ
s
+
 such that infx∈ℝm Lf ,g(x,𝜇

⋆, 𝜂⋆) = 0.

The following straightforward result is essential for the SDP relaxations of (1) in 
Section 5.

Proposition 3.1 Under (A1-3),   Lf ,g(u⋆,𝜇⋆, 𝜂⋆) = 0 and ∇xLf ,g(u
⋆,𝜇⋆, 𝜂⋆) = 0 for 

any u⋆ ∈ �.

Under (A1-3), we first reformulate (1) to a conic optimization problem with 
the same optimal value r⋆ . We need the following notation. For a subset X ⊂ ℝ

m 
(resp., the index set � ), denote by P(X) ⊂ ℝ[x] (resp. P(�) ⊂ ℝ[y] ) the cone of 
nonnegative polynomials on X  (resp., � ). For L ∈ (ℝ[x])∗ (resp., H ∈ (ℝ[y])∗ ), 
denote by L(p(x, y)) (resp., H(p(x, y)) ) the image of L  (resp., H  ) on p(x,  y) 
regarded as an element in ℝ[x] (resp., ℝ[y] ) with coefficients in ℝ[y] (resp., ℝ[x] ), 
i.e., L(p(x, y)) ∈ ℝ[y] (resp., H(p(x, y))) ∈ ℝ[x] ). For a subset X ⊂ ℝ

m , consider 
the conic optimization problem

(6)min
x∈�

f (x) − r⋆g(x).

(7)Lf ,g(x,𝜇, 𝜂) = f (x) − r⋆g(x) + ∫�

p(x, y)d𝜇(y) +

s∑
j=1

𝜂j𝜓j(x).

(8)max
�∈M(�),�j≥0

inf
x∈ℝm

Lf ,g(x,�, �).
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Proposition 3.2 Under (A1-3), suppose that X ∩ � ≠ � , then r̃ = r⋆.

Proof Under (A3), define H⋆ ∈ (ℝ[y])∗ by letting H⋆(y𝛽) = ∫
�
y𝛽d𝜇⋆(y) for any 

� ∈ ℕ
n . Then, H⋆ ∈ (P(�))∗ and (r⋆,H⋆, 𝜂⋆) is feasible to (9). Hence, r̃ ≥ r⋆ . As 

X ∩ � ≠ � , for any u⋆ ∈ X ∩ � and any (�,H, �) feasible to (9), it holds that

Then, the feasibility of u⋆ to (1) implies that r⋆ =
f (u⋆)

g(u⋆)
≥ 𝜌 and thus r⋆ ≥ r̃ .   ◻

Remark 3.1 Before moving forward, let us give a brief overview on the strategies 
we adopted in this paper to construct SDP relaxations of (1) from the reformulation 
(9). The difficulty of (9) is that the exact representions of the convex cones P(X) 
and P(�) are usually not available in general case, which makes (9) still intracta-
ble. However, the Positivstellensatz from real algebraic geometry, which provides 
algebraic certificates for positivity (nonnegative) of polynomials on semialgebraic 
sets, can give us approximations of P(X) (with a carefully chosen X  ) and P(�) 
with sum-of-squares structures. Replacing P(X) and P(�) by these approximations, 
we can convert (9) into SDP relaxations of (1). In order to obtain (approximate) 
optimum and optimizers of (1) from the resulting SDP relaxations, we need estab-
lish some conditions which should be satisfied by these approximations of P(X) 
and P(�) . Then according to these conditions, we can choose suitable subset X  and 
construct appropriate approximations P(X) and P(�) . Remark that different subsets 
X  and versions of Positivstellensatz can lead to different approximations of P(X) 
and P(�) satisfying the established conditions. Therefore, to present our approach 
in a unified way, we next use the symbols C[x] and C[y] to denote approximations of 
P(X) and P(�) , respectively, and derive the conditions they should satisfy (Theo-
rem 3.1). Then, we specify suitable C[x] and C[y] in different situations to construct 
concrete SDP relaxations of (1) in Sects. 4 and 5.   ◻

Let C[x] (resp., C[y] ) be a convex cone in ℝ[x] (resp., ℝ[y] ). Replacing P(X) and 
P(�) by C[x] and C[y] in (9), respectively, we get the conic optimization problem

(9)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

r̃ ∶= sup
𝜌,H,𝜂

𝜌

s.t. f (x) − 𝜌g(x) +H(p(x, y)) +

s�
j=1

𝜂j𝜓j(x) ∈ P(X),

𝜌 ∈ ℝ, H ∈ (P(�))∗, 𝜂 ∈ ℝ
s
+
.

f (u⋆) − 𝜌g(u⋆) +H(p(u⋆, y)) +

s∑
j=1

𝜂j𝜓j(u
⋆) ≥ 0.
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and its Lagrangian dual

For simplicity, in what follows, we adopt the notation

for any L ∈ (ℝ[x])∗ . Let

For any � ≥ 0 , denote the set of �-optimal solutions of (1)

The following results show that if the cones C[x] and C[y] satisfy certain conditions, 
we can approximate r⋆ and extract an �-optimal solution by solving (10) and (11).

Theorem 3.1 Suppose that (A1-2) hold and C[y] ⊆ P(�) . For some � ≥ 0, suppose 
that there exists some u(�) ∈ �� such that −p(u(�), y) ∈ C[y] and h(u(�)) ≥ 0 for any 
h(x) ∈ C[x] . 

 (i) I f  ( A 3 )  h o l d s  a n d  Lf ,g(x,𝜇
⋆, 𝜂⋆) + 𝜀g(x) ∈ C[x]  ,  t h e n 

r⋆ − 𝜀 ≤ rprimal ≤ rdual ≤ r⋆ + 𝜀.
 (ii) If L⋆ is a minimizer of (11) such that the restriction L⋆|

ℝ[x]�
 admits a repre-

senting nonnegative measure �, then r⋆ ≤ rdual ≤ r⋆ + 𝜀 and 

(10)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

rprimal ∶= sup
�,H,�

�

s.t. f (x) − �g(x) +H(p(x, y)) +

s�
j=1

�j�j(x) ∈ C[x],

� ∈ ℝ, H ∈ (C[y])∗, � ∈ ℝ
s
+
,

(11)

⎧⎪⎨⎪⎩

rdual ∶= inf
L

L(f )

s.t.L ∈ (C[x])∗, L(g) = 1,

−L(p(x, y)) ∈ C[y], L(�j) ≤ 0, j = 1,… , s.

L(x) ∶= (L(x1),… ,L(xm))

(12)� ∶= max{deg(f ), deg(g), deg(�1),… , deg(�s), degx(p(x, y))}.

(13)�𝜀 ∶=

{
x ∈ �

|||
f (x)

g(x)
≤ r⋆ + 𝜀

}
.

L
⋆(x)

L
⋆(1)

=
1

∫ d𝜈

(
� x1d𝜈,… ,� xmd𝜈

)
∈ �𝜀.
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Proof Define a linear functional L� ∈ (ℝ[x])∗ such that L�(x�) =
(u�)�

g(u�)
 for each 

� ∈ ℕ
m . By the assumption, it is clear that L′ is feasible to (11). Then, 

rdual ≤ L
�(f ) =

f (u𝜀)

g(u𝜀)
≤ r⋆ + 𝜀 . 

 (i) Define H⋆ ∈ (ℝ[y])∗ by letting H⋆(y𝛽) = ∫
�
y𝛽d𝜇⋆(y) for any � ∈ ℕ

n . 
By the assumption, H⋆ ∈ (C[y])∗ . Since Lf ,g(x,𝜇⋆, 𝜂⋆) + 𝜀g(x) ∈ C[x] , 
(r⋆ − 𝜀,H⋆, 𝜂⋆) is feasible to (10). Hence, rprimal ≥ r⋆ − 𝜀 . Then, the weak 
duality implies the conclusion.

 (ii) As L⋆|
ℝ[x]�

 admits a representing nonnegative measure � , we have 
L

⋆(1) = ∫ d𝜈 > 0 ; otherwise L⋆(g) = 0 , a contradiction. For every y ∈ � , 
as p(x, y) is convex in x and �

∫ d�
 is a probability measure, by Jensen’s inequal-

ity, we have 

 where the last inequality follows from the constraint of the Lagrangian dual 
problem (11). For the same reason, 

 which implies that L⋆(x)∕L⋆(1) is feasible to (1). Therefore, it holds that 

 In particular, the second inequality above can be easily verified under (A2). 
Therefore, we have r⋆ ≤ rdual ≤ r⋆ + 𝜀 and L⋆(x)∕L⋆(1) ∈ �𝜀.

  ◻

Theorem  3.1 opens the possibilities of constructing SDP relaxations of (1). In 
fact, if we can find suitable cones C[x] and C[y] with sum-of-squares structures and 
satisfy the conditions in Theorem 5.1, then (10) and (11) can be reduced to SDP 
problems and become tractable; see Sections 4 and 5 for details.

Remark 3.2 We would like to emphasize that the Slater condition used in [16] to 
guarantee (A3) and the convergence of the SDP relaxations proposed therein might 
fail for some applications (see Remark 5.1 (i)). Thus, we need a weaker constraint 
qualification for (A3).   ◻

(14)p

(
L

⋆(x)

L
⋆(1)

, y

)
≤ 1

∫ d𝜈 � p(x, y)d𝜈(x) =
1

L
⋆(1)

L
⋆(p(x, y)) ≤ 0,

(15)𝜓j

(
L

⋆(x)

L
⋆(1)

)
≤ 0, j = 1,… , s,

r⋆ + 𝜀 ≥ L
⋆(f ) =

L
⋆(f )

L
⋆(g)

=
∫ f (x)d𝜈

∫ g(x)d𝜈

=

1

∫ d𝜈
∫ f (x)d𝜈

1

∫ d𝜈
∫ g(x)d𝜈

≥ f
(
L

⋆(x)∕L⋆(1)
)

g(L⋆(x)∕L⋆(1))
≥ r⋆.
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3.2  A constraint qualification for (A3)

Inspired by Jeyakumar and Li [23], we consider the following semi-infinite charac-
teristic cone constraint qualification (SCCCQ).

For a function h ∶ ℝ
m
→ ℝ ∪ {−∞,+∞} , denote by h∗ the conjugate function of 

h, i.e.,

and by epi h∗ the epigraph of h∗ . Let

Definition 3.1 SCCCQ is said to be held for � if C1 + C2 is closed.

Remark 3.3 Along with Proposition  A.2, the following example shows that the 
SCCCQ condition is weaker than the Slater condition. Recall that the Slater con-
dition holds for � if there exists u ∈ ℝ

m such that p(u, y) < 0 for all y ∈ � and 
𝜓j(u) < 0 for all j = 1,… , s. Consider the set � = {x ∈ ℝ ∣ yx ≤ 0, ∀y ∈ [−1, 1]} . 
Clearly, � = {0} and the Slater condition fails. As s = 0 , we only need verify 
that C1 is closed. It suffices to show that C1 = {(w, v) ∈ ℝ

2 ∣ v ≥ 0} . Indeed, fix a 
� ∈ M([−1, 1]) and a point (w, v) ∈ epi

(∫
�
p(⋅, y)d�(y)

)∗
∈ C1 . Then,

Conversely, for any (w, v) ∈ ℝ
2 with v ≥ 0 , let

where �{−1} and �{1} are the Dirac measures at −1 and 1, respectively. 
Then, �̃� ∈ M([−1, 1]) and w = ∫

[−1,1]
yd�̃�(y) holds. By (17), we have 

(w, v) ∈ epi
(∫

�
p(⋅, y)d�̃�(y)

)∗ .   ◻

For convex semi-infinite programming problems, we claim that the SCCCQ guar-
antees the strong duality and the attachment of the solution in the dual problem, see 
the next theorem. Due to its own interest, we give a proof in a general setting in the 
Appendix 1.

Theorem 3.2 Under (A1-2),  SCCCQ implies (A3).

Proof See Theorem A.2.   ◻

h∗(�) = sup
x∈ℝm

{⟨�, x⟩ − h(x)},

(16)C1 ∶=
⋃

�∈M(�)

epi

(
∫�

p(⋅, y)d�(y)

)∗

and C2 ∶=
⋃
�∈ℝs

+

epi

(
s∑

j=1

�j�j

)∗

.

(17)v ≥ sup
x∈ℝ

(
wx − �[−1,1]

xyd�(y)

)
=

{
0, if w = ∫

[−1,1]
yd�(y)

+∞, if w ≠ ∫
[−1,1]

yd�(y).

�̃� =

{|w|𝛿{−1}, if w < 0,

w𝛿{1}, if w ≥ 0,
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4  SDP relaxations with asymptotic convergence

In this section, based on Theorem 3.1, we present an SDP relaxation method for the 
FSIPP problem (1) with the index set � being of the form

The asymptotic convergence and convergence rate of the SDP relaxations will 
be studied. We also present some discussions on the stop criterion for such SDP 
relaxations.

By Theorem 3.1, if we can choose a suitable subset X ⊂ ℝ
m and construct appro-

priate approximations C[x] and C[y] of P(X) and P(�) , respectively, which satisfy 
the conditions in Theorem  3.1 for some 𝜀 > 0 , then we can compute the �-opti-
mal value of (1) by solving (10) and (11). Consequently, to construct an asymp-
totically convergent hierarchy of SDP relaxations of (1), we need find two sequences 
{Ck[x]} ⊂ ℝ[x] and {Ck[y]} ⊂ ℝ[y] , which are approximations of P(X) and P(�) , 
respectively, and have sum-of-squares structures. These sequences of approxima-
tions should meet the requirement that for any 𝜀 > 0 , there exists some k� ∈ ℕ such 
that for any k ≥ k� , the conditions in Theorem 3.1 will hold if we replace the nota-
tion C[x] and C[y] by Ck[x] and Ck[y] , respectively. We may construct such sequences 
of approximations by the Positivstellensatz from real algebraic geometry (recall 
Putinar’s Positivstellensatz introduced in Section 2) where the subscript k indicates 
the degree of polynomials in the approximations and the containment relationship 
Ck[x] ⊂ Ck+1[x] , Ck[y] ⊂ Ck+1[y] is satisfied. In (10) and (11), replace the notation 
C[x] and C[y] by Ck[x] and Ck[y] , respectively, and denote the resulting problems by 
(10k) and (11k). Then, as k increases, a hierarchy of SDP relaxations of (1) can be 
constructed. Denote by rprimal

k
 and rdual

k
 the optimal values of (10k) and (11k), respec-

tively. The argument above is formally stated in the following theorem.

Theorem 4.1 Suppose that (A1-3) hold and Ck[y] ⊆ P(�) for all k ∈ ℕ, k ≥ ⌈�∕2⌉ . 
For any small 𝜀 > 0, suppose that there exist k� ∈ ℕ, k� ≥ ⌈�∕2⌉ and some u(�) ∈ �� 
such that for all k ≥ k� , −p(u(�), y) ∈ Ck[y] , Lf ,g(x,𝜇⋆, 𝜂⋆) + 𝜀g(x) ∈ Ck[x] , and 
h(u(�)) ≥ 0 holds for any h(x) ∈ Ck[x] . Then,  limk→∞ r

primal

k
= limk→∞ rdual

k
= r⋆.

Proof For any small 𝜀 > 0 , by Theorem 3.1 (i), we have r⋆ − 𝜀 ≤ r
primal

k
≤ rdual

k
≤ r⋆ + 𝜀 

for any k ≥ k� and hence the convergence follows.   ◻

4.1  SDP relaxations with asymptotic convergence

In what follows, we will construct appropriate cones {Ck[x]} and {Ck[y]} , which can 
satisfy conditions in Theorem 4.1 and reduce (10k) and (11k) to SDP problems.

Fix two numbers R > 0 and g⋆ > 0 such that

� = {y ∈ ℝ
n ∣ q1(y) ≥ 0,… , q�(y) ≥ 0}, where q1,… , q� ∈ ℝ[y].

(18)‖u⋆‖ < R and g(u⋆) > g⋆ for some u⋆ ∈ �.
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Remark 4.1 Since � ≠ ∅ and (A2) holds, the above R and g⋆ always exist. Let us 
discuss how to choose R and g⋆ in some circumstances. If � or � is bounded, then 
we can choose sufficiently large R such that � ⊂ [−R,R]m or � ⊂ [−R,R]m . Now let 
us consider that how to choose a sufficiently small g⋆ > 0 such that g(u⋆) > g⋆ for 
some u⋆ ∈ � , which may be not easy to certify in practice. If g(x) ≡ 1 , then clearly, 
we can let g⋆ = 1∕2 . If g(x) is affine, then we can set g⋆ by solving minx∈� g(x) , 
which is an FSIPP problem in which the denominator in the objective is one. Sup-
pose that g(x) is not affine and a feasible point u� ∈ � is known. We first solve the 
FSIPP problem f⋆ ∶= minx∈� f (x) . If f (u�) = 0 or f⋆ = 0 , then by (A2), r⋆ = 0 ; 
otherwise, we have f⋆ > 0 and

for any u⋆ ∈ � . Thus, we can set g⋆ to be a positive number less than g(u
�)

f (u�)
f⋆ .   ◻

We choose the subset

which clearly satisfies the condition X ∩ � ≠ � in Proposition 3.2 and let

For any k ∈ ℕ, k ≥ ⌈�∕2⌉ , let

i.e., the k-th quadratic modules generated by G and Q in ℝ[x] and ℝ[y] , respectively. 
Then, for each k ≥ ⌈�∕2⌉ , computing rprimal

k
 and rdual

k
 is reduced to solving a pair of pri-

mal and dual SDP problems. We omit the detail for simplicity.
Consider the assumption:

(A4): �������(Q) is Archimedean and there exists a point ū ∈ � such that 
p(ū, y) < 0 for all y ∈ �.

Theorem 4.2 Under (A1-4) and the settings (18) and (20),  the following holds.

 (i) limk→∞ r
primal

k
= limk→∞ rdual

k
= r⋆.

 (ii) If rdual
k

< +∞ which holds for k large enough,  then rprimal

k
= rdual

k
 and rdual

k
 is attain-

able.
 (iii) For any convergent subsequence {L⋆

ki
(x)∕L⋆

ki
(1)}i (always exists) of 

{L⋆
k
(x)∕L⋆

k
(1)}k  where L

⋆
k

 is a minimizer of (11k),  we have 
limi→∞ L

⋆
ki
(x)∕L⋆

ki
(1) ∈ � . Consequently,   if � is singleton,   then 

limk→∞ L
⋆
k
(x)∕L⋆

k
(1) is the unique minimizer of (1).

g(u⋆) ≥ g(u�)

f (u�)
f (u⋆) ≥ g(u�)

f (u�)
f⋆,

(19)X ∶= {x ∈ ℝ
m ∣ ‖x‖2 ≤ R2, g(x) ≥ g⋆}.

Q ∶= {q1,… , q𝜅} ⊂ ℝ[y], G ∶= {R2 − ‖x‖2, g(x) − g⋆} ⊂ ℝ[x].

(20)Ck[x] = �������k(G) and Ck[y] = �������k(Q),
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Proof 

 (i) Clearly, Ck[y] ⊂ P(�) for any k ∈ ℕ, k ≥ ⌈�∕2⌉ . Let 𝜀 > 0 be fixed. Let u⋆ ∈ � 
be as in (18) and u(𝜆) ∶= 𝜆u⋆ + (1 − 𝜆)ū . As � is convex, u(�) ∈ � for any 
0 ≤ � ≤ 1 . By the continuity of g and f

g
 on � , there exists a �� ∈ (0, 1) such 

that 

 For any y ∈ � , by the convexity of p(x, y) in x, 

 By Theorem  2.3, there exists a k1 ∈ ℕ such that −p(u(��), y) ∈ Ck[y] for 
any k ≥ k1 . Since g⋆ > 0 , (A3) implies that Lf ,g(x,𝜇⋆, 𝜂⋆) + 𝜀g(x) is posi-
tive on the set X  . As �������(G) is Archimedean, by Theorem 2.3 again, 
there exists a k2 ∈ ℕ such that Lf ,g(x,𝜇⋆, 𝜂⋆) + 𝜀g(x) ∈ Ck[x] for any k ≥ k2 . 
It is obvious from (21) that h(u(��)) ≥ 0 for any h ∈ Ck[x] , k ≥ k2 . Let 
k� = max{k1, k2, ⌈�∕2⌉} , then the sequences {Ck[x]} and {Ck[y]} satisfies the 
conditions in Theorem 4.1 which implies the conclusion.

 (ii) From the above, the linear functional L� ∈ (ℝ[x])∗ such that L�(x�) =
(u�

�
)�

g(u�� )
 

for each � ∈ ℕ
m is feasible for (11k) whenever k ≥ max{k1, ⌈�∕2⌉} and hence 

rdual
k

< +∞ . For any k ≥ max{k1, ⌈�∕2⌉} and any feasible point Lk of (11k), 
because Lk ∈ (Ck[x])

∗ , we have Lk(g − g⋆) ≥ 0 and Lk(1) ≥ 0 . Hence, along 
with Lk(g) = 1 , we have 0 ≤ Lk(1) ≤ 1∕g⋆ for all k ≥ ⌈�∕2⌉ . Since there is a 
ball constraint in (19), by [26, Lemma 3] and its proof, we have 

 for all k ∈ ℕ , k ≥ ⌈�∕2⌉ and all Lk ∈ (Ck[x])
∗ . In other words, for any 

k ≥ max{k1, ⌈�∕2⌉} , the feasible set of the (11k) is nonempty, bounded and 
closed. Then, the solution set of the (11k) is nonempty and bounded, which 
implies that (10k) is strictly feasible (c.f. [48, Sect. 4.1.2]). Consequently, the 
strong duality rprimal

k
= rdual

k
 holds by [48, Theorem 4.1.3].

 (iii) As �������(G) is Archimedean, by the definition, 

 For any k ≥ l(t) , since L⋆
k
∈ (Ck[x])

∗ , for all � ∈ ℕ
m
t
 , 

 Then, for any k ≥ ⌈�∕2⌉ , we have |L⋆
k
(x𝛼)| ≤ N�

t
 for any � ∈ ℕ

m
t
 where 

(21)‖u(𝜆�)‖ < R, g(u(𝜆
�)) > g⋆ and u(𝜆

�) ∈ �𝜀.

p(u(𝜆
�), y) ≤ 𝜆�p(u⋆, y) + (1 − 𝜆�)p(ū, y) < 0.

√ ∑
𝛼∈ℕm

2k

(
Lk(x

𝛼)
)2 ≤ Lk(1)

√(
m + k

m

) k∑
i=0

R2i ≤ 1

g⋆

√(
m + k

m

) k∑
i=0

R2i

∀t ∈ ℕ, ∃Nt, l(t) ∈ ℕ, ∀� ∈ ℕ
m
t
, Nt ± x� ∈ �������l(t)(G) = Cl(t)[x].

(22)|L⋆
k
(x𝛼)| ≤ L

⋆
k
(Nt) = Nt ⋅L

⋆
k
(1) ≤ Nt∕g

⋆.

N�
t
∶= max{Nt∕g

⋆,Mt} and Mt ∶= max{�L⋆

k
(x𝛼)� ∣ 𝛼 ∈ ℕ

m

t
, ⌈�∕2⌉ ≤ k ≤ l(t)}.
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 Moreover, from (22) and the equality L⋆
k
(g) = 1 , we can see that L⋆

k
(1) > 0 

for all k ≥ ⌈�∕2⌉ . For any k ≥ ⌈�∕2⌉ , extend L⋆
k
∈ (ℝ2k[x])

∗ to (ℝ[x])∗ by 
letting L⋆

k
(x𝛼) = 0 for all |𝛼| > 2k and denote it by �L

⋆

k
 . Then, for any 

k ≥ ⌈�∕2⌉ and any � ∈ ℕ
m , it holds that |�L⋆

k
(x𝛼)| ≤ N�

|𝛼| . That is, 

 By Tychonoff’s theorem, the product space on the right side of (23) is com-
pact in the product topology. Therefore, there exists a subsequence {�L

⋆

ki
}i∈ℕ 

of {�L
⋆

k
}k and a �L

⋆
∈ (ℝ[x])∗ such that limi→∞

�L
⋆

ki
(x𝛼) = �L

⋆
(x𝛼) for all 

� ∈ ℕ
m . From the pointwise convergence, we get the following: (a) 

�L
⋆
∈ (�������(G))∗ ; (b) �L

⋆
(g) = 1 ; (c) �L

⋆
(p(x, y)) ≤ 0 for any y ∈ � 

since �L
⋆

k
(p(x, y)) ≤ 0 for any k ≥ ⌈�∕2⌉ ; (d) �L

⋆
(𝜓j) ≤ 0 for j = 1,… , s . By 

(a) and Putinar’s Positivstellensatz, along with Haviland’s theorem [18], �L
⋆
 

admits a representing nonnegative measure � , i.e., �L
⋆
(x𝛼) = ∫ x𝛼d𝜈 for all 

� ∈ ℕ
m . From (b) and (22), �L

⋆
(1) > 0 . Then, like in (14) and (15), by (c) 

and (d), we can see that 

 From (i), 

which implies that limi→∞ L
⋆
ki
(x)∕L⋆

ki
(1) ∈ �.As � is singleton, � = {u⋆} . The 

above arguments show that limi→∞ L
⋆
ki
(x)∕L⋆

ki
(1) = u⋆ for any convergent 

subsequence of {L⋆
k
(x)∕L⋆

k
(1)}k . By (23), {L⋆

k
(x)∕L⋆

k
(1)}k ⊂ [−N�

1
,N�

1
]m 

which is bounded. Thus, the whole sequence {L⋆
k
(x)∕L⋆

k
(1)}k converges to u⋆ 

as k tends to ∞ .   ◻

4.2  Convergence rate analysis

Next, we give some convergence rate analysis of rprimal

k
 and rdual

k
 based on Theorem 2.4.

Let us fix R, g⋆ ∈ ℝ , u⋆ ∈ � satisfying (18), 𝜇⋆ ∈ M(�), 𝜂⋆ ∈ ℝ
s
+
 satisfy-

ing (A3), ū ∈ � satisfying (A4), a number RX > R and a number R� > 0 such that 
� ⊂ (−R�,R�)

n.
For any 𝜀 > 0 , define the following constants.

(23)
��

�L
⋆

k
(x𝛼)

�
𝛼∈ℕm

�
k≥⌈�∕2⌉ ⊂

�
𝛼∈ℕm

�
−N�

�𝛼�,N
�
�𝛼�
�
.

lim
i→∞

L
⋆
ki
(x)

L
⋆
ki
(1)

=
�L

⋆
(x)

�L
⋆
(1)

∈ �.

r⋆ = lim
i→∞

�L
⋆

ki
(f ) = �L

⋆
(f ) =

�L
⋆
(f )

�L
⋆
(g)

=
∫ f (x)d𝜈

∫ g(x)d𝜈
=

1

∫ d𝜈
∫ f (x)d𝜈

1

∫ d𝜈
∫ g(x)d𝜈

≥ f
(
�L

⋆
(x)∕�L

⋆
(1)

)

g(�L
⋆
(x)∕�L

⋆
(1))

≥ r⋆,
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It is easy to see that N� ∈ [0, 1) . Let

Lemma 4.1 The point u(��) in (24) satisfies the conditions in (21).

Proof If ‖ū‖ < R , then clearly ‖u(𝜆�)‖ < R ; otherwise, ‖ū‖ ≥ R > ‖u⋆‖ and

Since g(x) is concave, we have

If g(ū) > g⋆ , it is clear that g(u(𝜆�)) > g⋆ . Suppose that g(ū) ≤ g⋆ , then g(ū) < g(u⋆) 
and

If f (ū) < (r⋆ + 𝜀)g(ū) , by the convexity of f(x) and −g(x) , it holds that

which implies that u(��) ∈ �� . If f (ū) ≥ (r⋆ + 𝜀)g(ū) , we have

Then, the second inequality of (25) still holds and hence u(��) ∈ �� . Therefore, all 
conditions in (21) are satisfied by u(��) .   ◻

Recall the norm defined in (3). Write p(x, y) =
∑

�∈ℕn py,�(x)y
� and let

Ne ∶=

� ‖ū‖−R
‖ū‖−‖u⋆‖ , if ‖ū‖ ≥ R,

0, otherwise,
Ng ∶=

�
g(ū)−g⋆

g(ū)−g(u⋆)
, if g(ū) ≤ g⋆,

0, otherwise,

Nf ∶=

�
f (ū)−(r⋆+𝜀)g(ū)

f (ū)−(r⋆+𝜀)g(ū)+𝜀g(u⋆)
, if f (ū) ≥ (r⋆ + 𝜀)g(ū),

0, otherwise,
N𝜀 ∶= max{Ne,Ng,Nf }.

(24)𝜆� ∶=
N𝜀 + 1

2
and u(𝜆

�) = 𝜆�u⋆ + (1 − 𝜆�)ū.

‖u(𝜆�)‖ = ‖𝜆�u⋆ + (1 − 𝜆�)ū‖ ≤ 𝜆�‖u⋆‖ + (1 − 𝜆�)‖ū‖
< ‖ū‖ + Ne(‖u⋆‖ − ‖ū‖) = ‖u⋆‖ + R − ‖u⋆‖ = R.

g(u(𝜆
�)) ≥ 𝜆�g(u⋆) + (1 − 𝜆�)g(ū).

g(u(𝜆
�)) ≥ 𝜆�g(u⋆) + (1 − 𝜆�)g(ū) = 𝜆�(g(u⋆) − g(ū)) + g(ū)

> Ng(g(u
⋆) − g(ū)) + g(ū) = g⋆ − g(ū) + g(ū) = g⋆.

(25)
f (u(𝜆

�)) ≤𝜆�f (u⋆) + (1 − 𝜆�)f (ū) < (r⋆ + 𝜀)(𝜆�g(u⋆)

+ (1 − 𝜆�)g(ū)) ≤ (r⋆ + 𝜀)g(u(𝜆
�)),

𝜆�(f (ū) − (r⋆ + 𝜀)g(ū)) − 𝜆�(f (u⋆) − (r⋆ + 𝜀)g(u⋆))

> Nf ((f (ū) − (r⋆ + 𝜀)g(ū)) + 𝜀g⋆)

= f (ū) − (r⋆ + 𝜀)g(ū).
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Then, pmax is well-defined and ‖p(u(��), y)‖ ≤ pmax by Lemma  4.1. Denote 
p⋆
ū
∶= maxy∈� p(ū, y) . As � is compact, p⋆

ū
< 0 . Denote dy = degy p(x, y) and 

Lmax ∶= ‖Lf ,g(x,𝜇⋆, 𝜂⋆)‖ for simplicity. The convergence rate analysis of rprimal

k
 and 

rdual
k

 is presented in Proposition 4.1, where the only constant depending on � is N� , 
and all others depend on the problem data in (1) and the fixed R, g⋆, u⋆, ū,𝜇⋆ , 𝜂⋆ , 
RX and R� in the assumptions.

Proposition 4.1 Under (A1-4) and the settings (18) and (20),  there exist constants 
c1, c2 ∈ ℝ (depending on qi’s,   g,   R and g⋆ ) such that for any 𝜀 > 0, we have 
r⋆ − 𝜀 ≤ r

primal

k
≤ rdual

k
≤ r⋆ + 𝜀 whenever

Proof Recall the proof of Theorem 4.2 (i). By Lemma 4.1, u(��) in (24) satisfies the 
conditions in (21). Then, by Theorem 2.4, there is a constant c1 ∈ ℝ depending only 
on qi ’s such that −p(u(��), y) ∈ Ck[y] for all k ≥ k1 where

and there exists a constant c2 ∈ ℝ depending only on g(x),  R and g⋆ such that 
Lf ,g(x,𝜇

⋆, 𝜂⋆) + 𝜀g(x) ∈ Ck[x] for all k ≥ k2 where

For any y ∈ � , by the convexity of p(x, y) in x,

Moreover, Lf ,g(x,𝜇⋆, 𝜂⋆) + 𝜀g(x) ≥ 𝜀g⋆ on the set X  in (19). Therefore,

pmax ∶= max
�∈ℕn

max‖x‖≤R �py,�(x)�� ���
�

� .

k ≥max

⎧
⎪⎨⎪⎩
c1 exp

⎡
⎢⎢⎣

⎛
⎜⎜⎝
d2
y
ndy

2pmaxR
dy

�

(N𝜀 − 1)p⋆
ū

⎞
⎟⎟⎠

c1⎤
⎥⎥⎦
,

c2 exp

��
�2m�

(Lmax + 𝜀‖g(x)‖)R�
X

𝜀g⋆

�c2
�
, ⌈�∕2⌉

�
.

k1 ∶= c1 exp

⎡⎢⎢⎣

⎛⎜⎜⎝
d2
y
ndy

‖p(u(��), y)‖Rdy

�

miny∈�(−p(u
(��), y))

⎞⎟⎟⎠

c1⎤⎥⎥⎦
,

k2 ∶= c2 exp

��
�2m�

‖Lf ,g(x,𝜇⋆, 𝜂⋆) + 𝜀g(x)‖R�
X

minx∈X(Lf ,g(x,𝜇
⋆, 𝜂⋆) + 𝜀g(x))

�c2
�
.

−p(u(𝜆
�), y) ≥ −𝜆�p(u⋆, y) − (1 − 𝜆�)p(ū, y) ≥ (𝜆� − 1)p⋆

ū
=

(N𝜀 − 1)p⋆
ū

2
> 0.
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Then, the conclusion follows.   ◻

4.3  Discussions on the stop criterion

Recall the asymptotic convergence of the hierarchy of SDP relaxations (10k) and 
(11k) for the FSIPP problem (1) established in Theorem 4.2. Before we give an exam-
ple to show the efficiency of this method, let us discuss how to check whether or not 
L

⋆
k
(x)∕L⋆

k
(1) where L⋆

k
 is a minimizer of (11k) for some k is a satisfying solution to 

(1).
Under (A1-2), it is clear that a feasible point u⋆ ∈ � is a minimizer of (1) if and only 

if u⋆ is a minimizer of the convex semi-infinite programming problem

For (26), it is well-known [35] that if the KKT condition holds at u⋆ ∈ � , i.e. there 
are finite subsets Λ(u⋆) ⊂ � , J(u⋆) ⊂ {1,… , s} and multipliers �y ≥ 0 , y ∈ Λ(u⋆) , 
�j ≥ 0 , j ∈ J(u⋆) such that

then u⋆ is a minimizer of (26). The converse holds if � satisfies the Slater condition. 
Next, we use this fact to give a stop criterion of the hierarchy of SDP relaxations 
(11k) for (1).

Recall Lasserre’s SDP relaxation method for polynomial optimization problems 
introduced in Sect. 2. Fix a k ∈ ℕ and let u⋆ = L

⋆
k
(x)∕L⋆

k
(1) . Denote by � a small 

positive number as a given tolerance. Now, we proceed with the following steps: 

Step 1.  Solve the polynomial minimization problem 

 by Lasserre’s SDP relaxation method (4) using the software GloptiPoly. If 

k1 ≤c1 exp
⎡
⎢⎢⎣

⎛
⎜⎜⎝
d2
y
ndy

2pmaxR
dy

�

(N𝜀 − 1)p⋆
ū

⎞
⎟⎟⎠

c1⎤
⎥⎥⎦

and

k2 ≤c2 exp
��

�2m�
(Lmax + 𝜀‖g(x)‖)R�

X

𝜀g⋆

�c2
�
.

(26)min
x∈�

f (x) −
f (u⋆)

g(u⋆)
g(x).

(27)

p(u⋆, y) = 0, ∀y ∈ Λ(u⋆), 𝜓j(u
⋆) = 0, ∀j ∈ J(u⋆),

∇f (u⋆) −
f (u⋆)

g(u⋆)
∇g(u⋆) +

∑
y∈Λ(u⋆)

𝛾y∇xp(u
⋆, y) +

∑
j∈J(u⋆)

𝜂j𝜓j(u
⋆) = 0,

(28)p⋆ ∶= min
y∈�

−p(u⋆, y)

max{−p⋆,𝜓1(u
⋆),… ,𝜓s(u

⋆)} ≤ 𝜏,
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 then u⋆ is a feasible point of (1) within the tolerance � . In the case when Condi-
tion 2.1 holds in Lasserre’s relaxations, we can extract the set of global minimizers 
of (28) which is a finite set in this case (c.f. [9, 20]) and we denote it by Λ(u⋆) . Let 
J(u⋆) ∶= {j ∣ |𝜓j(u

⋆)| ≤ 𝜏} , then Λ(u⋆) ∪ J(u⋆) indexes the active constraints at u⋆ 
within the tolerance �.
Step 2.  Solve the non-negative least-squares problem 

 which can be done by the command lsqnonneg in Matlab. If � ≤ � , then the KKT 
condition in (27) holds at L⋆

k
(x)∕L⋆

k
(1) within the tolerance � . Then we may termi-

nate the SDP relaxations (11k) at the order k and output L⋆
k
(x)∕L⋆

k
(1) as a numeri-

cal minimizer of (1).
 The key of the above procedure is Condition 2.1 which can certify the finite con-
vergence of Lasserre’s relaxations for (28) and be used to extract the set Λ(u⋆) . For 
a polynomial minimization problem with generic coefficients data, Nie proved that 
Condition 2.1 holds in its Lasserre’s SDP relaxations (c.f. [38, Theorem 1.2] and 
[37, Theorem 2.2]). Hence, an interesting problem is that if the coefficients data in 
(1) is generic, does Condition 2.1 always hold in Lasserre’s SDP relaxations of (28)? 
It is not clear to us yet because the coefficients of p(u⋆, y) also depend on the solu-
tions L⋆

k
 to (11k) and thus we leave it for future research.

Several numerical examples will be presented in the rest of this paper to show 
the efficiency of the corresponding SDP relaxations. We use the software Yalmip 
[34] and call the SDP solver SeDuMi [51] to implement and solve the resulting SDP 
problems (10) and (11). To show the advantage of our SDP relaxation method for 
solving FSIPP problems, we compare it with the numerical method called adaptive 
convexification algorithm1 (ACA for short) [12, 50] for the following reasons. On 
the one hand, if g(x) is not a constant function, then the FSIPP problem (1) is usually 
not convex. Hence, numerical methods in the literature for convex SIP problems [14, 
22, 35] are not appropriate for (1). On the other hand, most of the existing numeri-
cal methods for SIP require the index set to be box-shaped, while the ACA method 
can solve SIP problems with arbitrary, not necessarily box-shaped, index sets (as � 
in (1) is). The ACA method can deal with general SIP problems (the involved func-
tions are not necessarily polynomials) by two procedures. The first phase is to find a 
consistent initial approximation of the SIP problem with a reduced outer approxima-
tion of the index set. The second phase is to compute an �-stationary point of the 
SIP problem by adaptively constructing convex relaxations of the lower level prob-
lems. All numerical experiments in the sequel were carried out on a PC with two 
64-bit Intel Core i5 1.3 GHz CPUs and 8G RAM.

(29)
𝜔 ∶= min

𝛾y≥0,𝜂j≥0
‖‖‖∇f (u

⋆) −
f (u⋆)

g(u⋆)
∇g(u⋆)

+
∑

y∈Λ(u⋆)

𝛾y∇xp(u
⋆, y) +

∑
j∈J(u⋆)

𝜂j𝜓j(u
⋆)
‖‖‖
2

,

1 Its code named SIPSOLVER is available at https:// kop. ior. kit. edu/ 791. php.

https://kop.ior.kit.edu/791.php
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Example 4.1 In order to construct an illustrating example which is not in the special 
cases studied in the next section, we consider the following two convex but not s.o.s-
convex polynomials where h1 is given in [2, (4)] and h2 is given in [3, (5.2)]

It can be verified by Yalmip that both h1 and h2 are s.o.s polynomials. Let

and f (x1, x2) ∶= h2(x1 − 1, x2 − 1)∕10000 . Clearly, f(x) and p(x,  y) for all 
y ∈ ℝ

2 are convex but not s.o.s-convex in x. Let g(x1, x2) ∶= −x2
1
− x2

2
+ 4 and 

�(x1, x2) ∶= x2
1
∕2 + 2x2

2
− 1.

Consider the FSIPP problem

where

Geometrically, the feasible region � is constructed in the following way: first rotate 
the shape in the (x1, x2)-plane defined by −1 + h1(x1, x2, 1)∕100 − x1 + x2 ≤ 0 con-
tinuously around the origin by 90◦ clockwise; then intersect the common area of 
these shapes in this process with the ellipse defined by �(x) ≤ 0 (see Fig. 1). It is 

(30)

h1(x1, x2, x3) =32x
8
1
+ 118x6

1
x2
2
+ 40x6

1
x2
3
+ 25x4

1
x4
2

− 43x4
1
x2
2
x2
3
− 35x4

1
x4
3
+ 3x2

1
x4
2
x2
3

− 16x2
1
x2
2
x4
3
+ 24x2

1
x6
3
+ 16x8

2

+ 44x6
2
x2
3
+ 70x4

2
x4
3
+ 60x2

2
x6
3
+ 30x8

3
.

h2(x1, x2) =89 − 363x4
1
x2 +

51531

64
x6
2
−

9005

4
x5
2

+
49171

16
x4
2
+ 721x2

1
− 2060x3

2

− 14x3
1
+

3817

4
x2
2
+ 363x4

1
− 9x5

1

+ 77x6
1
+ 316x1x2 + 49x1x

3
2

− 2550x2
1
x2 − 968x1x

2
2
+ 1710x1x

4
2

+ 794x3
1
x2 +

7269

2
x2
1
x2
2

−
301

2
x5
1
x2 +

2143

4
x4
1
x2
2
+

1671

2
x3
1
x3
2

+
14901

16
x2
1
x4
2
−

1399

2
x1x

5
2

−
3825

2
x3
1
x2
2
−

4041

2
x2
1
x3
2
− 364x2 + 48x1.

p(x1, x2, y1, y2) ∶= − 1 + h1(y1x1 − y2x2, y2x1 + y1x2, 1)∕100

+ (y1x1 − y2x2) − (y2x1 + y1x2)

(31)r⋆ ∶= min
x∈ℝ2

f (x)

g(x)
s.t. 𝜓(x) ≤ 0, p(x, y) ≤ 0, ∀y ∈ � ⊂ ℝ

2,

� ∶= {(y1, y2) ∈ ℝ
2 ∣ y1 ≥ 0, y2 ≥ 0, y2

1
+ y2

2
= 1}.
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easy to see that (A1-4) hold for this problem. Let R = 2 and g⋆ = 1 . For the first 
order k = 4 , we get rdual

4
= 0.0274 and L⋆

4
(x)∕L⋆

4
(1) = (0.7377, 0.6033).

As we have discussed before this example, now let us check that if 
u⋆ ∶= (0.7377, 0.6033) is a satisfying solution to (31) within the tolerance � = 10−3 . 
We first solve the problem (28) by Lasserre’s SDP relaxations in GloptiPoly. 
It turns out that Condition  2.1 is satisfied in Lasserre’s relaxations of the first 
order. We obtain that p⋆ = 6.7654 × 10−5 and Λ(u⋆) = {(0.775, 0.6315)} . Since 
𝜓(u⋆) = 4.2425 × 10−5 , within the tolerance 10−3 , we can see that u⋆ is a feasible 
point of (31) and the constraints

are active at u⋆ . Then, we solve the non-negative least-squares problem (29) by the 
command lsqnonneg in Matlab. The result is � = 0.0000 , which shows that the KKT 
condition (27) holds at u⋆ . Thus, u⋆ is a numerical minimizer of (26) and hence of 
(31) within the tolerance 10−3 . The total CPU time for the whole process is about 25 
seconds.

To show the accuracy of the solution, we draw some contour curves of f/g, includ-
ing the one where f/g is the constant value f (u⋆)∕g(u⋆) = 0.0274 (the blue curve), 
and mark the point u⋆ by a red dot in Fig. 1. As we can see, the blue curve is almost 
tangent to � at the point u⋆ , which illustrates the accuracy of u⋆.

Next, we apply the ACA method to (31). It turns out that the first phase of ACA 
to find a consistent initial approximation of (31) with a reduced outer approximation 
of � always failed. That is possibly because � in (31) has no interior point and the 
upper level problem is not convex (c.f. [12, 50]). Then, we reformulate (31) to the 
following equivalent fractional semi-infinite programming problem involving trigo-
nometric functions and a single parameter t

p(x1, x2, 0.775, 0.6315) ≤ 0, �(x1, x2) ≤ 0,

Fig. 1  The feasible set � and 
contour curves of f/g in Exam-
ple 4.1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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Then we solve (32) by the ACA method again. After a successful phase I, the first 10 
iterations of phase II to compute an �-stationary point of (32) run for about 22 min-
utes and produced a feasible point (0.6530, 0.6272). The 15th iteration of phase II 
produced a feasible point (0.7374, 0.6034) and the accumulated CPU time is about 
40 minutes. The algorithm did not reach its default termination criterion within an 
hour.   ◻

5  Special cases with exact or finitely convergent SDP relaxations

In this section, we study some cases of the FSIPP problem (1), for which we can 
derive SDP relaxation which is exact or has finite convergence and can extract at 
least one minimizer of (1). The reason for this concern is due to some applications 
of the FSIPP problem where exact optimal values and minimizers are required, see 
Sect. 5.2.

Recall the reformulations (10) and (11). Letting � = 0 in Theorem  3.1 implies 
that

Theorem 5.1 Suppose that (A1-3) hold and the cones C[x] and C[y] satisfy the fol-
lowing conditions  :   C[y] ⊆ P(�) , Lf ,g(x,𝜇⋆, 𝜂⋆) ∈ C[x], there exists some u⋆ ∈ � 
such that −p(u⋆, y) ∈ C[y] and h(u⋆) ≥ 0 for any h(x) ∈ C[x] . 

 (i) We have rprimal = rdual = r⋆.
 (ii) If L⋆ is a minimizer of (11) such that the restriction L⋆|

ℝ[x]�
 admits a repre-

senting nonnegative measure �, then 

Next, we specify four cases of the FSIPP problem, for which we can choose suit-
able cones C[x] and C[y] with sum-of-squares structures and satisfy conditions in 
Theorem 5.1.

5.1  Four cases

Recall the s.o.s-convexity introduced in Sect. 2 and consider
Case 1. (i) n = 1 and � = [−1, 1] ; (ii) f (x) , −g(x) , �i(x), i = 1,… , s , and 

p(x, y) ∈ ℝ[x] for every y ∈ � are all s.o.s-convex in x.

(32)min
x∈ℝ2

f (x)

g(x)
s.t. �(x) ≤ 0, p(x, sin t, cos t) ≤ 0, ∀t ∈ [0,�∕2].

L
⋆(x)

L
⋆(1)

=
1

∫ d𝜈

(
� x1d𝜈,… ,� xmd𝜈

)
∈ �.
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Case 2.

 (i) n > 1 , � = {y ∈ ℝ
n ∣ �(y) ≥ 0} where deg(�(y)) = 2 , 𝜙(ȳ) > 0 for some ȳ ∈ ℝ

n

;
 (ii) degy(p(x, y)) = 2 ; (iii) f (x) , −g(x) , �i(x), i = 1,… , s , and p(x, y) ∈ ℝ[x] for 

every y ∈ � are all s.o.s-convex in x.

Let dx = degx(p(x, y)) and dy = degy(p(x, y)) . For Case 1 and Case 2, we make 
the following choices of C[x] and C[y] in the reformulations (10) and (11):

In Case 1: Let

and

In Case 2: Let C[x] be defined as in (33) and

Recall Proposition 3.2 and Remark 3.1. In Cases 1 and 2, we in fact choose X = ℝ
m 

and Σ2[x] ∩ℝ[x]2� as the approximation of P(X) . In each case, we can reduce (10) 
and (11) to a pair of primal and dual SDP problems.

Lemma 5.1 Under (A1-2),   if f (x) , −g(x), �i(x), i = 1,… , s, and p(x, y) ∈ ℝ[x] for 
every y ∈ � are all s.o.s-convex in x, then the Lagrangian Lf ,g(x,�, �) is s.o.s-convex 
for any � ∈ M(�) and � ∈ ℝ

s
+
.

Proof Obviously, we only need to prove that ∫
�
p(x, y)d�(y) is s.o.s-convex under 

(A1-2). Note that there is a sequence of atomic measures {𝜇k} ⊆ M(�) which is 
weakly convergent to � , i.e., limk→∞ ∫

�
h(y)d�k(y) = ∫

�
h(y)d�(y) holds for every 

bounded continuous real function h(y) on � (c.f. [5, Example 8.1.6 (i)]). It is obvi-
ous that ∫

�
p(x, y)d�k(y) ∈ ℝ[x]dx is s.o.s-convex for each k. Since the convex cone 

of s.o.s-convex polynomials in ℝ[x]dx is closed (c.f. [2]), the conclusion follows.   ◻

Theorem 5.2 In Cases 1-2 :  under (A2),  the following holds.

 (i) rdual = r⋆ and L
⋆(x)

L
⋆(1)

∈ � where L⋆ be a minimizer of (11) which always exists.
 (ii) If (A3) holds,  then rprimal = r⋆ and it is attainable.

Proof In Case 1, by the representations of univariate polynomials nonnegative on 
an interval (c.f. [31, 41]), we have −p(x, y) ∈ C[y] for each x ∈ � . In Case 2, by the 
S-lemma and Hilbert’s theorem, we also have −p(x, y) ∈ C[y] for each x ∈ � . For 

(33)C[x] = Σ2[x] ∩ℝ[x]2�,

(34)C[y] =

�
�0 + �1(1 − y2

1
)
���
�0, �1 ∈ Σ2[y1], deg(�0) ≤ 2⌈dy∕2⌉,
deg(�1(1 − y2

1
)) ≤ 2⌈dy∕2⌉

�
.

(35)C[y] = {� + �� ∣ � ≥ 0, � ∈ Σ2[y], deg(�) ≤ 2}.
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any u⋆ ∈ � , the linear functional L� ∈ (ℝ[x])∗ such that L�(x𝛼) =
(u⋆)𝛼

g(u⋆)
 for each 

� ∈ ℕ
m , is feasible to (11). Hence, rprimal ≤ rdual ≤ r⋆ by the weak duality.

(i) Let L⋆ be a minimizer of (11), then L⋆(1) > 0 . In fact, L⋆(1) ≥ 0 since 
L

⋆ ∈ (Σ2[x] ∩ℝ[x]2�)
∗ . If L⋆(1) = 0 , then by the positive semidefiniteness of the 

associated moment matrix of L⋆ , we have L⋆(x𝛼) = 0 for all � ∈ ℕ
m
�
 , which contra-

dicts the equality L⋆(g) = 1 . As �1(x),… ,�s(x) , p(x, y) ∈ ℝ[x] for every y ∈ � are all 
s.o.s-convex in x , similar to the proof of Theorem 3.1 (ii), it is easy to see that L

⋆(x)

L
⋆(1)

∈ � 
due to Proposition 2.4. Since f (x) and −g(x) are also s.o.s-convex, under (A2), we have

It means that rdual = r⋆ and L
⋆(x)

L
⋆(1)

 is minimizer of (1). Clearly, for any u⋆ ∈ � , the lin-
ear functional L� ∈ (ℝ[x]2�)

∗ such that L�(x𝛼) =
(u⋆)𝛼

g(u⋆)
 for each � ∈ ℕ

m
2�

 is a mini-
mizer of (11).

(ii) By Lemma 5.1, Proposition 3.1 and Lemma 2.1, Lf ,g(x,𝜇⋆, 𝜂⋆) ∈ C[x] in both 
cases. Thus, rprimal = r⋆ due to Theorem 5.1 (i) and is attainable at (r⋆,H, 𝜂⋆) where 
H ∈ (ℝ[y])∗ satisfies that H(y𝛽) = ∫

�
y𝛽d𝜇⋆(y) for any � ∈ ℕ

n .   ◻

Now we consider another two cases of the FSIPP problem (1):
Case 3.

 (i) n = 1 and � = [−1, 1];
 (ii) The Hessian ∇2f (u⋆) ≻ 0 at some u⋆ ∈ �.

Case 4.

 (i) n > 1 , � = {y ∈ ℝ
n ∣ �(y) ≥ 0} where deg(�(y)) = 2 , 𝜙(ȳ) > 0 for some ȳ ∈ ℝ

n

;
 (ii) degy(p(x, y)) = 2;
 (iii) The Hessian ∇2f (u⋆) ≻ 0 at some u⋆ ∈ �.

Let R > 0 be a real number satisfying (18) and q(x) ∶= R2 − (x2
1
+⋯ + x2

m
) . For 

an integer k ≥ ⌈�∕2⌉ , we make the following choices of C[x] and C[y] in the refor-
mulations (10) and (11) in Case 3 and Case 4:

In Case 3: Replace C[x] by Ck[x] = �������k({q}) and let C[y] be defined as in (34).
In Case 4: Replace C[x] by Ck[x] = �������k({q}) and let C[y] be defined as in (35).
Recall Proposition 3.2 and Remark 3.1. In Cases 3 and 4, we in fact choose 

X = {x ∈ ℝ
m ∣ q(x) ≥ 0} and quadratic modules generated by {q} as the approxi-

mation of P(X) . For a fixed k, in each case, denote the resulting problems of (10) 
and (11) by (10k) and (11k), respectively. Denote by rprimal

k
 and rdual

k
 the optimal 

values of (10k) and (11k). We can reduce (10k) and (11k) to a pair of primal and 
dual SDP problems.

r⋆ ≤ f
(

L
⋆(x)

L
⋆(1)

)

g
(

L
⋆(x)

L
⋆(1)

) ≤
1

L
⋆(1)

L
⋆(f )

1

L
⋆(1)

L
⋆(g)

= L
⋆(f ) = rdual ≤ r⋆.
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Theorem 5.3 In Cases 3-4 :  under (A1-2),  the following holds. 

 (i) For each k ≥ ⌈�∕2⌉, rprimal

k
≤ rdual

k
≤ r⋆ and rdual

k
 is attainale.

 (ii) For a minimizer L⋆
k
 of (11k), if there exists an integer k� ∈ [⌈�∕2⌉, k] such that 

 then, rdual
k

= r⋆ and L
⋆
k
(x)

L
⋆
k
(1)

 is minimizer of (1);
 (iii) If (A3) holds,  then for k large enough,  rprimal

k
= rdual

k
= r⋆ and every minimizer 

L
⋆
k
 of (11k) satisfies the rank condition (36) which certifies that L

⋆
k
(x)

L
⋆
k
(1)

 is a 
minimizer of (1).

Proof (i) As proved in Theorem 5.2, we have −p(u⋆, y) ∈ C[y] for every u⋆ ∈ � ⊂ � 
in both cases and hence rprimal

k
≤ rdual

k
≤ r⋆ . Due to the form of q(x), the attainment of 

rdual
k

 follows from [26, Lemma 3] as proved in Theorem 4.2 (ii).
(ii) From the proof of Theorem 4.2 (iii), we can see that L⋆

k
(1) > 0 . By [9, Theo-

rem 1.1], (36) implies that the restriction L⋆
k
|
ℝ[x]2k�

 has an atomic representing meas-
ure supported on the set �� ∶= {x ∈ ℝ

m ∣ q(x) ≥ 0} . Then, the conclusion follows 
by Theorem 5.1 (ii).

(iii) Under (A1-3), consider the nonnegative Lagrangian Lf ,g(x,𝜇⋆, 𝜂⋆) . By Prop-
osition 2.3, Lf ,g(x,𝜇⋆, 𝜂⋆) is coercive and strictly convex on ℝm . Hence, by Prop-
osition  3.1, � is a singleton set, say � = {u⋆} , and u⋆ is the unique minimizer of 
Lf ,g(x,𝜇

⋆, 𝜂⋆) on ℝm . Clearly, u⋆ is an interior point of �′ . Then, by Proposition 2.1, 
there exists k⋆ ∈ ℕ such that Lf ,g(x,𝜇⋆, 𝜂⋆) ∈ �������k⋆({q}) . Thus, in both Case 
3 and Case 4, Lf ,g(x,𝜇⋆, 𝜂⋆) ∈ Ck[x] for every k ≥ k⋆ . Then, rprimal

k
= rdual

k
= r⋆ for 

each k ≥ k⋆ by Theorem 5.1 (i).
Consider the polynomial optimization problem

Then, l⋆ = 0 and is attained at u⋆ . The k-th Lasserre’s relaxation (see Sect. 2) for 
(37) is

and its dual problem is

We have shown that lprimal

k⋆
≥ 0 . As the linear functional L� ∈ (ℝ[x]2k)

∗ with 
L

�(x𝛼) = (u⋆)𝛼 for each � ∈ ℕ
m
2k

 is feasible to (38), along with the weak duality, we 
have lprimal

k
≤ ldual

k
≤ l⋆ = 0 , which means lprimal

k⋆
= ldual

k⋆
= 0 . Hence, Lasserre’s hierarchy 

(38) and (39) have finite convergence at the order k⋆ without dual gap and the opti-
mal value of (39) is attainable. Moreover, recall that u⋆ is the unique point in ℝm 

(36)rank �k�−1(L
⋆
k
) = rank�k� (L

⋆
k
),

(37)l⋆ ∶= min
x∈ℝm

Lf ,g(x,𝜇
⋆, 𝜂⋆) s.t. q(x) ≥ 0.

(38)ldual
k

∶= inf
L

L(Lf ,g(x,𝜇
⋆, 𝜂⋆)) s.t. L ∈ (�������k({q}))

∗, L(1) = 1,

(39)l
primal

k
∶= sup

𝜌∈ℝ

𝜌 s.t. Lf ,g(x,𝜇
⋆, 𝜂⋆) − 𝜌 ∈ �������k({q}).



465

1 3

On solving a class of fractional semi‑infinite polynomial…

such that Lf ,g(u⋆,𝜇⋆, 𝜂⋆) = 0 = l⋆ . Then by Proposition 2.2, the rank condition (36) 
holds for every minimizer of (38) for sufficiently large k. Let L⋆

k
 be a minimizer of 

(11k) with k ≥ k⋆ . Now we show that L
⋆
k

L
⋆
k
(1)

 is a minimizer of (38). Clearly, L
⋆
k

L
⋆
k
(1)

 is 
feasible to (38). Because

L
⋆
k

L
⋆
k
(1)

 is indeed a minimizer of (38). Therefore, for k sufficiently large, the rank condi-

tion (36) holds for L
⋆
k

L
⋆
k
(1)

 and hence for L⋆
k
 .   ◻

Example 5.1 Now we consider four FSIPP problems corresponding to the four cases 
studied above.

Case 1: Consider the FSIPP problem

For any y ∈ [−1, 1] , since p(x, y) is of degree 2 and convex in x, it is s.o.s-convex in 
x. Hence, the problem (40) is in Case 1. For any x ∈ ℝ

2 and y ∈ [−1, 1] , it is clear 
that

Then we can see that the feasible set � can be defined only by two constraints

That is, � is the area in ℝ2 enclosed by the ellipse p(x,−1) = 0 and the two lines 
p(x, 1) = 0 . Then, it is not hard to check that the only global minimizer of (40) is 
u⋆ = (−0.5,−0.5) and the minimum is 0.25. Obviously, (A2) holds for (40). Solving 
the single SDP problem (11) with the setting (33) and (34), we get 
L

⋆(x)

L
⋆(1)

= (−0.5000,−0.5000) where L⋆ is the minimizer of (11). The CPU time is 
0.80 seconds. Then we solve (40) with ACA method. The algorithm terminated suc-
cessfully and returned the solution (−0.5000,−0.5000) . The over CPU time is 4.25 
seconds.

0 = l⋆ = ldual
k

≤ L
⋆
k
(Lf ,g(x,𝜇

⋆, 𝜂⋆))

L
⋆
k
(1)

=
1

L
⋆
k
(1)

(
L

⋆
k
(f ) − r⋆L⋆

k
(g) + ��

L
⋆
k
(p(x, y))d𝜇⋆ +

s∑
j=1

𝜂jL
⋆
k
(𝜓j)

)

=
1

L
⋆
k
(1)

(
r⋆ − r⋆ + ��

L
⋆
k
(p(x, y))d𝜇⋆ +

s∑
j=1

𝜂jL
⋆
k
(𝜓j)

)
≤ 0,

(40)

⎧⎪⎨⎪⎩

min
x∈ℝ2

(x1 + 1)2 + (x2 + 1)2

−x1 − x2 + 1

s.t. p(x, y) = x2
1
+ y2x2

2
+ 2yx1x2 + x1 + x2 ≤ 0, ∀ y ∈ [−1, 1].

p(x, y) ≤ x2
1
+ x2

2
+ 2|x1x2| + x1 + x2.

p(x, 1) = (x1 + x2)(x1 + x2 + 1) ≤ 0 and p(x,−1) = (x1 − x2)
2 + x1 + x2 ≤ 0.
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Case 2: Consider the FSIPP problem

It is easy to see that (41) is in Case 2. For any y ∈ � , it holds that

Hence, � is the part of the unit disc around the origin between the two lines defined 
by �(x) = 0 and the only global minimizer is u⋆ = (0.5, 0.5) . Obviously, (A2) holds 
for (41). Solving the single SDP problem (11) with the setting (33) and (35), we get 
L

⋆(x)

L
⋆(1)

= (0.4999, 0.5000) where L⋆ is the minimizer of (11). The CPU time is 1.20 
seconds. Then we solve (41) with ACA method. The algorithm terminated success-
fully and returned the solution (0.5000,  0.5000). The overall CPU time is 52.75 
seconds.

Case 3: Recall the convex but not s.o.s-convex polynomial h2(x) in (30). Con-
sider the FSIPP problem

Clearly, this problem is in Case 3 and satisfies (A1-2). We solve the SDP relaxation 
(11k) with the setting Ck[x] and C[y] aforementioned. We set the first order k = 4 and 
check if the rank condition (36) holds. If not, check the next order. We have 
rank�3(L

⋆
4
) = rank�4(L

⋆
4
) = 1 (within a tolerance < 10−8 ) for a minimizer L⋆

4
 of 

of rdual
4

 , i.e., the rank condition (36) holds for k� = 4 . By Theorem 5.3 (ii), the point 
u⋆ ∶=

L
⋆
4
(x)

L
⋆
4
(1)

= (0.9044, 0.8460) is a minimizer and rdual
4

= −0.8745 is the minimum 
of (42). The CPU time is about 16.50 seconds. To show the accuracy of the solution 
, we draw some contour curves of f/g, including the one where f/g is the constant 
value f (u⋆)∕g(u⋆) = −0.8745 (the blue curve), and mark the point u⋆ by a red dot in 
Figure 2 (left). Then we solve (42) with the ACA method. The algorithm terminated 
successfully and returned the solution (0.9040,  0.8463). The overall CPU time is 
21.57 seconds.

(41)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

min
x∈ℝ2

(x1 − 1)2 + (x2 − 1)2

x1 + x2

s.t. �(x) = (x1 + x2 − 1)(x1 + x2 − 0.5) ≤ 0,

p(x, y) = (y2
1
+ y2

2
)x2

1
+ (1∕2 − y1y2)x

2
2
− 1 ≤ 0, ∀ y ∈ �,

� = {y ∈ ℝ
2 ∣ y2

1
+ y2

2
≤ 1}.

p(x, y) ≤ x2
1
+ x2

2
− 1 = p(x, y(0)), y(0) =

�
−

√
2

2
,

√
2

2

�
.

(42)

⎧⎪⎪⎨⎪⎪⎩

min
x∈ℝ2

(x1 − 1)2 + (x2 − 1)2 − 2

−x1 − x2 + 4

s.t. �(x) = x2
1
+ x2

2
− 4 ≤ 0,

p(x, y) =
h2(x1, x2)

1000
− yx1 − y2x2 − 1 ≤ 0, ∀ y ∈ [−1, 1].
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Case 4: Consider the FSIPP problem

Clearly, this problem is in Case 4 and satisfies (A1-2). We solve the SDP relaxation 
(11k) with the setting Ck[x] and C[y] aforementioned. For the first order k = 4 , we 
have rank�3(L

⋆
4
) = rank�4(L

⋆
4
) = 1 (within a tolerance < 10−8 ) for a minimizer 

L
⋆
4
 of of rdual

4
 . By Theorem  5.3 (ii), the point u⋆ ∶=

L
⋆
4
(x)

L
⋆
4
(1)

= (0.7211, 0.6912) is a 
minimizer of (43). The CPU time is about 14.60 seconds. See Figure 2 (right) for 
the accuracy of the solution. Then we solve (43) with the ACA method. The algo-
rithm terminated successfully and returned the solution (0.7039, 0.6823). The over-
all CPU time is 768.02 seconds.

For the above four FSIPP problems, we remark that the optimality of the solution 
obtained by our SDP method can be guaranteed by Theorem 5.2 (i) and Theorem 5.3 
(ii), while the solution concept of the ACA method is that of stationary points and 
all iterates are feasible points for the original SIP.   ◻

5.2  Application to multi‑objective FSIPP

In this part, we apply the above approach for the special four cases of FSIPP prob-
lems to the following multi-objective fractional semi-infinite polynomial program-
ming (MFSIPP) problem

(43)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

min
x∈ℝ2

(x1 − 2)2 + (x2 − 2)2 − 1

−x2
1
− x2

2
+ 4

s.t. �(x) = x2
1
+ x2

2
− 1 ≤ 0,

p(x, y) =
h2(x1, x2)

1000
+ y1y2(x1 + x2) − 1 ≤ 0, ∀ y ∈ �,

� = {y ∈ ℝ
2 ∣ y2

1
+ y2

2
≤ 1}.
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Fig. 2  The feasible set � and contour curves of f/g in Example 5.1 Case 3 (left) and Case 4 (right)



468 F. Guo, L. Jiao 

1 3

where fi(x), gi(x) ∈ ℝ[x], i = 1,… , t, p(x, y) ∈ ℝ[x, y] . Note that “ Min
ℝ

t
+
 ” in the 

above problem (44) is understood in the vectorial sense, where a partial ordering is 
induced in the image space ℝt, by the non-negative cone ℝt

+
. Let a, b ∈ ℝ

t, the par-
tial ordering says that a ≥ b (or a − b ∈ ℝ

t
+
 ), which can equivalently be written as 

ai ≥ bi, for all i = 1,… , t, where ai and bi stands for the ith component of the vectors 
a and b,  respectively. Denote by � the feasible set of (44). We make the following 
assumptions on the MFSIPP problem (44):

(A5): � is compact; fi(x) , −gi(x) , i = 1,… , t, and p(x, y) ∈ ℝ[x] for every 
y ∈ � are all convex in x;
(A6): For each i = 1,… , t , either fi(x) ≥ 0 and gi(x) > 0 for all x ∈ � ; or gi(x) 
is affine and gi(x) > 0 for all x ∈ �.

Definition 5.1 A point u⋆ ∈ � is said to be an efficient solution to (44) if

Efficient solutions to (44) are also known as Pareto-optimal solutions. The aim of 
this part is to find efficient solutions to (44). As far as we know, very few algorith-
mic developments are available for such a case in the literature because of the dif-
ficulty of checking feasibility of a given point.

The �-constraint method [6, 17] may be the best known technique to solve a non-
convex multi-objective optimization problem. The basic idea for this method is to 
minimize one of the original objectives while the others are transformed to con-
straints by setting an upper bound to each of them. Based on the criteria for the �
-constraint method given in [11], an algorithm to obtain an efficient solution to (44) 
follows.

(44)

⎧
⎪⎨⎪⎩

Min
ℝ

t
+

�
f1(x)

g1(x)
,… ,

ft(x)

gt(x)

�

s.t. p(x, y) ≤ 0, ∀y ∈ � ⊂ ℝ
n,

(45)
(
f1(x)

g1(x)
,… ,

ft(x)

gt(x)

)
−

(
f1(u

⋆)

g1(u
⋆)
,… ,

ft(u
⋆)

gt(u
⋆)

)
∉ −ℝt

+
�{0}, ∀x ∈ �.
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Theorem 5.4 The output u⋆ in Algorithm 5.1 is indeed an efficient solution to (1).

Proof We refer to [11, Propositions 4.4 and 4.5]; see also [32, Theorem 3.4].   ◻

Remark 5.1 

 (i) Clearly, ( Pi ) is an FSIPP problem of the form (1). It is easy to see that for each 
i = 2,… , t , the constraints 

 are all active in ( Pi ). Therefore, the Slater condition fails for ((Pi ) with 
i = 2,… , t.

 (ii) According to Algorithm 5.1, the problem of finding an efficient solution of 
the MFSIPP problem (44) reduces to solving every scalarized problem ( Pi ) 
and extracting a (common) minimizer, which is the key for the success of 
Algorithm 5.1. Generally, approximate solutions to ( Pi ) can be obtained by 
some numerical methods for semi-infinite programming problems. However, 
note that the errors introduced by any approximate solutions can accumulate 
in the process of the �-constraint method. This can potentially make the output 
solution unreliable.

  ◻

We have studied four cases of the FSIPP problem, for which at least one 
minimizer can be extracted by the proposed SDP approach. Now we apply this 
approach to the four corresponding cases of MFSIPP problem:

Case I (resp., II): ( Pi ) is in Case 1 (resp., 2) for each i = 1,… , t;
Case III (resp., IV): ( Pi′ ) is in Case 3 (resp., 4) for some i� ∈ {1,… , t}.
For Case I and II, if the assumptions in Theorem 5.2 hold for each ( Pi ), then 

an efficient solution to the MFSIPP problem (44) can obtained by solving t SDP 
problems.

For Case III and IV, we only need solve ( Pi′ ) to get an efficient solution to 
(44). In fact, we have the following result.

Proposition 5.1 In Cases III-IV :   under (A5-6),   the scalarized problem (Pi� ) has 
a unique minimizer u(i�) which is an efficient solution to the MFSIPP problem (44).

Proof By assumption, fi� (x) − ri�gi� (x) is convex and its minimum on the fea-
sible set of ( Pi′ ) is 0 attained at any optimal solution of ( Pi′ ). By Proposition 2.3, 
fi� (x) − ri�gi� (x) is coercive and strictly convex on ℝm . Then, fi� (x) − ri�gi� (x) has a 
unique minimizer on the feasible set of ( Pi′ ). Consequently, ( Pi′ ) has a unique mini-
mizer u(i�) . By Theorem 5.4, u(i�) is an efficient solution to (44).   ◻

As a result, in Case III and Case IV, if the assumptions in Theorem 5.3 hold for 
( Pi′ ), an efficient solution to the MFSIPP problem (44) can be obtained by solving 
finitely many SDP problems.

gj(u
(i−1))fj(x) − fj(u

(i−1))gj(x) ≤ 0, j = 1,… , i − 1,
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Example 5.2 To show the efficiency of the SDP method for the four cases of the 
MFSIPP problem discussed above, now we present an example for each case. In 
each of the following examples, m = 2 and t = 2 . We pick some points y on a uni-
form discrete grid inside � and draw the corresponding curves p(x, y) = 0 . Hence, 
the feasible set � is illustrated by the area enclosed by these curves. The initial point 
u(0) and the output u⋆ of Algorithm  5.1 are marked in � by ‘ ∗ ’ in blue and red, 
respectively. To show the accuracy of the output, we first illustrate the image of � 
under the map 

(
f1

g1
,
f2

g2

)
 . To this end, we choose a square containing � . For each point 

u on a uniform discrete grid inside the square, we check if u ∈ � (as we will see it is 
easy for our examples). If so, we plot the point 

(
f1(u)

g1(u)
,
f2(u)

g2(u)

)
 in the image plane. The 

points 
(

f1(u
(0))

g1(u
(0))
,
f2(u

(0))

g2(u
(0))

)
 and 

(
f1(u

⋆)

g1(u
⋆)
,
f2(u

⋆)

g2(u
⋆)

)
 are then marked in the image by ‘ ∗ ’ in blue 

and red, respectively. We will see from the figures that the output of Algorithm 5.1 
in each example is indeed as we expect.

Case I: Consider the ellipse

which can be represented by

where

and � = [−1, 1] (See [13]). The feasible set � is illustrated in Fig. 3 (left).
Consider the problem

Clearly, this problem is in Case I. By checking if a given point is in the ellipse � , 
it is easy to depict the image of � in the way aforementioned, which is shown in 
Fig. 3 (right). Let the initial point be u(0) = (−1, 1) in Algorithm 5.1. The output is 
u⋆ = u(2) = (−0.2138, 0.8319) . These points and their images are marked in Fig. 3.

Case II: Consider the set

where p(x1, x2, y1, y2) = −1 + x2
1
+ x2

2
+ (y1 − y2)

2x1x2 and

The set � is illustrated in Fig. 4 (left). The Hessian matrix of p with respect to x1 and 
x2 is

� = {(x1, x2) ∈ ℝ
2 ∣ 2x2

1
+ x2

2
+ 2x1x2 + 2x1 ≤ 0},

{(x1, x2) ∈ ℝ
2 ∣ p(x1, x2, y1) ≤ 0, ∀y1 ∈ �},

p(x1, x2, y1) = (y4
1
+ 2y3

1
− 3y2

1
− 2y1 + 1)x1 + 2y1(y

2
1
− 1)x2 − 2y2

1
,

Min
ℝ

2
+

{(
f1

g1
,
f2

g2

)
∶=

(
x2
1
+ x2

x2 + 1
, x2

1
− x2 + x1

)
||| x ∈ �

}
.

� = {(x1, x2) ∈ ℝ
2 ∣ p(x1, x2, y1, y2) ≤ 0, ∀y ∈ �}

� = {(y1, y2) ∈ ℝ
2 ∣ 1 − y2

1
− y2

2
≥ 0}.
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It is easy to see that p(x1, x2, y1, y2) is s.o.s-convex in (x1, x2) for every y ∈ �.
Consider the problem

Clearly, this problem is in Case II. To depict the image of � in the aforementioned 
way, we remark that � is in fact the area enclosed by the lines x1 + x2 = ±1 and the 
unit circle. Hence, it is easy to check whether a given point is in � . The image of � 
is shown in Fig. 4 (right). Let the initial point be u(0) = (0, 1) in Algorithm 5.1. The 

H =

[
2 (y1 − y2)

2

(y1 − y2)
2 2

]
with det(H) = 4 − (y1 − y2)

4.

Min
ℝ

2
+

{(
f1

g1
,
f2

g2

)
∶=

(
x2
2
− x1 + 1

−x2
1
+ 2

, x2
1
+ x2 + x1

)
||| x ∈ �

}
.

-3 -2 -1 0 1 2 3
x1

-3

-2

-1

0

1

2

3
x 2

Fig. 3  The feasible set � (left) and its image (right) in the example of Case I

-2 -1 0 1 2
x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x 2

Fig. 4  The feasible set � (left) and its image (right) in the example of Case II
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output is u⋆ = u(2) = (0.6822,−0.1476) . These points and their images are marked 
in Fig. 4.

Case III: Consider the polynomial h1(x1, x2, x3) in (30) and let

where p(x1, x2, y1) = −1 + h1(x1, x2, 1)∕100 − y1x1 − y2
1
x2 and � = [−1, 1] . Clearly, 

p(x, y1) is convex but not s.o.s-convex for every y1 ∈ � . We illustrate � in Fig.  5 
(left).

Consider the problem

For a given point u ∈ ℝ
2 , as p(u1, u2, y1) is a univariate quadratic function, it is easy 

to check whether −p(u1, u2, y1) is nonnegative on [−1, 1] (i.e., whether u ∈ � ). 
Hence, The image of � can be easily depicted in Fig. 5 (right). Clearly, ( P1 ) is in 
Case 3. Hence, we only need to solve ( P1 ) to get an efficient solution by Proposition 
5.1 and Theorem 5.4. We let the initial point be u(0) = (−0.6, 0.5) in Algorithm 5.1 
and solve ( P1 ) by the SDP relaxations for Case 3. We set the first order k = 4 and 
check if the rank condition (36) holds. If not, check the next order. We have 
rank�3(L

⋆
4
) = rank�4(L

⋆
4
) = 1 (within a tolerance < 10−8 ) for a minimizer L⋆

4
 of 

of rdual
4

 , i.e., the rank condition (36) holds for k� = 4 . By Theorem 5.3 (ii), the point 
u⋆ ∶=

L
⋆
4
(x)

L
⋆
4
(1)

= (0.000,−0.1623) is an efficient solution to (46). These points u(0), u⋆ 
and their images are marked in Fig. 5.

Case IV: Let h1(x1, x2, x3) be the polynomial in (30) and

where p(x1, x2, y1, y2) = (h1(x1, x2, 1)∕100 − 1) − y1y2(x1 + x2) and

� = {(x1, x2) ∈ ℝ
2 ∣ p(x1, x2, y1) ≤ 0, ∀y1 ∈ �},

(46)Min
ℝ

2
+

{(
f1

g1
,
f2

g2

)
∶=

(
x2
1
+ x2

2
+ 1

−x2
1
− x2 + 3

, x2
1
+ x2

2
− x1 + 1

)
||| x ∈ �

}
.

� = {(x1, x2) ∈ ℝ
2 ∣ p(x1, x2, y1, y2) ≤ 0, ∀y ∈ �},

-2 -1 0 1 2
x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 2

Fig. 5  The feasible set � (left) and its image (right) in the example of Case III
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Clearly, p(x, y) is convex but not s.o.s-convex for every y ∈ � . We illustrate � in 
Fig. 6 (left).

Consider the problem

To depict the image of � in the aforementioned way, we remark that � is in fact the 
area enclosed by the two curves p

�
x1, x2,±

√
2

2
,±

√
2

2

�
= 0 . Hence, it is easy to check 

whether a given point is in � . Then the image of � can be easily depicted in Fig. 6 
(right). Clearly, ( P1 ) is in Case 4. Again, we only need to solve ( P1 ). We let the ini-
tial point be u(0) = (−0.5, 0.5) in Algorithm 5.1 and solve ( P1 ) by the SDP relaxa-
tions for Case 4. We check if the rank condition (36) holds for the order initialized 
from 4. Similarly to Case III, when k = 4 and k� = 4 , the rank condition (36) holds 
for a minimizer L

⋆
4
 of rdual

4
 . By Theorem  5.3 (ii), the point 

u⋆ ∶=
L

⋆
4
(x)

L
⋆
4
(1)

= (0.1231, 0.000) is an efficient solution to (47). These points u(0), u⋆ 
and their images are marked in Fig. 6.   ◻

6  Conclusions

We focus on solving a class of FSIPP problems with some convexity/concavity 
assumption on the function data. We reformulate the problem to a conic optimization 
problem and provide a characteristic cone constraint qualification for convex SIP 
problems to bring sum-of-squares structures in the reformulation. In this framework, 
we first present a hierarchy of SDP relaxations with asymptotic convergence for the 
FSIPP problem whose index set is defined by finitely many polynomial inequalities. 

� = {(y1, y2) ∈ ℝ
2 ∣ 1 − y2

1
− y2

2
≥ 0}.

(47)Min
ℝ

2
+

{(
f1

g1
,
f2

g2

)
∶=

(
x2
1
+ x2

2
+ 1

−x2
2
+ x1 + 4

,
x2
1
+ x2

x1 + x2 + 2

)
||| x ∈ �

}
.

-2 -1 0 1 2
x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 2

Fig. 6  The feasible set � (left) and its image (right) in the example of Case IV
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Next, we study four cases of the FSIPP problems for which the SDP relaxation is 
exact or has finite convergence and at least one minimizer can be extracted. This 
approach is then applied to the four corresponding multi-objective cases to find effi-
cient solutions.

Appendix A

Consider the general convex semi-infinite programming problem

where h(⋅) , �1(⋅),… ,�s(⋅) , p(⋅, y) ∶ ℝ
m
→ ℝ for any y ∈ � , are continuous and con-

vex functions (not necessarily polynomials), p(x, y) ∶ ℝ
m ×ℝ

n
→ ℝ is a lower sem-

icontinuous function such that p(x, ⋅) ∶ ℝ
n
→ ℝ is continuous for all x ∈ ℝ

m , the 
index set � is an arbitrary compact subset in ℝn . We denote by � the feasible region 
of (48) and assume that � ≠ ∅ . Inspired by Jeyakumar and Li [23], we next provide 
a constraint qualification weaker than the Slater condition for (48) to guarantee the 
strong duality and the attachment of the solution in the dual problem.

Denote by M(�) the set of nonnegative measures supported on � . We first show 
that for all � ∈ M(�),

is a continuous and convex function. Indeed, it is clear that this function always 
takes finite value due to the continuity assumption of p(x, ⋅) for all x ∈ ℝ

m . Now, by 
Fatou’s lemma, for any x(k) → x,

This shows that Φ� is a lower semicontinuous function. Also, as p(⋅, y) is convex and 
� ∈ M(�) , it is easy to see that Φ� is also convex for all � ∈ M(�) . Thus, Φ� is a 
proper lower semicontinuous convex function which always takes finite value, and 
so, is continuous.

The Lagrangian dual of (48) reads

Recall the notation in (16),

(48)

⎧
⎪⎨⎪⎩

r⋆ ∶= inf
x∈ℝm

h(x)

s.t. 𝜓1(x) ≤ 0,… ,𝜓s(x) ≤ 0,

p(x, y) ≤ 0, ∀ y ∈ � ⊂ ℝ
n,

Φ� ∶ x ↦ ∫�

p(x, y)d�(y)

lim inf
k→∞ ��

p(x(k), y)d�(y) ≥ ��

p(x, y)d�(y).

(49)max
�∈M(�),�∈ℝs

+

inf
x∈ℝm

{
h(x) + ∫�

p(x, y)d�(y) +

s∑
j=1

�j�j(x)

}
.
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We say that the semi-infinite characteristic cone constraint qualification (SCCCQ) 
holds for � if C1 + C2 is closed.

Proposition A.1 The set C1 + C2 is a convex cone.

Proof As C2 is a convex cone due to [10, Theorem 2.123], we only need to prove that 
C1 is a convex cone.

We first prove that C1 is a cone. It is clear that (0, 0) ∈ C1 . Let 𝜆 > 0 and (�, �) ∈ C1 
Then, there exists �� ∈ M(�) such that (�, �) ∈ epi

(∫
�
p(⋅, y)d��(y)

)∗ . Let 
�̃� = 𝜆𝜇� ∈ M(�) . As Φ�� is continuous and convex, by [10, Theorem 2.123 (iv)],

Hence, �(�, �) ∈ C1.
Now it suffices to prove that co(C1) ⊆ C1 . Let (�, �) ∈ co(C1 ). As C1 is a cone in 

ℝ
m+1 , from the Carathedory theorem, there exist (�

�
, �

�
) ∈ C1 , � = 1,… ,m + 1 , 

such that (�, �) =
∑m+1

�=1
(�

�
, �

�
) . For each � = 1,… ,m + 1 , there exists �

�
∈ M(�) 

such that (�
𝓁
, �

𝓁
) ∈ epi

(∫
�
p(⋅, y)d�

𝓁
(y)

)∗ . Note that Φ�
�
 is continuous for each 

� = 1,… ,m + 1 . Let �̂� =
∑m+1

�=1
𝜇
�
∈ M(�) , then by [10, Theorem  2.123 (i) and 

Proposition 2.124],

The proof is completed.   ◻

Theorem A.1 Exactly one of the following two statements holds :  

 (i) (∃x ∈ ℝ
m) h(x) < 0, 𝜓j(x) ≤ 0, j = 1,… , s, p(x, y) ≤ 0,∀ y ∈ �;

 (ii) (0, 0) ∈ epi h∗ + cl(C1 + C2).

C1 =
⋃

�∈M(�)

epi

(
∫�

p(⋅, y)d�(y)

)∗

and C2 =
⋃
�∈ℝs

+

epi

(
s∑

j=1

�j�j

)∗

.

𝜆(𝜉, 𝛼) ∈ 𝜆epi

(
∫�

p(⋅, y)d𝜇�(y)

)∗

= epi

(
𝜆∫�

p(⋅, y)d𝜇�(y)

)∗

= epi

(
∫�

p(⋅, y)d�̃�(y)

)∗

.

(𝜉, 𝛼) =

m+1∑
𝓁=1

(𝜉
𝓁
, 𝛼

𝓁
) ∈

m+1∑
𝓁=1

epi

(
∫�

p(⋅, y)d𝜇
𝓁
(y)

)∗

= epi

(
m+1∑
𝓁=1

∫�

p(⋅, y)d𝜇
𝓁
(y)

)∗

= epi

(
∫�

p(⋅, y)d�̂�(y)

)∗

⊂ C1.
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Proof Let

and

It is easy to see that � = �1 ∩�2 and the indicator functions of �1 and �2 are

By Proposition A.1 and [33, Lemma 2.2], it holds that

Now, we show that [not (i)] is equivalent to [(ii)]. In fact,

By the continuity of h and [10, Theorem 2.123 (i)], we have

Hence, the conclusion follows.   ◻

Theorem A.2 Suppose that the SCCCQ holds for (48),  then there exist 𝜇⋆ ∈ M(�) 
and 𝜂⋆ ∈ ℝ

s
+
 such that

where r⋆ is the optimal value of (48).

Proof From the weak duality, we have

�1 ∶=

{
x ∈ ℝ

m ∶ ��

p(x, y)d�(y) ≤ 0, ∀� ∈ M(�)

}
,

�2 ∶=

{
x ∈ ℝ

m ∶

s∑
j=1

�j�j(x) ≤ 0, ∀� ∈ ℝ
s
+

}
.

��1
(x) = sup

�∈M(�)∫�

p(x, y)d�(y) and ��2
(x) = sup

�∈ℝs
+

s∑
j=1

�j�j(x).

epi (��1
)∗ = cl(C1) and epi (��2

)∗ = cl(C2).

[not (i)] ⇔ h(x) ≥ 0, ∀x ∈ �1 ∩�2

⇔ inf
x∈ℝm

{h(x) + ��1
(x) + ��2

(x)} ≥ 0

⇔ (0, 0) ∈ epi(h + ��1
+ ��2

)∗

epi (h + ��1
+ ��2

)∗ = epi h∗ + epi (��1
+ ��2

)∗

= epi h∗ + cl(epi (��1
)∗ + epi (��2

)∗)

= epi h∗ + cl(cl(C1) + cl(C2))

= epi h∗ + cl(C1 + C2)).

r⋆ = inf
x∈ℝm

{
h(x) + ∫�

p(x, y)d𝜇⋆(y) +

s∑
j=1

𝜂⋆
j
𝜓j(x)

}
,
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As we assume that � ≠ ∅ , r⋆ > −∞ . Applying Theorem A.1 with h replaced by h 
where h(x) = h(x) − r⋆ for all x ∈ ℝ

m , and making use of the SCCCQ, one has

Then, there exist (�, �) ∈ epi h∗ , 𝜇⋆ ∈ M(�) , (𝜏, 𝛽) ∈ epi
(∫

�
p(⋅, y)d𝜇⋆(y)

)∗ , 
𝜂⋆ ∈ ℝ

s
+
 , (𝜁 , 𝛾) ∈ epi

�∑s

j=1
𝜂⋆
j
𝜓j

�∗

 such that (𝜉, 𝛼) + (𝜏, 𝛽) + (𝜁 , 𝛾) = (0,−r⋆) . 
Then, for every x ∈ ℝ

m,

Then the conclusion follows by the weak duality.   ◻

Recall that the Slater condition holds for (48) if there exists u ∈ ℝ
m such that 

p(u, y) < 0 for all y ∈ � and 𝜓j(u) < 0 for all j = 1,… , s. We show that the Slater 
condition can guarantee the SCCCQ condition.

Proposition A.2 If the Slater condition holds for (48), then C1 + C2 is closed.

Proof Let 
(
w(k), v(k)

)
∈ C1 + C2 such that 

(
w(k), v(k)

)
→ (w, v) and we show that 

(w, v) ∈ C1 + C2 . For each k ∈ ℕ , there exist 
(
w(k,1), v(k,1)

)
∈ C1 and 

(
w(k,2), v(k,2)

)
∈ C2 

such that

Then, for each k ∈ ℕ , there exists a measure �(k) ∈ M(�) and �(k) ∈ ℝ
s
+
 such that 

for any x ∈ ℝ
m,

r⋆ ≥ max
𝜇∈M(�),𝜂∈ℝs

+

inf
x∈ℝm

{
h(x) + ��

p(x, y)d𝜇(y) +

s∑
j=1

𝜂j𝜓j(x)

}
.

(0, 0) ∈epi h
∗
+

⋃
𝜇∈M(�)

epi

(
∫�

p(⋅, y)d𝜇(y)

)∗

+
⋃
𝜂∈ℝs

+

epi

(
s∑

j=1

𝜂j𝜓j

)∗

=epi h∗ + (0, r⋆) +
⋃

𝜇∈M(�)

epi

(
∫�

p(⋅, y)d𝜇(y)

)∗

+
⋃
𝜂∈ℝs

+

epi

(
s∑

j=1

𝜂j𝜓j

)∗

.

− h(x) − ��

p(⋅, y)d𝜇⋆(y) −

s�
j=1

𝜂⋆
j
𝜓j(x)

= ⟨𝜉, x⟩ − h(x) + ⟨𝜏, x⟩ − ��

p(⋅, y)d𝜇⋆(y) + ⟨𝜁 , x⟩ −
s�

j=1

𝜂⋆
j
𝜓j(x)

≤ h∗(𝜉) +

�
��

p(⋅, y)d𝜇⋆(y)

�∗

(𝜏) +

�
s�

j=1

𝜂⋆
j
𝜓j

�∗

(𝜁)

≤ 𝛼 + 𝛽 + 𝛾 = −r⋆.

(
w(k), v(k)

)
=
(
w(k,1), v(k,1)

)
+
(
w(k,2), v(k,2)

)
.
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and

Therefore, for any x ∈ ℝ
m,

Without loss of generality, we may assume that (w, v) ∉ {0} ×ℝ+ since 
{0} ×ℝ+ ⊂ C1 + C2 . Hence, for each k ∈ ℕ , without loss of generality, we may 
assume that ∫

�
d𝜇(k)(y) +

∑s

j=1
𝜂
(k)

j
> 0 and let

Then, passing to subsequences if necessary, we may assume that there are a measure 
� ∈ M(�) and a point � ∈ ℝ

s
+
 such that the sequence {�̃�(k)} is weakly convergent to 

� by Prohorov’s theorem (c.f. [5, Theorem 8.6.2]) and the sequence {�̃�(k)} is conver-
gent to � . We claim that both ∫

�
d�(k)(y) and 

∑s

j=1
�
(k)

j
 are bounded as k → ∞ . If it is 

not the case, then dividing both sides of (52) by ∫
�
d�(k)(y) +

∑s

j=1
�
(k)

j
 and letting k 

tend to ∞ yealds

Recall that p(x, ⋅) ∶ ℝ
n
→ ℝ is continuous for all x ∈ ℝ

m . As the Slater condition 
holds and � is compact, there exist a point u ∈ ℝ

m and a constant c < 0 such that

a contradiction. Then, passing to subsequences if necessary, we may assume that 
there is a measure � ∈ M(�) and a point � ∈ ℝ

s
+
 such that the sequence {�(k)} is 

weakly convergent to � by Prohorov’s theorem again and the sequence {�(k)} is con-
vergent to � . Letting k tend to ∞ in (52) yealds that for any x ∈ ℝ

m

i.e., (w, v) ∈ epi
�∫

�
p(⋅, y)d�(y) +

∑s

j=1
�j�j

�∗

 . As both ∫
�
p(⋅, y)d�(y) and 

∑s

j=1
�j�j 

are continuous on ℝm , we have

(50)v(k,1) ≥ ⟨w(k,1), x⟩ − ��

p(x, y)d�(k)(y),

(51)v(k,2) ≥ ⟨w(k,2), x⟩ −
s�

j=1

�
(k)

j
�j(x).

(52)v(k) ≥ ⟨w(k), x⟩ − ��

p(x, y)d�(k)(y) −

s�
j=1

�
(k)

j
�j(x).

�̃�(k) =
𝜇(k)

∫
�
d𝜇(k)(y) +

∑s

j=1
𝜂
(k)

j

, �̃�(k) =
𝜂(k)

∫
�
d𝜇(k)(y) +

∑s

j=1
𝜂
(k)

j

.

0 ≥ −��

p(x, y)d�(y) −

s∑
j=1

�j�j(x), ∀x ∈ ℝ
m.

��

p(u, y)d𝜈(y) +

s∑
j=1

𝜉j𝜓j(u) ≤ c < 0,

v ≥ ⟨w, x⟩ − ��

p(x, y)d�(y) −

s�
j=1

�j�j(x),
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Therefore, the conclusion follows.   ◻
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