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Abstract
This paper studies tensor Z-eigenvalue complementarity problems. We formulate the 
tensor Z-eigenvalue complementarity problem as constrained polynomial optimiza-
tion, and propose a semidefinite relaxation algorithm for solving the complementa-
rity Z-eigenvalues of tensors. For every tensor that has finitely many complementa-
rity Z-eigenvalues, we can compute all of them and show that our algorithm has the 
asymptotic and finite convergence. Numerical experiments indicate the efficiency of 
the proposed method.

Keywords  Complementarity Z-eigenvalue · Semidefinite relaxation · Asymptotic 
convergence · Finite convergence

Mathematics Subject Classification  15A18 · 65K10 · 90C22

1  Introduction

Let ℝ,ℂ respectively be the sets of real and complex numbers. Let Tm(ℝn) denote 
the space of all real m-order n-dimensional tensors, ℝn×n be the space of all real 
n-by-n matrices. A tensor A ∈ Tm(ℝn) is a multi-array indexed as

The tensor A is called symmetric if the value of ai1,…,im
 is invariant under any per-

mutation of its index {i1,… , im} . Let Sm(ℝn) be the space of all symmetric tensors in 
Tm(ℝn).

A = (ai1,…,im
)1≤i1,…,im≤n

.
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Axm is a homogeneous polynomial of degree m, defined by

where x ∈ ℝ
n , and Axm−1 is a vector in ℝn , which is defined by

The matrix eigenvalue complementarity problem (MEiCP) is that: for given two 
matrices A,B ∈ ℝ

n×n , we find a number � ∈ ℝ and a nonzero vector x ∈ ℝ
n such 

that

In the above, a ⟂ b means that the two vectors a, b are perpendicular to each other. 
For (�, x) satisfying (1.1), � is called a complementary eigenvalue of (A, B) and x is 
called the associated complementary eigenvector. MEiCPs have wide applications, 
such as static equilibrium states of mechanical systems with unilateral friction [24], 
the dynamic analysis of structural mechanical systems [17] and the contact problem 
in mechanics [18].

Tensor eigenvalue complementarity problems (TEiCPs) have received much 
attention lately. It is a generalization of the matrix eigenvalue complementarity 
problem, which has a broad range of interesting applications. A tensor eigen-
value complementarity problem can be formulated: for two nonzero tensors 
A⇔B ∈ Tm(ℝn) , if a pair (�, x) ∈ ℝ × (ℝn ⧵ {0}) satisfies the equation

then � is called a complementarity eigenvalue of (A,B) and x is the associated com-
plementarity eigenvector. Such (�, x) is called a C-eigenpair. Chen et  al. [3] have 
further work on tensor eigenvalue complementarity problems. When the tensors are 
symmetric, they reformulated the problem as nonlinear optimization and proposed 
a shifted projected power method. Chen and Qi [2] reformulated the TEiCP as a 
system of nonlinear equations and proposed a damped semi-smooth Newton method 
for solving it. Fan, Nie and Zhou [6] proposed a semidefinite relaxation method 
for computing all the complementarity eigenvalues. In this paper, we study tensor 
Z-eigenvalue complementarity problems.

Lim [14] and Qi [25] introduced the definition of tensor eigenvalues. There is 
more than one possible definition for tensor eigenvalue in [25, 28]. In this paper, 
we specifically use the following definitions.

Definition 1.1  Let A ∈ Tm(ℝn) . The pair (�, x) ∈ ℂ × ℂ
n is called E-eigenpair, and � 

is called E-eigenvalue and x is the corresponding E-eigenvector of A if they satisfy 
the equations

Axm ∶= xT (Axm−1) =

n∑
i1,…,im=1

ai1⋯im
xi1 ⋯ xim ,

Axm−1 ∶=

(
n∑

i2,…,im=1

aii2⋯im
xi2 ⋯ xim

)

1≤i≤n

.

(1.1)0 ≤ x ⟂ (�Bx − Ax) ≥ 0.

(1.2)0 ≤ x ⟂ (�Bxm−1 −Axm−1) ≥ 0,
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We call (�, x) a Z-eigenpair if they are both real.

In the following, we define complementarity Z-eigenvalues of tensors.

Definition 1.2  For A ∈ Tm(ℝn) , if a pair (�, x) ∈ ℝ ×ℝ
n satisfies the equations

then � is called a complementarity Z-eigenvalue of A and x is the associated com-
plementarity Z-eigenvector. Such (�, x) is called a complementarity Z-eigenpair. 
For convenience, complementary Z-eigenvalues and Z-eigenvectors are respec-
tively called CZ-eigenvalues and CZ-eigenvectors. The above (�, x) is called a 
CZ-eigenpair.

For x ≥ 0 and �x −Axm−1 ≥ 0 , x ⟂ (�x −Axm−1) holds if and only if

where ◦ denotes the Hadamard product defined as in Sect. 2.
Z-eigenvalues have important applications in numerical multilinear algebra 

[23], image processing [27, 29], higher order Markov chains [15, 16], and spec-
tral hypergraph theory [9], etc. For symmetric tensors, some methods for comput-
ing Z-eigenvalues are proposed. Kolda and Mayo [10] proposed a shifted power 
method. Cui, Dai and Nie [4] proposed a semidefinite relaxation approach for 
computing all the real eigenvalues. For nonsymmetric tensors, Nie and Zhang 
[22] proposed a semidefinite relaxation method for computing all the real eigen-
values. A tensor may not have the Z-eigenvalues, but has the CZ-eigenvalues (see 
Example 1.1). Under some generic conditions, A has finitely many CZ-eigenval-
ues. Tensor Z-eigenvalue complementarity problems make some practical prob-
lems have more natural and precise mathematical descriptions. Its applications 
need further research.

Example 1.1  Consider the tensor A ∈ T4(ℝ2) such that aijkl = 0 except

By the above definitions and analysis, (�, x) is a Z-eigenpair if and only if

(�, x) is a CZ-eigenpair if and only if

(1.3)Axm−1 = �x and xTx = 1.

(1.4)0 ≤ x ⟂ (�x −Axm−1) ≥ 0 and xTx = 1,

(1.5)x ◦(�x −Axm−1) = 0,

a1112 = a1222 = 1, a2111 = a2122 = −1.

⎧⎪⎨⎪⎩

(x2
1
+ x2

2
)x2 = �x1,

−(x2
1
+ x2

2
)x1 = �x2,

x2
1
+ x2

2
= 1.
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A has no Z-eigenvalues and neither E-eigenvalues [22], but A has one CZ-eigen-
value � = 0 with the associated CZ-eigenvector (1, 0).

It is possible that a tensor has infinitely many Z-eigenvalues and CZ-eigenvalues.

Example 1.2  Consider the tensor A ∈ T3(ℝ2) such that aijk = 0 except

By the equations

one can check that every real number � ∈ [0, 1] is a Z-eigenvalue of A , associated 
with Z-eigenvectors (�,±

√
1 − �2) [26]. By the equations

one can check that every real number � ∈ [0, 1] is a CZ-eigenvalue of A , associated 
with the CZ-eigenvector (�,

√
1 − �2).

In this paper, we study to how to solve all the CZ-eigenvalues of A , when A has 
finitely many CZ-eigenvalues.

The organization of this paper is as follows. Section 2 reviews some basics in pol-
ynomial optimization. We propose the semidefinite relaxation algorithm for comput-
ing all the CZ-eigenvalues for every tensor that has finitely many CZ-eigenvalues, 
and prove its asymptotic and finite convergence in Sect. 3. Section 4 demonstrates the 
numerical experiments. Conclusions are drawn in Sect. 5.

⎧
⎪⎪⎨⎪⎪⎩

(x2
1
+ x2

2
)x2x1 = �x2

1
,

−(x2
1
+ x2

2
)x1x2 = �x2

2
,

x2
1
+ x2

2
= 1, x ≥ 0,

�x1 − (x2
1
+ x2

2
)x2 ≥ 0,

�x2 + (x2
1
+ x2

2
)x1 ≥ 0.

a111 = a221 = 1.

⎧⎪⎨⎪⎩

x2
1
= �x1,

x1x2 = �x2,

x2
1
+ x2

2
= 1,

⎧⎪⎪⎨⎪⎪⎩

�x2
1
= x3

1
,

�x2
2
= x1x

2

2
,

x2
1
+ x2

2
= 1,

x ≥ 0, �x1 − x2
1
≥ 0,

�x2 − x1x2 ≥ 0,
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2 � Preliminaries

This section reviews some basics in polynomial optimization. We refer to [11–13, 
21] for surveys in the area.

Let ℕ be the set of nonnegative integer numbers. For two vectors a, b ∈ ℝ
n , 

a◦b denotes the Hadamard product of a and b, i.e. the product is defined com-
ponentwise. The symbol ℝ[x] ∶= ℝ[x1, x2,… , xn] denotes the polynomial ring in 
x = (x1, x2,… , xn) with real coefficients. For the vector � = (�1,… , �n) , denote 
ℕ
n
d
∶= {� ∈ ℕ

n||�| ∶= �1 + �2 +⋯ + �n ≤ d} . The symbol deg(p) denotes 
the degree of polynomial p. For t ∈ ℝ , ⌈t⌉ denotes the smallest integer ≥ t . For 
x = (x1, x2,… , xn) and � = (�1,… , �n) , denote

The superscript T denotes the transpose of a matrix/vector. By writing X ⪰ 0 (resp., 
X ≻ 0 ), we mean that X is a symmetric positive semidefinite (resp., positive definite) 
matrix. For matrices X1,… ,Xr , diag(X1,… ,Xr) denotes the block diagonal matrix 
whose diagonal blocks are X1,… ,Xr . For a vector x, ‖x‖ denotes its standard Euclid-
ean norm.

An ideal I in ℝ[x] is a subset such that I ⋅ℝ[x] ⊆ I, I + I ⊆ I . For a tuple 
h = (h1,… , hm) in ℝ[x] , I(h) denotes the smallest ideal containing all hi , i.e. 
I(h) ∶= h1 ⋅ℝ[x] +⋯ + hm ⋅ℝ[x] . The kth truncation of the ideal I(h) is denoted 
as Ik(h) , which is the set

Clearly, I(h) = ∪k∈ℕIk(h).
A polynomial � is called a sum of squares (SOS) if � = p2

1
+⋯ + p2

k
 for 

some polynomials p1,… , pk ∈ ℝ[x] . Σ[x] denotes the set of all SOS polynomi-
als in x. For a degree m, Σ[x]m denotes the truncation Σ[x] ∩ R[x]m . For a tuple 
g = (g1,… , gt) , its quadratic module is the set

The kth truncation of Q(g) is the set

Note that Q(g) = ∪k∈ℕQk(g) . If the tuple g is empty, then Q(g) = Σ[x],Qk(g) = Σ[x]2k
.

Let Pr(g) be the quadratic module generated by the set of all possible cross 
products:

The set Prk(g) is the kth truncated preordering generated by g = (g1,… , gt).
The set I(h) + Q(g) is called archimedean if there exists some real number 

R > 0 such that R − ‖x‖2 ∈ I(h) + Q(g) . If there exists p ∈ I(h) + Q(g) such that 

x� ∶= x
�1
1
x
�2
2
⋯ x�n

n
, [x]d ∶= [1, x1,… , xn, x

2

1
, x1x2,… , x1xn,… , xd

1
,… , xd

n
]T .

Ik(h) ∶= h1 ⋅ℝ[x]k−deg(h1) +⋯ + hm ⋅ℝ[x]k−deg(hm).

Q(g) ∶= Σ[x] + g1 ⋅ Σ[x] +⋯ + gt ⋅ Σ[x].

Qk(g) ∶= Σ[x]2k + g1 ⋅ Σ[x]2k−deg(g1) +⋯ + gt ⋅ Σ[x]2k−deg(gt).

g1,… , gt, g1g2,… , gt−1gt,… , g1g2 ⋯ gt.
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p(x) ≥ 0 defines a compact set in ℝn , then I(h) + Q(g) is archimedean. For the 
tuples h and g as above, denote

Clearly, if I(h) + Q(g) is archimedean, then K must be a compact set.
Let ℝℕ

n
d be the space of real sequences indexed by � ∈ ℕ

n
d
 . A vector y in ℝℕ

n
d is called 

a truncated moment sequences (tms) of degree d, i.e.

A tms y ∈ ℝ
ℕ
n
d defines a Riesz function L  on ℝ[x]d as

For convenience, we denote ⟨p, y⟩ ∶= Ly(p) . For an integer t ≤ d and y ∈ ℝ
ℕ
n
d , 

denote the tth truncation of y as

Let q ∈ ℝ[x]2k . The kth localizing matrix of q, generated by y ∈ ℝ
ℕ
n
2k , is the sym-

metric matrix L(k)
q
(y) such that

for all p1, p2 ∈ R[x]k−⌈deg(q)∕2⌉ . In the above, vec(pi) denotes the coefficient vector of 
the polynomial pi . For example, n = 2, k = 2, q = 1 − x2

1
− x2

2
 , it follows

When q = (q1,… , qr) is a tuple of polynomials, we define

a block diagonal matrix. When q = 1, L
(k)

1
(y) is called the kth moment matrix gener-

ated by y, denoted as Mk(y) . For instance, n = 2, k = 2,

K = {x ∈ ℝ
n|h(x) = 0, g(x) ≥ 0}.

y ∶= (y�)�∈ℕn
d
.

Ly(
∑
�∈ℕn

d

p�x
�) ∶=

∑
�∈ℕn

d

p�y� .

y|t ∶= (y�)�∈ℕn
t
.

L(qp1p2) = vec(p1)
T (L(k)

q
(y))vec(p2)

L
(2)

1−x2
1
−x2

2

(y) =

⎛⎜⎜⎝

1 − y20 − y02 y10 − y30 − y12 y01 − y21 − y03
y10 − y30 − y12 y20 − y40 − y22 y11 − y31 − y13
y01 − y21 − y03 y11 − y31 − y13 y02 − y22 − y04

⎞⎟⎟⎠
.

L(k)
q
(y) ∶= diag(L(k)

q1
(y),… , L(k)

qr
(y)),

M2(y) =

⎛
⎜⎜⎜⎜⎜⎜⎝

y00 y10 y01 y20 y11 y02
y10 y20 y11 y30 y21 y12
y01 y11 y02 y21 y12 y03
y20 y30 y21 y40 y31 y22
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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An important question is whether or not a tms y ∈ ℝ
ℕ
n
2k admits a representing meas-

ure whose support is contained in K. For this to be true, a necessary condition [5, 7] 
is that

However, the above is typically not sufficient. Let 
d� = max{1, ⌈deg(h)∕2⌉, ⌈deg(g)∕2⌉} . y admits a measure supported in K if y also 
satisfies the rank condition [5]

In such case, y admits a unique finitely atomic measure on K. We call that y is flat 
with respect to h = 0 and g ≥ 0 if both Problems (2.1) and (2.2) are satisfied.

3 � Computing all the CZ‑eigenvalues

Suppose that the tensor A has finite CZ-eigenvalues, we discuss how to compute all 
of them.

Recall that (�, x) is a CZ-eigenpair of A ∈ Tm(ℝn) , if � ∈ ℝ and x ∈ ℝ
n satisfies

Then,

Thus � = Axm.
x is a CZ-eigenvector of A if and only if

where ◦ denotes the Hadamard product of two vectors, and the associated CZ-eigen-
value is Axm . Since the tensor A has finite CZ-eigenvalues, we suppose that the CZ-
eigenvalues are �1, �2,⋯ , �L , where L is the total number of distinct CZ-eigenval-
ues. They can be ordered monotonically as

In the following subsections, we give the semidefinite relaxation method for com-
puting all the CZ-eigenvalues of A.

3.1 � The smallest CZ‑eigenvalue

Let f (x) ∶= Axm . The smallest CZ-eigenvalue �1 equals the optimal value of the 
optimization problem

(2.1)L
(k)

h
(y) = 0, Mk(y) ⪰ 0, L(k)

g
(y) ⪰ 0.

(2.2)rankMk−d� (y) = rankMk(y).

(3.1)0 ≤ x ⟂ (�x −Axm−1) ≥ 0 and xTx = 1.

0 = xT (�x −Axm−1) = �xTx −Axm = � −Axm.

(3.2)
{

h = (x◦((Axm)x −Axm−1), xTx − 1) = 0,

g = (x, (Axm)x −Axm−1) ≥ 0,

𝜆1 < 𝜆2 < ⋯ < 𝜆L.
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where h, g are as in (3.2). Let K be its feasible set. For a tms y ∈ ℝ
ℕ
n
2k with degree 

2k ≥ m , denote

We apply Lasserre’s semidefinite relaxations [11] to solve (3.3). For the orders 
k = k0, k0 + 1,… , the kth Lasserre relaxation is

The dual problem of (3.4) is

Under the weak duality, we have �(1)
k

≤ �
(1)

k
≤ �1 for all k and the sequences {�(1)

k
} 

and {�(1)
k
} are monotonically increasing (cf. [11]).

3.2 � The other CZ‑eigenvalues

We discuss how to compute �i for i = 2,⋯ , L . Suppose �i−1 is already computed, we 
need to determine the next CZ-eigenvalue �i . Consider the optimization problem

The optimal value of (3.6) is equal to �i if

Similarly, Lasserre’s semidefinite relaxations can be applied to solve (3.6). For the 
orders k = k0, k0 + 1,⋯ , the k-Lasserre relaxation is

The dual problem of (3.8) is

In practice, we usually do not know whether �i exists or not. If it exists, how to 
choose � to satisfy (3.7). The existence of �i and the relation (3.7) can be checked by 
solving the optimization problem

(3.3)
min f (x)

s.t. h(x) = 0, g(x) ≥ 0,

k0 = ⌈m∕2⌉.

(3.4)

⎧
⎪⎨⎪⎩

�
(1)

k
∶= min ⟨f , y⟩

s.t. ⟨1, y⟩ = 1, L
(k)

h
(y) = 0,

Mk(y) ⪰ 0, L(k)
g
(y) ⪰ 0.

(3.5)�
(1)

k
∶= max � s.t. f − � ∈ I2k(h) + Prk(g).

(3.6)
min f (x)

s.t. h(x) = 0, g(x) ≥ 0, f (x) ≥ �i−1 + �.

(3.7)0 < 𝛿 < 𝜆i − 𝜆i−1.

(3.8)

⎧⎪⎨⎪⎩

�
(i)

k
∶= min ⟨f , y⟩

s.t. ⟨1, y⟩ = 1, L
(k)

h
(y) = 0,

Mk(y) ⪰ 0,L(k)
g
(y) ⪰ 0, L

(k)

f−�i−1−�
(y) ⪰ 0.

(3.9)�
(i)

k
∶= max � s.t. f − � ∈ I2k(h) + Prk(g, f − �i−1 − �).
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Its optimal value can be computed by semidefinite relaxations like (3.8, 3.9).

Proposition 3.1  Let A ∈ Tm(ℝn) . Let �i−1 be the (i − 1)-th smallest CZ-eigenvalue of 
A . For all 𝛿 > 0 , we have the following properties: 

	 (i)	 The relaxation (3.8) is infeasible for some k if and only if 𝜆i−1 + 𝛿 > 𝜆max.
	 (ii)	 If �i = �i−1 and �i exists, then � satisfies (3.7).
	 (iii)	 If �i = �i−1 and (3.8) is infeasible for some k, then �i does not exist and 

�max = �i−1.

Proof 

	 (i)	 Necessity: Note that every CZ-eigenpair (�,�) of A with � ≥ �i−1 + � , the tms 
[u]2k is always feasible for (3.8). If the relaxation (3.8) is infeasible for some k, 
then A clearly has no CZ-eigenvalues ≥ �i−1 + � . Therefore, 𝜆i−1 + 𝛿 > 𝜆max.

		    Sufficiency is obvious.
	 (ii)	 If �i = �i−1 and �i exists, then 𝜆i−1 + 𝛿 < 𝜆i . Therefore, � satisfies (3.7).
	 (iii)	 From (i), we know 𝜆i−1 ≤ 𝜆max < 𝜆i−1 + 𝛿 . Owing to �i = �i−1 , we get 

�max = �i−1 , otherwise, 𝜒i = 𝜆max > 𝜆i−1 . This is a contradiction to �i = �i−1.

	�  ◻

3.3 � The semidefinite relaxation algorithm

Let Z(A) be the set of all the CZ-eigenvalues of A . If Z(A) is nonempty and finite, 
we can compute all the CZ-eigenvalues sequentially as follows. First, we compute 
the smallest one �1 by solving the hierarchy of semidefinite relaxations (3.4, 3.5). As 
shown in Theorem 3.1, this hierarchy converges in finitely many steps. After getting 
�1 , we solve the hierarchy of (3.8–3.10) for i = 2 . If �2 = �1 and (3.8) is infeasible 
for some order k, then �1 is also the largest eigenvalue. If �2 = �1 and (3.8) is fea-
sible for k big enough, then �2 is the 2-th smallest CZ-eigenvalue of A . Otherwise, 
decrease the value � as � ∶=

�

5
 and solve (3.6 and 3.10) again. After repeating this 

process for several times, we can always get �2 = �1 , and the resulting � satisfies 
(3.7). Repeating this procedure, we can get �3, �4,⋯ , if they exist, or we get the larg-
est eigenvalue and stop.

Algorithm 3.1
Step 0. Choose a small positive value � (e.g., 0.05). Set i ∶= 1.
Step 1. Solve the hierarchy (3.4) and get the smallest CZ-eigenvalue �1.
Step 2. Set i ∶= i + 1 and solve the hierarchy of (3.10). If �i = �i−1 , then go to 

Step 3; If 𝜒i > 𝜆i−1 , let � ∶=
�

5
 and compute (3.10). Repeat this process until (3.7) 

holds.

(3.10)
�i ∶= max f (x)

s.t. h(x) = 0, g(x) ≥ 0, f (x) ≤ �i−1 + �.
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Step 3. Solve the hierarchy (3.8). If (3.8) is infeasible for some k, then �i−1 is the 
largest eigenvalue and stop. Otherwise, we can get the next smallest eigenvalue �i.

Step 4. Go to Step 2.
In the following, we show the asymptotic and finite convergence of Algorithm 3.1.

Theorem 3.1  Let A ∈ Tm(ℝn) and Z(A) be the set of its CZ-eigenvalues. Then, 

	 (i)	 The set Z(A) = � if and only if the semidefinite relaxation (3.4) is infeasible 
for some k.

	 (ii)	 If the set Z(A) ≠ � , then the smallest CZ-eigenvalue �1 always exists and 

 In addition, if Z(A) is finite, then for all k sufficiently large, 

 Suppose y∗ is an optimal solution of (3.4). If there exists t ∈ [k0, k] , such that 

 then there are r ∶= rankMt(y
∗) distinct CZ-eigenvectors associated with �1.

	 (iii)	 For i ≥ 2 , suppose that �i exists and 0 < 𝛿 < 𝜆i − 𝜆i−1 , then 

 If the set Z(A) is finite, then for all k sufficiently large, 

 Suppose y∗ is an optimal solution of (3.8). If there exists t ∈ [k0, k] , such that 
(3.13) holds, then there are r ∶= rankMt(y

∗) distinct CZ-eigenvectors associ-
ated with �i.

Proof 

	 (i)	 Necessity: If Z(A) = � , then the feasible set K is empty. By Positivstellensatz 
[1], −1 ∈ I(h) + Pr(g) . So, when k is big enough, −1 ∈ I2k(h) + Prk(g) , and 
then the optimization (3.5) is unbounded from above. By duality theory, (3.4) 
must be infeasible, for all k big enough.

		    Sufficiency: Assume (3.4) is infeasible for some k. Then A has no CZ-
eigenpairs. Otherwise, suppose (�, u) is such one CZ-eigenpair. Then the tms 
[u]2k [see the notation in Sect. 2] is always feasible for (3.4), which is a con-
tradiction. So Z(A) = �.

	 (ii)	 Firstly, we prove the asymptotic convergence. Since Z(A) is nonempty, then 
A has at least one CZ-eigenvalue. So �1 always exists. Note that xTx − 1 is a 

(3.11)lim
k→∞

�
(1)

k
= lim

k→∞
�
(1)

k
= �1.

(3.12)�
(1)

k
= �

(1)

k
= �1.

(3.13)rankMt−k0
(y∗) = rankMt(y

∗),

(3.14)lim
k→∞

�
(i)

k
= lim

k→∞
�
(i)

k
= �i.

�
(i)

k
= �

(i)

k
= �i.
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polynomial in the tuple h, then −(xTx − 1)2 ∈ I(h) and the set −(xTx − 1)2 ≥ 0 
is compact. The ideal I(h) is archimedean, which implies that I(h) + Q(g) is 
also archimedean. So K is compact, then {�(1)

k
} asymptotically converges to �1 

(cf. [11]). Therefore, the asymptotic convergence (3.11) is obtained.
		    Next, we prove the finite convergence. Since Z(A) is finite, let 

Z(A) = {�1, �2,⋯ , �L} and 𝜆1 < 𝜆2 < ⋯ < 𝜆L . Let �1,�2,⋯ ,�L be the uni-
variate real polynomials in t such that �i(�j) = 0 when i ≠ j and �i(�j) = 1 
when i = j . For i = 1, 2,⋯ , L , let 

 Let a ∶= a1 +⋯ + aL , then a ∈ Σ[x] . The polynomial 

 vanishes identically on K. By Positivstellensatz (cf. [1],  Corollary 4.4.3), 
there exists integers � > 0 and N1 > 0 such that 

 where PrN1
(g) denotes the N1-th truncated preordering generated by the tuple 

g (cf. [1]). For all 𝜀 > 0 and c > 0 , we can write f̂ + 𝜀 = 𝜙𝜀 + 𝜃𝜀 , where 

 By Lemma 2.1 of [19], when c ≥ 1

2�
 , there exists N ≥ N1 such that for all 

𝜀 > 0 , 

 Therefore, we have 

 where �� = �� + a ∈ PrN(g) for all 𝜀 > 0 . This implies that for all 𝜀 > 0 , 
� = �1 − � is feasible in (3.5) for the order N. Thus, we get �(1)

N
≥ �1 . Note 

that �(1)
k

≤ �
(1)

k
≤ �1 for all k and the sequence {�(1)

k
} is monotonically increas-

ing. So, (3.12) must be true for all k ≥ N.
		    Note that L(t)

h
(y∗) = 0,Mt(y

∗) ⪰ 0, L(t)
g
(y∗) ⪰ 0 (t ≤ k) . When (3.13) is sat-

isfied, there exist r ∶= rankMt(y
∗) distinct vectors u1,⋯ , ur ∈ K and scalars 

c1,⋯ , cr [20] such that 

 The constraint ⟨1, y∗⟩ = 1 implies c1 +⋯ + cr = 1 . We have 

ai ∶= (�i − �1)(�i(f (x)))
2.

f̂ ∶= f − 𝜆1 − a

q ∈ PrN1
(g), f̂ 2� + q ∈ IN1

(h),

𝜙𝜀 = −c𝜀1−2�(f̂ 2� + q),

𝜃𝜀 = 𝜀(1 + f̂∕𝜀 + c(f̂∕𝜀)2�) + c𝜀1−2�q.

�� ∈ I2N(h), �� ∈ PrN(g).

f − (�1 − �) = �� + ��,

y∗|2t = c1[u1]2t +⋯ + cr[ur]2t,

c1 > 0,⋯ , cr > 0.
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 Since every f (ui) ≥ �1 , then we have 

 So each ui is a CZ-eigenvector associated to �(1)
k

= f (u1) = ⋯ = f (ur) = �1.
	 (iii)	 For i ≥ 2 , if 0 < 𝛿 < 𝜆i − 𝜆i−1 holds, the optimal value of (3.6) is equal to �i . 

The rest of the proof is the similar to that of Theorem 3.1(ii).

	�  ◻

4 � Numerical experiments

In this section, we present the numerical experiments to show how to compute 
all the CZ-eigenvalues of tensors. The Lasserre’s semidefinite relaxations are 
solved by the software GloptiPoly 3 [8] and SeDuMi [30]. The program is coded 
in MATLAB (2016a). The experiments are implemented on a personal PC with 
2.5 GHz and 2.7 GHz, 8.0 GB RAM, using Windows 10 operation system.

Example 4.1  ( [31]). A tensor A ∈ T3(ℝ3) is defined by

We apply Algorithm  3.1 and get four CZ-eigenvalues and the associated 
CZ-eigenvectors:

The computation takes about 3 s.

Example 4.2  Consider the tensor A ∈ T3(ℝn) such that

For n = 3 , we apply Algorithm  3.1 and get seven CZ-eigenvalues and the corre-
sponding CZ-eigenvectors:

c1f (u1) +⋯ + crf (ur) = ⟨f , y∗�2t⟩ = ⟨f , y∗⟩ = �
(1)

k
≤ �1.

f (ui) = �1, i = 1,⋯ , r.

(4.1)
a111 = a333 = a121 = a231 = 1, a222 = 2,

aijk = 0, elsewhere.

�1 = 0.8944, u1 = (0.0000, 0.4472, 0.8944),

�2 = 1.0000, u2 = (0.0000, 0.0001, 1.0000),

(1.0000, 0.0000, 0.0000),

�3 = 1.4142, u3 = (0.7071, 0.7071, 0.0000),

�4 = 2.0000, u4 = (0.0000, 1.0000, 0.0000).

aijk =
(−1)j

i
+

(−1)k

j
+

(−1)i

k
.



571

1 3

Tensor Z‑eigenvalue complementarity problems﻿	

The computation takes about 5 s.

For n = 4 , we apply Algorithm 3.1 and get eight CZ-eigenvalues and the corre-
sponding CZ-eigenvectors:

The computation takes about 10 s.

Example 4.3  Consider the diagonal tensor A ∈ S4(ℝ3) such that

We apply Algorithm  3.1 and get seven CZ-eigenvalues and the associated 
CZ-eigenvectors:

The computation takes about 5 s.

Example 4.4  Consider the tensor A ∈ T3(ℝ3) such that

�1 = −6.0565, u1 = (0.7996, 0.1172, 0.5889),

�2 = −5.8821, u2 = (0.8090, 0.0000, 0.5878),

�3 = −3.0725, u3 = (0.9955, 0.0952, 0.0000),

�4 = −3.0000, u4 = (1.0000, 0.0000, 0.0000),

�5 = −1.1791, u5 = (0.0000, 0.2203, 0.9754),

�6 = −1.0000, u6 = (0.0000, 0.0000, 1.0000),

�7 = 1.9273, u7 = (0.2554, 0.9668, 0.0000).

�1 = −6.0670, u1 = (0.7997, 0.1089, 0.5897, 0.0302),

�2 = −5.9269, u2 = (0.8065, 0.0000, 0.5881, 0.0609),

�3 = −3.0732, u3 = (0.9958, 0.0907, 0.0000, 0.0108),

�4 = −3.0186, u4 = (0.9988, 0.0000, 0.0000, 0.0494),

�5 = −1.1802, u5 = (0.0000, 0.2111, 0.9773, 0.0201),

�6 = −1.0523, u6 = (0.0000, 0.0000, 0.9908, 0.1353),

�7 = −1.0000, u7 = (0.0000, 0.0000, 1.0000, 0.0000),

�8 = 4.2185, u8 = (0.2902, 0.7258, 0.0175, 0.6235).

a1111 = 1, a2222 = 2, a3333 = 3,

aijkl = 0, elsewhere.

�1 = 0.5454, u1 = (0.7385, 0.5222, 0.4264),

�2 = 0.6667, u2 = (0.8165, 0.5773, 0.0001),

�3 = 0.7500, u3 = (0.8660, 0.0000, 0.5000),

�4 = 1.0000, u4 = (1.0000, 0.0000, 0.0000),

�5 = 1.2000, u5 = (0.0000, 0.7746, 0.6325),

�6 = 2.0000, u6 = (0.0000, 1.0000, 0.0000),

�7 = 3.0000, u7 = (0.0000, 0.0000, 1.0000).
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We apply Algorithm  3.1 and get one CZ-eigenvalue and the corresponding 
CZ-eigenvector:

The computation takes about 1 s.

Example 4.5  Consider the tensor A ∈ T3(ℝ3) such that

Using Algorithm  3.1, we get one CZ-eigenvalue and the corresponding 
CZ-eigenvector:

The computation takes about 1 s.

5 � Conclusions

In this paper, we propose the semidefinite relaxation algorithm for computing all the 
CZ-eigenpairs of tensor that has finitely many CZ-eigenvalues, and prove its asymp-
totic and finite convergence. Numerical experiments demonstrate the efficiency of 
the proposed algorithm.
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