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Abstract
A method, called an augmented subgradient method, is developed to solve uncon-
strained nonsmooth difference of convex (DC) optimization problems. At each itera-
tion of this method search directions are found by using several subgradients of the 
first DC component and one subgradient of the second DC component of the objec-
tive function. The developed method applies an Armijo-type line search procedure 
to find the next iteration point. It is proved that the sequence of points generated by 
the method converges to a critical point of the unconstrained DC optimization prob-
lem. The performance of the method is demonstrated using academic test problems 
with nonsmooth DC objective functions and its performance is compared with that 
of two general nonsmooth optimization solvers and five solvers specifically designed 
for unconstrained DC optimization. Computational results show that the developed 
method is efficient and robust for solving nonsmooth DC optimization problems.
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1 Introduction

Consider an unconstrained optimization problem

where f ∶ ℝ
n
→ ℝ is, in general, nonsmooth and is expressed as a difference of two 

convex functions f1, f2 ∶ ℝ
n
→ ℝ:

Some important practical problems can be formulated as a nonsmooth DC program 
of the form (1). They include supervised data classification [6], cluster analysis [11, 
32], clusterwise linear regression analysis [10, 12] and edge detection [27] prob-
lems. Moreover, the DC optimization methods can be applied to solve a broad class 
of nonsmooth nonconvex optimization problems [38].

Different stationarity conditions, such as inf-stationarity (also called d-station-
arity), Clarke stationarity and criticality conditions, have been studied for uncon-
strained DC minimization problems [25]. In the paper [33], the notion of B-sta-
tionary points of nonsmooth DC problems was defined and its relation with the 
criticality condition was investigated.

The special structure of DC problems stimulates design of efficient methods by 
utilizing this structure. To date, DC optimization problems have been considered in 
the context of both local and global optimization. Several methods have been devel-
oped to solve these problems globally [23, 37]. To the best of our knowledge the dif-
ference of convex algorithm (DCA) is the first local search algorithm for solving DC 
optimization problems. This algorithm was introduced in [35] and further studied in 
[4, 5].

Over the last decade the development of local search methods for unconstrained 
nonsmooth DC optimization has attracted a noticeable attention. A short survey of 
such methods can be found in [19]. Without loss of generality, methods for local 
DC optimization can be divided into three groups. The first group consists of meth-
ods which are extensions of the bundle methods for convex problems. They include 
the codifferential method [13], the proximal bundle method with the concave affine 
model [22], the proximal bundle method for DC optimization [17, 24] and the dou-
ble bundle method [25]. In these methods piecewise linear underestimates of both 
DC components or subgradients of these components are used to compute search 
directions.

The second group consists of the DCA, its modifications and extensions. 
Although the DCA performs well in practice, its convergence can be fairly slow for 
some particular problems. Various modifications of the DCA have been developed 
to improve its convergence. The inertial DCA was developed in [20]. In papers [2, 
3], the boosted DC algorithm (BDCA) was proposed to minimize smooth DC func-
tions. The BDCA accelerates the convergence of the DCA using an additional line 
search step. More precisely, it performs a line search at the point generated by the 
DCA which leads to a larger decrease in the objective value at each iteration. In [1], 

(1)
{

minimize f (x)

subject to x ∈ ℝ
n,

f (x) = f1(x) − f2(x).
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the BDCA is combined with a simple derivative free optimization method which 
allows one to force the d-stationarity (lack of descent direction) at the obtained 
point. To avoid the difficulty of solving the DCA’s subproblem, in [18] the first DC 
component is replaced with a convex model and the second DC component is used 
without any approximation.

The third group consists of algorithms that at each iteration apply the convex 
piecewise linear model of the first DC component and one subgradient of the sec-
ond DC component to compute search directions. These algorithms differ from the 
DCA-type algorithms as at each iteration they update the model of the first DC com-
ponent and calculate the new subgradient of the second component. They are also 
distinctive from methods of the first group because they use one subgradient of the 
second DC component whereas the latter methods may use more than one subgradi-
ent of this component to build its piecewise linear model. A representative of this 
group is the aggregate subgradient method for DC optimization developed in [9]. In 
this algorithm the aggregate subgradient of the first DC component and one subgra-
dient of the second component are used to compute search directions.

In this paper, we introduce a new method which belongs to the third group. First, 
we define augmented subgradients of the convex functions. Using them we construct 
the model of the first DC component. This model and one subgradient of the sec-
ond DC component are utilized to compute search directions. Then we design a new 
method which uses these search directions and applies the Armijo-type line search. 
We prove that the sequence of points generated by this method converges to critical 
points of the DC function. We utilize nonsmooth DC optimization test problems, 
including those with large number of variables, to demonstrate the performance of 
the developed method and to compare it with two general methods of nonsmooth 
optimization and five methods of nonsmooth DC optimization. Our results show 
that, in general, the developed method is more robust than other methods used in the 
numerical experiments.

The rest of the paper is organized as follows. In Sect. 2, we provide necessary 
notations and some preliminaries on the nonsmooth analysis and DC optimization. 
In Sect. 3, the new method is introduced and its convergence is studied. Results of 
numerical experiments are reported in Sect. 4, and concluding remarks are given in 
Sect. 5.

2  Preliminaries

In this section we provide the notations that will be used throughout the paper and 
recall some concepts of nonsmooth analysis and DC optimization. For more details 
on nonsmooth analysis, we refer to [7, 8].

In what follows, ℝn is the n-dimensional Euclidean space, uTv =
∑n

i=1
uivi 

is the inner product of vectors u, v ∈ ℝ
n , and ‖ ⋅ ‖ is the associated Euclid-

ean norm. The origin of ℝn is denoted by 0n . The unit sphere is denoted by 
S1 = {d ∈ ℝ

n ∶ ‖d‖ = 1} . For x ∈ ℝ
n and 𝜀 > 0 , B�(x) is an open ball of the radius 

𝜀 > 0 centred at x. The convex hull of a set is denoted by “ conv ” and “cl” stands for 
the closure of a set.
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The function f ∶ ℝ
n
→ ℝ is locally Lipschitz continuous on ℝn if for every x ∈ ℝ

n 
there exist a Lipschitz constant L > 0 and 𝜀 > 0 such that �f (y) − f (z)� ≤ L‖y − z‖ for 
all y, z ∈ B�(x).

The subdifferential of a convex function f ∶ ℝ
n
→ ℝ at a point x ∈ ℝ

n is the set

Each vector � ∈ �f (x) is called a subgradient of f at x. The subdifferential �f (x) is 
a nonempty, convex and compact set such that 𝜕f (x) ⊆ BL(0) , where L > 0 is the 
Lipschitz constant of f. In addition, the subdifferential mapping �f (x) is upper 
semicontinuous.

For � ≥ 0 , the �-subdifferential of a convex function f at a point x ∈ ℝ
n is defined by

Each vector �� ∈ ��f (x) is called an �-subgradient of f at x. The set ��f (x) contains 
the subgradient information from some neighborhood of x as the following theorem 
shows.

Theorem  1 [8] Let f ∶ ℝ
n
→ ℝ be a convex function with the Lipschitz constant 

L > 0 at a point x ∈ ℝ
n . Then for � ≥ 0

The following theorem presents a necessary condition for Problem (1).

Theorem 2 [5, 36] If x∗ ∈ ℝ
n is a local minimizer of Problem (1), then

A point x∗ , satisfying the condition (2), is called inf-stationary for Problem (1). The 
optimality condition (2) is, in general, hard to verify and is usually relaxed to the fol-
lowing condition [5, 36]:

A point x∗ ∈ ℝ
n , satisfying (3), is called a critical point of the function f. In a similar 

way, we can define an �-critical point. Let � ≥ 0 , a point x∗ ∈ ℝ
n is said to be an �

-critical point of f if [34]

3  Augmented subgradient method

In this section we describe the new method and study its convergence. We start with 
the definition of augmented subgradients of convex functions.

�f (x) =
{
� ∈ ℝ

n ∶ f (y) ≥ f (x) + �T (y − x), ∀y ∈ ℝ
n
}
.

��f (x) =
{
�� ∈ ℝ

n ∶ f (y) ≥ f (x) + �T
�
(y − x) − �, ∀y ∈ ℝ

n
}
.

𝜕f (y) ⊆ 𝜕𝜀f (x), ∀y ∈ B 𝜀

2L

(x).

(2)𝜕f2(x
∗) ⊆ 𝜕f1(x

∗).

(3)�f1(x
∗) ∩ �f2(x

∗) ≠ �.

(4)��f1(x
∗) ∩ ��f2(x

∗) ≠ �.
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3.1  Augmented subgradients

Let � ∶ ℝ
n
→ ℝ be a convex function and U ⊂ ℝ

n be a compact set. Take any 
x, y ∈ U . In particular, y = x . Let � ∈ ��(y) be any subgradient computed at the 
point y. The linearization error of this subgradient at the point x is defined as:

It is clear that

Definition 1 A vector u ∈ ℝ
n+1 is called an augmented subgradient of the convex 

function � at the point x with respect to the compact set U ⊂ ℝ
n if there exists y ∈ U 

such that u =
(
�(x, y, �), �

)
, where � ∈ ��(y) and �(x, y, �) is defined by (5).

Note that there is some similarity between augmented subgradients and elements 
of codifferentials considered in [15, 40].

The set DU�(x) of all augmented subgradients at the point x with respect to the 
set U is defined as:

For u ∈ DU�(x) we will use the notation u = (�, �) where � ≥ 0 and � ∈ ℝ
n . If we 

take y = x, then in this case � = 0 . Therefore, the set DU�(x) contains also elements 
of the form (0, �) where � ∈ ��(x).

Proposition 1 The set DU�(x) is compact and convex for any x ∈ U.

Proof The proof follows from the definition of the set DU�(x) and from the fact that 
the subdifferential of the function � is bounded on bounded sets.   ◻

It follows from (6) that for any x, y ∈ U we have

Consider the following two sets at the point x ∈ U:

Take any x ∈ ℝ
n , 𝜏 > 0 and consider the closed ball B̄𝜏(x). Let U = B̄𝜏(x) and 

DU�(x) be the set of augmented subgradients at the point x with respect to U.

(5)�(x, y, �) = �(x) −
[
�(y) + �T (x − y)

]
≥ 0.

(6)�(y) − �(x) = −�(x, y, �) + �T (y − x).

DU�(x) = cl conv
{
u ∈ ℝ

n+1 ∶ ∃
(
y ∈ U, � ∈ ��(y)

)
, u =

(
�(x, y, �), �

)}
.

(7)�(y) − �(x) ≤ max
u∈DU�(x)

[
− � + �T (y − x)

]
.

A(x) =
{
� ≥ 0 ∶ ∃

(
y ∈ U, � ∈ ��(y)

)
, (�, �) ∈ DU�(x)

}
,

C(x) =
{
� ∈ ℝ

n ∶ ∃ � ≥ 0, (�, �) ∈ DU�(x)
}
.
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Proposition 2 Let x ∈ ℝ
n, 𝜏 > 0, U = B̄𝜏(x) and L > 0 be a Lipschitz constant of � 

on B̄𝜏(x) . Then for 𝜀 > 2L𝜏 we have

Proof The result for � follows from its definition. Furthermore, Theorem 1 implies 
that if 𝜀 > 2L𝜏, then 𝜕𝜑(y) ⊆ 𝜕𝜀𝜑(x) for all y ∈ B̄𝜏(x). Then the proof is obtained 
from the definition of the set C(x).   ◻

One interesting case is when U = {x} . In this case � = 0 , and therefore, we have

Next we consider the DC function f (x) = f1(x) − f2(x) . Again assume that U ⊂ ℝ
n is 

a compact set and x ∈ U . Define the set of augmented subgradients DUf1(x) for the 
function f1 and the set Dxf2(x) for the function f2 . Construct the set

Proposition 3 Let f ∶ ℝ
n
→ ℝ be a DC function and U ⊂ ℝ

n be a compact set. Then 
at a point x ∈ U we have

Proof Let y ∈ U be any point. Taking into account the convexity of the function f2 
and applying (6) to the function f1 at y we get that for �1 ∈ �f1(y), �2 ∈ �f2(x) the 
following holds:

It is clear that 
(
�(x, y, �1), �1 − �2

)
∈ DUf (x) , and thus the proof is complete.   ◻

The following corollary can be easily obtained from Proposition 3.

Corollary 1 Let x ∈ ℝ
n and U = B̄𝜏(x), 𝜏 > 0 . Then for any d ∈ S1 we have

0 ≤ 𝛼 ≤ 2L𝜏 ∀𝛼 ∈ A(x) and C(x) ⊆ 𝜕𝜀𝜑(x).

DU�(x) ≡ Dx�(x) =
{
u ∈ ℝ

n+1 ∶ u = (0, �), � ∈ ��(x)
}
.

DUf (x) = DUf1(x) − Dxf2(x).

(8)f (y) ≤ f (x) + max
(�,�)∈DUf (x)

{
− � + �T (y − x)

}
, y ∈ U.

f (y) = f1(y) − f2(y)

≤ f1(x) − �(x, y, �1) + �T
1
(y − x) −

(
f2(x) + �T

2
(y − x)

)

=
(
f1(x) − f2(x)

)
− �(x, y, �1) + (�1 − �2)

T (y − x)

= f (x) +
(
− �(x, y, �1) + (�1 − �2)

T (y − x)
)
.

(9)f (x + �d) ≤ f (x) + max
(�,�)∈DUf (x)

{
− � + ��Td

}
∀� ∈ [0, �].
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3.2  The model

In order to find search direction in Problem (1) we use the following model of the 
objective function f. Take any point x ∈ ℝ

n and the number � ∈ (0, 1] . Consider 
the closed ball B̄𝜏(x) . Compute the set DUf (x) at x for U = B̄𝜏(x) . Then we replace 
the function f on U by the following function:

Proposition 4 The function f̂  is convex, f (y) ≤ f̂ (y) for all y ∈ U and f̂ (x) = f (x).

Proof Convexity of the function f̂  follows from its definition. For any y ∈ B̄𝜏(x) 
there exist d ∈ S1 and � ∈ [0, �] such that y = x + �d . Then by applying Corollary 1 
we get that f (y) ≤ f̂ (y) for all y ∈ U . Finally, for the point x we have

Since (0, �) ∈ DUf (x) and � ≥ 0 for all (�, �) ∈ DUf (x) we have

Therefore, f̂ (x) = f (x) .   ◻

Proposition 5 For any y ∈ U we have

where R̂(y) =
{
(𝛼, 𝜉) ∈ DUf (x) ∶ f̂ (y) = f (x) − 𝛼 + 𝜉T (y − x)

}
 . In particular,

Proof The function f̂  is convex and all functions under maximum in its expres-
sion are linear with respect to y. Then the expression for the subdifferential 
𝜕f̂ (y) follows from Theorem 3.23 [8]. Since f̂ (x) = f (x) at the point x we get that 
R̂(x) =

{
(𝛼, 𝜉) ∈ DUf (x) ∶ 𝛼 = 0

}
 . Then we obtain the expression (11) for the sub-

differential 𝜕f̂ (x) .   ◻

Results from Propositions 4 and 5 show that the set DUf (x) can be used to 
find search directions of the DC function f which is demonstrated in the next 
proposition.

Proposition 6 Assume that the set DUf (x) is constructed using U = B̄𝜏(x), � ∈ (0, 1] . 
In addition assume 0n+1 ∉ DUf (x) and

(10)f̂ (y) = f (x) + max
(𝛼,𝜉)∈DUf (x)

{
− 𝛼 + 𝜏𝜉T (y − x)

}
, y ∈ U.

f̂ (x) = f (x) + max
(𝛼,𝜉)∈DUf (x)

{−𝛼}.

max
(�,�)∈DUf (x)

{−�} = 0.

𝜕f̂ (y) = conv
{
𝜉 ∈ ℝ

n ∶ ∃ 𝛼 ≥ 0 ∶ (𝛼, 𝜉) ∈ R̂(y)
}
,

(11)𝜕f̂ (x) = conv
{
𝜉 ∈ ℝ

n ∶ (0, 𝜉) ∈ DUf (x)
}
.
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Then

where d = −‖w‖−1�.

Proof The set DUf (x) is compact and convex. Then the necessary condition for a 
minimum implies that

Taking into account that ‖w‖2 = �
2
+ ‖�‖2 we get

First we show that � ≠ 0n . Assume the contrary, that is � = 0n . Since w ≠ 0n+1 it 
follows that � ≠ 0 and therefore, 𝛼 > 0 . It follows from (13) that 0 < 𝛼 ≤ 𝛼 for 
all (�, �) ∈ DUf (x) which is a contradiction since the element (0, �) is included in 
DUf (x) . Therefore � ≠ 0n which implies that d ≠ 0n.

Dividing both sides of (13) by −‖w‖ , we obtain

Note that ‖w‖−1� ∈ (0, 1) . Since � ∈ (0, 1] it is obvious that ‖w‖−1�� ∈ (0, 1) . Fur-
thermore, since � ≥ 0 for all (�, �) ∈ DUf (x) we get

where the last inequality comes from (14). From here and by applying (9), we obtain 
that f (x + �d) − f (x) ≤ −�‖w‖ . This means that d is a descent direction of the func-
tion f at the point x ∈ ℝ

n .   ◻

3.3  The proposed algorithm

Now we introduce the augmented subgradient method (ASM-DC) for solving DC 
optimization problem (1). Let the search control parameter c1 ∈ (0, 1) , the line 
search parameter c2 ∈ (0, c1] , the decrease parameter c3 ∈ (0, 1) and the tolerance 
𝜃 > 0 for criticality condition be given. 

(12)‖w‖2 = min
�
‖w‖2 ∶ w ∈ DUf (x)

�
> 0, with w = (𝛼, 𝜉).

f (x + �d) − f (x) ≤ −�‖w‖,

w
T
(w − w) ≥ 0, ∀w ∈ DUf (x).

(13)�
2
+ ‖�‖2 ≤ �� + �T�, ∀w = (�, �) ∈ DUf (x).

(14)−
��

‖w‖
+ �Td ≤ −‖w‖, ∀w = (�, �) ∈ DUf (x).

−� + ��Td ≤
−���

‖w‖
+ ��Td

= �

�
−��

‖w‖
+ �Td

�

≤ −�‖w‖,
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Some explanations to Algorithm 1 are essential. This algorithm consists of outer 
and inner loops. In the inner loop we compute augmented subgradients of the DC 
components and the subset D̂k

l
 of the set of augmented subgradients (Steps 1 and 
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4). We use this subset to formulate a quadratic programming problem to find search 
directions (Step 2). This problem can be rewritten as:

Here the set D̂k
l
 is a polytope. There are several algorithms for solving such problems 

[21, 29, 39]. The algorithm exits the inner loop when either the distance between the 
set of augmented subgradients and the origin is sufficiently small (that is the condi-
tion (15) is satisfied), or we find the direction of sufficient decrease (Step 4). In the 
first case the current value of the parameter � does not allow to improve the solution 
and should be updated. In the second case the line search procedure is applied.

In the outer loop we update parameters of the method (Step 5) and apply the line 
search procedure to find a new solution (Step 6). Since it is not easy to find the 
exact value of the step-length �l in Step 6 we propose the following scheme to esti-
mate it in the implementation of the algorithm. It is clear that �l ≥ �l . Consider the 
sequence {�̄�i}, i = 1, 2,… where �̄�1 = 𝜏l and �̄�i = 2i−1�̄�1, i = 1, 2,… . We compute 
the largest i ≥ 1 satisfying the condition in Step 6. Then �̄�l = 2i−1𝜏l is the estimate 
of �l . The algorithm stops when values of its parameters become sufficiently small 
(Step 5). This means that an approximate criticality condition is achieved.

3.4  Global convergence

In this section we study the global convergence of Algorithm 1. First, we prove that 
for each l ≥ 0 the number of inner iterations of this algorithm is finite. At the point 
xl ∈ ℝ

n for a given 𝜏l > 0, l > 0 define the following numbers:

It follows from Proposition 2 that Kl < ∞ for all l > 0.

Proposition 7 Let 𝛿l ∈ (0,Kl), l > 0 . Then the inner loop at the l-th iteration of the 
ASM-DC stops after ml iterations, where

Proof We proof the proposition by contradiction. This means that at the l-th itera-
tion for any k ≥ 1 the condition (15) is not satisfied and the condition (16) is satis-
fied, that is ‖wk

l
‖ ≥ �l and

First, we show that the new augmented subgradient

�
minimize ‖w‖2
subject to w ∈ D̂k

l
.

(17)Kl = max
�
‖w‖ ∶ w ∈ DUf (xl)

�
, Ml = 1 −

�
(1 − c1)(2Kl)

−1�l

�2

.

ml ≤
2 log2(�l∕Kl)

log2(Ml)
+ 1.

(18)f (xl + 𝜏ld
k+1
l

) − f (xl) > −c1𝜏l‖w
k

l
‖, ∀k ≥ 1.

wk+1
l

≡ (�k+1
l

, �k+1
l

) = (�k+1
l

, �k+1
1l

− �2l) = (�k+1
l

, �k+1
1l

) − (0, �2l),



421

1 3

An augmented subgradient method for minimizing nonsmooth…

computed at Step 4 does not belong to the set D̂k
l
 . Assume the contrary, that is 

wk+1
l

∈ D̂k
l
. It follows from the definition (5) of the linearization error that

Since �2l ∈ �f2(xl) the subgradient inequality implies that

Subtracting this from (19) we get

Applying (18) and taking into account that �k+1
l

= �k+1
1l

− �2l , we have

or

which, by taking into account that c1 ∈ (0, 1) , can be rewritten as

On the other side, since ‖wk

l
‖2 = min

�
‖w‖2 ∶ w ∈ D̂k

l

�
 it follows from the neces-

sary condition for a minimum that ‖wk

l
‖2 ≤ wTw

k

l
 for all w ∈ D̂k

l
 , where w = (�, �) 

and wk

l
= (�

k

l
, �

k

l
) . Hence we obtain

In particular, for wk+1
l

= (𝛼k+1
l

, 𝜉k+1
l

) ∈ D̂k
l
 we have ‖wk

l
‖2 ≤ �

k

l
�k+1
l

+
�
�
k

l

�T

�k+1
l

. 
Since �k

l
≤ ‖wk

l
‖ and �k+1

l
≥ 0 we get �k

l
�k+1
l

≤ �k+1
l

‖wk

l
‖ . Next taking into account 

that �l ∈ (0, 1) , we have

which contradicts (20). Thus, wk+1
l

∉ D̂k
l
.

Note that for all t ∈ [0, 1] we have

(19)f1(xl + �ld
k+1
l

) − f1(xl) = −�k+1
l

+ �l

(
�k+1
1l

)T

dk+1
l

.

f2(xl + �ld
k+1
l

) − f2(xl) ≥ �l�
T
2l
dk+1
l

.

f (xl + �ld
k+1
l

) − f (xl) ≤ �l

(
�k+1
1l

− �2l

)T

dk+1
l

− �k+1
l

.

−c1𝜏l‖w
k

l
‖ < 𝜏l

�
𝜉k+1
l

�T

dk+1
l

− 𝛼k+1
l

,

−c1‖w
k

l
‖2 < −

�
𝜉k+1
l

�T

𝜉
k

l
−

𝛼k+1
l

𝜏l
‖wk

l
‖,

(20)
�
𝜉k+1
l

�T

𝜉
k

l
+

𝛼k+1
l

𝜏l
‖wk

l
‖ < c1‖w

k

l
‖2 < ‖wk

l
‖2.

‖wk

l
‖2 ≤ 𝛼

k

l
𝛼 +

�
𝜉
k

l

�T

𝜉, ∀w = (𝛼, 𝜉) ∈ D̂k
l
.

‖wk

l
‖2 ≤ �k+1

l
‖wk

l
‖ +

�
�
k

l

�T

�k+1
l

≤
�k+1
l

�l
‖wk

l
‖ +

�
�
k

l

�T

�k+1
l

,
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It follows from (20) that

In addition, the definition of Kl implies that ‖wk+1
l

− w
k

l
‖ ≤ 2Kl . Then we get

Let t0 = (1 − c1)(2Kl)
−2‖wk

l
‖2 . Note that t0 ∈ (0, 1), and for t = t0 we have

Since ‖wk

l
‖ ≥ �l we get

Furthermore, since �l ∈ (0,Kl) it follows from (17) that Ml ∈ (0, 1) and 
‖wk+1

l
‖2 < Ml‖w

k

l
‖2 . Then we have

Hence ‖wml

l
‖ < 𝛿l is satisfied if Mml−1

l
K2
l
< 𝛿2

l
 . This inequality must happen after at 

most ml iterations, where

This completes the proof.  ◻

Definition 2 A point x ∈ ℝ
n is called a (�, �)-critical point of Problem (1) if

Proposition 8 Let 𝜏, 𝛿 > 0 be given numbers, x ∈ ℝ
n be a (�, �)-critical point of 

Problem (1) and L1 > 0 be a Lipschitz constant of the function f1 at the point x. Then 
there exists �2 ∈ �f2(x) such that for any 𝜀 > 2L1𝜏

‖wk+1

l
‖2 ≤ ‖twk+1

l
+ (1 − t)w

k

l
‖2

= ‖wk

l
‖2 + 2t

�
w
k

l

�T

(wk+1
l

− w
k

l
) + t2‖wk+1

l
− w

k

l
‖2.

�
w
k

l

�T

wk+1
l

= 𝛼
k

l
𝛼k+1
l

+
�
𝜉
k

l

�T

𝜉k+1
l

<
𝛼k+1
l

𝜏l
‖wk

l
‖ +

�
𝜉
k

l

�T

𝜉k+1
l

< c1‖w
k

l
‖2.

‖wk+1

l
‖2 < ‖wk

l
‖2 + 2tc1‖w

k

l
‖2 − 2t‖wk

l
‖2 + 4K2

l
t2

= ‖wk

l
‖2 − 2t(1 − c1)‖w

k

l
‖2 + 4K2

l
t2.

‖wk+1

l
‖2 <

�
1 −

�
(1 − c1)(2Kl)

−1‖wk

l
‖
�2�

‖wk

l
‖2.

‖wk+1

l
‖2 <

�
1 −

�
(1 − c1)(2Kl)

−1𝛿l
�2�‖wk

l
‖2.

‖wml

l
‖2 < Ml‖w

ml−1

l
‖2 < … < M

ml−1

l
‖wl

1‖2 < M
ml−1

l
K2
l
.

ml ≤
2 log2(�l∕Kl)

log2(Ml)
+ 1.

min
�
‖w‖ ∶ w ∈ DUf (x)

�
≤ �.
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Proof Let U = B̄𝜏(x) . If x is the (�, �)-critical point, then there exists w ∈ DUf (x) 
such that ‖w‖ < 𝛿 . The element w can be represented as

for some (�, �1) ∈ DUf1(x) and (0, �2) ∈ Dxf2(x) . Hence, ‖𝜉1 − 𝜉2‖ < 𝛿 . It follows 
from Proposition 2 that �1 ∈ ��f1(x) for all 𝜀 > 2L1𝜏 . In addition �2 ∈ �f2(x) . Then 
we get the proof.   ◻

It follows from Proposition 8 that for sufficiently small � and � the (�, �)-critical 
point can be interpreted as an approximate critical point of Problem (1). Further-
more, note that if at the l-th iteration ( l > 0 ) of Algorithm 1 the inner loop termi-
nates with the condition (15), then xl is an (�l, �l)-critical point of Problem (1).

Next, we prove the convergence of Algorithm 1. For a starting point x0 ∈ ℝ
n 

consider the level set Lf (x0) of the function f:

Theorem 3 Suppose that the level set Lf (x0) is bounded and � = 0 in Algorithm 1. 
Then Algorithm 1 generates the sequence of approximate critical points whose accu-
mulation points are critical points of Problem (1).

Proof The ASM-DC consists of inner and outer loops. The values of parameters �l 
and �l are constants in the inner loop. In addition, these parameters are also con-
stants in Steps 6 and 7. It follows from Proposition 7 that for given �l and �l , the 
inner loop stops after a finite number of iterations.

Since the set Lf (x0) is bounded (and compact) the function f is bounded from 
below. This means that f∗ = min

{
f (x) ∶ x ∈ ℝ

n
}
> −∞ . For given �l and �l the 

number of executions of Steps 6 and 7 is finite. To prove this we assume the con-
trary, that is the number of executions of these steps is infinite. Then for some k ≥ 1 
the direction d

k

l
 , computed in Step 3, is the direction of sufficient decrease at xl satis-

fying the following condition:

Since ‖wk

l
‖ ≥ �l , �l ≥ �l and c2 ∈ (0, c1] we have

From here we get

�2 ∈ ��f1(x) + B�(0n).

w = (�, �1) − (0, �2) = (�, �1 − �2),

Lf (x0) =
{
x ∈ ℝ

n ∶ f (x) ≤ f (x0)
}
.

f (xl + �ld
k

l
) − f (xl) ≤ −c1�l‖w

k

l
‖.

f (xl+1) − f (xl) = f (xl + �ld
k

l
) − f (xl) ≤ −c2�l‖w

k

l
‖ ≤ −c2�l�l.

f (xl+1) ≤ f (x0) − (l + 1)c2�l�l.
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Then we have f (xl) → −∞ as l → ∞ which contradicts to the condition f∗ > −∞ . 
This means that for fixed values of �l and �l , after finite number of iterations the 
inner loop will terminate with the condition (15) and xl is the (�l, �l)-critical point.

Thus parameters �l and �l are updated in Step 5 after a finite number of outer iter-
ations. Denote these iterations by lj, j = 1, 2,… and xlj are (�lj , �lj )-critical point. It 
follows from Proposition 8 that for some �2lj ∈ �f2(xlj )

It is obvious that xlj ∈ Lf (x0) for all j = 1, 2,… . The compactness of the set Lf (x0) 
implies that the sequence {xlj} has at least one accumulation point. Let x∗ be an accu-
mulation point and for the sake of simplicity assume that xlj → x∗ as j → ∞.

Upper semicontinuity of the subdifferential and �-subdifferential mappings 
implies that for any 𝜂 > 0 there exist 𝛾1 > 0 and 𝛾2 > 0 such that

for all y ∈ B�1
(x∗) and � ∈ [0, �2) . Since xlj → x∗ and �lj → 0 as j → ∞ there exists 

j𝜂 > 0 such that xlj ∈ B�1
(x∗) and �lj ∈ [0, �2) for all j > j𝜂 . Moreover, we can choose 

the sequence {�j} so that �j ∈ [0, �2) for all j > j𝜂 and �j → 0 as j → ∞ . Then, it fol-
lows from (21) and the first part of (22) that for any j > j𝜂 there exists �2lj ∈ ��f1(xlj ) 
such that

On the other hand, from the second part of (22) we get that for any �2lj ∈ �f2(x
∗) 

there exists 𝜉2 ∈ 𝜕f2(x
∗) such that ‖𝜉2lj − 𝜉2‖ < 𝜂 . Without loss of generality assume 

that 𝜉2lj → 𝜉2 ∈ 𝜕f2(x
∗) as j → ∞ . Since �lj → 0 as j → ∞ we get that

Taking into account that 𝜂 > 0 is arbitrary we have 𝜉2 ∈ 𝜕f1(x
∗) , that is 

�f1(x
∗) ∩ �f2(x

∗) ≠ � . This completes the proof.   ◻

Remark 1 The “escape procedure”, introduced in [25], is able to escape from critical 
points which are not Clarke stationary. The developed algorithm can be combined 
with this procedure to design an algorithm for finding Clarke stationary points of 
Problem (1).

4  Numerical results

Using some academic test problems we evaluate the performance of the devel-
oped method and compare it with other similar nonsmooth optimization methods. 
We utilize 30 academic test problems which belong to 14 instance problems with 
various dimensions (ranging from 2 to 100): Problems 1-10 are from [24] and 

(21)𝜉2lj ∈ 𝜕�f1(xlj ) + B𝛿lj
(0n), � > 2L1𝜏lj .

(22)𝜕𝜀f1(y) ⊂ 𝜕f1(x
∗) + B𝜂(0n) and 𝜕f2(y) ⊂ 𝜕f2(x

∗) + B𝜂(0n),

�2lj ∈ �f1(x
∗) + B�+�lj

(0n).

𝜉2 ∈ 𝜕f1(x
∗) + B2𝜂(0n).
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Problems 11–14 are described in [26]. In addition, we use three large-scale nons-
mooth DC optimization problems in our numerical experiments. We design these 
problems such that different types of DC components are considered:

– PL1 : the function f1 is smooth and the function f2 is nonsmooth;
– PL2 : the function f1 is nonsmooth and the function f2 is smooth;
– PL3 : both functions f1 and f2 are nonsmooth.

The DC components of these test problems, f (x) = f1(x) − f2(x) , are given below:

– PL1.

 Starting point: x = (x1,… , xn) = (3,… , 3).
– PL2.

 Starting point: x = (x1,… , xn) = (2,… , 2).
– PL3.

 Starting point: x = (x1,… , xn) = (2,… , 2).
We set the number of variables to n = 200, 500, 1000, 1500, 2000, 3000, 5000 for 
these three test problems.

4.1  Solvers and parameters

We apply seven nonsmooth optimization solvers for comparison. Among these solvers 
five are designed for solving DC optimization problems and two of them are general 
solvers for nonsmooth nonconvex optimization problems. These solvers are:

f1(x) =

n−1∑

i=1

(
(xi − 2)2 + (xi+1 − 1)2 + exp(2xi − xi+1)

)
,

f2(x) =

n−1∑

i=1

max
(
(xi − 2)2 + (xi+1 − 1)2, exp(2xi − xi+1)

)
.

f1(x) = n max
i=1,…,n

( n∑

j=1

x2
j

i + j − 1

)
,

f2(x) =

n∑

i=1

n∑

j=1

x2
j

i + j − 1
.

f1(x) = n max
i=1,…,n

|||

n∑

j=1

xj

i + j − 1

|||,

f2(x) =

n∑

i=1

|||

n∑

j=1

xj

i + j − 1

|||.
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– Aggregate subgradient method for DC optimization (AggSub) [9];
– Proximal bundle method for DC optimization (PBDC) [24];
– DC Algorithm (DCA) [4, 5];
– Proximal bundle method for nonsmooth DC programming (PBMDC) [17];
– Sequential DC programming with cutting-plane models (SDCA-LP) [18];
– Proximal bundle method (PBM) [30, 31];
– Hybrid Algorithm for Nonsmooth Optimization (HANSO 2.2) [14, 28].

The quadratic programming problem in Step 2 of the ASM-DC is solved using the 
algorithm from [39]. Parameters in the ASM-DC are chosen as follows: c1 = 0.2 , 
c2 = 0.05 , c3 = 0.1 , � = 5 ⋅ 10−7 , �l+1 = 0.1�l with �1 = 1, �l = 10−7 for all l. The 
algorithms ASM-DC, AggSub, PBDC, DCA, PBM are implemented in Fortran 
95 and compiled using the gfortran compiler. For HANSO, we use the MATLAB 
implementation of HANSO version 2.2 which is available in

“https:// cs. nyu. edu/ overt on/ softw are/ hanso/”. For PBMDC and SDCA-LP, we 
utilize the MATLAB implementations which are available in

“http:// www. olive ira. mat. br/ solve rs”. Note that the SDCA-LP requires the fea-
sible set to be compact. However, all test problems considered in this paper are 
unconstrained. In order to apply the SDCA-LP to these problems we define a large 
n-dimensional box around the starting point and consider only those points, gener-
ated by the SDCA-LP, that belong to this box. The parameters of all these algo-
rithms are chosen according to the values recommended in their references. In addi-
tion, we consider a time limit for all algorithms, that is three hours for solvers in 
MATLAB and half an hour for implemented in Fortran.

4.2  Evaluation measures and notations

We use the number of function evaluations, the number of subgradient evaluations 
and the final value of the objective function obtained by algorithms to report the 
results of our experiments. The following notations are used:

– P is the label of a test problem;
– n is the number of variables in the problem;
– f s

best
 is the best value of the objective function obtained by a solver “s".

We say that a solver “s” finds a solution with respect to a tolerance �1 if

where fopt is the value of the objective function at one of the known local minimiz-
ers. Otherwise, we say that the solver fails. We set �1 = 10−4.

Performance profiles, introduced in [16], are also applied to analyze the results. 
Recall that in the performance profiles, the value of �s(�) at � = 0 shows the ratio 
of the number of test problems, for which the solver s uses the least computational 
time, function or subgradient evaluations, to the total number of test problems. The 

(23)0 ≤
f s
best

− fopt

|fopt| + 1
≤ �1,

https://cs.nyu.edu/overton/software/hanso/
http://www.oliveira.mat.br/solvers
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value of �s(�) at the rightmost abscissa gives the ratio of the number of test prob-
lems, that the solver s can solve, to the total number of test problems and this value 
indicates the robustness of the solver s. Furthermore, the higher is a particular curve, 
the better is the corresponding solver. Note that the values of � are scaled using the 
natural logarithm.

In addition, we report the CPU time — the computational time (in seconds) — 
required by the developed algorithm to find a solution, and also results on the quality 
of solutions obtained by different algorithms. The quality of solutions is determined 
by the values of the objective function at these solutions. More precisely, consider 
two different local minimizers x1 and x2 of Problem (1). The local minimizer x1 is 
a better quality solution than the local minimizer x2 if f (x1) < f (x2) . The notation 
(S, B, W) is used to report the total number of test problems that the ASM-DC finds 
the similar (S), the better (B) and the worse (W) quality solutions than other algo-
rithms. The accuracy of solutions are defined using (23), where �1 = 10−4.

4.3  Results

We present the results of our numerical experiments as follows. First, we give the 
results obtained by algorithms for the test problems 1–14 with one starting point 
that are given in [24, 26]. We report the values of objective functions, the number of 
function evaluations, and the number of subgradient evaluations. Second, we present 
the results for the values of objective functions, the number of function evaluations, 
and the number of subgradient evaluations obtained for these test problems with  
20 random starting points. Next, we give the average CPU time required by the 
ASM-DC on the test problems 1–14 with both one and 20 starting points, and also 
discuss the quality of solutions obtained by the algorithms. Finally, we present the 
results for three large-scale test problems introduced above and report the values of 
objective functions, the number of function evaluations, and the number of subgra-
dient evaluations required by the algorithms.

Numerical results for Problems 1–14 with one starting point. We summarize 
these results in Tables 1–3 and Fig. 1. Table 1 presents the best values of the objec-
tive function obtained by solvers. We use “ ∗ ” for those values that a solver fails to 
obtain the local or global minimizer. Results from this table show that the ASM-DC 
is more reliable to find the global minimizer than all other solvers. It is able to find 
the optimal solutions for all test problems considered in our experiment, whereas 
other solvers fail for some test problems with different number of variables. More 
specifically, the AggSub fails to find the optimal solution in Problem  5, and also 
Problem 14 with n = 5, 10, 50, 100. The PBDC fails in Problems 5 and 13, and also 
Problem 12 with n = 50, 100 . The DCA fails in Problem 10 with n = 5, 10, 50, 100. 
The PBMDC fails in Problems 7 and 13, Problem 12 with n = 5, 10, 50, 100 , and 
Problem 14 with n = 100. The SDCA-LP fails in Problems 1, 8, 9, 13, Problem 10 
with n = 50, 100 , and Problem 12 with n = 10, 50, 100. The PBM fails in Problems 
10 and 12 for n = 100 , and also Problem 14 with n = 10, 50. The HANSO fails in 
Problems 2 and 3, and also Problem 14 with n = 2, 10, 50, 100.
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Tables 2 and 3 present the number of function and subgradient evaluations for 
Problems 1–14, respectively. We denote by “−” the cases that a solver fails to find 
a solution. It can be observed from these tables that, these numbers required by 
the ASM-DC are reasonable and they are comparable with those required by the 
AggSub and HANSO algorithms. In most cases the ASM-DC requires more number 
of function and subgradient evaluations than PBDC, DCA, PBMDC, SDCA-LP and 
PBM algorithms. This is due to the fact that the ASM-DC requires the large num-
ber of inner iterations since it does not use augmented subgradients from previous 
iterations.

Table 2  Number of function evaluations for Problems 1–14

P n ASM-DC AggSub PBDC DCA PBMDC SDCA-LP PBM HANSO

1 2 189 344 22 87 10 − 12 143
2 2 109 170 21 8 3 7 26 −
3 4 149 4979 25 11 5 15 26 −
4 2 43 50 6 6 2 5 5 34
4 5 126 191 13 10 3 12 22 130
4 10 256 610 16 31 5 25 52 314
4 50 3208 2972 52 64 25 103 527 2661
4 100 10878 13986 102 152 50 204 1354 5182
5 20 436 − − 5058 16 48 69 533
6 2 135 108 22 10 17 29 4 5
7 2 388 1459 72 190 − 49 22 −
8 3 271 165 75 18 11 − 11 9
9 4 199 157 85 3 17 − 4 42
10 2 173 108 19 6 2 30 10 3
10 5 202 147 20 − 3 292 12 8
10 10 216 142 55 − 11 1650 40 40
10 50 389 223 138 − 35 − 35 182
10 100 484 259 348 − 77 − − 315
11 3 174 3109 10 11 5 13 20 252
12 2 290 157 20 13 7 36 69 69
12 5 457 390 58 22 − 695 88 211
12 10 831 456 1415 34 − − 159 346
12 50 3015 1733 − 96 − − 688 2865
12 100 6998 1855 − 116 − − − 5391
13 10 26 62 − 13 − − 7 40
14 2 50 56 9 6 11 28 8 −
14 5 206 − 178 16 22 57 70 110
14 10 357 − 103565 12 33 107 − −
14 50 672 − 100988 15 58 280 − −
14 100 1210 − 131661 17 − 552 183 −
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Next, we demonstrate efficiency and robustness of the algorithms using the per-
formance profiles. The results with one starting point are depicted in Fig.  1. We 
utilize the number of function evaluations required by algorithms to draw the per-
formance profiles. The number of subgradient evaluations follow the similar trends 
with that of the number of function evaluations, and thus, we omit these results. For 
the algorithms based on the DC structure of the problem, we use the average value 
of the number of the function evaluations of the DC components. For the other algo-
rithms, we use the number of function evaluations of the objective function. From 
Fig. 1, it can be observed that the ASM-DC is the most robust for the collection of 
test problems used in the numerical experiments. However, it requires more function 

Table 3  Number of subgradient evaluations for Problems 1–14

P n ASM-DC AggSub PBDC DCA PBMDC SDCA-LP PBM HANSO

1 2 51 174 16 80 17 − 12 143
2 2 41 69 15 6 5 7 26 −
3 4 53 2479 13 10 7 15 26 −
4 2 19 25 3 4 2 5 5 34
4 5 44 85 5 9 4 12 22 130
4 10 87 231 10 14 8 25 52 314
4 50 1047 1479 31 63 38 103 527 2661
4 100 3539 6704 66 151 75 204 1354 5182
5 20 145 − − 5057 26 48 69 533
6 2 42 56 13 3 28 29 4 5
7 2 111 716 46 178 − 49 22 −
8 3 75 81 45 16 17 − 11 9
9 4 62 76 57 3 23 − 4 42
10 2 44 55 9 4 2 30 10 3
10 5 67 66 10 − 5 292 12 8
10 10 69 67 32 − 18 1650 40 40
10 50 127 88 86 − 54 − 35 182
10 100 153 102 216 − 117 − − 315
11 3 60 1539 7 9 7 13 20 252
12 2 78 77 14 11 10 36 69 69
12 5 122 186 38 21 5 695 88 211
12 10 257 219 1256 33 − − 159 346
12 50 978 836 − 94 − − 688 2865
12 100 2306 907 − 115 − − − 5391
13 10 13 38 − 12 − − 7 40
14 2 23 32 5 4 16 28 8 −
14 5 72 − 172 14 31 57 70 110
14 10 107 − 103533 10 50 107 − −
14 50 211 − 100936 14 88 280 − −
14 100 383 − 125166 16 − 552 183 −
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evaluations than others with the exception of the AggSub algorithm. This is due to 
the fact that the ASM-DC requires the large number of inner iterations because it 
does not use augmented subgradients from previous iterations.

Numerical results for Problems 1–14 with 20 random starting points. Perfor-
mance profiles using Problems 1–14 with 20 random starting points and the number 
of function evaluations are presented in Fig. 2. The results from this figure indicate 
a similar trend to those of Fig. 1 which confirm the results obtained by algorithms 
with only one starting point. Performance profiles using the number of subgradient 
evaluations follow the similar trends with the number of function evaluations for all 
solvers, and therefore, we omit these results.

Computational time and results on the quality of solutions. In Table 4 for a given 
number n of variables we report the average CPU time in seconds required by the 
ASM-DC for Problems 1–14 (30 problems considering different variables) with one 
starting point and also 20 random starting points. We can see that the CPU time 
required by the ASM-DC for test problems with the number of variables n = 2, 3, 4 
is zero. We do not include the CPU time required by other algorithms since they are 
implemented on different platforms.

Table  5 presents the comparison of the quality of solutions obtained by the  
ASM-DC with those obtained by other algorithms. Problems 1–14 (30 problems 
considering different number of variables) with 20 random starting points are 
used (note that the total number of cases is 600). We can see that the ASM-DC 

Fig. 1  Number of function evaluations for Problems 1–14 with one starting point
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outperforms all other solvers, except the PBDC, in terms of its ability to find high 
quality solutions. For instance, the ASM-DC obtains the better quality solution than 
the AggSub in 131 cases whereas the latter one finds the better quality solution than 
the former algorithm in 23 cases. They find the similar solutions in 446 cases with 
respect to the tolerance given above. These results demonstrate that the ASM-DC has 
better global search properties than the other solvers, except the PBDC.

Fig. 2  Number of function evaluations for Problems 1–14 with 20 random starting points

Table 4  CPU time (in seconds) required by ASM-DC 

n 2 3 4 5 10 20 50 100

One starting point 0.000 0.000 0.000 0.004 0.022 0.000 0.320 12.402
20 starting points 0.000 0.000 0.000 0.004 0.017 0.059 2.106 29.869

Table 5  Comparison of the quality of solutions obtained by ASM-DC and other algorithms

AggSub PBDC DCA PBMDC SDCA-LP PBM HANSO

ASM-DC (446,131,23) (493,39,68) (435,141,24) (265,277,58) (384,168,48) (386,187,27) (322,238,40)
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Numerical results for large-scale problems. We report the results obtained by dif-
ferent algorithms for three large-scale test problems described above. Note that since 
the conventional code of HANSO is out of memory for problems PL2 and PL3 with 
n ≥ 2000 and n ≥ 1500 , respectively, we use its limited memory version. The results 
are given in Tables 6 – 8, where the objective function values, the number of func-
tion evaluations and the number of subgradient evaluations are presented. For the 
test problem PL1 , considering different number of variables, the best values of the 
objective function obtained by the ASM-DC and the AggSub are much smaller than 
those obtained by other solvers. The solvers PBMDC and SDCA-LP fail to find any 
solution in a given time frame. For the test problem PL2 , all solvers, except SDCA-
LP, are able to find the optimal solution with a given tolerance. The SDCA-LP fails 
to produce accurate solutions within the given time limit for all number of variables. 
In the test problem PL3 with n = 200, 500 , the solvers ASM-DC, PBDC, PBMDC, 
SDCA-LP and PBM are able to find accurate solutions. For this test problem with 
n ≥ 1000 , the PBDC finds the most accurate solutions and the ASM-DC is less 
accurate than the PBDC, PBMDC, PBM and SDCA-LP. Other algorithms fail to 
find accurate solutions. Overall, the ASM-DC is the most robust method for solving 
large-scale problems used in the numerical experiments.

From Tables 7 and 8 we can see that the PBMDC requires the least number of 
both function and subgradient evaluations than other solvers when it is able to find 

Table 7  Number of function evaluations for large-scale problems

P n ASM-DC AggSub PBDC DCA PBMDC SDCA-LP PBM HANSO

P
L1

200 2328 1075 60 2508 − − 8 33
P
L1

500 2083 1400 146 2006 − − 8 33
P
L1

1000 2165 2127 50 3511 − − 7 33
P
L1

1500 2691 1734 102 1003 − − 7 33
P
L1

2000 3123 1299 49 4526 − − 7 33
P
L1

3000 1239 1250 40 2508 − − 7 33
P
L1

5000 1695 1373 39 1505 − − 8 33
P
L2

200 1835 1604 974 5010 108 4509 201 365
P
L2

500 2161 2342 1355 5010 144 2264 286 574
P
L2

1000 3153 2277 1664 5904 219 1655 399 739
P
L2

1500 3966 2722 2044 4158 295 1509 499 901
P
L2

2000 4433 2936 2244 5511 299 955 594 1054
P
L2

3000 6125 3984 2624 6513 355 1093 704 1293
P
L2

5000 7006 4775 3410 6090 485 854 976 1384
P
L3

200 1044 14639 1928 3006 55 97 1564 1037
P
L3

500 1444 12869 2539 3507 58 355 2101 1163
P
L3

1000 3445 21456 2980 3006 73 370 1298 1001
P
L3

1500 2408 41096 2763 1503 69 1130 3262 756
P
L3

2000 4017 34758 3766 1503 73 1090 2532 1473
P
L3

3000 5690 43834 3281 2505 79 550 2677 903
P
L3

5000 6304 38273 4605 3507 86 601 3600 1832
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the solution. In average, the ASM-DC requires less function and subgradient evalua-
tions than the AggSub and slightly less than the DCA. The ASM-DC requires more 
function and subgradient evaluations than PBDC, PBMDC, SDCA-LP, PBM and 
HANSO. However, in some cases the difference between the ASM-DC and these 
five methods is not significant. Summarizing results from Tables 7, 8 and taking into 
account the number of variables we can say that the ASM-DC requires reasonable 
number of function and subgradient evaluations in large-scale problems.

5  Conclusions

A new method, named the augmented subgradient method (ASM-DC), is introduced 
for solving nonsmooth unconstrained difference of convex (DC) optimization prob-
lems. First, we define the set of augmented subgradients using subgradients of DC 
components and their linearization errors. Then a finite number of elements from 
this set are used to compute search directions, and the new method is designed using 
these search directions. It is proved that the sequence of points generated by the ASM-
DC converges to critical points of the DC problem.

Table 8  Number of subgradient evaluations for large-scale test problems

P n ASM-DC AggSub PBDC DCA PBMDC SDCA-LP PBM HANSO

P
L1

200 628 277 48 2502 − − 8 33
P
L1

500 456 364 115 2002 − − 8 33
P
L1

1000 497 607 37 3503 − − 7 33
P
L1

1500 664 479 80 1001 − − 7 33
P
L1

2000 793 631 34 4515 − − 7 33
P
L1

3000 407 291 29 2502 − − 7 33
P
L1

5000 492 386 30 1501 − − 8 33
P
L2

200 593 787 780 5005 177 4509 201 365
P
L2

500 705 1157 1057 5005 23 2264 286 574
P
L2

1000 1041 1125 1416 5896 360 1655 399 739
P
L2

1500 1310 1344 1740 4153 482 1509 499 901
P
L2

2000 1466 1459 1914 5505 497 955 594 1054
P
L2

3000 2027 1976 2232 6506 567 1093 704 1293
P
L2

5000 2323 2370 2908 6083 797 854 976 1384
P
L3

200 333 7151 1845 3003 97 97 1564 1037
P
L3

500 469 6252 2513 3503 99 3555 2101 1163
P
L3

1000 1107 10555 2958 3003 126 370 1298 1001
P
L3

1500 730 20239 2747 1501 121 1130 3262 756
P
L3

2000 1283 17149 3741 1501 127 1090 2532 1473
P
L3

3000 1803 21648 3264 1502 133 550 2677 903
P
L3

5000 2017 18854 4560 3503 143 601 3600 1832
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We evaluate the performance of the ASM-DC using 14 small and medium-sized 
and three large-scale nonsmooth DC optimization test problems. These test prob-
lems are also used to compare the performance of the ASM-DC with that of five 
nonsmooth DC optimization and two nonsmooth optimization methods. We used 
different evaluation measures including performance profiles to compare solvers. 
Computational results clearly demonstrate that the ASM-DC is the most robust 
method for the test problems used in the numerical experiments. In comparison with 
most other methods the ASM-DC requires more function and subgradients evalua-
tions. The developed method uses modest CPU time even for large-scale problems. 
Results demonstrate that the ASM-DC in comparison with other methods is able, as 
a rule, to find solutions of either similar or better quality.
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