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Abstract
This work describes a new variant of projective splitting for solving maximal mono-
tone inclusions and complicated convex optimization problems. In the new version, 
cocoercive operators can be processed with a single forward step per iteration. In 
the convex optimization context, cocoercivity is equivalent to Lipschitz differenti-
ability. Prior forward-step versions of projective splitting did not fully exploit coco-
ercivity and required two forward steps per iteration for such operators. Our new 
single-forward-step method establishes a symmetry between projective splitting 
algorithms, the classical forward–backward splitting method (FB), and Tseng’s 
forward-backward-forward method. The new procedure allows for larger stepsizes 
for cocoercive operators: the stepsize bound is 2� for a �-cocoercive operator, the 
same bound as has been established for FB. We show that FB corresponds to an 
unattainable boundary case of the parameters in the new procedure. Unlike FB, the 
new method allows for a backtracking procedure when the cocoercivity constant is 
unknown. Proving convergence of the algorithm requires some departures from the 
prior proof framework for projective splitting. We close with some computational 
tests establishing competitive performance for the method.
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1 Introduction

1.1  Problem statement

For a collection of real Hilbert spaces {Hi}
n
i=0

 consider the finite-sum convex mini-
mization problem:

where every fi ∶ Hi → (−∞,+∞] and hi ∶ Hi → ℝ is closed, proper, and convex, 
every hi is also differentiable with Li-Lipschitz-continuous gradients, and the opera-
tors Gi ∶ H0 → Hi are linear and bounded. Under appropriate constraint qualifica-
tions, (1) is equivalent to the monotone inclusion problem of finding z ∈ H0 such 
that

where all Ai ∶ Hi → 2Hi and Bi ∶ Hi → Hi are maximal monotone and each Bi is 
L−1
i

-cocoercive, meaning that it is single-valued and

for some Li ≥ 0 . (When Li = 0 , Bi must be a constant operator, that is, there is some 
vi ∈ Hi such that Bix = vi for all x ∈ Hi . ) In particular, if we set Ai = �fi (the sub-
gradient map of fi ) and Bi = ∇hi (the gradient of hi ) then the solution sets of the 
two problems coincide under a special case of the constraint qualification of [8, 
Prop. 5.3].

Defining Ti = Ai + Bi for all i, problem (2) may be written as

This more compact problem statement will be used occasionally in our analysis 
below.

1.2  Background

Operator splitting algorithms are an effective way to solve structured con-
vex optimization problems and monotone inclusions such as (1), (2), and (3). 
Their defining feature is that they decompose a problem into a set of manage-
able pieces. Each iteration consists of relatively easy calculations confined to 
each individual component of the decomposition, in conjunction with some sim-
ple coordination operations orchestrated to converge to a solution. Arguably the 
three most popular classes of operator splitting algorithms are the forward–back-
ward splitting (FB) [10], Douglas/Peaceman-Rachford splitting (DR) [24], and 

(1)min
x∈H0

n∑
i=1

(
fi(Gix) + hi(Gix)

)
,

(2)0 ∈

n∑
i=1

G∗
i

(
Ai + Bi

)
Giz

Li⟨Bix1 − Bix2, x1 − x2⟩ ≥ ‖Bix1 − Bix2‖2 ∀ x1, x2 ∈ Hi

(3)0 ∈

n∑
i=1

G∗
i
TiGiz.
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forward-backward-forward (FBF) [37] methods. Indeed, many algorithms in con-
vex optimization and monotone inclusions are in fact instances of one of these 
methods. The popular Alternating Direction Method of Multipliers (ADMM), in 
its standard form, can be viewed as a dual implementation of DR [18].

Projective splitting is a relatively recent and currently less well-known class 
of operator splitting methods, operating in a primal-dual space. Each iteration k 
of these methods explicitly contructs an affine “separator” function �k for which 
�k(p) ≤ 0 for every p in the set S of primal-dual solutions. The next iterate pk+1 
is then obtained by projecting the current iterate pk onto the halfspace defined by 
�k(p) ≤ 0 , possibly with some over-relaxation or under-relaxation. Crucially, �k 
is obtained by performing calculations that consider each operator Ti separately, 
so that the procedures are indeed operator splitting algorithms. In the original 
formulations of projective splitting [16, 17], the calculation applied to each 
operator Ti was a standard resolvent operation, also known as a “backward step”. 
Resolvent operations remained the only way to process individual operators as 
projective splitting was generalized to cover compositions of maximal monotone 
operators with bounded linear maps [1]—as in the Gi in (3)—and block-iterative 
(incremental) or asynchronous calculation patterns [9, 15]. Convergence rate and 
other theoretical results regarding projective splitting may be found in [20, 21, 
26, 27].

The algorithms in [19, 36] were the first to construct projective splitting sep-
arators by applying calculations other than resolvent steps to the operators Ti . 
In particular, [19] developed a procedure that could instead use two forward 
(explicit or gradient) steps for operators Ti that are Lipschitz continuous. How-
ever, that result raised a question: if projective splitting can exploit Lipschitz con-
tinuity, can it further exploit the presence of cocoercive operators? Cocoerciv-
ity is in general a stronger property than Lipschitz continuity. However, when an 
operator is the gradient of a closed proper convex function (such as hi in (1)), the 
Baillon–Haddad theorem [2, 3] establishes that the two properties are equivalent: 
∇hi is Li-Lipschitz continuous if and only if it is L−1

i
-cocoercive.

Operator splitting methods that exploit cocoercivity rather than mere Lipschitz 
continuity typically have lower per-iteration computational complexity and a 
larger range of permissible stepsizes. For example, both FBF and the extragradi-
ent (EG) method [23] only require Lipchitz continuity, but need two forward steps 
per iteration and limit the stepsize to L−1 , where L is the Lipschitz constant. If one 
strengthens the assumption to L−1-cocoercivity, one can instead use FB, which 
only needs one forward step per iteration and allows stepsizes bounded away from 
2L−1 . One departure from this pattern is the recently developed method of [29], 
which only requires Lipschitz continuity but uses just one forward step per itera-
tion. While this property is remarkable, it should be noted that its stepsizes must 
be bounded by (1∕2)L−1 , which is half the allowable stepsize for EG or FBF and 
just a fourth of FB’s stepsize range.
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Much like EG and FBF, the projective splitting computation in [19] requires Lip-
schitz continuity,1 two forward steps per iteration, and limits the stepsize to be less 
than L−1 (when not using backtracking). Considering the relationship between FB 
and FBF/EG leads to the following question: is there a variant of projective splitting 
which converges under the stronger assumption of L−1-cocoercivity, while process-
ing each cocoercive operator with a single forward step per iteration and allowing 
stepsizes bounded above by 2L−1?

This paper shows that the answer to this question is “yes”. Referring to (2), the 
new procedure analyzed here requires one forward step on  Bi and one resolvent 
for Ai at each iteration. In the context of (1), the new procedure requires one forward 
step on ∇hi and one proximal operator evaluation on fi . When the resolvent is eas-
ily computable (for example, when Ai is the zero map and its resolvent is simply the 
identity), the new procedure can effectively halve the computation necessary to run 
the same number of iterations as the previous procedure of [19]. This advantage is 
equivalent to that of FB over FBF and EG when cocoercivity is present. Another 
advantage of the proposed method is that it allows for a backtracking linesearch 
when the cocoercivity constant is unknown, whereas no such variant of general 
cocoercive FB is currently known.

The analysis of this new method is significantly different from our previous work 
in [19], using a novel “ascent lemma” (Lemma 17) regarding the separators gener-
ated by the algorithm. The new procedure also has an interesting connection to the 
original resolvent calculation used in the projective splitting papers [1, 9, 16, 17]: in 
Section 2.2 below, we show that the new procedure is equivalent to one iteration of 
FB applied to evaluating the resolvent of Ti = Ai + Bi . That is, we can use a single 
forward–backward step to approximate the operator-processing procedure of [1, 9, 
16, 17], but still obtain convergence.

The new procedure has significant potential for asynchronous and incremental 
implementation following the ideas and techniques of previous projective splitting 
methods [9, 15, 19]. To keep the analysis relatively manageable, however, we plan 
to develop such generalizations in follow-up work. Here, we will simply assume that 
every operator is processed once per iteration.

1.3  The optimization context

For optimization problems of the form (1), our proposed method is a first-order prox-
imal splitting method that “fully splits” the problem: at each iteration, it utilizes the 
proximal operator for each nonsmooth function fi , a single evaluation of the gradient 
∇hi for each smooth function hi , and matrix-vector multiplications involving Gi and G∗

i
 . 

There is no need for any form of matrix inversion, nor to use resolvents of composed 
functions like fi◦Gi , which may in general be much more challenging to evaluate than 
resolvents of the fi . Thus, the method achieves the maximum possible decoupling of 
the elements of (1). There are also no assumptions on the rank, row spaces, or column 

1 If backtracking is used, then all three of these methods can converge under weaker local continuity 
assumptions.
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spaces of the Gi . Beyond the basic resolvent, gradient, and matrix-vector multiplica-
tion operations invoked by our algorithm, the only computations at each iteration are a 
constant number of inner products, norms, scalar multiplications, and vector additions, 
all of which can all be carried out within flop counts linear in the dimension of each 
Hilbert space.

Besides projective splitting approaches, there are a few first-order proximal splitting 
methods that can achieve full splitting on (1). The most similar to projective splitting 
are those in the family of primal-dual (PD) splitting methods; see [7, 11, 12, 32] and 
references therein. In fact, projective splitting is also a kind of primal-dual method, 
since it produces primal and dual sequences jointly converging to a primal-dual solu-
tion. However, the convergence mechanisms are different: PD methods are usually con-
structed by applying an established operator splitting technique such as FB, FBF, or DR 
to an appropriately formulated primal-dual inclusion in a primal-dual product space, 
possibly with a specially chosen metric. Projective splitting methods instead work 
by projecting onto (or through) explicitly constructed separating hyperplanes in the  
primal-dual space.

There are several potential advantages of our proposed method over the more estab-
lished PD schemes. First, unlike the PD methods, the norms ‖Gi‖ do not effect the 
stepsize constraints of our proposed method, making such constraints easier to satisfy. 
Furthermore, projective splitting’s stepsizes may vary at each iteration and may dif-
fer for each operator. In general, projective splitting methods allow for asynchronous 
parallel and incremental implementations in an arguably simpler way than PD methods 
(although we do not develop this aspect of projective splitting in this paper). Projec-
tive splitting methods can incorporate deterministic block-iterative and asynchronous 
assumptions [9, 15], resulting in deterministic convergence guarantees, with the analy-
sis being similar to the synchronous case. In contrast, existing asynchronous and block-
coordinate analyses of PD methods require stochastic assumptions which only lead to 
probabilistic convergence guarantees [32].

1.4  Notation and a simplifying assumption

For the definition of maximal monotone operators and their basic properties, we refer 
to [4]. For any maximal monotone operator A and scalar 𝜌 > 0 , we will use the nota-
tion J�A ≜ (I + �A)−1, to denote the resolvent operator, also known as the backward or 
implicit step with respect to A. Thus,

the x and a satisfying this relation being unique. Furthermore, J�A is defined eve-
rywhere and range(JA) = dom(A) [4, Prop. 23.2]. If A = �f  for a closed, convex, 
and proper function f, the resolvent is often referred to as the proximal operator and 
written as J��f = prox�f  . Computing the proximal operator requires solving

(4)x = J�A(t) ⟺ x + �a = t and a ∈ Ax,

prox�f (t) = argmin z

�
�f (z) +

1

2
‖z − t‖2

�
.
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Many functions encountered in applications to machine learning and signal process-
ing have proximal operators which can be computed exactly with low computational 
complexity. In this paper, for a single-valued maximal monotone operator A, a for-
ward step (also known as an explicit step) refers to the direct evaluation of Ax (or 
∇f (x) in convex optimization) as part of an algorithm.

For the rest of the paper, we will impose the simplifying assumption

As noted in [19], the requirement that Gn = I is not a very restrictive assumption. 
For example, one can always enlarge the original problem by one operator, setting 
An = Bn = 0.

2  A new form of projective splitting

2.1  Projective splitting basics in detail

Returning attention to the compact form of the problem written in (3), the goal of 
our algorithm will be to find a point in

It is clear that z∗ solves (3) if and only if there exist w∗
1
,… ,w∗

n−1
 such that 

(z∗,w∗
1
,… ,w∗

n−1
) ∈ S . Under reasonable assumptions, the set S is closed and con-

vex; see Lemma 2. S is often called the Kuhn-Tucker solution set of problem (3), 
and essentially consists of all primal-dual solution pairs for the problem.

At each iteration k, projective splitting algorithms work by using a decomposition 
procedure to construct a halfspace Hk ⊂ H ≜ H0 ×H1 ×⋯ ×Hn−1 that is guaran-
teed to contain S . Each new iterate pk+1 ∈ H is obtained by projecting the previ-
ous iterate pk = (zk,wk

1
,… ,wk

n−1
) ∈ H onto Hk , with possible over-relaxation or 

under-relaxation.
With S as in (5), the separator formulation presented in [9] constructs the halfs-

pace Hk using the function �k ∶ H → ℝ defined as

for some auxiliary points ( xk
i
, yk

i
) ∈ H2

i
 . These points ( xk

i
, yk

i
 ) will be specified later 

and must be chosen at each iteration in a specific manner guaranteeing the validity 

Gn ∶ Hn → Hn ≜ I (the identity operator).

(5)S ≜

�
(z,w1,… ,wn−1)

�����
(∀ i ∈ {1,… , n − 1}) wi ∈ TiGiz,

−
∑n−1

i=1
G∗

i
wi ∈ Tnz

�
.

(6)

�k(z,w1,… ,wn−1)

≜

n−1�
i=1

⟨Giz − xk
i
, yk

i
− wi⟩ +

�
z − xn

i
, yn

i
+

n−1�
i=1

G∗
i
wi

�

(7)=

�
z,

n�
i=1

G∗
i
yk
i

�
+

n−1�
i=1

⟨xk
i
− Gix

k
n
,wi⟩ −

n�
i=1

⟨xk
i
, yk

i
⟩,
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of the separator and convergence to S . Among other properties, they must be chosen 
so that yk

i
∈ Tix

k
i
 for i = 1,… , n . Under this condition, it follows readily that �k has 

the promised separator properties:

Lemma 1 The function �k defined in (6) is affine, and if yk
i
∈ Tix

k
i
 for all i = 1,… , n , 

then �k(z,w1,… ,wn−1) ≤ 0 for all (z,w1,… ,wn−1) ∈ S.

Proof That �k is affine is clear from its expression in (7). Now suppose that yk
i
∈ Tix

k
i
 

for all i = 1,… , n and p = (z,w1,… ,wn−1) ∈ S . Then

where wn ≜ −
∑n−1

i=1
G∗

i
wi. From (z,w1,… ,wn−1) ∈ S and the definition of S , one 

has that wi ∈ Tiz for all i = 1,… , n − 1 , as well as wn ∈ Tnz . Since yi ∈ Tixi for 
i = 1,… , n , it follows from the monotonicity of T1,… , Tn that every inner product 
displayed in (8) is nonnegative, and so �k(p) ≤ 0 .   ◻

Figure  1 presents a rough depiction of the current algorithm iterate 
pk = (zk,wk

1
,… ,wk

n−1
) and the separator �k in the case that 𝜑k(p

k) > 0 . The basic 
iterative cycle pursued by projective splitting methods is: 

1 For each operator Ti , identify a pair (xk
i
, yk

i
) ∈ graTi . These pairs define an affine 

function �k such that �k(p) ≤ 0 for all p ∈ S , using the construction (6) (or related 
constructions for variations of the basic problem formulation).

2 Obtain the next iterate pk+1 by projecting the current iterate pk onto the halfspace 
Hk ≜

{
p || �k(p) ≤ 0

}
 , with possible over—or under-relaxation.

Figure 2 presents a rough depiction of two iterations of this process in the absence 
of over-relaxation or under-relaxation. The projection operation in part  2 of the 

(8)�k(p) = −

�
n−1�
i=1

⟨Giz − xk
i
,wi − yk

i
⟩ + �

z − xn
i
,wn − yn

i

��
,

Fig. 1  Properties of the hyperplane 
{
p ∈ H || �k(p) = 0

}
 obtained from the affine function �k . This 

hyperplane is the boundary of the halfspace Hk , and it always holds that �k(p
∗) ≤ 0 for every p∗ ∈ S . 

When 𝜑k(p
k) > 0 (as shown), the hyperplane separates the current point pk from the solution set S



132 P. R. Johnstone, J. Eckstein 

1 3

cycle is a straightforward application of standard formulas for projecting onto a half-
space. For the particular formulation (3), the necessary calculations are derived in 
[19] and displayed in Algorithm 3 below. This projection is a low-complexity opera-
tion involving only inner products, norms, matrix multiplication by Gi , and sums of 
scalars. For example, when Hi = ℝ

d for i = 1,… , n and each Gi = I , then the pro-
jection step has computational complexity O (nd).

The key question in the design of algorithms in this class therefore concerns step 1 
in the cycle: how might one select the points (xk

i
, yk

i
) ∈ graTi so that convergence to 

S may be established? The usual approach has been to choose (xk
i
, yk

i
) ∈ graTi to be 

some function of (zk,wk
i
) such that �k(p

k) is positive and “sufficiently large” when-
ever pk ∉ S . Then projecting the current point onto this hyperplane makes progress 
toward the solution and can be shown to lead (with some further analysis) to overall 
convergence. In the original versions of projective splitting, the calculation of (xk

i
, yk

i
) 

involved (perhaps approximately) evaluating a resolvent; later [19] introduced the 
alternative of a two-forward-step calculation for Lipschitz continuous operators that 
achieved essentially the same sufficient separation condition.

Here, we introduce a one-forward-step calculation for the case of cocoercive 
operators. A principal difference between this analysis and earlier work on projec-
tive splitting is that processing all the operators T1,… , Tn at iteration k need not 
result in �k(p

k) being positive. Instead, we establish an “ascent lemma” that relates 
the values �k(p

k) and �k−1(p
k−1) in such a way that overall convergence may still be 

proved, even though it is possible that �k(p
k) ≤ 0 at some iterations k. In particular, 

�k(p
k) will be larger than the previous value �k−1(p

k−1) , up to some error term that 
vanishes as k → ∞.

When �k(p
k) ≤ 0 , projection onto Hk =

{
p || �k(p) ≤ 0

}
 results in pk+1 = pk . In 

this case, the algorithm continues to compute new points (xk+1
i

, yk+1
i

) , (xk+2
i

, yk+2
i

),… 
until, for some � ≥ 0 , it constructs a hyperplane Hk+� such that the 𝜑k+�(p

k) > 0 and 
projection results in pk+�+1 ≠ pk+� = pk.

2.1.1  Additional notation for projective splitting

For an arbitrary (w1,w2,… ,wn−1) ∈ H1 ×H2 ×… ×Hn−1 we use the notation

Fig. 2  The basic operation of the method. Each iteration k constructs a separator �k as shown in Fig. 1 
and then obtains the next iteration by projecting onto the halfspace Hk =

{
p ∈ H || �k(p) ≤ 0

}
 , within 

which the solution set S is known to lie
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as in the Proof of Lemma 1. Note that when n = 1 , w1 = 0 . Under the above conven-
tion, we may write �k ∶ H → ℝ in the more compact form

We also use the following notation for i = 1,… , n:

Note that �k(z,w1,… ,wn−1) =
∑n

i=1
�i,k(z,wi).

2.2  The new procedure

Recall the original problem of interest (2), which is related to (3) via Ti = Ai + Bi . 
At each iteration k and for each block i = 1,… , n , we propose to find a pair 
(xk

i
, yk

i
) ∈ graTi = gra (Ai + Bi) conforming to the conditions

where �i ∈ (0, 1) , �i ≤ 2(1 − �i)∕Li , and b0
i
= Bix

0
i
 . Condition (9) is readily satisfied 

by some simple linear algebra calculations and a resolvent calculation involving Ai . 
In particular, referring to (4), one may see that (9) is equivalent to computing

Following this resolvent calculation, (10) requires only an evaluation (forward step) 
on Bi , and (11) is a simple vector addition.

The parameter �i plays the role of the stepsize in the resolvent calculation. It 
also plays the role of a forward (gradient) stepsize, since it multiplies −bk−1

i
 in (9), 

and bk−1
i

= Bix
k−1
i

 by (10). From the assumptions on �i and �i immediately follow-
ing (11), it follows that �i may be made arbitrarily close to 2∕Li by setting �i close 
to 0. However, in practice it may be better to use an intermediate value, such as 
�i = 0.1 , since doing so causes the update to make significant use of the information 
in zk , a point computed more recently than xk−1

i
.

wn ≜ −

n−1∑
i=1

G∗
i
wi,

�k(z,w1,… ,wn−1) =

n�
i=1

⟨Giz − xk
i
, yk

i
− wi⟩.

�i,k(z,wi) ≜ ⟨Giz − xk
i
, yk

i
− wi⟩.

(9)xk
i
+ �ia

k
i
= (1 − �i)x

k−1
i

+ �iGiz
k − �i

(
bk−1
i

− wk
i

)
∶ ak

i
∈ Aix

k
i

(10)bk
i
= Bix

k
i

(11)yk
i
= ak

i
+ bk

i
,

t = (1 − �i)x
k−1
i

+ �iGiz
k − �i

(
bk−1
i

− wk
i

)

xk
i
= J�iAi

(t)

ak
i
= (1∕�i)

(
t − xk

i

)
.
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Computing (xk
i
, yk

i
) as proposed in  (9)–(11) does not guarantee that the quantity 

�i,k(z
k,wk

i
) is positive. In the remainder of this section, we give some intuition as to 

why (9)–(11) nevertheless leads to convergence to S.
In the projective splitting literature preceeding [19], the pairs (xk

i
, yk

i
) are solutions 

of

for some 𝜌i > 0 , which—again following (4)—is a resolvent calculation. Since the 
stepsize �i in (12) can be any positive number, let us replace �i with �i∕�i for some 
�i ∈ (0, 1) and rewrite (12) as

The reason for this reparameterization will become apparent below.
In this paper, Ti = Ai + Bi , with Bi being cocoercive and Ai maximal monotone. 

For Ti in this form, computing the resolvent as in (12) exactly may be impossible, 
even when the resolvent of Ai is available. With this structure, xk

i
 in (13) satisfies:

which can be rearranged to 0 ∈ Aix
k
i
+ B̃ix

k
i
, where

Since Bi is L−1
i

-cocoercive, B̃i is (Li + �i∕�i)
−1-cocoercive [4, Prop. 4.12]. Consider 

the generic monotone inclusion problem 0 ∈ Aix + B̃ix : Ai is maximal and B̃i is 
cocoercive, and thus one may solve the problem with the forward–backward (FB) 
method [4, Theorem 26.14]. If one applies a single iteration of FB initialized at xk−1

i
 , 

with stepsize �i , to the inclusion 0 ∈ Aix + B̃ix , one obtains the calculation:

which is precisely the update (9). So, our proposed calculation is equivalent to one 
iteration of FB initialized at the previous point xk−1

i
 , applied to the subproblem of 

computing the resolvent in (13). Prior versions of projective splitting require com-
puting this resolvent either exactly or to within a certain relative error criterion, 
which may be time consuming. Here, we simply make a single FB step toward com-
puting the resolvent, which we will prove is sufficient for the projective splitting 

(12)xk
i
+ �iy

k
i
= Giz

k + �iw
k
i
∶ yk

i
∈ Tix

k
i

(13)xk
i
+

�i

�i
yk
i
= Giz

k +
�i

�i
wk
i
∶ yk

i
∈ Tix

k
i
.

0 =
�i

�i
yk
i
+ xk

i
−

(
Giz

k +
�i

�i
wk
i

)

⟹ 0 ∈
�i

�i
Aix

k
i
+

�i

�i
Bix

k
i
+ xk

i
−

(
Giz

k +
�i

�i
wk
i

)

B̃iv = Biv +
𝛼i

𝜌i

(
v − Giz

k −
𝜌i

𝛼i
wk
i

)
.

xk
i
= J𝜌iAi

(
xk−1
i

− 𝜌iB̃ix
k−1
i

)

= J𝜌iAi

(
xk−1
i

− 𝜌i

(
Bix

k−1
i

+
𝛼i

𝜌i

(
xk−1
i

− Giz
k −

𝜌i

𝛼i
wk
i

)))

= J𝜌iAi

(
(1 − 𝛼i)x

k−1
i

+ 𝛼iGiz
k − 𝜌i(Bix

k−1
i

− wk
i
)
)
,
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method to converge to S . However, our stepsize restriction on �i will be slightly 
stronger than the natural stepsize limit that would arise when applying FB to 
0 ∈ Aix + B̃ix.

3  The algorithm

3.1  Main problem assumptions and preliminary results

Assumption 1 Problem (2) conforms to the following: 

1 H0 = Hn and H1,… ,Hn−1 are real Hilbert spaces.
2 For i = 1,… , n , the operators Ai ∶ Hi → 2Hi and Bi ∶ Hi → Hi are monotone. 

Additionally, each Ai is maximal.
3 Each operator Bi is either L−1

i
-cocoercive for some Li > 0 and domBi = Hi , or 

Li = 0 and Bix = vi for all x ∈ Hi and some vi ∈ Hi (that is, Bi is a constant func-
tion).

4 Each Gi ∶ H0 → Hi for i = 1,… , n − 1 is linear and bounded.
5 Problem (2) has a solution, so the set S defined in (5) is nonempty.

Problem (1) will be equivalent to an instance of Problem (2) satisfying Assump-
tion 1 if each fi and hi is closed, convex, and proper, each hi has Li-Lipschitz 
continuous gradients, and a special case of the constraint qualification in [8, 
Prop. 5.3] holds.

Lemma 2 Suppose Assumption 1 holds. The set S defined in (5) is closed and convex.

Proof By [4, Cor.  20.28] each Bi is maximal. Furthermore, since dom (Bi) = Hi , 
Ti = Ai + Bi is maximal monotone by [4, Cor. 25.5(i)]. The rest of the proof is iden-
tical to [19, Lemma 3].   ◻

Throughout, we will use p = (z,�) = (z,w1,… ,wn−1) for a generic point in H , 
the collective primal-dual space. For H , we adopt the following (standard) norm 
and inner product:

Lemma 3 [19, Lemma 4] Let �k be defined as in (6). Then:

1 �k is affine on H.
2 With respect to inner product ⟨⋅, ⋅⟩ on H , the gradient of �k is

(14)

‖(z,�)‖2 ≜ ‖z‖2 +
n−1�
i=1

‖wi‖2
�
(z1,�1), (z2,�2)

�
≜ ⟨z1, z2⟩ +

n−1�
i=1

⟨w1
i
,w2

i
⟩.
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3.2  Abstract one‑forward‑step update

We sharpen the notation for the one-forward-step update introduced in (9)–(11) as 
follows:

Definition 1 Suppose H and H′ are real Hilbert spaces, A ∶ H → 2H is max-
imal-monotone with nonempty domain, B ∶ H → H is L−1-cocoercive, and 
G ∶ H�

→ H is bounded and linear. For � ∈ [0, 1] and 𝜌 > 0 , define the mapping 
F�,�(z, x,w;A,B,G) ∶ H� ×H2

→ H2 , with additional parameters A, B, and G, as

To simplify the presentation, we will also use the notation

With this notation, (9)–(11) may be written as (xk
i
, yk

i
) = Fi(zk, xk−1

i
,wk

i
).

 

∇�k =

(
n−1∑
i=1

G∗
i
yk
i
+ yk

n
, xk

1
− G1x

k
n
, xk

2
− G2x

k
n
,… , xk

n−1
− Gn−1x

k
n

)
.

(15)F�,�

�
z, x,w;

A,B,G

�
∶ = (x+, y+) ∶

⎧
⎪⎨⎪⎩

t ≜ (1 − �)x + �Gz − �(Bx − w)

x+ = J�A(t)

y+ = �−1(t − x+) + Bx+.

(16)Fi(z, x,w) ≜ F�i,�i

(
z, x,w;Ai,Bi,Gi

)
.
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3.3  Algorithm definition

Algorithms 1–3 define the main method proposed in this work. They produce 
a sequence of primal-dual iterates pk = (zk,wk

1
,… ,wk

n−1
) ∈ H and, implicitly, 

wk
n
≜ −

∑n−1

i=1
G∗

i
wk
i
 . Algorithm  1 gives the basic outline of our method; for each 

operator, it invokes either our new one-forward-step update with a user-defined 
stepsize (through line 6) or its backtracking variant given in Algorithm 2 (through 
line 4). Together, Algorithms 1–2 specify how to update the points (xk

i
, yk

i
) used to 

define the separating affine function �k in (6). Algorithm 3, called from line 7 of 
Algorithm 1, defines the projectToHplane function that performs the projec-
tion step to obtain the next iterate.
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Taken together, Algorithms 1–3 are essentially the same as Algorithm 2 of [19], 
except that the update of (xk

i
, yk

i
) uses the new procedure given in (9)–(11). For sim-

plicity, the algorithm also lacks the block-iterative and asynchronous features of [9, 
15, 19], which we plan to combine with Algorithms 1–3 in future research.

The computations in projectToHplane are all straightforward and of rela-
tively low complexity. They consist of matrix multiplies by Gi , inner products, 
norms, and sums of scalars. In particular, there are no potentially difficult minimiza-
tion problems involved. If Gi = I and Hi = ℝ

d for i = 1,… , n , then the computa-
tional complexity of projectToHplane is O (nd).

3.4  Algorithm parameters

The method allows two ways to select the stepsizes �i . One may either choose them 
manually or invoke the backTrack procedure. If one decides to select the step-
sizes manually, the upper bound condition �i ≤ 2(1 − �i)∕Li is required whenever 
Li > 0 . However, it may be difficult to ensure that this condition is satisfied when 
the cocoercivity constant is hard to estimate. The global cocoercivity constant Li 
may also be conservative in parts of the domain of Bi , leading to unnecessarily small 
stepsizes in some cases. We developed the backtracking linesearch technique for 
these reasons. The set B holds the indices of operators for which backtracking is to 
be used.

For a trial stepsize �̃�j , Algorithm  2 generates candidate points (x̃j, ỹj) using the 
single-forward-step procedure of (15). For these candidates, Algorithm 2 checks two 
conditions on lines 10–11. If both of these inequalities are satisfied, then backtrack-
ing terminates and returns the successful candidate points. If either condition is not 
satisfied, the stepsize is reduced by the factor � ∈ (0, 1) and the process is repeated. 
These two conditions arise in the analysis in Sect. 5.

The parameter �̂� is a global upper bound on the stepsizes (both backtracked and 
fixed) and must be chosen to satisfy Assumption 2. In backTrack, one must 
choose an initial trial stepsize within a specified interval (line 5 of Algorithm 2). 
This interval arises in the analysis (see Lemmas 16 and 17). Written in terms of 
the parameters passed into backTrack in the call on line 4 of Algorithm 1, and 
assuming the global upper bound �̂� is sufficiently large to not be active on line 5, the 
interval is

An obvious choice is to set the initial stepsize to be at the upper limit of the interval. 
In practice we have observed that ‖yk

i
− wk

i
‖ and ‖ŷk

i
− wk

i
‖ tend to be approximately 

equal, so this allows for an increase in the trial stepsize by up to a factor of approxi-
mately 1 + �i over the previous stepsize.

Note that backTrack returns the chosen stepsize �̃�j as well as the quantity � 
which are needed to compute the available interval in the call to backTrack dur-
ing the next iteration.

�
𝜌k
i
,

�
1 + 𝛼i

‖ŷk
i
− wk

i
‖

‖yk
i
− wk

i
‖

�
𝜌k
i

�
.
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In the analysis it will be convenient to let �̃�(i,k) be the initial trial stepsize chosen 
during iteration k of Algorithm 1, when backTrack has been called through line 4 
for some i ∈ B.

We call the stepsize returned by backTrack �k
i
 . Assuming that backTrack 

always terminates finitely (which we will show to be the case), we may write for 
i ∈ B

The only difference between the update for i ∈ B on line 6 and this update for i ∉ B 
is that in the former, the stepsize �k

i
 is discovered by backtracking, while in the latter 

it is directly user-supplied.
The backTrack procedure computes several auxiliary quantities used to check 

the two backtracking termination conditions. The point ŷj is calculated to be the 
same as ŷ given in Definition 2. The quantity 𝜑+

j
= ⟨Gz − x̃j, ỹj − w⟩ is the value of 

�i,k(z
k,wk

i
) corresponding to the candidate points (x̃j, ỹj) . The quantity � computed 

on line 3 is equal to �i,k−1(z
k,wk

i
) = ⟨Giz

k − xk−1
i

, yk−1
i

− wk
i
⟩ . Typically, we want �+

j
 

to be as large as possible to get a deeper cut with the separating hyperplane, but the 
condition checked on line 11 will ultimately suffice to prove convergence.

Algorithm 1 has several additional parameters. 

(�̂�i, ŵi)  these are used in the backtracking procedure for i ∈ B . An obvious choice 
which we used in our numerical experiments was (�̂�i, ŵi) = (x0

i
, y0

i
) , i.e. the 

initial point.
𝛾 > 0:  allows for the projection to be performed using a slightly more general 

primal-dual metric than (14). In effect, this parameter changes the relative 
size of the primal and dual updates in lines 10–11 of Algorithm 3. As � 
increases, a smaller step is taken in the primal and a larger step in the dual. 
As � decreases, a smaller step is taken in the dual update and a larger step 
is taken in the primal. See [17, Sec. 5.1] and [16, Sec. 4.1] for more details.

In Algorithm  1, the averaging parameters �i and user-selected stepsizes �i are 
fixed across all iterations. In the preprint version of this paper [22], we instead 
allow these parameters to vary by iteration, subject to certain restrictions. Doing 
so complicates the notation and the analysis, so for relative simplicity we consider 
only fixed values of these parameter here. This simplification also accords with the 
parameter choices in our computational tests below. For the full, more complicated 
analysis, please refer to [22].

As written, Algorithm 1 is not as efficient as it could be. On the surface, it seems 
that we need to recompute Bix

k−1
i

 in order to evaluate F  on line 6. However, Bix
k−1
i

 
was already computed in the previous iteration and can obviously be reused, so only 
one evaluation of Bi is needed per iteration. Similarly, within backTrack, each 
invocation of F  on line 7 may reuse the quantity Bx = Bix

k−1
i

 which was computed 
in the previous iteration of Algorithm  1. Thus, each iteration of the loop within 
backTrack requires one new evaluation of B, to compute Bx̃j within F .

(xk
i
, yk

i
) = F�i, �

k
i
(zk, xk−1

i
,wk

i
;Ai,Bi,Gi)
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We now precisely state our stepsize assumption for the manually chosen step-
sizes, as well as the stepsize upper bound �̂�.

Assumption 2 For i ∉ B : If Li > 0 , then 0 < 𝜌i ≤ 2(1 − 𝛼i)∕Li, otherwise 𝜌i > 0 . 
The parameter �̂� must satisfy

Note that if Li > 0 , Assumption 2 effectively limits �i to be strictly less than 1, 
otherwise the stepsize �i would be forced to 0, which is prohibited. In this case �i 
must be chosen in (0, 1). On the other hand, if Li = 0 , there is no constraint on �i 
other than that it is positive and nonzero, and in this case �i may be chosen in (0, 1].

3.5  Separator‑projector properties

Lemma 4 details the key results for Algorithm 1 that stem from it being a sepera-
tor-projector algorithm. While these properties alone do not guarantee convergence, 
they are important to all of the arguments that follow.

Lemma 4 Suppose that Assumption 1 holds. Then for Algorithm 1 

1 The sequence {pk} = {(zk,wk
1
,… ,wk

n−1
)} is bounded.

2 If the algorithm never terminates via line 9, pk − pk+1 → 0 . Furthermore 
zk − zk−1 → 0 and wk

i
− wk−1

i
→ 0 for i = 1,… n.

3 If the algorithm never terminates via line 9 and ‖∇�k‖ remains bounded for all 
k ≥ 1 , then lim supk→∞ �k(p

k) ≤ 0.

Proof Parts 1–2 are proved in lemmas 2 and 6 of [19]. Part 3 can be found in Part 1 
of the proof of Theorem 1 in [19]. The analysis in [19] uses a different procedure to 
construct the pairs (xk

i
, yk

i
) , but the result is generic and not dependent on that par-

ticular procedure. Note also that [19] establishes the results in a more general setting 
allowing asynchrony and block-iterativeness, which we do not analyze here.   ◻

4  The special case n = 1

Before starting the analysis, we consider the important special case n = 1 . In this 
case, we have by assumption that G1 = I , wk

1
= 0 , and we are solving the problem 

0 ∈ Az + Bz, where both operators are maximal monotone and B is L−1-cocoercive. 
In this case, Algorithm 1 reduces to a method which is similar to FB. Let xk ≜ xk

1
 , 

yk ≜ yk
1
 , � ≜ �1 , and � ≜ �1 . Assuming for simplicity that B = {�} , meaning back-

tracking is not being used, then the updates carried out by the algorithm are

(17)�̂� ≥ max

{
max
i∈B

𝜌0
i
, max

i∉B
𝜌i

}
.
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If � = 0 , then for all k ≥ 2 , the iterates computed in (18) reduce simply to

which is exactly FB. However, � = 0 is not allowed in our analysis. Thus, FB is a 
forbidden boundary case which may be approached by setting � arbitrarily close to 
0. As � approaches 0, the stepsize constraint � ≤ 2(1 − �)∕L approaches the classi-
cal stepsize constraint for FB: � ≤ 2∕L − � for some arbitrarily small constant 𝜖 > 0 . 
A potential benefit of Algorithm 1 over FB in the n = 1 case is that it does allow for 
backtracking when L is unknown or only a conservative estimate is available.

5  Main proof

The core of the proof strategy will be to establish (19) below. If this can be done, 
then weak convergence to a solution follows from part 3 of Theorem 1 in [19].

Lemma 5 Suppose Assumption 1 holds and Algorithm 1 produces an infinite 
sequence of iterations without terminating via Line 9. If

then there exists (z,�) ∈ S such that (zk,�k) ⇀ (z,�) . Furthermore, we also have 
xk
i
⇀ Giz̄ and yk

i
⇀ wi for all i = 1,… , n − 1 , xk

n
⇀ z̄ , and yk

n
⇀ −

∑n−1

i=1
G∗

i
wi.

Proof Equivalent to part 3 of the Proof of Theorem 1 in [19].  ◻

In order to establish (19), we start by establishing certain contractive and “ascent” 
properties for the mapping F  , and also show that the backtracking procedure termi-
nates finitely. Then, we prove the boundedness of xk

i
 and yk

i
 , in turn yielding the 

boundedness of the gradients ∇�k and hence the result that lim supk→∞{�k(p
k)} ≤ 0 

by Lemma 4. Next we establish a “Lyapunov-like” recursion for �i,k(z
k,wk

i
) , relating 

�i,k(z
k,wk

i
) to �i,k−1(z

k−1,wk−1
i

) . Eventually this result will allow us to establish that 
lim infk �k(p

k) ≥ 0 and hence that �k(p
k) → 0 , which will in turn allow an argument 

that yk
i
− wk

i
→ 0 . The proof that Giz

k − xk
i
→ 0 will then follow fairly elementary 

arguments.
The primary innovations of the upcoming proof are the ascent lemma and 

the way that it is used in Lemma 18 to establish �k(p
k) → 0 and yk

i
− wk

i
→ 0 . 

This technique is a significant deviation from previous analyses in the 

(18)

xk = J�A
�
(1 − �)xk−1 + �zk − �Bxk−1

�

yk = Bxk +
1

�

�
(1 − �)xk−1 + �zk − �Bxk−1 − xk

�

zk+1 = zk − �kyk, where �k =
max{⟨zk − xk, yk⟩, 0}

‖yk‖2 .

xk = J�A
(
xk−1 − �Bxk−1

)

(19)(∀i = 1,… , n) ∶ yk
i
− wk

i
→ 0 and Giz

k − xk
i
→ 0,
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projective splitting family. In previous work, the strategy was to show that 
�i,k(z

k,wk
i
) ≥ Cmax{‖Giz

k − xk
i
‖2, ‖yk

i
− wk

i
‖2} for a constant C > 0 , which may 

be combined with lim sup�k(p
k) ≤ 0 to imply (19). In contrast, in the algorithm 

of this paper we cannot establish such a result and in fact �i,k(z
k,wk

i
) may be 

negative.
We begin by stating three elementary results on sequences, which may be found 

in [33], and a basic, well known nonexpansivity property for forward steps with 
cocoercive operators.

Lemma 6 [33, Lemma 1, Ch. 2] Suppose that ak ≥ 0 for all k ≥ 1 , b ≥ 0 , 0 ≤ 𝜏 < 1 , 
and ak+1 ≤ �ak + b for all k ≥ 1 . Then {ak} is a bounded sequence.

Lemma 7 [33, Lemma 3, Ch. 2] Suppose that ak ≥ 0, bk ≥ 0 for all k ≥ 1 , bk → 0 , 
and there is some 0 ≤ 𝜏 < 1 such that ak+1 ≤ �ak + bk for all k ≥ 1 . Then ak → 0.

Lemma 8 Suppose that 0 ≤ 𝜏 < 1 and {rk}, {bk} are sequences in ℝ with the proper-
ties bk → 0 and rk+1 ≥ �rk + bk for all k ≥ 1 . Then lim infk→∞{rk} ≥ 0.

Proof Negating the assumed inequality yields −rk+1 ≤ �(−rk) − bk . Applying [33, 
Lemma 3, Ch. 2] then yields lim sup{−rk} ≤ 0.  ◻

Lemma 9 Suppose B is L−1-cocoercive and 0 ≤ � ≤ 2∕L . Then for all x, y ∈ dom (B)

Proof Squaring the left hand side of (20) yields

  ◻

5.1  Foundations: contractive and “ascent” properties of F

Lemma 10 Suppose (x+, y+) = F�,�(z, x,w;A,B,G) , where F�,� is given in Definition 
1. Recall that B is L−1-cocoercive. If L = 0 or � ≤ 2(1 − �)∕L , then

for any �̂� ∈ dom (A) and ŵ ∈ A�̂� + B�̂�.

Proof Select any �̂� ∈ dom (A) and ŵ ∈ A�̂� + B�̂� . Let â = ŵ − B�̂� ∈ A�̂� . It follows 
immediately from the definition of J�A = (I + �A)−1 that

(20)‖x − y − �(Bx − By)‖ ≤ ‖x − y‖.

‖x − y − �(Bx − By)‖2 = ‖x − y‖2 − 2�⟨x − y,Bx − By⟩ + �2‖Bx − By‖2

≤ ‖x − y‖2 − 2�

L
‖Bx − By‖2 + �2‖Bx − By‖2

≤ ‖x − y‖2.

(21)‖x+ − �̂�‖ ≤ (1 − 𝛼)‖x − �̂�‖ + 𝛼‖Gz − �̂�‖ + 𝜌‖w − ŵ‖
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Therefore, (15) and (22) yield

To obtain (a), one uses the nonexpansivity of the resolvent [4, Prop. 23.8(ii)]. To 
obtain (b), one regroups terms and adds and subtracts B�̂� . Then (c) follows from 
the triangle inequality. Finally we consider (d): If L > 0 , apply Lemma 9 to the first 
term on the right-hand side of (23) with the stepsize �∕(1 − �) which by assumption 
satisfies

Alternatively, if L = 0 , implying that B is a constant-valued operator, then Bx = B�̂� 
and (d) is just an equality.  ◻

Lemma 11 Suppose (x+, y+) = F�,�(z, x,w;A,B,G) , where F�,� is given in Defini-
tion 1. Recall B is L−1-cocoercive. Let y ∈ Ax + Bx and define � ≜ ⟨Gz − x, y − w⟩ . 
Further, define �+ ≜ ⟨Gz − x+, y+ − w⟩ , t as in (15), and ŷ ≜ 𝜌−1(t − x+) + Bx . If 
� ∈ (0, 1] and � ≤ 2(1 − �)∕L whenever L > 0 , then

Proof Since y ∈ Ax + Bx , there exists a ∈ Ax such that y = a + Bx . Let 
a+ ≜ �−1(t − x+) . Note by (4) that a+ ∈ Ax+ . With this notation, ŷ = a+ + Bx.

We may write the x+-update in (15) as

which rearranges to

Adding Gz to both sides yields

(22)�̂� = J𝜌A(�̂� + 𝜌â).

(23)

‖x+ − �̂�‖ =
���J𝜌A

�
(1 − 𝛼)x + 𝛼Gz − 𝜌(Bx − w)

�
− J𝜌A(�̂� + 𝜌â)

���
(a)

≤
���(1 − 𝛼)x + 𝛼Gz − 𝜌(Bx − w) − �̂� − 𝜌â

���
(b)
=

����(1 − 𝛼)
�
x − �̂� −

𝜌

1 − 𝛼

�
Bx − B�̂�

��
+ 𝛼(Gz − �̂�)

+𝜌
�
w − â − B�̂�

����
(c)

≤ (1 − 𝛼)
����x − �̂� −

𝜌

1 − 𝛼

�
Bx − B�̂�

����� + 𝛼‖Gz − �̂�‖
+ 𝜌

���w − (â + B�̂�)
���

(d)

≤ (1 − 𝛼)‖x − �̂�‖ + 𝛼‖Gz − �̂�‖ + 𝜌‖w − ŵ‖.

�

1 − �
≤

2

L
.

(24)𝜑+ ≥
𝜌

2𝛼

�‖y+ − w‖2 + 𝛼‖ŷ − w‖2� + (1 − 𝛼)
�
𝜑 −

𝜌

2𝛼
‖y − w‖2

�
.

x+ + �a+ = (1 − �)x + �Gz − �(Bx − w)

x+ = (1 − 𝛼)x + 𝛼Gz − 𝜌(ŷ − w) ⟹ −x+ = −𝛼Gz − (1 − 𝛼)x + 𝜌(ŷ − w).
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Substituting this equation into the definition of �+ yields

We now focus on the second term in (26). Assume for now that L > 0 (we will deal 
with the L = 0 case below). We write

To derive (27) we substituted (y+, y) = (a+ + Bx+, a + Bx) and for the following ine-
quality we used the monotonicity of A and L−1-cocoercivity of B (recall that a ∈ Ax 
and a+ ∈ Ax+ ). Substituting the resulting inequality back into (26) yields

Subtracting (1 − �)�+ from both sides of the above inequality produces

Using (25) once again, this time to the third term on the right-hand side of (29), we 
write

Substituting this equation back into (29) yields

(25)Gz − x+ = (1 − 𝛼)(Gz − x) + 𝜌(ŷ − w).

(26)

𝜑+ = ⟨Gz − x+, y+ − w⟩
=
�
(1 − 𝛼)(Gz − x) + 𝜌(ŷ − w), y+ − w

�

= (1 − 𝛼)⟨Gz − x, y+ − w⟩ + 𝜌⟨ŷ − w, y+ − w⟩
= (1 − 𝛼)⟨Gz − x, y − w⟩ + (1 − 𝛼)⟨Gz − x, y+ − y⟩ + 𝜌⟨ŷ − w, y+ − w⟩
= (1 − 𝛼)𝜑 + (1 − 𝛼)⟨Gz − x, y+ − y⟩ + 𝜌⟨ŷ − w, y+ − w⟩.

(27)
⟨Gz − x, y+ − y⟩ = ⟨x+ − x, y+ − y⟩ + ⟨Gz − x+, y+ − y⟩

= ⟨x+ − x, a+ − a⟩ + ⟨x+ − x,Bx+ − Bx⟩
+ ⟨Gz − x+, y+ − y⟩

(28)

≥ L−1‖Bx+ − Bx‖2 + ⟨Gz − x+, y+ − y⟩
= L−1‖Bx+ − Bx‖2 + ⟨Gz − x+, y+ − w⟩
+ ⟨Gz − x+,w − y⟩

= L−1‖Bx+ − Bx‖2 + �+ + ⟨Gz − x+,w − y⟩.

𝜑+ = (1 − 𝛼)𝜑 + (1 − 𝛼)⟨Gz − x, y+ − y⟩ + 𝜌⟨ŷ − w, y+ − w⟩
≥ (1 − 𝛼)𝜑 + (1 − 𝛼)

�
L−1‖Bx+ − Bx‖2 + 𝜑+ + ⟨Gz − x+,w − y⟩�

+ 𝜌⟨ŷ − w, y+ − w⟩.

(29)
𝛼𝜑+ ≥ (1 − 𝛼)

�
𝜑 + L−1‖Bx+ − Bx‖2 + ⟨Gz − x+,w − y⟩�

+ 𝜌⟨ŷ − w, y+ − w⟩.

(30)
⟨Gz − x+,w − y⟩ = �

(1 − 𝛼)(Gz − x) + 𝜌(ŷ − w),w − y
�

= (1 − 𝛼)⟨Gz − x,w − y⟩ + 𝜌⟨ŷ − w,w − y⟩
= (𝛼 − 1)𝜑 − 𝜌⟨ŷ − w, y − w⟩.
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We next use the identity ⟨x1, x2⟩ = 1

2
‖x1‖2 + 1

2
‖x2‖2 − 1

2
‖x1 − x2‖2 on both inner 

products in (31), as follows:

and

Here we have used the identities

Using (32)–(33) in (31) yields

Consider this last expression: since � ≤ 1 , the coefficient (1 − �)�∕2 multiplying 
‖a+ − a‖2 is nonnegative. Furthermore, since � ≤ 2(1 − �)∕L , the coefficient mul-
tiplying ‖Bx+ − Bx‖2 is positive. Therefore we may drop these two terms from the 
above inequality and divide by � to obtain (24).

Finally, we deal with the case in which L = 0 , which implies that Bx = v for some 
v ∈ H for all x ∈ H . The main difference is that the ‖Bx+ − Bx‖2 terms are no longer 
present since Bx+ = Bx . The analysis is the same up to (26). In this case Bx+ = v so 
instead of (28) we may deduce from (27) that

(31)
𝛼𝜑+ ≥ (1 − 𝛼)

�
𝛼𝜑 + L−1‖Bx+ − Bx‖2 − 𝜌⟨ŷ − w, y − w⟩�

+ 𝜌⟨ŷ − w, y+ − w⟩.

(32)
⟨ŷ − w, y − w⟩ = 1

2

�‖ŷ − w‖2 + ‖y − w‖2 − ‖ŷ − y‖2�

=
1

2

�‖ŷ − w‖2 + ‖y − w‖2 − ‖a+ − a‖2�

(33)
⟨ŷ − w, y+ − w⟩ = 1

2

�‖ŷ − w‖2 + ‖y+ − w‖2 − ‖ŷ − y+‖2�

=
1

2

�‖ŷ − w‖2 + ‖y+ − w‖2 − ‖Bx+ − Bx‖2�.

ŷ − y = a+ + Bx − (a + Bx) = a+ − a

ŷ − y+ = a+ + Bx − (a+ + Bx+) = Bx − Bx+.

𝛼𝜑+ ≥ (1 − 𝛼)
�
𝛼𝜑 + L−1‖Bx+ − Bx‖2 − 𝜌⟨ŷ − w, y − w⟩�

+ 𝜌⟨ŷ − w, y+ − w⟩
= (1 − 𝛼)

�
𝛼𝜑 + L−1‖Bx+ − Bx‖2�

−
𝜌(1 − 𝛼)

2

�‖ŷ − w‖2 + ‖y − w‖2 − ‖a+ − a‖2�

+
𝜌

2

�‖ŷ − w‖2 + ‖y+ − w‖2 − ‖Bx+ − Bx‖2�

= (1 − 𝛼)
�
𝛼𝜑 −

𝜌

2
‖y − w‖2 + 𝜌

2
‖a+ − a‖2

�

+
�
1 − 𝛼

L
−

𝜌

2

�
‖Bx+ − Bx‖2 + 𝜌

2

�‖y+ − w‖2 + 𝛼‖ŷ − w‖2�.

⟨Gz − x, y+ − y⟩ ≥ �+ + ⟨Gz − x+,w − y⟩.
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Since Bx+ = Bx = v is constant we also have that

Thus, instead of (29) in this case we have the simpler inequality

The term ⟨Gz − x+,w − y⟩ in (34) is dealt with just as in (29), by substitution of (25). 
This step now leads via (30) to

Once again using ⟨x1, x2⟩ = 1

2
‖x1‖2 + 1

2
‖x2‖2 − 1

2
‖x1 − x2‖2 on the second term on 

the right-hand side above yields

We can lower-bound the ‖y+ − y‖2 term by 0. Dividing through by � and rearrang-
ing, we obtain

Since y+ = ŷ in the L = 0 case, this is equivalent to (24).  ◻

5.2  Finite termination of backtracking

In all the following lemmas in Sects. 5.2 and 5.3 regarding algorithms 1–3, Assump-
tions 1 and 2 are in effect and will not be explicitly stated in each lemma. We start 
by proving that backTrack terminates in a finite number of iterations, and that the 
stepsizes it returns are bounded away from 0.

Lemma 12 For i ∈ B , Algorithm 2 terminates in a finite number of iterations for all 
k ≥ 1 . There exists 𝜌

i
> 0 such that �k

i
≥ �

i
 for all k ≥ 1 , where �k

i
 is the stepsize 

returned by Algorithm 2 on line 4. Furthermore 𝜌k
i
≤ �̂� for all k ≥ 1.

Proof Assume we are at iteration k ≥ 1 in Algorithm 1 and backTrack has been 
called through line 4 for some i ∈ B . The internal variables within backTrack 
are defined in terms of the variables passed from Algorithm  1 as follows: z = zk , 
x = xk−1

i
 , w = wk

i
 , y = yk−1

i
 , � = �k−1

i
 and � = �k−1

i
 . Furthermore � = �i , �̂� = �̂�i , 

ŵ = ŵi , A = Ai , B = Bi , and G = Gi . The calculation on line 3 of Algorithm 2 yields 
� = �i,k−1(z

k,wk
i
) . In the following argument, we mostly refer to the internal name 

of the variables within backTrack without explicitly making the above substitu-
tions. With that in mind, let L = Li be the cocoercivity constant of B = Bi.

ŷ = a+ + Bx = a+ + v = a+ + Bx+ = y+.

(34)��+ ≥ (1 − �)
�
� + ⟨Gz − x+,w − y⟩� + �‖y+ − w‖2.

��+ ≥ �(1 − �)� − �(1 − �)⟨y+ − w, y − w⟩ + �‖y+ − w‖2.

��+ ≥ �(1 − �)� + �‖y+ − w‖2

−
�(1 − �)

2

�‖y+ − w‖2 + ‖y − w‖2 − ‖y+ − y‖2�.

�+ ≥
�(1 + �)

2�
‖y+ − w‖2 + (1 − �)

�
� −

�

2�
‖y − w‖2

�
.
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Recall that �̃�(i,k) is the initial trial stepsize �̃�1 chosen on line 5 of backTrack. We 
must establish that the interval on line 5 is always nonempty and so a valid initial 
stepsize can be chosen. Since �� ≥ 0 , this will be true if �̂� ≥ 𝜌 = 𝜌k−1

i
 , which we will 

prove by induction. Note that by Assumption 2, �̂� ≥ 𝜌0
i
 for all i ∈ B . Therefore for 

k = 1 , �̂� ≥ 𝜌 = 𝜌0
i
 . We will prove the induction step below.

Observe that backtracking terminates via line 13 if two conditions are met. The 
first condition,

is identical to (21) of Lemma  10, with x̃j and �̃�j respectively in place of x+ and 
� . The initialization step of Algorithm  2 provides us with ŵ ∈ A�̂� + B�̂� for some 
�̂� ∈ dom (A) . Furthermore, since

the findings of Lemma 10 may be applied. In particular, if L > 0 and 
�̃�j ≤ 2(1 − 𝛼)∕L , then (35) will be met. Alternatively, if L = 0 , (35) will hold for any 
value of the stepsize �̃�j > 0.

Next, consider the second termination condition,

This relation is identical to (24) of Lemma 11, with (ỹj, ŷj, �̃�j) in 
place of (y+, ŷ, 𝜌) . However, to apply the lemma we must show that 
y = yk−1

i
∈ Axk−1

i
+ Bxk−1

i
= Ax + Bx . We will also prove this by induction.

For k = 1 , y = yk−1
i

∈ Axk−1
i

+ Bxk−1
i

= Ax + Bx holds by the initializa-
tion step of Algorithm  1. Now assume that at iteration k ≥ 2 it holds that 
y = yk−1

i
∈ Axk−1

i
+ Bxk−1

i
= Ax + Bx and furthermore that �̂� ≥ 𝜌 = 𝜌k−1

i
 , therefore 

the interval on line 5 is nonempty. We may then apply the findings of Lemma 11 to 
conclude that if L > 0 and �̃�j ≤ 2(1 − 𝛼)∕L , then condition (36) is satisfied. Or, if 
L = 0 , condition (36) is satisfied for any �̃�j > 0.

Combining the above observations, we conclude that if L > 0 and 
�̃�j ≤ 2(1 − 𝛼)∕L , backtracking will terminate for that iteration j of backTrack 
via line 13. Or, if L = 0 , it will terminate in the first iteration of backTrack. The 
stepsize decrement condition on line 14 of the backtracking procedure implies that 
�̃�j ≤ 2(1 − 𝛼)∕L will eventually hold for large enough j, and hence that the two back-
tracking termination conditions must eventually hold.

Let j∗ ≥ 1 be the iteration at which backtracking terminates when called for oper-
ator i at iteration k of Algorithm 1. For the pair (xk

i
, yk

i
) returned by backTrack on 

line 1 of Algorithm 1, we may write

(35)‖x̃j − �̂�‖ ≤ (1 − 𝛼)‖x − �̂�‖ + 𝛼‖Gz − �̂�‖ + �̃�j‖w − ŵ‖,

(x̃j, ỹj) = F𝛼,�̃�j
(z, x,w;A,B,G),

(36)𝜑+
j
≥

�̃�j

2𝛼

�‖ỹj − w‖2 + 𝛼‖ŷj − w‖2� + (1 − 𝛼)

�
𝜑 −

�̃�j

2𝛼
‖y − w‖2

�
.

(xk
i
, yk

i
) = (x̃j∗ , ỹj∗ )

= F𝛼,�̃�j∗
(z, x,w;A,B,G) = F𝛼k

i
,𝜌k

i
(zk, xk−1

i
,wk

i
;Ai,Bi,Gi).
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Thus, by the definition of F  in (15), yk
i
∈ Aix

k
i
+ Bix

k
i
 . Therefore, induction estab-

lishes that yk
i
∈ Aix

k
i
+ Bix

k
i
 holds for all k ≥ 1.

Now the returned stepsize must satisfy 𝜌k
i
= �̃�j∗ ≤ �̃�(i,k) ≤ �̂� . In the next iteration, 

𝜌 = 𝜌k
i
≤ �̂� . Thus we have also established by induction that �̂� ≥ 𝜌 = 𝜌k

i
 and there-

fore that the interval on line 5 is nonempty for all iterations k ≥ 1 . Finally, we now 
also infer by induction that backTrack terminates in a finite number of iterations 
for all k ≥ 1 and i ∈ B.

Now �̃�(i,k) must be chosen in the range

Since we have established that this interval remains nonempty, it holds trivially that 
�̃�(i,k) ≥ 𝜌k−1

i
 . For all k ≥ 1 and i ∈ B , the returned stepsize 𝜌k

i
= �̃�j∗ must satisfy

Therefore for all k ≥ 1 and all i ∈ B such that Li > 0 , one has

where the first inequality uses (37) and �̃�(i,k) ≥ 𝜌k−1
i

 , the second inequality recurses, 
and the final inequality is just (37) for k = 1 . If Li = 0 , the argument is simply

  ◻

5.3  Boundedness results and their direct consequences

Lemma 13 For all i = 1,… , n , the sequences {xk
i
} and {yk

i
} are bounded.

Proof To prove this, we first establish that for i = 1,… , n and k ≥ 1

For i ∈ B , Lemma 12 establishes that backTrack terminates for finite j ≥ 1 for all 
k ≥ 1 . For fixed k ≥ 1 and i ∈ B , let j∗ ≥ 1 be the iteration of backTrack that ter-
minates. At termination, the following condition is satisfied via line 10:

�̃�(i,k) ∈
[
𝜌k−1
i

, min
{
(1 + 𝛼i𝜂

k−1
i

)𝜌k−1
i

, �̂�
}]
.

(37)
(∀ i ∶ Li > 0) ∶ 𝜌k

i
≥ min

{
�̃�(i,k),

2𝛿(1 − 𝛼i)

Li

}

(∀ i ∶ Li = 0) ∶ 𝜌k
i
= �̃�(i,k).

𝜌k
i
≥ min

{
𝜌k−1
i

,
2𝛿(1 − 𝛼i)

Li

}
≥ min

{
𝜌1
i
,
2𝛿(1 − 𝛼i)

Li

}

≥ min

{
𝜌0
i
,
2𝛿(1 − 𝛼i)

Li

}
≜ 𝜌

i
> 0,

𝜌k
i
= �̃�(i,k) ≥ 𝜌k−1

i
= �̃�(i,k−1) ≥ … ≥ 𝜌1

i
= �̃�(i,1) = 𝜌0

i
≜ 𝜌

i
> 0.

(38)‖xk
i
− �̂�i‖ ≤ (1 − 𝛼i)‖xk−1i

− �̂�i‖ + 𝛼i‖Giz
k − �̂�i‖ + �̂�

���w
k
i
− ŵi

���
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Into this inequality, now substitute in the following variables from Algorithm 1, as 
passed to and from backTrack: xk

i
= x̃j∗ , �̂�i = �̂� , �i = � , xk−1

i
= x , Gi = G , zk = z , 

𝜌k
i
= �̃�j∗ , wk

i
= w , and ŵi = w . Further noting that 𝜌k

i
≤ �̂� , the result is (38).

For i ∉ B , we note that line 6 of Algorithm 1 reads as

and since Assumption 2 holds, we may apply Lemma 10. Further noting that by 
Assumption 2 𝜌i ≤ �̂� we arrive at yield (38).

Since {zk} , and {wk
i
} are bounded by Lemma 4 and ‖Gi‖ is bounded by Assump-

tion 1, boundedness of {xk
i
} now follows by applying Lemma 6 with 𝜏 = 1 − 𝛼i < 1 

to (38).
Next, boundedness of Bix

k
i
 follows from the continuity of Bi . Since Lemma 12 

established that backTrack terminates in a finite number of iterations we have for 
any k ≥ 2 that

where for i ∉ B �k
i
≜ �i . Expanding the y+-update in the definition of F  in (15), we 

may write

Since Gi , zk , and wk
i
 are bounded, for i ∈ B 𝜌k

i
≤ �̂� , and �k

i
≥ �

i
 (using Lemma 12 for 

i ∈ B ), and for i ∉ B �k
i
= �i is constant, we conclude that yk

i
 remains bounded.  ◻

With {xk
i
} and {yk

i
} bounded for all i = 1,… , n , the boundedness of ∇�k follows 

immediately:

Lemma 14 The sequence {∇�k} is bounded. If Algorithm 1 never terminates via line 
9, lim supk→∞ �k(p

k) ≤ 0.

Proof By Lemma 3, ∇z�k =
∑n

i=1
G∗

i
yk
i
 , which is bounded since each Gi 

is bounded by assumption and each {yk
i
} is bounded by Lemma 13. Fur-

thermore, ∇wi
�k = xk

i
− Gix

k
n
 is bounded using the same two lemmas. That 

lim supk→∞ �k(p
k) ≤ 0 then immediately follows from Lemma 4(3).  ◻

Using the boundedness of {xk
i
} and {yk

i
} , we can next derive the following simple 

bound relating �i,k−1(z
k,wk

i
) to �i,k−1(z

k−1,wk−1
i

):

Lemma 15 There exists M1,M2 ≥ 0 such that for all k ≥ 2 and i = 1,… , n,

‖x̃j∗ − �̂�‖ ≤ (1 − 𝛼)‖x − �̂�‖ + 𝛼‖Gz − �̂�‖ + �̃�j∗‖w − ŵ‖.

(xk
i
, yk

i
) = F�i,�i

(zk, xk−1
i

,wk
i
;Ai,Bi,Gi)

(xk
i
, yk

i
) = F�k

i
,�k

i
(zk, xk−1

i
,wk

i
;Ai,Bi,Gi)

yk
i
= (�k

i
)−1

(
(1 − �i)x

k−1
i

+ �iGiz
k − �k

i
(Bix

k−1
i

− wk
i
) − xk

i

)
+ Bxk

i
.

�i,k−1(z
k,wk

i
) ≥ �i,k−1(z

k−1,wk−1
i

) −M1‖wk
i
− wk−1

i
‖

−M2‖Gi‖‖zk − zk−1‖.
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Proof For each i ∈ {1,… , n} , let M1,i,M2,i ≥ 0 be respective bounds on �‖Giz
k−1 − xk−1

i
‖� and 

�‖yk−1
i

− wk
i
‖� , which must exist by Lemma 4, the bounded-

ness of {xk
i
} and {yk

i
} , and the boundedness of Gi . Let M1 = maxi=1,…,m{M1,i} and 

M2 = maxi=1,…,m{M2,i} . Then, for any k ≥ 2 and i ∈ {1,… , n} , we may write

where the last step uses the Cauchy-Schwarz inequality and the definitions of M1 and 
M2.  ◻

5.4  A Lyapunov‑like recursion for the hyperplane

We now establish a Lyapunov-like recursion for the hyperplane. For this purpose, 
we need two more definitions.

Definition 2 For all k ≥ 1 , since Lemma 12 establishes that Algorithm 2 terminates 
in a finite number of iterations, we may write for i = 1,… , n:

where for i ∉ B �k
i
= �i are actually fixed. Using (4) and the x+-update in (15), there 

exists ak
i
∈ Aix

k
i
 such that

Define ŷk
i
≜ ak

i
+ Bix

k−1
i

.

Definition 3 For i ∉ B we will use �k
i
≜ �i , even though these stepsizes are fixed, 

so that we can use the same statements as for i ∈ B . Similarly we will use �
i
≜ �i for 

i ∉ B.

Lemma 16 For all k ≥ 1 , and i = 1,… , n

�i,k−1(z
k,wk

i
)

= ⟨Giz
k − xk−1

i
, yk−1

i
− wk

i
⟩

= ⟨Giz
k−1 − xk−1

i
, yk−1

i
− wk

i
⟩ + ⟨Giz

k − Giz
k−1, yk−1

i
− wk

i
⟩

= ⟨Giz
k−1 − xk−1

i
, yk−1

i
− wk−1

i
⟩

+ ⟨Giz
k−1 − xk−1

i
,wk−1

i
− wk

i
⟩ + ⟨Giz

k − Giz
k−1, yk−1

i
− wk

i
⟩

≥ �i,k−1(z
k−1,wk−1

i
) −M1‖wk

i
− wk−1

i
‖ −M2‖Gi‖‖zk − zk−1‖,

(xk
i
, yk

i
) = F�i,�

k
i
(zk, xk−1

i
,wk

i
;Ai,Bi,Gi)

xk
i
+ �k

i
ak
i
= (1 − �i)x

k−1
i

+ �iGiz
k − �k

i
(Bix

k−1
i

− wk
i
).

(39)
𝜌k+1
i

𝛼i
‖yk

i
− wk

i
‖2 ≤ 𝜌k

i

𝛼i

�‖yk
i
− wk

i
‖2 + 𝛼i‖ŷki − wk

i
‖2�.
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Proof For i ∈ B , recall that �̃�(i,k) is the initial trial stepsize chose on line 5 of back-
Track at iteration k for some i ∈ B . The condition on line 5 of backTrack guar-
antees that

Multiplying through by �−1
i
‖yk

i
− wk

i
‖2 and noting that 𝜌k+1

i
≤ �̃�(i,k+1) proves the 

lemma.
For i ∉ B the expression holds trivially because �k+1

i
= �k

i
= �i .   ◻

Lemma 17 For all k ≥ 2 and i = 1,… , n,

and

Proof Take any i ∈ B . Lemma 12 guarantees the finite termination of backTrack. 
Now consider the backtracking termination condition

Fix some k ≥ 2 , and let j∗ ≥ 1 be the iteration at which backTrack terminates. In 
the above inequality, make the following substitutions for the internal variables of 
backTrack by those passed in/out of the function: �i,k(z

k, xk
i
) = �+

j∗
 , 𝜌k

i
= �̃�j∗ , 

�i = � , yk
i
= ỹj , wk

i
= w , �i,k−1(z

k,wk
i
) = � . Furthermore, ŷk

i
= ŷj∗ where ŷk

i
 is defined 

in Definition 2. Together, these substitutions yield (40). We can then apply Lemma 
16 to get (41).

Now take any i ∈ {1,… , n}�B . From line 6 of Algorithm 1, Assumption 2, and 
Lemma 11, we directly deduce (40). Combining this relation with  (39) we obtain 
(41).  ◻

�̃�(i,k+1) ≤ 𝜌k
i

�
1 + 𝛼i

‖ŷk
i
− wk

i
‖2

‖yk
i
− wk

i
‖2

�
.

(40)

𝜑i,k(z
k,wk

i
) −

𝜌k
i

2𝛼i

�‖yk
i
− wk

i
‖2 + 𝛼i‖ŷki − wk

i
‖2�

≥ (1 − 𝛼i)

�
𝜑i,k−1(z

k,wk
i
) −

𝜌k
i

2𝛼i
‖yk−1

i
− wk

i
‖2
�

(41)

�i,k(z
k,wk

i
) −

�k+1
i

2�i
‖yk

i
− wk

i
‖2

≥ (1 − �i)

�
�i,k−1(z

k,wk
i
) −

�k
i

2�i
‖yk−1

i
− wk

i
‖2
�
.

𝜑+
j
≥

�̃�j

2𝛼

�‖ỹj − w‖2 + 𝛼‖ŷj − w‖2� + (1 − 𝛼)

�
𝜑 −

�̃�j

2𝛼
‖y − w‖2

�
.
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5.5  Finishing the proof

We now work toward establishing the conditions of Lemma  5. Unless otherwise 
specified, we henceforth assume that Algorithm 1 runs indefinitely and does not ter-
minate at line 9. Termination at line 9 is dealt with in Theorem 1 to come.

Lemma 18 For all i = 1,… , n , we have yk
i
− wk

i
→ 0 and �k(p

k) → 0.

Proof Fix any i ∈ {1,… , n}.
First, note that for all k ≥ 2,

where dk
i
≜ M3‖wk

i
− wk−1

i
‖ + ‖wk

i
− wk−1

i
‖2 and M3 ≥ 0 is a bound on 

2‖yk−1
i

− wk−1
i

‖ , which must exist because both {yk
i
} and {wk

i
} are bounded by Lem-

mas 4 and 13. Note that dk
i
→ 0 as a consequence of Lemma 4.

Second, recall Lemma 15, which states that there exists M1,M2 ≥ 0 such that for 
all k ≥ 2,

Now let, for all k ≥ 1,

so that

Using (42) and (43) in (41) yields

where

Note that �k
i
 is bounded, 0 < 𝛼i ≤ 1 , ‖Gi‖ is finite, ‖zk − zk−1‖ → 0 and 

‖wk
i
− wk−1

i
‖ → 0 by Lemma 4, and dk

i
→ 0 . Thus ek

i
→ 0.

(42)

‖yk−1
i

− wk
i
‖2 = ‖yk−1

i
− wk−1

i
‖2 + 2⟨yk−1

i
− wk−1

i
,wk−1

i
− wk

i
⟩

+ ‖wk−1
i

− wk
i
‖2

≤ ‖yk−1
i

− wk−1
i

‖2 +M3‖wk
i
− wk−1

i
‖ + ‖wk

i
− wk−1

i
‖2

= ‖yk−1
i

− wk−1
i

‖2 + dk
i
,

(43)
�i,k−1(z

k,wk
i
) ≥ �i,k−1(z

k−1,wk−1
i

) −M1‖wk−1
i

− wk
i
‖

−M2‖Gi‖‖zk − zk−1‖.

(44)rk
i
≜ �i,k(z

k,wk
i
) −

�k+1
i

2�i
‖yk

i
− wk

i
‖2,

(45)
n�
i=1

rk
i
= �k(p

k) −

n�
i=1

�k+1
i

2�i
‖yk

i
− wk

i
‖2.

(46)(∀k ≥ 2) ∶ rk
i
≥ (1 − �i)r

k−1
i

+ ek
i

(47)ek
i
≜ −(1 − �i)

�
�k
i

2�i
dk
i
+M1‖wk−1

i
− wk

i
‖ +M2‖Gi‖‖zk − zk−1‖

�
.
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Since 0 < 𝛼i ≤ 1 , we may apply Lemma 8 to (46) with 𝜏 = 1 − 𝛼i < 1 , which 
yields lim infk→∞{r

k
i
} ≥ 0 . Therefore

On the other hand, lim supk→∞ �k(p
k) ≤ 0 by Lemma 14. Therefore, using (45) and 

(48),

Therefore limk→∞

{
�k(p

k)
}
= 0 . Consider any i ∈ {1,… , n} . Combining 

limk→∞

{
�k(p

k)
}
= 0 with lim infk→∞

∑n

i=1
rk
i
≥ 0, we have

Since 𝜌k
i
≥ 𝜌

i
> 0 (using Lemma 12 for i ∈ B ) we conclude that yk

i
− wk

i
→ 0.  ◻

We have already proved the first requirement of Lemma 5, that yk
i
− wk

i
→ 0 

for all i ∈ {1,… , n} . We now work to establish the second requirement, that 
Giz

k − xk
i
→ 0 . In the upcoming lemmas we continue to use the quantity ŷk

i
 which is 

given in Definition 2.

Lemma 19 For all i = 1,… , n , ŷk
i
− wk

i
→ 0.

Proof Fix any k ≥ 1 . For all i = 1,… , n , repeating (40) from Lemma 17, we have

where we have used rk
i
 defined (44) along with (42)–(43) and ek

i
 is defined in (47). 

This is the same argument used in Lemma 18, but now we apply (42)–(43) to (40), 
rather than (41), so that we can upper bound the ‖ŷk

i
− wk

i
‖2 term. Summing over 

i = 1,… , n , yields

(48)lim inf
k→∞

n∑
i=1

rk
i
≥

n∑
i=1

lim inf
k→∞

rk
i
≥ 0.

0 ≤ lim inf
k→∞

n�
i=1

rk
i
= lim inf

k→∞

�
�k(p

k) −

n�
i=1

�k+1
i

2�i
‖yk

i
− wk

i
‖2
�

≤ lim inf
k→∞

�k(p
k) ≤ lim sup

k→∞

�k(p
k) ≤ 0.

lim sup
k→∞

�
(�k+1

i
∕�i)‖yki − wk

i
‖2� ≤ 0 ⇒ �k+1

i
‖yk

i
− wk

i
‖2 → 0.

𝜑i,k(z
k,wk

i
) ≥ (1 − 𝛼i)

�
𝜑i,k−1(z

k,wk
i
) −

𝜌k
i

2𝛼i
‖yk−1

i
− wk

i
‖2
�

+
𝜌k
i

2𝛼i

�‖yk
i
− wk

i
‖2 + 𝛼i‖ŷki − wk

i
‖2�

≥ (1 − 𝛼i)r
k−1
i

+
𝜌k
i

2
‖ŷk

i
− wk

i
‖2 + ek

i

𝜑k(p
k) =

n�
i=1

𝜑i,k(z
k,wk

i
) ≥

n�
i=1

(1 − 𝛼i)r
k−1
i

+

n�
i=1

𝜌k
i

2
‖ŷk

i
− wk

i
‖2 +

n�
i=1

ek
i
.
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Since �k(p
k) → 0 , ek

i
→ 0 , lim infk→∞{r

k
i
} ≥ 0 , and 𝜌k

i
≥ 𝜌

i
> 0 for all k, the above 

inequality implies that ŷk
i
− wk

i
→ 0.  ◻

Lemma 20 For i = 1… , n, xk
i
− xk−1

i
→ 0.

Proof Fix i ∈ {1,… , n} . Using the definition of ak
i
 in Definition 2, we have for k ≥ 1 

that

Using the definition of ŷk
i
 , also in Definition 2, this implies that

Subtracting the second of these equations from the first yields, for all k ≥ 2,

Taking norms and using the triangle inequality yields, for all k ≥ 2 , that

where

Since �k
i
 is bounded from above, ẽk

i
→ 0 using Lemma 19, the finiteness of ‖Gi‖ , and 

Lemma 4. Furthermore, 𝛼i > 0 , so we may apply Lemma 7 to (50) to conclude that 
xk
i
− xk−1

i
→ 0.  ◻

Lemma 21 For i = 1,… , n,Giz
k − xk

i
→ 0.

Proof Recalling (49), we first write

Lemma  20 implies that the first term on the right-hand side of  (51) converges to 
zero. Since {�k

i
} is bounded, Lemma 19 implies that the second term on the right-

hand side also converges to zero. Since 𝛼i > 0 , we conclude that ‖Giz
k − xk

i
‖ → 0 .  

 ◻

Finally, we can state our convergence result for Algorithm 1:

xk
i
+ �k

i
ak
i
= (1 − �i)x

k−1
i

+ �iGiz
k − �k

i
(Bix

k−1
i

− wk
i
).

(49)
(∀k ≥ 1) ∶ xk

i
= (1 − 𝛼i)x

k−1
i

+ 𝛼iGiz
k − 𝜌k

i
(ŷk

i
− wk

i
),

(∀k ≥ 2) ∶ xk−1
i

= (1 − 𝛼i)x
k−2
i

+ 𝛼iGiz
k−1 − 𝜌k−1

i
(ŷk−1

i
− wk−1

i
).

xk
i
− xk−1

i
= (1 − 𝛼i)(x

k−1
i

− xk−2
i

) + 𝛼i(Giz
k − Giz

k−1) − 𝜌k
i
(ŷk

i
− wk

i
)

+ 𝜌k−1
i

(ŷk−1
i

− wk−1
i

)

(50)‖xk
i
− xk−1

i
‖ ≤

�
1 − 𝛼i

�‖xk−1
i

− xk−2
i

‖ + ẽk
i
,

ẽk
i
= ‖Gi‖ ‖zki − zk−1

i
‖ + 𝜌k

i
‖ŷk

i
− wk

i
‖ + 𝜌k−1

i
‖ŷk−1

i
− wk−1

i
‖

(51)
xk
i
= (1 − 𝛼i)x

k−1
i

+ 𝛼iGiz
k − 𝜌k

i
(ŷk

i
− wk

i
)

⇔ 𝛼i
(
Giz

k − xk
i

)
= (1 − 𝛼i)(x

k
i
− xk−1

i
) + 𝜌k

i
(ŷk

i
− wk

i
).
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Theorem  1 Suppose that Assumptions  1–2 hold. If Algorithm  1 terminates by 
reaching line  9, then its final iterate is a member of the extended solution set S . 
Otherwise, the sequence {(zk,�k)} generated by Algorithm  1 converges weakly to 
some point (z̄,�) in the extended solution set S of (2) defined in (5). Furthermore, 
xk
i
⇀ Giz̄ and yk

i
⇀ wi for all i = 1,… , n − 1 , xk

n
⇀ z̄ , and yk

n
⇀ −

∑n−1

i=1
G∗

i
wi.

Proof For the finite termination result we refer to Lemma 5 of [19]. Otherwise, 
Lemmas 18 and 21 imply that the hypotheses of Lemma 5, hold, and the result fol-
lows.  ◻

6  Numerical experiments

All our numerical experiments were implemented in Python (using numpy and 
scipy) on an Intel Xeon workstation running Linux with 16 cores and 64 GB of 
RAM. The code is available via github at https ://githu b.com/proje ctive -split ting/
coco. We compared this paper’s backtracking one-forward-step projective split-
ting algorithm given in Algorithm 1 (which we call ps1fbt) with the following 
methods, selected for their similarities in features (especially the ability to “fully 
split” problems and having deterministic convergence guarantees), applicability, and 
implementation effort:

– The two-forward-step projective splitting algorithm with backtracking we devel-
oped in [19] (ps2fbt). This method requires only Lipschitz continuity of sin-
gle-valued operators, as opposed to cocoercivity.

– The adaptive three-operator splitting algorithm of [31] (ada3op) (where “adap-
tive” is used to mean “backtracking linesearch”); this method is a backtracking 
adaptation of the fixed-stepsize method proposed in [13]. This method requires 
Gi = I in problem (2) and hence can only be readily applied to two of the three 
test applications described below.

– The backtracking linesearch variant of the Chambolle-Pock primal-dual splitting 
method [28] (cp-bt).

– The algorithm of [11]. This is essentially Tseng’s method applied to a product-
space “monotone + skew” inclusion in the following way: Assume Tn is Lip-
schitz monotone, problem (3) is equivalent to finding p ≜ (z,w1,… ,wn−1) such 
that wi ∈ TiGiz (which is equivalent to Giz ∈ T−1

i
wi ) for i = 1,… , n − 1 , and ∑n−1

i=1
G∗

i
wi = −Tnz . In other words, we wish to solve 0 ∈ Ãp + B̃p , where Ã and 

B̃ are defined by 

(52)Ãp = {0} × T−1
1
w1 ×⋯ × T−1

n−1
wn−1

(53)B̃p =

⎡⎢⎢⎢⎣

Tnz

0

⋮

0

⎤⎥⎥⎥⎦
+

⎡⎢⎢⎢⎣

0 G∗
1
G∗

2
… G∗

n−1

−G1 0 … … 0

⋮ ⋮ ⋱ ⋱ ⋮

−Gn−1 0 … … 0

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

z

w1

⋮

wn−1

⎤⎥⎥⎥⎦
.

https://github.com/projective-splitting/coco
https://github.com/projective-splitting/coco
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Ã is maximal monotone, while B̃ is the sum of two Lipshitz monotone opera-
tors (the second being skew linear), and therefore also Lipschitz monotone. The 
algorithm in [11] is essentially Tseng’s forward-backward-forward method [37] 
applied to this inclusion, using resolvent steps for Ã and forward steps for B̃ . 
Thus, we call this method tseng-pd. In order to achieve good performance 
with tseng-pd we had to incorporate a diagonal preconditioner as proposed in 
[38].

– The recently proposed forward-reflected-backward method [29], applied to 
this same primal-dual inclusion 0 ∈ Ãp + B̃p specified by (52)–(53). We call 
this method frb-pd.

6.1  Portfolio selection

Consider the optimization problem:

where Q ⪰ 0 , r > 0 , and m ∈ ℝ
d
+
 . This model arises in Markowitz portfolio theory. 

We chose this particular problem because it features two constraint sets (a general 
halfspace and a simplex) onto which it is easy to project individually, but whose 
intersection poses a more difficult projection problem. This property makes it dif-
ficult to apply first-order methods such as ISTA/FISTA [5] as they can only per-
form one projection per iteration and thus cannot fully split the problem. On the 
other hand, projective splitting can handle an arbitrary number of constraint sets so 
long as one can compute projections onto each of them. We consider a fairly large 
instance of this problem so that standard interior point methods (for example, those 
in the CVXPY [14] package) are disadvantaged by their high per-iteration com-
plexity and thus not generally competitive with first-order methods. Furthermore, 
backtracking variants of first-order methods are preferable for large problems as they 
avoid the need to estimate the largest eigenvalue of Q.

To convert (54) to a monotone inclusion, we set A1 = NC1
 where NC1

 is the nor-
mal cone of the simplex C1 = {x ∈ ℝ

d ∶
∑d

i=1
xi = 0, xi ≥ 0} . We set B1 = 2Qx , 

which is the gradient of the objective function and is cocoercive (and Lipschitz-
continuous). Finally, we set A2 = NC2

 , where C2 = {x ∶ m⊤x ≥ r} , and let B2 be 
the zero operator. Note that the resolvents of NC1

 and NC2
 (that is, the projections 

onto C1 and C2 ) are easily computed in O (d) operations [30]. With this notation, 
one may write (54) as the the problem of finding z ∈ ℝ

d such that

which is an instance of (2) with n = 2 and G1 = G2 = I.
To terminate each method in our comparisons, we used the following common 

criterion incorporating both the objective function and the constraints of (54):

(54)min
x∈ℝd

F(x) ≜ x⊤Qx s.t. m⊤x ≥ r,

d∑
i=1

xi = 1, xi ≥ 0,

0 ∈ A1z + B1z + A2z,
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where F∗ is the optimal value of the problem. Note that c(x) = 0 if and only if x 
solves (54). To estimate F∗ , we used the best feasible value returned by any method 
after 1000 iterations.

We generated random instances of (54) as follows: we set d = 10, 000 to obtain a 
relatively large instance of the problem. We then generated a d × d matrix Q0 with 
each entry drawn from N(0, 1) . The matrix Q is then formed as (1∕d) ⋅ Q0Q

⊤
0
 , which 

is guaranteed to be positive semidefinite. We then generate the vector m ∈ ℝ
d of 

length d to have entries uniformly distributed between 0 and 100. The constant r 
is set to �r

∑d

i=1
mi∕d for various values of 𝛿r > 0 . We solved the problem for 

�r ∈ {0.5, 0.8, 1, 1.5}.
All methods were initialized at the same point [1 1 … 1]⊤∕d . For all the back-

tracking linesearch procedures except cp-bt , the initial stepsize estimate is the 
previously discovered stepsize; at the first iteration, the initial stepsize is 1. For cp-
bt we allowed the stepsize to increase in accordance with [28, Algorithm  4], as 
performance was poor otherwise. The backtracking stepsize decrement factor ( � in 
Algorithm 2) was 0.7 for all algorithms.

For ps1fbt and ps2fbt, �k
1
 was discovered via backtracking. We also set the 

other stepsize �k
2
 equal to �k

1
 at each iteration. While this is not necessary, this heu-

ristic performed well and eliminated �k
2
 as a separately tunable parameter. For the 

averaging parameters in ps1fbt, we used �1 = 0.1 and �2 = 1 (which is possible 
because L2 = 0 ). For ps1fbt we set �̂�1 = x0

1
 and ŵ1 = 2Qx0

1
.

For tseng-pd and frb-pd, we used the following preconditioner:

where U is used as in [38, Eq. (3.2)] for tseng-pd ( M−1 on [29, p. 7] for frb-pd). 
In this case, the “monotone + skew” primal-dual inclusion described in (52)–(53) 
features two d-dimensional dual variables in addition to the d-dimensional primal 
variable. The parameter �pd changes the relative size of the steps taken in the primal 
and dual spaces, and plays a similar role to � in our algorithm (see Algorithm 3). 
The parameter � in [28, Algorithm 4] plays a similar role for cp-bt. For all of these 
methods, we have found that performance is highly sensitive to this parameter: the 
primal and dual stepsizes need to be balanced. The only method not requiring such 
tuning is ada3op, which is a purely primal method. With this setup, all the meth-
ods have one tuning parameter except ada3op , which has none. For each method, 
we manually tuned the parameter for each �r ; Table 1 shows the final choices.

We calculated the criterion c(x) in (55) for xk
1
 computed by ps1fbt and 

ps2fbt, xt computed on Line 3 of [31, Algorithm 1] for ada3op, yk computed in 
[28, Algorithm 4] for cp-bt, and the primal iterate for tseng-pd and frb-pd. 
Table 2 displays the average number iterations and running time, over 10 random 
trials, until c(x) falls (and stays) below 10−5 for each method. Examining the table,

(55)
c(x) ≜ max

{
F(x) − F∗

F∗
, 0

}
−min{m⊤x − r, 0} +

||||||

d∑
i=1

xi − 1

||||||
−min{0,min

i
xi},

(56)U = diag(Id×d, �pdId×d, �pdId×d)
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– For all four problems, ps1fbt outperforms ps2fbt. This behavior is not supris-
ing, as ps1fbt only requires one forward step per iteration, rather than two. Since 
the matrix Q is large and dense, reducing the number of forward steps should have a 
sizable impact.

– For 𝛿r < 1 , ps1fbt is the best-performing method. However, for �r ≥ 1 , ada3op 
is the quickest.

6.2  Sparse group logistic regression

Consider the following problem:

where ai ∈ ℝ
d and yi ∈ {±1} for i = 1,… , n are given data, �1, �2 ≥ 0 are regu-

larization parameters, and G is a set of subsets of {1,… , d} such that no element 
is in more than one group g ∈ G . This is the non-overlapping group-sparse logistic 
regression problem, which has applications in bioinformatics, image processing, and 
statistics [34]. It is well understood that the �1 penalty encourages sparsity in the 

(57)min
x0 ∈ ℝ

x ∈ ℝ
d

�
n�
i=1

log
�
1 + exp

�
− yi(x0 + a⊤

i
x)
��

+ 𝜆1‖x‖1 + 𝜆2

�
g∈G

‖xg‖2
�

,

Table 1  Tuning parameters 
for the portfolio problem 
(ada3op does not have a tuning 
parameter)

�
r

0.5 0.8 1 1.5

ps1fbt (�) 0.01 0.01 0.5 5
ps2fbt (�) 0.1 0.1 10 10
cp-bt  ( �−1) 1 1 2 2
tseng-pd  ( �pd) 1 1 1 10
frb-pd  ( �pd) 1 1 10 10

Table 2  For the portfolio problem, average running times in seconds and iterations (in parentheses) for 
each method until c(x) < 10

−5 for all subsequent iterations across 10 trials

The best time in each column is in bold

�
r

0.5 0.8 1 1.5

ps1fbt 3.6 (102) 4.7 (102) 16.3 (583) 8.5 (255.2)
ps2fbt 5.0 (151.1) 7.9 (155) 24.3 (523.4) 9.2 (222.9)
ada3op 5.3 (180.8) 9.2 (180.8) 6.8 (174.3) 3.4 (89.2)
cp-bt 6.2 (136) 8.3 (134.3) 11.8 (218.4) 5.6 (113.6)
tseng-pd 15.9 (387.1) 21 (387.8) 25.7 (525.3) 11.1 (245.4)
frb-pd 10.5 (559.9) 16.4 (560.4) 22.8 (1074.8) 6.3 (350.8)
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solution vector. On the other hand the group-sparse penalty encourages group spar-
sity, meaning that as �2 increases more groups in the solution will be set entirely to 
0. The group-sparse penalty can be used when the features/predictors can be put into 
correlated groups in a meaningful way. As with the portfolio experiment, this prob-
lem features two nonsmooth regularizers and so methods like FISTA cannot easily 
be applied.

Problem (57) may be treated as a special case of (1) with n = 2 , G1 = G2 = I , and

Since the logistic regression loss has a Lipschitz-continuous gradient and the �1-
norm and non-overlapping group-lasso penalties both have computationally simple 
proximal operators, all our candidate methods may be applied.

We applied (57) to two bioinformatics classification problems with real data. Fol-
lowing [34], we use the breast cancer dataset of [25] and the inflammatory bowel 
disease (IBD) dataset of [6].2 The breast cancer dataset contains gene expression 
levels for 60 patients with estrogen-positive breast cancer. The patients were treated 
with tamoxifen for 5 years and classified based on whether the cancer recurred 
(there were 28 recurrences). The goal is to use the gene expression values to predict 
recurrence. The IBD data set contains gene expression levels for 127 patients, 85 of 
which have IBD. The IBD data set actually features three classes: ulcerative colitis 
(UC), Crohn’s disease (CD), and normal, and so the most natural goal would be to 
perform three-way classification. For simplicity, we considered a two-way classifica-
tion problem of UC/CD patients versus normal patients.

For both datasets, as in [34], the group structure G was extracted from the C1 
dataset [35], which groups genes based on cytogenetic position data.3 Genes that are 
in multiple C1 groups were removed from the dataset.4 We also removed genes that 
could not be found in the C1 dataset, although doing so was not strictly necessary. 
After these steps, the breast cancer data had 7,705 genes in 324 groups, with each 
group having an average of 23.8 genes. For the IBD data there were 19,836 genes in 
325 groups, with an average of 61.0 genes per group. Let A be the data matrix with 
each row is equal to a⊤

i
∈ ℝ

d for i = 1,… , n ; as a final preprocessing step, we nor-
malized the columns of A to have unit �2-norm, which tended to improve the perfor-
mance of the first-order methods, especially the primal-dual ones.

For simplicity we set the regularization parameters to be equal: �1 = �2 ≜ � . In 
practice, one would typically solve (57) for various values of � and then choose the 

h1(x0, x) =

n�
i=1

log
�
1 + exp

�
− yi(x0 + a⊤

i
x)
��

h2(x0, x) = 0

f1(x0, x) = 𝜆1‖x‖1 f2(x0, x) = 𝜆2

�
g∈G

‖xg‖2.

2 The breast cancer dataset is available at https ://www.ncbi.nlm.nih.gov/geo/query /acc.cgi?acc=GSE13 
79. The IBD dataset is available at https ://www.ncbi.nlm.nih.gov/geo/query /acc.cgi?acc=GSE33 65.
3 The C1 dataset is available at http://softw are.broad insti tute.org/gsea/index .jsp.
4 Overlapping group norms can also be handled with our method, but using a different problem formula-
tion than (57).

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1379
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1379
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3365
http://software.broadinstitute.org/gsea/index.jsp
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final model based on cross-validation performance combined with other criteria 
such as sparsity. Therefore, to give an overall sense of the performance of each algo-
rithm, we solved (57) for three values of � : large, medium, and small, corresponding 
to decreasing the amount of regularization and moving from a relatively sparse solu-
tion to a dense solution. For the breast cancer data, we selected � ∈ {0.05, 0.5, 0.85} 
and for IBD we chose � ∈ {0.1, 0.5, 1} . The corresponding number of non-zero 
entries, non-zero groups, and training error of the solution are reported in Table 3. 
Since the goal of these experiments is to assess the computational performance of 
the optimization solvers, we did not break up the data into training and test sets, 
instead treating the entire dataset as training data.

We initialized all the methods to the 0 vector. As in the portfolio problem, all 
stepsizes were initially set to 1. Since the logistic regression function does not have 
uniform curvature, we allowed the initial trial stepsize in the backtracking linesearch 
to increase by a factor of 1.1 multiplied by the previously discovered stepsize. The 
methods ps1fbt, cp-bt, and ada3op have an upper bound on the trial stepsize 
at each iteration, so the trial stepsize was taken to be the minimum of 1.1 multiplied 
by the previous stepsize and this upper bound.

Otherwise, the setup was the same as the portfolio experiment. tseng-pd and 
frb-pd use the same preconditioner as given in (56). For ps1fbt and ps2fbt 
we set �k

2
 to be equal to the discovered backtracked stepsize �k

1
 at each iteration. For 

ps1fbt we again set �̂�1 = x0
1
 , ŵ1 = ∇h1(x

0
1
) , and �k

1
 fixed to 0.1. As such, all meth-

ods (except ada3op) have one tuning parameter which was hand-picked for each 
method; the chosen values are given in Table 4.

Figure 3 shows the results of the experiments, plotting (F(x0, x) − F∗)∕F∗ against 
time for each algorithm, where F is the objective function in (57) and F∗ is the esti-
mated optimal value. To approximate F∗ , we ran each algorithm for 4,000 iterations 
and took the lowest value obtained. Overall, ps1fbt and ada3op were much 

Table 3  The number of 
nonzeros and nonzero groups 
in the solution, along with the 
training error, for each value 
of �

� (breast cancer) � (IBD)

0.05 0.5 0.85 0.1 0.5 1.0

# Nonzeros 114 50 20 135 40 18
# Nonzero groups 16 7 3 13 4 2
Training error 0% 5% 35% 0% 5.5% 26.8%

Table 4  Tuning parameters for 
sparse group LR (ada3op does 
not have a tuning parameter)

� (breast cancer) � (IBD)

0.05 0.5 0.85 0.1 0.5 1.0

ps1fbt (�) 0.05 10
2

10
2 0.1 1 1

ps2fbt (�) 1 10
2

10
5 1 1 1

cp-bt  ( �−1) 10 10
3

10
4

10
4

10
3

10
5

tseng-pd  ( �pd) 10
3

10
5

10
5 10

4
10

6
10

6

frb-pd  ( �pd) 10
3

10
5

10
5 10

4
10

6
10

6
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faster than the other methods. For the highly regularized cases (the right column of 
the figure), ps1fbt was faster than all other methods. For middle and low regulari-
zation, ps1fbt and ada3op are comparable, and for � = 0.05 ada3op is slightly 
faster for the the breast cancer data. The methods ps1fbt and ada3op may be 
succesful because they exploit the cocoercivity of the gradient, while ps2fbt, 
tseng-pd,and frb-pd only treat it as Lipschitz continuous. cp-bt also exploits 
cocoercivity, but its convergence was slow nonetheless. We discuss the performance 
of ps1fbt versus ps2fbt more in Sect. 6.4.

6.3  Rare feature selection

In [40], the problem of utilizing rare features in machine learning problems was 
studied. In many applications, certain features are rarely nonzero, making it hard 
to estimate their coefficients accurately. Despite this, these features can be highly 
informative, and the standard practice of discarding them is wasteful. The technique 
in [40] overcomes this difficulty by making use of an auxiliary tree data structure T  
describing the relatedness of features. Each leaf of the tree is a feature and two fea-
tures’ closeness on the tree measures how “related” they are. Closely related features 
can then be aggregated (summed) so that more samples are captured, increasing the 
accuracy of the estimate for a single coefficient for the aggregated features.

To solve this aggregation and fitting problem automatically, [40] introduced 
the following generalized regression problem:

Fig. 3  Results for (57) applied to bioinformatics classification problems. The top row shows breast can-
cer data with left: � = 0.05 ; middle: � = 0.5 ; right: � = 0.85 . The bottom row shows IBD data with left: 
� = 0.1 ; middle: � = 0.5 ; right: � = 1.0 . The y-axis is relative objective error: 

(
F(x

0
, x) − F∗

)
∕F∗ and the 

x-axis is elapsed running time in seconds
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where X ∈ ℝ
n×d is the data matrix, y ∈ ℝ

n is the target (response) vector, � ∈ ℝ
d are 

the feature coefficients, e ∈ ℝ
n has all elements equal to 1, and �0 ∈ ℝ is an offset. 

Each �i is associated with a node of the similarity tree T  and �−r means all nodes 
except the root. The matrix H ∈ ℝ

d×|T | contains a 1 in positions i, j for which feature 
i corresponds to a leaf of T  that is descended from node j, and elsewhere contains 
zeroes. H thus fuses coefficients together in the following way: if �i is nonzero for a 
node i and all descendants of �i in T  are 0, then all coefficients on the leaves which 
are descendant from �i are equal (see [40, Sec. 3.2] for more details). The �1 norm 
on � enforces sparsity of � , which in turn fuses together coefficients in � associated 
with similar features. The �1 norm on � itself additionally enforces sparsity on these 
coefficients, which is also desirable.

In [40], (58) is solved by a specialized application of the ADMM. The implemen-
tation involves precomputing the SVDs of X and H, and so does not fall within the 
scope of the methods considered in our experiments (it does not fully split the prob-
lem). Instead, we solve (58) by simply eliminating � , so that it becomes

This problem may be formulated as a special case of (1) with

Note that h2 is Lipschitz differentiable and f1 (and f2 ) have easily-computed proximal 
operators. Because of the presence of the matrix G1 = H , ada3op cannot easily be 
applied to this problem, since the proximal operator of the function � ↦ ‖H�‖1 can-
not be computed in a simple way. All other methods, namely ps1fbt, ps2fbt, 
cp-bt, tseng-pd, and frb-pd, may still be applied.

We apply this model to the TripAdvisor hotel-review dataset developed in [39] 
and [40].5 The response variable was the overall hotel review, in the set {1, 2, 3, 4, 5} . 
The features were the counts of certain adjectives in the review. Many adjectives 
were very rare, with 95% of the adjectives appearing in less than 5% of the reviews. 
The authors of [40] constructed a similarity tree using information from word 
embeddings and emotion lexicon labels. In the end, there were 7,573 adjectives 
from the 209,987 reviews and the tree T  had 15,145 nodes. They withheld 40,000 

(58)min
�0 ∈ ℝ

� ∈ ℝ
d

� ∈ ℝ
�T �

�
1

2n
‖�0e + X� − y‖2

2
+ �

�
�‖�−r‖1 + (1 − �)‖�‖1

� ���� � = H�

�
,

(59)F∗ ≜ min
�0 ∈ ℝ

� ∈ ℝ
�T �

�
1

2n
‖�0e + XH� − y‖2

2
+ �

�
�‖�−r‖1 + (1 − �)‖H� ‖1

��
.

f1(t) = �(1 − �)‖t‖1 h1(t) = 0 G1 = H

f2(�, �0) = ��‖�−r‖1 h2(�, �0) =
1

2n
‖�0e + XH� − y‖2

2
G2 = I.

5 TripAdvisor data is available at https ://githu b.com/yanxh t/TripA dviso rData  or through our repository 
at https ://githu b.com/proje ctive -split ting/coco.

https://github.com/yanxht/TripAdvisorData
https://github.com/projective-splitting/coco.
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examples for a test set. The 169,987 × 7,573 design matrix X was sparse, having only 
0.32% nonzero entries. The 7,573 × 15,145 matrix H arising from the similarity tree 
T  was also sparse, having 0.15% nonzero entries. In our implementation, we used 
the sparse matrix package sparse in scipy.

In practice, one typically would solve (59) for many values of (�, �) and then 
choose the final model based on cross validation. To assess the computational per-
formance of the tested methods, we solve three representative examples correspond-
ing to sparse, medium, and dense solutions. For simplicity, we fixed � = 0.5 . The 
chosen values for � were {10−5, 10−2, 10−1}.

The setup for the algorithms was the same as in the previous two examples, 
except for a few differences. For backtracking, we simply set the trial stepsize at 
each iteration equal to the previously discovered stepsize, as increasing it at each 
iteration did not provide any empirical benefit. However cp-bt performed better 
with increasing trial stepsize so we used the same scheme as before. For ps1fbt 
and ps2fbt, setting �k

1
 equal to the discovered backtracking stepsize for the other 

operator from the previous iteration: �k−1
2

 , did not work well on this model. So 
instead we fixed �k

1
= 1 for ps1fbt and �k

1
= 10 for ps2fbt, which gave the best 

performance across the three examples. Each tested method then has one additional 
tuning parameter which we hand-picked for each of the three examples. The final 
values are given in Table 5.

The results are shown in Fig. 4. For the plots, the optimal objective value F∗ was 
estimated by running ps1fbt for 100,000 iterations, while the plots are shown only 
for the first 20,000 iterations of ps1fbt. The x-axis is running time excluding the 
time taken to actually compute the function values for the graph. Overall, there is 

Table 5  Tuning parameters for 
the (59) applied to TripAdvisor 
data

�

10
−5 10

−2
10

−1

ps1fbt (�) 1 10 10
4

ps2fbt (�) 10
2 10 10

5

cp-bt  ( �−1) 10 10
3

10
7

tseng-pd  ( �pd) 1 10
4

10
6

frb-pd  ( �pd) 1 10
4

10
6

Fig. 4  Results for (59) applied to TripAdvisor data. From left to right, the values of � are � = 10
−5
, 

� = 10
−2
, and � = 10

−1 ; � = 0.5 in all cases. The y-axis is relative objective error 
(
F(�, �

0
) − F∗

)
∕F∗ , 

where F(�, �
0
) is the objective function in (59), and the x-axis is elapsed running time in seconds
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not a large gap between the methods. However, ps1fbt and cp-bt are slightly 
faster for � = 10−5 , ps2fbt is slightly faster for � = 10−2 , and ps1fbt is slightly 
faster for � = 10−1 . Since ps1fbt is either fastest, tied fastest, or in close second 
position, it is arguably the best performing algorithm overall. We suspect that the 
performance of ps1fbt (and ps2fbt) could greatly improve if we were to break 
the loss function up into blocks and use the greedy subproblem selection scheme we 
proposed in [19]. We plan to develop this generalization for ps1fbt — along with 
general asynchrony and block-iterativeness — in future work.

6.4  Final comments: ps1fbt versus ps2fbt

On the portfolio and rare feature problems, ps1fbt and ps2fbt have fairly com-
parable performance, with ps1fbt being slightly faster. However, for the group 
logistic regression problem, ps1fbt is significantly faster. Given that both meth-
ods are based on the same projective splitting framework but use different forward-
step procedures to update (xk

1
, yk

1
) , this difference may be somewhat surprising. 

Since ps1fbt only requires one forward step per iteration while ps2fbt requires 
two, one might expect ps1fbt to be about twice as fast as ps2fbt. But for the 
group logistic regression problem, ps1fbt significantly outpaces this level of 
performance.

Examining the stepsizes returned by backtracking for both methods reveals that 
ps1fbt returns much larger stepsizes for the logistic regression problem, typically 
2-3 orders of magnitude larger; see Fig. 5. For the portfolio problem and the rare 
feature problem, where the performance of the two methods is more similar, this is 
not the case: the ps1fbt stepsizes are typically about twice as large as the ps2fbt 
stepsizes, in keeping with their theoretical upper bounds of 1∕Li and 2(1 − �i)∕Li , 
respectively.

Note that the portfolo and rare features problem both have a smooth function 
which is quadratic and hence has the same curvature everywhere, while group 
logisitic regression does not. We hypothesize that the backtracking scheme in 
ps1fbt does a better job adapting to nonuniform curvature. A possible reason for 
this behavior is that the termination criterion for the backtracking search in ps1fbt 

Fig. 5  Discovered backtracking stepsizes for ps1fbt and ps2fbt . Left: portfolio problem with 
�r = 0.5 . Middle: group logistic regression problem applied to the IBD data with � = 1 . Right: rare fea-
tures problem with � = 10

−5
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may be weaker than for ps2fbt. For example, while ps2fbt requires �i,k to be 
positive at each iteration k and operator i, ps1fbt does not.
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