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Abstract
The T-product for third-order tensors has been used extensively in the literature. In 
this paper, we first introduce first-order and second-order T-derivatives for the multi-
variable real-valued function with the tensor T-product. Inspired by an equivalent 
characterization of a twice continuously T-differentiable multi-variable real-valued 
function being convex, we present a definition of the T-positive semidefiniteness 
of third-order symmetric tensors. After that, we extend many properties of positive 
semidefinite matrices to the case of third-order symmetric tensors. In particular, 
analogue to the widely used semidefinite programming (SDP for short), we intro-
duce the semidefinite programming over the space of third-order symmetric tensors 
(T-semidefinite programming or TSDP for short), and provide a way to solve the 
TSDP problem by converting it into an SDP problem in the complex domain. Fur-
thermore, we give several TSDP examples and especially some preliminary numeri-
cal results for two unconstrained polynomial optimization problems. Experiments 
show that finding the global minimums of polynomials via the TSDP relaxation out-
performs the traditional SDP relaxation for the test examples.
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1  Introduction

With the availability of inexpensive storage and advances in instrumentation, the 
data collected and stored now is more complex than ever before. Especially in 
practical problems such as psychometrics, signal processing, computer vision, 
data mining, graphical analysis, neuroscience and so on, it is usually necessary 
to store information in a multidimensional array, and then use the multidimen-
sional structure to compress, sort, and/or manipulate the data. Among the many 
problems described by high-dimensional arrays (or tensors), third-order tensors 
have become increasingly prevalent in recent years with the emergence of the ten-
sor T-product, which is a new type of multiplication between third-order tensors 
introduced by Kilmer, Martin, and Perrone [1]. The tensor T-product has shown 
to be a useful tool arising in a wide variety of application areas, including, but 
not limited to, image processing [2–7], computer vision [8–12], signal process-
ing, low rank tensor recovery and robust tensor PCA [13–18], and data comple-
tion and denoising [19–31], because the tensor T-product provides an effective 
approach to transform the tensor multiplication into block diagonal matrix multi-
plication in the discrete Fourier domain.

Since Kilmer, Martin, and Perrone [1] introduced the new type of multiplications 
between two third-order tensors so as to devise new types of factorizations for ten-
sors to be easily used in applications, the exploration of the algebraic properties of 
T-products has been in progress. Specifically, in [32] some factorization strategies 
were established for third-order tensors via the tensor T-product. In [33] and [3], 
the authors provided useful frameworks to better view the action of the third-order 
tensors upon a set of matrices. In [34], a lot of familiar tools of linear algebra were 
extended to the third-order tensors, including the T-Jordan canonical form, tensor 
decomposition theory, T-group inverse and T-Drazin inverse, and so on. In addition, 
Lund [35] proposed a definition of tensor functions based on the T-product of third-
order F-square tensors, which was found to be of great use in stable tensor neural 
networks for rapid deep learning [36], and then Miao, Qi and Wei generalized the 
tensor T-function from F-square third order tensors to rectangular tensors in [37].

It is well known that the positive (semi)definite (P(S)D for short) matrix is an 
important class of matrices, which has a solid theory and fruitful applications. 
Actually, P(S)D matrices can be used for inequality proof, eigenvalue solving, 
extremum solving, system stability discrimination, and so on. As a result, P(S)
D matrices have been applied in various fields, such as numerical analysis, opti-
mization theory, probability and statistics, operations research, control theory, 
mechanics, electricity, information science and technology, management sci-
ence and engineering, and so on. For more information about P(S)D matrices, 
the readers are referred to the monographs [38, 39]. In addition, the semidefi-
nite programming (SDP for short) as one of the important applications of PSD 
matrices has received extensive attention. Especially with the appearance of some 
effective algorithms for SDP problems [40–42], SDP problems have been increas-
ingly arisen in practical applications. There are rich and mature results for SDPs 
in both theory and algorithms. See [43–45] and references therein.
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Motivated by that mentioned above, we extend the positive (semi)definiteness 
of matrices and the SDP problem to the case of third-order tensors. Our contribu-
tion is threefold: 

(1)	 We explore the Fréchet derivatives of the multi-variable real-valued function 
f ∶ U ⊆ ℝ

n×1×p
→ ℝ based on the inner product and the tensor T-product. We 

establish the necessary and sufficient conditions for a multi-variable real-valued 
function being first-order and second-order T-differentiable, respectively, and 
present the exact forms of the T-derivatives. In particular, we propose a second-
order condition to certify the convexity of the multi-variable real-valued function 
under the hypothesis that the function is twice continuously T-differentiable.

(2)	 We give a definition of a third-order symmetric tensor being T-positive sem-
idefinite (T-PSD for short) inspired by the second-order T-derivative, and show 
that the new definition is equivalent to the one given by [3, Definition 2.7] and 
the one by [34, Definition 15] in real case. In particular, we show that the set of 
symmetric T-PSD tensors is a nonempty, closed, convex, pointed and self-dual 
cone, and extend many properties of PSD matrices to the case of third-order 
T-PSD tensors, including some results related to the T-eigenvalue decomposi-
tion, the T-roots, the T-Schur complement, and so on.

(3)	 As an important application of the T-positive semidefiniteness of third-order 
symmetric tensors, we introduce the semidefinite programming over the third-
order symmetric tensor space (T-semidefinite programming or TSDP for short) 
and show that a TSDP problem of size m × m × p can be transformed into an 
SDP problem with p+1

2
 or p+2

2
 blocks of matrices of m × m in the complex domain. 

Then we present several examples which can be modeled (or relaxed) as TSDPs, 
such as minimizing the maximum T-eigenvalue of a third-order tensor, minimiz-
ing the l2 operator norm of a third-order tensor, minimizing the dual norm of the 
l2 operator norm of a third-order tensor, integer quartic programming and calcu-
lating the global lower bound of a polynomial. Besides, we report preliminary 
numerical results for solving the unconstrained polynomial optimization problem 
via the TSDP relaxation, which can achieve higher accuracy and consume less 
time compared with the traditional SDP relaxation.

The rest of our paper is organized as follows. In Sect. 2, some notation and basic 
results are reviewed. In Sect. 3, we explore the T-derivatives for the multi-varia-
ble real-valued function and the relationship between a new type of tensors: the 
T-Hessian Tensor and convexity of the twice continuously T-differentiable multi-
variable real-valued function. In Sect. 4, we give the definition of the symmetric 
T-PSD tensor, then discuss some characterizations and properties of symmetric 
T-PSD tensors, and investigate the set of T-PSD tensors. In Sect. 5, we introduce 
and study the TSDP; and convert the TSDP into the corresponding SDP in the 
complex domain. We also present several examples for applications and report 
preliminary numerical results. Finally, we sum up the conclusions and do some 
further discussions in Sect. 6.
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2 � Preliminary

In this section, we give some notation and basic results.

2.1 � Notation

Throughout this paper, we use small letters a, b,… for scalars, small bold letters 
�, �,… for vectors, capital letters A,B,… for sets, capital bold letters � , � , … for matri-
ces, and calligraphic letters A,B,… for tensors. For any positive integer n, denote 
[n] ∶= {1, 2,… , n} . Let ℝn ∶= {� ∶= (x1, x2,… , xn)

⊤ ∶ xi ∈ ℝ for all i ∈ [n]} and 
ℂ

n ∶= {� ∶= (x1, x2,… , xn)
⊤ ∶ xi ∈ ℂ for all i ∈ [n]} where ℝ ( ℂ ) is the set of real 

(complex) numbers. Let m, n and p be positive integers. ℝm×n and ℝm×n×p denote 
the sets consisting of all real matrices of size m × n and all real tensors of size 
m × n × p , respectively. Let ℕ denote the set of nonnegative integers. For � ∈ ℕ

n , 
denote |�| ∶= �1 + �2 +⋯ + �n . For any � ∈ ℝ

n and � ∈ ℕ
n , �� means x�1

1
⋯ x

�n
n  , 

and �⊤ represents the transpose of � . For any A  , B ∈ ℝ
m×n×p , the inner product 

between A  , B is denoted as A ⋅B = ⟨A,B⟩ ∶= ∑
i,j,k aijkbijk, and the Frobenius 

norm associated with the above inner product is ‖A‖ =
√
A ⋅A  . Specially, any 

matrix � ∈ ℝ
n×p can be regarded as a tensor A ∈ ℝ

n×1×p with the i-th frontal slice 
of A  being the i-th column of � for all i ∈ [p].

Recall that a complex matrix � is said to be symmetric (Hermitian) if and only if 
�⊤ = � ( �H = � ), where �⊤ ( �H ) represents the transpose (conjugate transpose) of 
� . We denote the set consisting of all real symmetric (complex Hermitian) matrices 
of size n × n as Sℝn×n ( Hℂ

n×n ). For any x ∈ ℂ and � ∶= (xij) ∈ ℂ
m×n , x denotes the 

conjugate of x and � ∶= (xij) denotes the conjugate of the matrix � . Let � ⪰ (≻)0 
represent that � is (Hermitian) positive semidefinite (positive definite) for any 
� ∈ Hℂ

n×n , and Sℝn×n
++

(Sℝn×n
+

) denote the set of all real symmetric positive (semi)
definite matrices of size n × n , while Hℂ

n×n
++

(Hℂ
n×n
+

) denotes the set of all complex 
Hermitian positive (semi)definite matrices of size n × n . “ ⊗ ” denotes the Kronecker 
product between two matrices and “ ⋅ ” means standard matrix product.

2.2 � Tensor T‑product, transpose and inverse

For a third-order tensor A ∈ ℝ
m×n×p , a new perspective was proposed in [1, 32] 

based on treating A  as a stack of frontal slices, which were denoted as �(k) ∈ ℝ
m×n 

for all k ∈ [p] . Furthermore, several operators on A ∈ ℝ
m×n×p were introduced as 

follows:

fold(unfold(A)) ∶= A  , and bcirc−1(bcirc(A)) ∶= A .
With the help of the above operators, the following definitions and properties 

were given in [3] (see also [1, 10, 32, 34]).

bcirc(A) ∶=

⎡⎢⎢⎢⎣

�(1) �(p) �(p−1) ⋯ �(2)

�(2) �(1) �(p) ⋯ �(3)

⋮ ⋱ ⋱ ⋱ ⋮

�(p) �(p−1) ⋯ �(2) �(1)

⎤⎥⎥⎥⎦
, unfold(A) ∶=

⎡⎢⎢⎢⎣

�(1)

�(2)

⋮

�(p)

⎤⎥⎥⎥⎦
,
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Definition 1  [3, Definition 2.5] (T-product) Let A ∈ ℝ
m×n×p and B ∈ ℝ

n×s×p be 
two real tensors. Then the T-product A ∗ B is an m × s × p real tensor defined by 
A ∗ B ∶= fold(bcirc(A)unfold(B)).

Definition 2  [3, Definition 2.7] (Transpose and conjugate transpose) If A  is a third-
order tensor of size m × n × p , then the transpose A⊤ is obtained by transposing 
each of the frontal slices and then reversing the order of transposed frontal slices 2 
through p. The conjugate transpose AH is obtained by conjugate transposing each of 
the frontal slices then reversing the order of transposed frontal slices 2 through p.

For any A ∈ ℝ
n×n×p , we say A  is a symmetric tensor if and only if A⊤ = A  . The 

set consisting of all the real symmetric tensor of size n × n × p is denoted by Sℝn×n×p.

Definition 3  [3, Definition 2.8,2.10] (Identity tensor and inverse) The n × n × p 
identity tensor Innp is the tensor whose first frontal slice is the n × n identity matrix 
�n×n , and whose other frontal slices are all zeroes. For a frontal square tensor 
A ∈ ℝ

n×n×p , we say A  is nonsingular if it has inverse tensor B(= A
−1) , provided 

that A ∗ B = B ∗ A = Innp.

It is easy to check that A ∗ Innp = Immp ∗ A = A  for any A ∈ ℝ
m×n×p . In addi-

tion, it should be noticed that the invertibility of the third-order frontal square tensor 
A  is equivalent to the invertibility of the matrix bcirc(A) , which can be seen from 
the following lemma [34, Lemma 3].

Lemma 1  Suppose that A ∈ ℝ
n×n×p and B ∈ ℝ

n×s×p . Then 

(a)	 bcirc(A ∗ B) = bcirc(A)bcirc(B),
(b)	 bcirc(A)k = bcirc(Ak) for all k ∈ {0, 1, 2,…},
(c)	 bcirc(A⊤) = bcirc(A)⊤, bcirc(AH) = bcirc(A)H.

In the rest of this paper, for simplicity, we will use the following notation: for any 
Ai ∈ ℝ

mi×ni×p and Vi ∈ ℝ
mi×n×p with i ∈ [l] , we denote

and sometimes, they are abbreviated as Diag(Ai ∶ i ∈ [l]) and vec(Vi ∶ i ∈ [l]) , 
respectively. When all Ai (Vi) become matrices (or vectors or scalars), similar sym-
bols are also used.

Recall that each circular matrix � ∈ ℝ
n×n can be diagonalized with the normal-

ized discrete Fourier transform (DFT) matrix [48], i.e., there exists a diagonal matrix 
� such that � = �H

n
��n , where �n is the Fourier matrix of size n × n defined as

Diag(A1,A2,⋯ ,Al) ∶=

⎡⎢⎢⎢⎣

A1

A2

⋱

Al

⎤⎥⎥⎥⎦
, vec(V1,V2,⋯ ,Vl) ∶=

⎡⎢⎢⎢⎣

V1

V2

⋮

Vl

⎤⎥⎥⎥⎦
,
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where � = e
2��

n  with �2 = −1 . Similarly, block circular matrices can be block diago-
nalized by using the Fourier transform. In [3], the authors showed that for any third-
order tensor A ∈ ℝ

m×n×p , there exists a block diagonal matrix Diag(�i ∶ i ∈ [p]) 
such that bcirc(A) = (�H

n
⊗ �m×m)Diag(�i ∶ i ∈ [p])(�p ⊗ �n×n) , and pointed out the 

conjugate symmetry between these block matrices �i.

Lemma 2  [3] Let A ∈ ℝ
m×n×p be block diagonalized as

where �p is the Fourier matrix defined by (1). Then, �1 ∈ ℝ
m×n , �i ∈ ℂ

m×n and 
�i = �p+2−i for any i ∈ [p]⧵{1} . In particular, if A ∈ Sℝn×n×p and �(i) ∈ Sℝn×n , 
then �i ∈ ℝ

n×n for any i ∈ [p] and �i = �p+2−i for any i ∈ [p]⧵{1}.

Remark 1  (i) It should be noticed that for any A ∈ ℝ
m×n×p which can be block diag-

onalized as (2), most of the matrices �i (i ∈ [p]) may be complex because of the 
participating of Fourier matrix �p , and they satisfy the relationships: �1 ∈ ℝ

m×n and 
�i = �p+2−i for any i ∈ [p]⧵{1} . On the other hand, it should be noticed that any 
�i ∈ ℂ

m×n with i ∈ [p] , which satisfy the above relationships, can lead to a real ten-
sor by the construction as (2). This can be seen from the following discussion.

For any tensor A  which can be block diagonalized as (2), we have that

Thus, from (3) and the fact that �np+i = �i = �p−i for i and n ∈ [p − 1] ∪ {0} , we 
can see that for any given �i ∈ ℂ

m×n with i ∈ [n] , the tensor obtained by the con-
struction as (2) is real if and only if �1 ∈ ℝ

m×n and �i = �p+2−i for any i ∈ [p]⧵{1}.
(ii) In addition, when m = n = 1 , Lemma 2 reduces to a well-known result for 

circular matrices, and the condition to guarantee that �i ∈ ℝ
m×n for any i ∈ [p] is 

that A  is symmetric. However, for the case m = n ≠ 1 , it should be noted that most 
of the matrices �i (i ∈ [p]) may be complex even when A  is symmetric, since the 
condition A  is symmetric can only imply that (A(i))⊤ = A

(p+2−i) for any i ∈ [p]⧵{1} , 
but not A(i) = A

(p+2−i) for any i ∈ [p]⧵{1}.

(1)�n =
1√
n

⎡
⎢⎢⎢⎣

1 1 1 1 … 1

1 � �2 �3 ⋯ �n−1

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

1 �n−1 �2(n−1) �3(n−1) ⋯ �(n−1)(n−1)

⎤
⎥⎥⎥⎦

(2)bcirc(A) = (�H
p
⊗ �m×m)Diag(�i ∶ i ∈ [p])(�p ⊗ �n×n),

(3)

⎧⎪⎪⎨⎪⎪⎩

A
(1) =

1

p
(�1 + �2 +⋯ + �p),

A
(2) =

1

p
(�1 + �1�2 +⋯ + �p−1�p),

⋯

A
(p) =

1

p
(�1 + �p−1�2 +⋯ + �(p−1)(p−1)�p).
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3 � T‑Hessian tensor and convexity of the twice continuously 
T‑differentiable multi‑variable real‑valued function

As is well-known to us, the local curvature of a multi-variable real-valued function 
can be characterized by the positive semidefiniteness of its Hessian matrix, which is 
widely used in Newton-type methods for solving various optimization problems. In 
this section, we generalize the Hessian matrix to the third-order tensor: T-Hessian 
tensor, and study the discriminant condition of the convexity of the twice continu-
ously T-differentiable multi-variable real-valued function.

3.1 � T‑Derivatives of multi‑variable real‑valued functions

In this subsection, we explore the derivatives of the multi-variable real-valued func-
tion f ∶ U ⊆ ℝ

n×1×p
→ ℝ . The tensor space is a normed linear space with inner 

product. In the following, we regard a matrix as a third-order tensor and derive the 
multi-variable real-valued function f ∶ U ⊆ ℝ

n×1×p
→ ℝ with the help of the inner 

product and tensor T-product. We adopt the Fréchet derivative [46]: Let V and W be 
normed vector spaces, and U ⊆ V  be an open subset of V. A function f ∶ U → W is 
called to be Fréchet differentiable at � ∈ U if there exists a bounded linear operator 
A ∶ V → W such that

Recently, in [33] and [3], the authors showed that third-order tensors can be seen as 
linear operators on a space of matrices with the help of the newly proposed tensor 
T-product and obtained many good theoretical and computational results. Inspired 
by that, we wonder whether or not can we adopt the third-order tensor as the linear 
operator in the above definition of Fréchet derivative when the variety is a matrix? 
To this end, we introduce the following definition first.

Definition 4  Let f ∶ U ⊆ ℝ
n×1×p

→ ℝ be a continuous map. Then, we say f is T-dif-
ferentiable at X ∈ U if and only if there exists a third-order tensor ∇Tf (X) such that

and we call ∇Tf (X) the first-order T-derivative of f at X  ; and we say f is twice 
T-differentiable at X ∈ U if and only if f is continuously T-differentiable and there 
exists a third-order tensor ∇2

T
f (X) such that

and we call ∇2
T
f (X) the second-order T-derivative of f at X .

Furthermore, we say f is T-differentiable (twice T-differentiable) on U if and only 
if f is T-differentiable (twice T-differentiable) at every X ∈ U.

lim
�→�

‖f (� + �) − f (�) − A(�)‖W
‖�‖V = 0.

lim
H→O

‖f (X +H) − f (X) − ⟨∇Tf (X),H⟩‖
‖H‖ = 0,

lim
H→O

‖∇Tf (X +H) − ∇Tf (X) − ∇2
T
f (X) ∗ H‖

‖H‖ = 0,
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Remark 2  From the fact that the tensor T-product of two tensors of size m × n × p 
reduces to the matrix multiplication when p = 1 , it follows that f ∶ U ⊆ ℝ

n×1×p
→ ℝ 

being T-differentiable (twice T-differentiable) on U is equivalent to f being differen-
tiable (twice differentiable) on U when p = 1.

Theorem 1  Let f be a continuous map from U ⊆ ℝ
n×1×p to ℝ . Then 

	 (i)	 f is T-differentiable on U if and only if �f (X)

�[unfold(X)]
 exists for every X ∈ U , where 

�f (X)

�[unfold(X)]
 is a vector in ℝnp with ( �f (X)

�[unfold(X)]
)i =

�f (X)

�([unfold(X)]i)
 for any i ∈ [np] . 

Especially, for any X ∈ U , ∇Tf (X) = fold[
�f (X)

�[unfold(X)]
];

	 (ii)	 f is twice T-differentiable on U if and only if f is continuously T-differentiable 
on U and �[unfold(∇Tf (X)]

�[unfold(X)]
 is a block circular matrix with each block being of size 

n × n for every X ∈ U . In particular, ∇2
T
f ((X)) = bcirc−1[

�[unfold(∇Tf (X))]

�[unfold(X)]
] for 

any X ∈ U.

Proof  (i) (⇒) : If f is T-differentiable on U, then for any X ∈ U , there exists a 
bounded operator L  such that

which, together with ⟨L,H⟩ = ⟨unfold(L), unfold(H)⟩ , implies that

Furthermore, by introducing g(unfold(X)) ∶= f (X) , we have that

which means that �[g(unfold(X))]

�[unfold(X)]
= unfold(L) , i.e., �[f (X)]

�[unfold(X)]
= unfold(L) . Thus, 

�f (X)

�[unfold(X)]
 exists, and ∇Tf (X) = L = fold[

�f (X)

�[unfold(X)]
].

(⇐) : Reversing the above process, we can obtain that if �f (X)

�[unfold(X)]
 exists, then f is 

T-differentiable on U.
(ii) (⇒) : If f is twice T-differentiable on U, then f is continuously T-differentiable 

and for any X ∈ U , there exists a bounded operator L ∶ ℝ
n×1×p

→ ℝ
n×1×p such that

which, together with ‖X‖ = ‖unfold(X)‖ for any X ∈ ℝ
n×1×p , implies that

lim
H→O

‖f (X +H) − f (X) − ⟨L,H⟩‖
‖H‖ = 0,

lim
unfold(H)→�

‖f (X +H) − f (X) − ⟨unfold(L), unfold(H)⟩‖
‖unfold(H)‖ = 0.

lim
H→O

‖g[unfold(X +H)] − g(unfold(X)) − ⟨unfold(L), unfold(H)⟩‖
‖unfold(H)‖ = 0,

lim
H→O

‖f (X +H) − f (X) − ⟨L,H⟩‖
‖H‖ = 0,
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Denote h ∶ ℝ
np

→ ℝ
np with h[unfold(X)] = unfold(∇Tf (X)) , then we have that 

�[unfold(∇Tf (X)]

�[unfold(X)]
=

�[h[unfold(X)]

�[unfold(X)]
= bcirc(L) , which is a block circular matrix with each 

block being of size n × n . Thus �[unfold(∇Tf (X)]

�[unfold(X)]
 exists, and

(⇐) : Reversing the above process, we can obtain the desired result.

In Theorem  1, we establish the necessary and sufficient conditions for a general 
multi-variable real-valued function being T-differentiable and twice T-differentiable, 
respectively, and we give the specific expressions when the derivatives exist. Then what 
are the relationships between the derivatives obtained in this way and the derivatives in 
the traditional sense? We construct an example to illustrate that.

Example 3.1  Given a map f ∶ ℝ
2×1×2

→ ℝ with for any X = [xi1j] ∈ ℝ
2×1×2,

(1) First, we discuss the relationship between ∇f  and ∇Tf  . By the traditional way, 
we can obtain that

Now, let us to seek the ∇Tf  by the procedure given in Theorem  1. Noting that 
unfold(X) = [x111, x211, x112, x212]

⊤, thus we can obtain that

furthermore, we can get

(2) Next, we investigate the relationship between ∇2f  and ∇2
T
f .

Since ∇f (X) is actually a matrix of size 2 × 2 and X  is also a matrix of size 2 × 2 , 
thus by the traditional derivative, ∇2f (X) should be a fourth-order tensor defined by:

lim
H→O

‖unfold[∇Tf (X +H)] − unfold[∇Tf (X)] − bcirc(L)unfold(H)‖
‖unfold(H)‖ = 0.

∇2
T
f (X) = L = bcirc−1[

�[unfold(∇Tf (X))]

�[unfold(X)]
].

f (X) = x2
111

+ 2x111x112 + x2
112

+ x2
211

+ x2
212

.

∇f (X) =

[ �f

�x111

�f

�x112
�f

�x211

�f

�x212

]
=

[
2x111 + 2x112 2x111 + 2x112

2x211 2x212

]
.

𝜕[f (X)]

𝜕[unfold(X)]
=

[
𝜕f

𝜕x111
,

𝜕f

𝜕x211
,

𝜕f

𝜕x112
,

𝜕f

𝜕x212

]⊤
= 2[x111 + x112, x211, x111 + x112, x212]

⊤,

∇Tf (X) = fold[
�f (X)

�[unfold(X)]
] =

[
2x111 + 2x112 2x111 + 2x112

2x211 2x212

]
= ∇f (X).

∇2f (X) =
𝜕∇f (X)

𝜕X
=

𝜕∇f (X)ij

𝜕Xpq

�i ⊗ �j ⊗ �p ⊗ �q
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where �i represents the vector whose i-th elements equals one and others equal 
zero. That is to say, ∇2f (X) ∈ ℝ

2×2×2×2 with (∇2f (X))1111 = 2 , (∇2f (X))1112 = 2 , 
(∇2f (X))1211 = 2 , (∇2f (X))1212 = 2 , (∇2f (X))2121 = 2 , (∇2f (X))2222 = 2 , and other 
entries being zero.

While, by Theorem 1, we can get that

which is a block circular matrix and ∇2
T
f (X) is a tensor of size 2 × 2 × 2 , with the 

frontal slices being:

Hence, ∇2f  and ∇2
T
f  are not coincide in the sizes, but it should be noticed that the 

entries of ∇2f  and these of bcirc(∇2
T
)f  are the same regardless of the orders.

Remark 3  (i) ∇2
T
f (X) is different from the traditional one due to the participation of 

the T-product. Traditionally, the second-order derivative of a multi-variable real-val-
ued function f ∶ U ⊆ ℝ

n×1×p
→ ℝ is a fourth-order tensor. However, ∇2

T
f (X) turns 

out to be a third-order tensor, which is also reasonable. Its rationality lies in that the 
existence of ∇2

T
f (X) via the T-product needs such a condition that �[unfold(∇f (X)]

�[unfold(X)]
 is a 

block circular matrix, which implies that just getting the information of its first block 
column vector is enough. In other words, it is enough to express the information of 
∇2

T
f (X) by a third-order tensor in such case.
(ii) The ∇Tf (X) is consistent with the traditional one. This is natural because 

∇Tf (X) and ∇f (X) are based on the coincide definition of inner product. So, we use 
∇f (X) to represent ∇Tf (X) in the rest of paper.

3.2 � The semidefiniteness of ∇2

T
f(X) and the convexity of f(X)

In this subsection, we investigate the second-order condition for any twice continu-
ously T-differentiable function f ∶ U ⊆ ℝ

n×1×p
→ ℝ being (strictly) convex. The 

definition of the convex function is as follows in [49]:

Definition 5  [49] A function f ∶ U ⊆ ℝ
n×p

→ ℝ is convex (strictly convex) if U is 
a convex set, and for all �,� ∈ U ( �,� ∈ U and � ≠ � ) and any � with 0 ≤ � ≤ 1 , 
f (𝜃� + (1 − 𝜃)�) ≤ (<)𝜃f (�) + (1 − 𝜃)f (�).

Since the first-order T-derivative is consistent with the traditional one for a multi-
variable real-valued function, it is not difficult to find that for any continuously 

bcirc(∇2
T
f (X)) =

�[unfold(∇Tf (X))]

�[unfold(X)]
=

⎡
⎢⎢⎢⎣

2 0 2 0

0 2 0 0

2 0 2 0

0 0 0 2

⎤
⎥⎥⎥⎦

(∇2
T
f (X))(1) =

[
2 0

0 2

]
and (∇2

T
f (X))(2) =

[
2 0

0 0

]
.
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T-differentiable function f ∶ U ⊆ ℝ
n×1×p

→ ℝ , it is convex (strictly convex) if and 
only if for any X,Y ∈ U ( X,Y ∈ U and X ≠ Y ),

Below, in order to establish the second-order condition for any twice continuously 
T-differentiable function f ∶ U ⊆ ℝ

n×1×p
→ ℝ being (strictly) convex, we first 

extend the second-order Taylor expansion of the function of one variable to the 
twice continuously T-differentiable multi-variable real-valued function via the ten-
sor T-product.

Theorem 2  Suppose that f ∶ U ⊆ ℝ
n×1×p

→ ℝ is twice continuously T-differentia-
ble on U. Then 

	 (i)	 there exists � ∈ (0, 1) such that 

 where Z = �X + (1 − �)X̃ ;
	 (ii)	 the second-order T-Taylor expansion of f at X̃  as follows: 

 and o(‖X − X̃‖2) means a high-order infinitesimal of ‖X − X̃‖2 as 
X → X̃ .

Proof  (i) Construct a function of one variable as: �(t) ∶= f (X̃ + t(X − X̃)) for any 
t ∈ ℝ . Then, �(0) = f (X̃) and �(1) = f (X) . It follows from the condition that f is 
twice continuously T-differentiable that � is twice continuously differentiable. For 
any t ∈ ℝ , let U = X̃ + t(X − X̃) , then we have

f (Y) ≥ (>)f (X) + ⟨∇f (X),Y −X⟩.

f (X) = f (X̃) + ⟨∇f (X̃),X − X̃⟩ + 1

2
⟨∇2

T
f (Z) ∗ (X − X̃),X − X̃⟩,

f (X) = f (X̃) + ⟨∇f (X̃),X − X̃⟩
+

1

2
⟨∇2

T
f (X̃) ∗ (X − X̃),X − X̃⟩ + o(‖X − X̃‖2)
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Thus, ��(0) = ⟨∇f (X̃),X − X̃⟩ and ���(0) = ⟨∇2
T
f (X̃) ∗ (X − X̃),X − X̃⟩ . It 

follows from the mean value theorem, that there exists some � ∈ (0, 1) such that 
�(1) = �(0) + ��(0) +

1

2
���(�) , which implies that

where Z = �X + (1 − �)X̃  , i.e., the result in (i) holds.
(ii) Denote Y ∶=

X−X̃

‖X−X̃‖ and � � ∶= ‖X − X̃‖ . Let �(�) ∶= f (X̃ + �Y) for any 
� ∈ ℝ , then by the same way as (i), we have �(0) = f (X̃) , �(� �) = f (X),

which, together with �(� �) = �(0) + � �(0)� � +
1

2
� ��(0)� �2 + o(‖� �‖2) , imply that

i.e., the result in (ii) holds. 	�  ◻

Theorem 3  Let f ∶ U ⊆ ℝ
n×1×p

→ ℝ be a twice continuously T-differentiable func-
tion on an open convex set U. Then 

	 (i)	 f is convex if and only if for any X ∈ U , ∇2
T
f (X) satisfies 

	 (ii)	 f is strictly convex if for any X ∈ U , ∇2
T
f (X) satisfies 

��(t) =
d�(t)

dt
=

df (U)

dt
=

�
∇f (U),

dU

dt

�
= ⟨∇f (U), (X − X̃)⟩

= ⟨∇f (X̃ + t(X − X̃)), (X − X̃)⟩;

���(t) =
d��(t)

dt
=

d⟨∇f (U), (X − X̃)⟩
dt

=

�
d(∇f (U))

dt
, (X − X̃)

�

=

�
∇2

T
f (U) ∗ dU

dt
,X − X̃

�

=

�
bcirc(∇2

T
f (U)) ⋅ unfold(dU)

dt
, unfold(X − X̃)

�

= ⟨bcirc(∇2
T
f (U)) ⋅ unfold(X − X̃), unfold(X − X̃)⟩

= ⟨unfold(∇2
T
f (U) ∗ (X − X̃)), unfold(X − X̃)⟩

= ⟨∇2
T
f (X̃ + t(X − X̃)) ∗ (X − X̃),X − X̃⟩.

f (X) = f (X̃) + ⟨∇f (X̃),X − X̃⟩ + 1

2
⟨∇2

T
f (Z) ∗ (X − X̃),X − X̃⟩,

� �(0)� � = ⟨∇f (X̃),X − X̃⟩ and � ��(0)� �2 = ⟨∇2
T
f (X̃) ∗ (X − X̃),X − X̃⟩,

f (X) = f (X̃) + ⟨∇f (X̃),X − X̃⟩
+

1

2
⟨∇2

T
f (X̃) ∗ (X − X̃),X − X̃⟩ + o(‖X − X̃‖2),

(4)⟨Y,∇2
T
f (X) ∗ Y⟩ ≥ 0 for any Y ∈ ℝ

n×1×p;
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Proof  (i) (⇒) : For any X ∈ U and Y ∈ ℝ
n×1×p⧵{O} , it follows from U being an 

open set that there exists 𝜀 > 0 such that X + �Y ∈ U when � ∈ (−�, �) . Since f 
is convex, we have that f (X + �Y) ≥ f (X) + �⟨∇f (X),Y⟩ . In addition, it follows 
from Theorem 2 that

Therefore, we can obtain that ⟨Y,∇2
T
f (X) ∗ Y⟩ + o(‖�Y‖2)

�2∕2
≥ 0 . Let � → 0 , we fur-

ther obtain that ⟨Y,∇2
T
f (X) ∗ Y⟩ ≥ 0.

(⇐) : For any X,Y ∈ U , it follows from Theorem 2 that

where Z = X + t(Y −X) with t ∈ (0, 1) . Since U is convex, it follows that Z ∈ U ; 
and hence, by (4) we have that 1

2
⟨Y,∇2

T
f (Z) ∗ Y⟩ ≥ 0 . Furthermore, we have that 

f (Y) ≥ f (X) + ⟨∇f (X),Y −X⟩ , which, together with U being convex, implies that 
f is convex. The proof of (i) is complete.

By the same way as in the proof of the sufficiency of (i), we can obtain (ii). 	�  ◻

Remark 4  Let f ∶ U ⊆ ℝ
n×1×p

→ ℝ be a twice continuously T-differentiable func-
tion on an open convex set U. Since ∇2

T
f ∈ ℝ

n×n×p has similar properties as Hessian 
matrix, we call ∇2

T
f  the T-Hessian tensor.

4 � Symmetric T‑positive (semi)definite tensors

In this section, we first introduce a definition of the symmetric T-positive (semi)
definite tensor; and then, we investigate properties of symmetric T-positive (semi)
definite tensors.

4.1 � Definition

In Sect. 3, we obtained that the convexity of a twice continuously T-differentiable 
multi-variable real-valued function on an open convex set can be characterized by 
some property of the T-Hessian tensor. Now we name such a property as the sym-
metric T-positive semidefiniteness.

Definition 6  Let A ∈ ℝ
n×n×p . We say A  is a symmetric T-positive (semi)definite 

tensor (T-P(S)D tensor for short), if and only if A  is a symmetric tensor and

⟨Y,∇2
T
f (X) ∗ Y⟩ > 0 for any Y ∈ ℝ

n×1×p⧵{O}.

f (X + �Y) = f (X) + �⟨∇f (X),Y⟩ + 1

2
�2⟨Y,∇2

T
f (X) ∗ Y⟩ + o(‖�Y‖2).

f (Y) = f (X) + ⟨∇f (X),Y −X⟩ + 1

2
⟨∇2

T
f (Z) ∗ (Y −X),Y −X⟩,

⟨X,A ∗ X⟩ > (≥)0
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holds for any X ∈ ℝ
n×1×p⧵{O} (for any X ∈ ℝ

n×1×p ). We denote the set consisting 
of all symmetric T-P(S)D tensors of size n × n × p as Sℝn×n×p

++ (Sℝ
n×n×p
+ ).

Remark 5  (i) When p = 1 , the T-product defined by Definition  1 reduces to the 
product of two matrices. In addition, when p = 1 , X ∈ ℝ

n×1×p reduces to a column 
vector and A ∈ Sℝn×n×p reduces to a square symmetric matrix. Thus, when p = 1 , 
Definition 6 is exactly the definition of the symmetric P(S)D matrix. That is to say, 
the T-P(S)D tensor defined by Definition 6 is a higher-order extension of the P(S)D 
matrix.

(ii) From Definition 6 and Theorem 3, we can say that a twice continuously T-dif-
ferentiable function f ∶ U ⊆ ℝ

n×1×p
→ ℝ is convex (strictly convex) if and only if 

(if) the T-Hessian tensor ∇2
T
f (X) is symmetric T-PSD (T-PD) for any X ∈ U.

(iii) It should be noticed that the positive semidefinite tensor defined by means 
of the nonnegativity of the corresponding multi-variate homogeneous polynomial 
in [47] is different with the one defined in Definition 6. Since the positive semidefi-
nite tensor defined by Qi [47] vanishes when the order is odd, while the symmetric 
T-positive (semi)definite tensor in Definition 6 is introduced for third-order tensor.

4.2 � Equivalent characterizations of symmetric T‑P(S)D tensors

First, we give an equivalent description of Definition 6.

Theorem  4  Let A ∈ Sℝn×n×p . A  is symmetric T-P(S)D if and only if bcirc(A) is 
symmetric P(S)D.

Proof  Since bcirc(A⊤) = bcirc(AH) = bcirc(A)H = bcirc(A)⊤ by Lemma 1(c), then 
A  is symmetric if and only if bcirc(A) is symmetric. For any X ∈ ℝ

n×1×p , it follows 
from Definition 1 and the definition of operator unfold that

and hence,

Thus, by combining Definition 6 and the criterion of P(S)D matrix, we can easily 
obtain that A  is symmetric T-P(S)D if and only if bcirc(A) is symmetric P(S)D. 	� ◻

Remark 6  From Theorem 4, we can see that lots of results that P(S)D matrix with 
block circular structure hold is true for T-P(S)D tensors by combining the proper-
ties of tensor T-product such as those shown in Lemma 1. Thus for convenience, in 
Sects. 4.3 and 4.4 we just list some ones which play important roles in Sects. 4.5 and 
5 without proofs.

Next, we give another equivalent description of Definition 6.

unfold(A ∗ X) = bcirc(A)unfold(X),

⟨X,A ∗ X⟩ = ⟨unfold(X), unfold(A ∗ X)⟩
= ⟨unfold(X), bcirc(A)unfold(X)⟩.
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Theorem 5  Suppose that A ∈ ℝ
n×n×p can be block diagonalized as

where �p is the Fourier matrix of size p × p , which is defined as (1). Then A  is sym-
metric T-P(S)D if and only if all the matrices �i are Hermitian P(S)D.

Proof  By (5), bcirc(A) is symmetric if and only if each �i is Hermitian, and A  is 
symmetric if and only if bcirc(A) is symmetric as shown in Theorem 4.

(⇐) : Suppose that all the matrices �i in (5) are Hermitian P(S)D, then for any 
� in ℂn⧵{�} ( � ∈ ℂ

n ) and i ∈ [p] , �H�i� > (≥)0 . For any X ∈ ℝ
n×1×p⧵{O} , there 

exists �i ∈ ℂ
n for each i ∈ [p] , which cannot be � at the same time, such that 

bcirc(X) = (�H
p
⊗ �n×n)Diag(�i ∶ i ∈ [p])�p . Since

where the fourth equality follows from the fact that similar matrices have the same 
traces, then A  is symmetric T-PSD if all the matrices �i are Hermitian PSD.

Since �i ∈ ℂ
n for each i ∈ [p] cannot be � at the same time, there exists at least an 

index i ∈ [p] such that �H
i
�i�i > 0 if all the matrices �i are Hermitian PD. Hence A  

is symmetric T-PD if all the matrices �i are Hermitian PD.
(⇒) : Suppose that A ∈ Sℝ

n×n×p
++  ( Sℝn×n×p

+  ), then ⟨X,A ∗ X⟩ > (≥)0 for any 
X ∈ ℝ

n×1×p⧵{O} . Below, we divide the discussion into two cases.
Case 1: n is even. By Lemma , we have �1 ∈ ℝ

n×n , � p+2

2

∈ ℝ
n×n , �i ∈ ℂ

n×n and 
�i = �p+2−i for any i ∈ [p]⧵{1,

p+2

2
} . Then, for any � ∈ ℂ

n⧵{�} , choose special X  
in ℝn×1×p and satisfies that bcirc(X�) = (�H

p
⊗ �n×n)Diag(�

�
i ∶ i ∈ [p])�p, where 

��
k = ��

p+2−k
= � and others ��

i = � with k being any fixed number in [p]⧵{1, p+2
2
} . 

Then, from Remark  1 we have that X ∈ ℝ
n×1×p . Thus, ⟨X,A ∗ X) > (≥ 0) by 

A ∈ Sℝ
n×n×p
++ (A ∈ Sℝ

n×n×p
+ ) . Since A ∈ Sℝn×n×p , �k ∈ Hℂ

n×n and �k = �p+2−k . 
Thus, �H�k� is real, and

which implies �k is Hermitian P(S)D for any k ∈ [p]⧵{1,
p+2

2
} . In addition, for any 

� ∈ ℝ
n , we can obtain that �1 ( � p+2

2

 ) is symmetric P(S)D by choosing ��
1 = � 

( ��
p+2

2

= � ) and others ��
i = �.

Case 2: n is odd. By Lemma , we have �1 ∈ ℝ
n×n , �i ∈ ℂ

n×n and �i = �p+2−i 
for any i ∈ [p]⧵{1} . Then by the same method as Case 1, we can obtain that �k is 
Hermitian P(S)D for any k ∈ [p].

(5)bcirc(A) = (�H
p
⊗ �n×n)Diag(�i ∶ i ∈ [p])(�p ⊗ �n×n),

⟨X,A ∗ X⟩ =
1

p
⟨bcirc(X), bcirc(A)bcirc(X)⟩

=
1

p
Tr(bcirc(X)Hbcirc(A)bcirc(X))

=
1

p
Tr(�H

p
Diag(�H

i
�i�i ∶ i ∈ [p])�p)

=
1

p
Tr(Diag(�H

i
�i�i ∶ i ∈ [p])) =

1

p

p∑
i=1

(�H
i
�i�i) ≥ 0,

0 < (≤)⟨X,A ∗ X) =
1

p

p�
i=1

((��
i)
H�i�

�
i) =

1

p
(�H�k� + �

H
�p+2−k�) =

2

p
�H�k�,
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Thereby, combining Case 1 and Case 2, we can obtain that all the matrices �i are 
Hermitian P(S)D if A  is symmetric T-P(S)D. 	�  ◻

Remark 7  Theorem 5 shows that the judgement of the T-positive semidefiniteness of 
a symmetric tensor of size n × n × p can be transformed into the judgement of posi-
tive semidefiniteness of p Hermitian matrices of size n × n . Furthermore, Theorem 5 
shows that the symmetric T-P(S)D tensor in Definition 6 is equivalent to the one by 
[3, Definition2.7] and the one by [34, Definition 15] in real case.

4.3 � T‑eigenvalue decomposition of the symmetric T‑P(S)D tensor

In this subsection, we aim to establish the T-eigenvalue decomposition for the 
symmetric T-P(S)D tensor. To do this, we give the following definition first. It 
should be noticed that the definition of T-eigenvalue for third-order F-square ten-
sor was given in [34] and here we redefine it in an equivalent way for convenience.

Definition 7  (T-eigenvalue and Trace) Let A ∈ ℝ
n×n×p , which can be block diago-

nalized as (5). Then a real number � is said to be a T-eigenvalue of A  if and only if 
it is an eigenvalue of some �i for i ∈ [p] , denoted by �(A) . The largest and smallest 
T-eigenvalues of A  are denoted by �max(A) and �min(A) , respectively. Moreover, the 
trace of A  , denoted by Tr(A) , is defined as Tr(A) ∶=

∑p

i=1
Tr(�i).

Remark 8  By Definition 7, Theorem 5 and [44, Fact 6], it is not difficult to see that a 
symmetric third-order tensor A  is T-P(S)D if and only if each T-eigenvalue of A  is 
positive (nonnegative).

It is easy to establish the following properties for the T-eigenvalues and traces 
of tensors from the above definition and some known results in [39].

Proposition 1  Let A  and B be two tensors in ℝn×n×p , C ∈ ℝ
n×n×p be nonsingular, 

and spec(A) be the set consisting of all the T-eigenvalues of A  . Then 

(a)	 spec(A) = spec(bcirc(A));
(b)	 Tr(A) = Tr(bcirc(A)) =

∑
i �i(A) = p

∑n

i=1
(�(1))ii;

(c)	 Tr(A ∗ B) = Tr(B ∗ A);
(d)	 spec(C−1 ∗ A ∗ C) = spec(A) and Tr(C−1 ∗ A ∗ C) = Tr(A).

Remark 9  (i) From Lemma  1(a) and Proposition  1, it is easy to see that for any 
A ∈ Sℝn×n×p and B ∈ Sℝn×n×p,

and A  is T-P(S)D if and only if Tr(V⊤ ∗ A ∗ V) > 0 for all nonzero V ∈ ℝ
n×1×p 

(Tr(V⊤ ∗ A ∗ V) ≥ 0 for all V ∈ ℝ
n×1×p).

p⟨A,B⟩ = ⟨bcirc(A), bcirc(B)⟩ = Tr(bcirc(A)bcirc(B)) = Tr(A ∗ B),
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(ii) Let A ∈ Sℝ
n×n×p
+  and B ∈ Sℝ

n×n×p
+  . Then, it follows from [43, Lemmas 1.2.3, 

1.2.4] and Proposition 1 that ⟨A,B⟩ ≥ 0; ⟨A,B⟩ = 0 iff A ∗ B = O; and

It is known that the eigenvalue decomposition plays an important role in the 
study of symmetric matrices. In the following, we establish a similar decomposi-
tion for symmetric third-order tensors, especially for the T-P(S)D tensor.

Theorem 6  (T-eigenvalue decomposition) Every A ∈ Sℝn×n×p can be factored as

where U ∈ ℝ
n×n×p is an orthogonal tensor and S ∈ ℝ

n×n×p is an F-diagonal 
tensor(That is, each frontal slice of S  is a diagonal matrix) with all of the diag-
onal entries of (�p ⊗ In×n)bcirc(S)(�H

p
⊗ In×n) being the T-eigenvalues of A  . 

In particular, if A ∈ Sℝ
n×n×p
+  ( A ∈ Sℝ

n×n×p
++  ), then all of the diagonal entries of 

(�p ⊗ In×n)bcirc(S)(�H
p
⊗ In×n) are nonnegative (positive).

Proof  The conclusion can be easily proved from [39, Corollary4.4.4,Theorem 7.6.4] 
and Remark 1(i). 	� ◻

4.4 � The T‑roots of a symmetric T‑PSD tensor

The following result about the roots of a symmetric T-PSD tensor also holds by The-
orem 4, Lemma 1 and [39, Theorem 7.2.6].

Theorem 7  (The T-roots of a symmetric T-PSD tensor) Let A ∈ Sℝ
n×n×p
+  and k ≥ 1 . 

Then there exists a unique B ∈ Sℝ
n×n×p
+  with Bk = A .

Corollary 1  Let A ∈ Sℝn×n×p be T-PSD. Then there exists a unique positive semidefi-
nite tensor B ∈ Sℝn×n×p with B2 = A  . We write such B as A

1

2.

Furthermore, the following conclusion is true.

Theorem  8  For any A ∈ Sℝn×n×p with bcirc(A) being block diagonalized as (5), 
(a) A ∈ Sℝ

n×n×p
+ (A ∈ Sℝ

n×n×p
++ ) if and only if (b) A = P

⊤ ∗ P for some tensor 
P ∈ ℝ

m×n×p (A = P
⊤ ∗ P for some nonsingular tensor P ∈ ℝ

m×n×p).

4.5 � The cone of T‑PSD tensors

In this subsection, we investigate the set of T-PSD tensors. Recall that a subset C of 
a vector space V is called a cone (or sometimes called a linear cone) if for each � in 
C and any nonnegative scalar � , the product �� is in C; C is called a convex cone if 

p⟨A,B⟩ ≥ �min(A)�max(B) ≤ �min(A)Tr(B);

p⟨A,B⟩ ≤ �max(A)Tr(B) ≤ n�max(A)�max(B).

A = U
⊤ ∗ S ∗ U,
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for any nonnegative scalars �, � and any � , � in C, it follows that �� + �� belongs to 
C; and if additionally C is a closed set, then we call C a closed, convex cone.

Proposition 2  Sℝn×n×p is isomorphic to ℝ
pn2+n

2  if p is odd; and Sℝn×n×p is isomorphic 
to ℝ

pn2

2
+n if p is even.

Proof  This proposition can be easily proved; and we omit the proof here. 	�  ◻

Proposition 3  Sℝn×n×p
+  is a nonempty, closed, convex, pointed cone.

Proof  From Theorem 4 and the fact that Sℝn×n
+

 is nonempty and closed, it follows 
that Sℝn×n×p

+  is nonempty and closed. For any A,B ∈ Sℝ
n×n×p
+  and any two non-

negative scalars � and � , we have that bcirc(�A + �B) = �bcirc(A) + �bcirc(B) . 
Suppose that A  , B ∈ Sℝ

n×n×p
+  , then bcirc(A) and bcirc(B) belong to Sℝnp×np

+  
from Theorem 4. Therefore, from the fact that Sℝnp×np

+  is a convex cone, it follows 
that bcirc(�A + �B) = �bcirc(A) + �bcirc(B) ∈ Sℝ

np×np
+  , which together with 

Theorem  4 implies that �A + �B ∈ Sℝ
n×n×p
+  . That is to say, Sℝn×n×p

+  is a convex 
cone. Suppose that A ∈ Sℝ

n×n×p
+  and A ∈ Sℝ

n×n×p
+  , then bcirc(A) ∈ Sℝ

np×np
+  and 

bcirc(A) = −bcirc(A) ∈ Sℝ
np×np
+  . From the fact that Sℝnp×np

+  is pointed, it follows 
that bcirc(A) = � . Thus A = O , which implies that Sℝn×n×p

+  is pointed. 	�  ◻

Remark 10  By the proof of Proposition 3, it is easy to obtain that Sℝn×n×p
++  is a non-

empty, open, convex cone. It is also easy to show that Sℝn×n×p
++  is the interior of 

Sℝ
n×n×p
+  . By the theory of conic optimization, it follows that Sℝn×n×p

+  ( Sℝn×n×p
++  ) 

can induce a partial order on Sℝn×n×p , denoted by ⪰T (≻T) . That is, for any 
A,B ∈ Sℝn×n×p , A ⪰T (≻T) B if and only if A −B ∈ Sℝ

n×n×p
+ (Sℝ

n×n×p
++ ).

In the following, we will use A ⪰T (≻T)O if A ∈ Sℝ
n×n×p
+ (Sℝ

n×n×p
++ ) . Espe-

cially, we replace A ⪰T (≻T)O with � ⪰ (≻)� if � ∈ Sℝn×n
+

(Sℝn×n
++

) , as any 
A ∈ Sℝ

n×n×p
+ (Sℝ

n×n×p
++ ) reduces to the � ∈ Sℝn×n

+
(Sℝn×n

++
) when p = 1.

Recall that Sℝn×n
+

 is a self-dual cone, which plays an important role in the widely 
studied semidefinite programming. In the following, we generalize this fact to T-sem-
idefinite cone Sℝn×n×p

+  . For a cone C, the polar cone (or dual cone) [43] is the set 
C∗ ∶= {� ∶ ⟨�, �⟩ ≥ 0, for any � ∈ C}.

Theorem 9  (Self-duality) Sℝn×n×p
+ = (Sℝ

n×n×p
+ )∗.

Proof  (i) Sℝn×n×p
+ ⊆ (Sℝ

n×n×p
+ )∗ : To this end, we only need to show that A ⋅B ≥ 0 

for any A  , B ⪰T O . Since A  , B ⪰T O , it follows from Corollary 1 that there exists 
A

1

2 and B
1

2 such that A = A
1

2 ∗ A
1

2 and B = B
1

2 ∗ B
1

2 . Thus, we can obtain that

A ⋅B =
1

p
Tr(A ∗ B) =

1

p
Tr(A

1

2 ∗ A
1

2 ∗ B
1

2 ∗ B
1

2 )

=
1

p
Tr(B

1

2 ∗ A
1

2 ∗ A
1

2 ∗ B
1

2 ) = (A
1

2 ∗ B
1

2 ) ⋅ (A
1

2 ∗ B
1

2 ) ≥ 0.
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(ii) (Sℝn×n×p
+ )∗ ⊆ Sℝ

n×n×p
+  : We only need to show A ⪰T O if A ∈ (Sℝ

n×n×p
+ )∗ . 

Suppose A ∈ (Sℝ
n×n×p
+ )∗ , then A ⋅B ≥ 0 for any B ⪰T O . Taken B = D ∗ D

⊤ 
where D ∈ ℝ

n×1×p is an arbitrary given tensor, then we have that B ⪰T O and 
A ⋅ (D ∗ D

⊤) ≥ 0 , i.e., Tr(A ∗ (D ∗ D
⊤)) ≥ 0 . By Proposition 1(b), we get

Hence, by Remark 9(i), we can obtain that A ⪰T O . 	�  ◻

4.6 � The T‑schur complement of a symmetric T‑PSD tensor

In this subsection, we give a characterization of the T-positive semidefiniteness 
of a third-order tensor by the T-positive semidefiniteness of the T-schur comple-
ment [34].

Lemma 3  (Tensor block multiplication via T-product) [37] Suppose A1 ∈ ℂ
n1×m1×p , 

B1 ∈ ℂ
n1×m2×p , C1 ∈ ℂ

n2×m1×p , D1 ∈ ℂ
n2×m2×p , A2 ∈ ℂ

m1×r1×p , B2 ∈ ℂ
m1×r2×p , 

C2 ∈ ℂ
m2×r1×p and D2 ∈ ℂ

m2×r2×p are complex tensors, then

Lemma 4  Suppose that Ai ∈ Sℝni×ni×p for any i ∈ [m] . Then the block diagonal ten-
sor A = Diag(Ai ∶ i ∈ [p]) is symmetric T-P(S)D if and only if all Ai are so.

Proof  For any nonzero V ∈ ℝ
n×1×p with n =

∑m

i=1
ni , we divided it into a block 

tensor, i.e., V = vec(Vi ∶ i ∈ [m]) where Vi ∈ ℝ
ni×1×p for any i ∈ [m] . Then, by 

Lemma 3, we can obtain that

Hence, it is not difficult to get that A  is symmetric T-P(S)D iff all Ai are so. 	�  ◻

Besides, from [43, Proposition 1.1.7], Lemma 1 and Theorem 4, the following 
result holds.

Lemma 5  Suppose that B ∈ ℝ
n×n×p be nonsingular. Then A ∈ Sℝ

n×n×p
+  ( Sℝn×n×p

++  ) if 
and only if (B⊤ ∗ A ∗ B) ∈ Sℝ

n×n×p
+  ( Sℝn×n×p

++ ).

Now, we can establish a theorem about the T-Schur complement.

Theorem 10  (T-Schur complement) Suppose that A ∈ Sℝ
m×m×p
++  , C ∈ Sℝn×n×p , and 

B ∈ ℝ
m×n×p . Then

Tr(D⊤ ∗ A ∗ D) = Tr(bcirc(D⊤)bcirc(A)bcirc(D))

= Tr(bcirc(A)(bcirc(D)bcirc(D⊤))) = Tr(A ∗ (D ∗ D
⊤)) ≥ 0.

[
A1 B1

C1 D1

]
∗

[
A2 B2

C2 D2

]
=

[
A1 ∗ A2 +B1 ∗ C2 A1 ∗ B2 +B1 ∗ D2

C1 ∗ A2 +D1 ∗ C2 C1 ∗ B2 +D1 ∗ D2

]
.

V
⊤ ∗ A ∗ V = vec(Vi ∶ i ∈ [m])⊤ ∗ Diag(Ai ∶ i ∈ [p]) ∗ vec(Vi ∶ i ∈ [m])

=
∑m

i=1
V
⊤
i
∗ Ai ∗ Vi.
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Proof  It follows from A ∈ Sℝ
m×m×p
++  that A  is nonsingular. Denote the block tensor

then we have

Therefore, by Lemmas 4 and 5, the theorem is proved. 	�  ◻

5 � Semidefinite programming over the third‑order symmetric tensor 
space

In this section, we first introduce the TSDP and give its duality theory; and then, we 
show the transformation of TSDPs into SDPs in the complex domain. After that, we 
consider several problems and reformulate (or relax) them as TSDPs. Finally, we pre-
sent some preliminary numerical results for solving the unconstrained polynomial opti-
mization problem via the TSDP relaxation.

5.1 � TSDP problems in primal‑dual forms

In this subsection, we replace the matrix variables in the classic SDP by the tensor vari-
ables to yield the TSDP. We consider the TSDP in primal form:

where all Ai ∈ Sℝn×n×p , � ∈ ℝ
m , C ∈ Sℝn×n×p are given and X ∈ Sℝn×n×p is the 

variable. A  is a linear operator from Sℝn×n×p into ℝm.
Just as the derivation of the dual problem of the SDP, in order to obtain the dual 

problem of (PTSDP), we try to find the adjoint operator of A  at first, which is a linear 
operator from ℝm into Sℝn×n×p satisfying ⟨AX, �⟩ = ⟨X,A∗�⟩ for any X  in Sℝn×n×p 
and � in ℝm . Since

we have A∗� =
∑m

i=1
yiAi . Now we can construct the dual of (PTSDP) by the 

Lagrange approach. By adding a Lagrange multiplier � ∈ ℝ
m , (PTSDP) can be 

turned into infX⪰TO
sup�∈ℝm⟨C,X⟩ + ⟨� −AX, �⟩ , then the dual of (PTSDP) yields 

through interchanging inf and sup . Note that

[
A B

B
⊤

C

]
≻T (⪰T) O ⟺ C −B

⊤ ∗ A
−1 ∗ B ≻T (⪰T) O .

D ∶=

[
Immp −A

−1 ∗ B

O Innp

]
,

D
⊤ ∗

[
A B

B
⊤

C

]
∗ D =

[
A O

O C −B
⊤ ∗ A

−1 ∗ B

]
.

(PTSDP) min
X

⟨C,X⟩ s.t. AX = [⟨Ai,X⟩]i∈[m] = �, X ⪰T O,

⟨AX, �⟩ = 1

p

m�
i=1

yiTr(Ai ∗ X) =
1

p
Tr(X ∗

m�
i=1

yiAi) = ⟨X,A∗�⟩,
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This, together with Theorem  9, implies that we can write the dual problem of 
(PTSDP) by introducing a slack tensor S  as:

where � ∈ ℝ
m and S ∈ Sℝn×n×p are the variables. When p = 1 , the TSDP problems 

(PTSDP) and (DTSDP) are corresponding to the classic SDP problems in primal-
dual forms. Denote

From properties of the T-semidefinite cone obtained in Sect. 4.5 and the theory of 
conic optimization problems [50], it is not difficult to obtain the following results, 
and the proofs are omitted here.

Theorem 11  Let F(P), F(D), p∗ and d∗ be defined as (6). Suppose that X ∈ F(P) and 
(�,S) ∈ F(D) . Then

–	 (weak duality) ⟨b, y⟩ ≤ ⟨C,X⟩.
–	 (strong duality) Suppose that (PTSDP) is bounded below and strictly feasible 

(respectively, (DTSDP) is bounded above and strictly feasible), then p∗ = d∗ and 
(DTSDP) (respectively, (PTSDP)) is solvable.

–	 (complementarity slackness condition) If p∗ = d∗ , then X  is optimal for (PTSDP) 
and (�,S) is optimal for (DTSDP) if and only if the complementarity slackness 
condition holds, that is, ⟨X,S⟩ = 0.

–	 (optimality condition) If ⟨C,X⟩ = ⟨b, y⟩ , then X  is optimal for (PTSDP), and 
(�,S) is optimal for (DTSDP).

5.2 � The transformation of TSDPs into SDPs in the complex domain

In this subsection, we present a method to solve the TSDP problem by transforming it 
into an SDP in the complex domain (CSDP for short).

For any Ai ∈ Sℝn×n×p ( i ∈ [m] ) in (PTSDP), bcirc(Ai) can be block diagonalized as 
bcirc(Ai) = (�H

p
⊗ �n×n)�

i(�p ⊗ �n×n) with �i = Diag(�i
j
∶ j ∈ [p]) where all 

�i
j
∈ Hℂ

n×n ( �i
j
∈ Hℂ

n×n
+

 if particularly A ∈ Sℝ
n×n×p
+  ). Note that

sup
�∈ℝm

inf
X⪰TO

⟨�, �⟩ + ⟨C −A
∗�,X⟩ =

� ⟨�, �⟩, if C −A
∗� ∈ (Sℝ

n×n×p
+ )∗,

−∞, otherwise.

(DTSDP) max
�,S

⟨�, �⟩ s.t. A
∗� +S = C, S ⪰T O,

(6)

F(P) ∶ = {X ∈ Sℝn×n×p ∶ AX = �, X ⪰T O},

F(D) ∶ = {(�,S) ∈ ℝ
m × Sℝn×n×p ∶ A

∗� +S = C, S ⪰T O},

p∗ ∶ = inf{⟨C,X⟩ ∶ X ∈ F(P)} and d∗ ∶= sup{⟨�, �⟩ ∶ (�,S) ∈ F(D)}.

⟨C,X∗⟩ = minX⟨C,X⟩
⇔ ⟨bcirc(C), bcirc(X∗)⟩ = minbcirc(X)⟨bcirc(C), bcirc(X)⟩
⇔ ⟨�,�∗⟩ = min�⟨�,�⟩,
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where bcirc(C) = (�H
p
⊗ �n×n)�(�p ⊗ �n×n) , bcirc(X) = (�H

p
⊗ �n×n)�(�p ⊗ �n×n) 

and bcirc(X∗) = (�H
p
⊗ �n×n)�

∗(�p ⊗ �n×n) with

with all �i , �i and �∗
i in Hℂ

n×n . In addition, X ⪰T O ⇔ � ⪰ � and

Therefore, let S denote the space of block diagonal Hermitian matrices as the form 
in (7), then (PTSDP) and (DTSDP) are equivalent to the following SDP problems 
(PCSDP) and (DCSDP) respectively:

where � , � and � are given as (7), and � is a linear operator from Hℂ
np×np into ℝm 

denoted as �� = [⟨�i,�⟩]i∈[m] with �∗ being its adjoint operator.
It should be noted that both (DCSDP) and (PCSDP) are SDPs in the complex 

domain and (DCSDP) is exactly the dual problem of (PCSDP). Noting that these 
diagonal blocks of the complex matrices � , � and �i for i ∈ [m] , obtained by block 
diagonalizing the real tensors X  , C  and Ai , satisfy the relationships described in 
Lemma . So, (PCSDP) and (DCSDP) can be converted to SDPs of smaller size. For 
the cleanness of the paper, we only take the transformation of (PCSDP) for example, 
which can be divided into the following two cases.

Case 1: p is even. Let � , � and �i for i ∈ [m] be the complex block diagonal 
matrices in (PCSDP), which are obtained by block diagonalizing the real tensors X  , 
C  and Ai for i ∈ [m] in (PTSDP), respectively. From Lemma , it follows that for any 
j ∈ [p]⧵{1,

p+2

2
} and i ∈ [m],

Thus, for any i ∈ [m],

where the last equality follows from the fact that the inner product between two Her-
mitian matrices is real. Similarly, we can also obtain that

(7)� = Diag(�i, i ∈ [p]),� = Diag(�i, i ∈ [p]),�∗ = Diag(�∗
i
, i ∈ [p])

AX = [⟨Ai,X⟩]i∈[m] =
�
1

p
Tr(bcirc(Ai), bcirc(X))

�

i∈[m]

=

�
1

p
⟨�i,�⟩

�

i∈[m]

.

(PCSDP) min
�∈S

1

p
⟨�,�⟩ s.t. �� = p�, � ⪰ �,

(DCSDP) max
(�,�)∈ℝm×S

⟨�, �⟩ s.t. �∗� + � = �, � ⪰ �,

⎧⎪⎪⎨⎪⎪⎩

�1 ∈ ℝ
n×n, � p+2

2

∈ ℝ
n×n, �j ∈ ℂ

n×n, �j = �p+2−j;

�1 ∈ ℝ
n×n, � p+2

2

∈ ℝ
n×n, �j ∈ ℂ

n×n, �j = �p+2−j;

�i
1
∈ ℝ

n×n, �i
p+2

2

∈ ℝ
n×n, �i

j
∈ ℂ

n×n, �i
j
= �i

p+2−j
.

�i ⋅ � = �i
1
⋅ �1 + �i

2
⋅ �2 +⋯ + �i

p
⋅ �p

= �i
1
⋅ �1 + �i

p+2

2

⋅ � p+2

2

+
∑ p

2

j=2
(�i

j
⋅ �j + �i

j
⋅ �j)

= �i
1
⋅ �1 + �i

p+2

2

⋅ � p+2

2

+ 2
∑ p

2

j=2
�i

j
⋅ �j,
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Thus, by letting �̃ = Diag(�1,�2,… ,� p

2

,� p+2

2

) , �̃i = Diag(�i
1
, 2�i

2
,… , 2�i

p

2

,�i
p+2

2

) 

for any i ∈ [m] , and �̃ = Diag(�1, 2�2,… , 2� p

2

 , � p+2

2

) , it follows that (PCSDP) is 
equivalent to

where �̃ is a linear operator with �̃�̃ = [⟨�̃i, �̃⟩]i∈[m].
Case 2: p is odd. By the same process as Case 1, it is not difficult to obtain that 

(PCSDP) is equivalent to

where �̃i = Diag(�i
1
, 2�i

2
,⋯ , 2�i

p+1

2

) for any i ∈ [m] ; �̃ = Diag(�1, 2�2,⋯ , 2� p+1

2

) ; 

�̃ = Diag(�1,�2,⋯ ,� p+1

2

) ; and �̃ is a linear operator with �̃ �̃ = [⟨�̃i, �̃⟩]i∈[m].
As can be seen from the above discussion, we provide a way to deal with (PTSDP) 

of size n × n × p by transforming it into a CSDP with block diagonal structure of size 
n(

p+2

2
) × n(

p+2

2
) as (P′CSDP) or n( p+1

2
) × n(

p+1

2
) as (P′′CSDP), which are almost half 

the size of (PCSDP) with block diagonal structure of size np × np when p > 2.

5.3 � Some applications of TSDPs

In this subsection, we show several applications which can be formulated as TSDP 
problems.

Application 1. Minimizing the maximum T-eigenvalue of a third-order sym-
metric tensor. The T-eigenvalue was first proposed for third-order symmetric tensors 
in [34] by Miao, Qi and Wei. Suppose that M(�) ∈ Sℝn×n×p is a third-order symmet-
ric tensor, which depends linearly on a vector � . Since �max(M(�)) ≤ � if and only if 
�max(M(�) − �Innp) ≤ 0 , i.e., �min(�Innp −M(�)) ≥ 0 , which and Remark  8 imply 
that �Innp −M(�) ⪰T O . Therefore, the problem of minimizing the maximum 
T-eigenvalue of M(�) can be transformed as the following TSDP problem:

Application 2. Minimizing the l2 operator norm of a third-order tensor induced 
by the matrix l2 operator norm and T-product. Analogue to the induction of 
the matrix l2 operator norm, for any A ∈ ℝ

m×n×p , the l2 operator norm of A  with 
T-product, denoted by ‖A‖2 , is defined as

� ⋅ � = �1 ⋅ �1 + � p+2

2

⋅ � p+2

2

+ 2

p

2∑
j=1

�j ⋅ �j.

(P�CSDP) min
�̃∈S

1

p
⟨�̃, �̃⟩ s.t. �̃�̃ = p�, �̃ ⪰ �,

(P��CSDP) min
�̃∈S

1

p
⟨�̃, �̃⟩ s.t. �̃�̃ = p�, �̃ ⪰ �,

max
�,�

−� s.t. �Innp −M(�) ⪰T O.

‖A‖2 = max‖�‖2≤1
‖A ∗ �‖2,
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which is shown to equal the largest singular value of A  (see [18, 30]). It should be 
pointed out that the above l2 operator norm and its dual norm were named as the 
tensor spectral norm and tensor nuclear norm, respectively, in some of the literature. 
These are not appropriate. For correct definitions of tensor spectral norm and tensor 
nuclear norm can referee to [51, 52].

It is known that the l2 operator norm of a third-order tensor plays an impor-
tant role in the proof of the optimal conditions for the relative problems in [18, 
30]. Thus, in this part, we consider the problem of minimizing the l2 operator 
norm of a third-order. Suppose that P(�) ∈ ℝ

m×n×p is a third-order real tensor, 
which depends linearly on a vector � . Noting that � ≥ ‖P(�)‖2 if and only if 
𝜂2 ≥ 𝜆max(P(�)⊤ ∗ P(�)) ; and by Theorem 10, the latter is equivalent to

Therefore, the problem of minimizing ‖P(�)‖2 can be transformed as the following 
TSDP problem:

Application 3. Minimizing the dual norm of the l2 operator norm of a third-
order tensor. Recall that the the dual norm of the l2 operator norm of any 
A ∈ ℝ

m×n×p , denoted by ‖A‖∗ , is defined as the sum of singular values of the first 
frontal slice in [18]. It has been showed in [18] that the tensor robust principal com-
ponent analysis problem can be transformed into the minimization problem with 
such third-order tensor norm ‖ ⋅ ‖∗ , which can be solved with the help of the theory 
of tensor decomposition. In this part, we consider the following two cases.

Case 1. Minimizing the third-order tensor norm ‖ ⋅ ‖∗ without constraint. 
Recall that for a given norm ‖ ⋅ ‖ in the inner product space consisting of three-
order tensors, its dual norm ‖ ⋅ ‖d is defined as ‖X‖d ∶= sup{⟨X,Y⟩ ∶ ‖Y‖ ≤ 1}. 
Since the norm ‖A‖∗ of tensor A  is the dual norm of the l2 operator norm ‖A‖2 , 
according to the relationship that for any X ∈ ℝ

m×n×p,

as shown in Application 2 by taking � = 1 , we can obtain that the problem of com-
puting the norm ‖ ⋅ ‖∗ of A ∈ ℝ

m×n×p is equivalent to the following TSDP model:

Noting that for any W1 ∈ ℝ
m×m×p and W2 ∈ ℝ

n×n×p,

[
𝜂Immp P(�)

P(�)⊤ 𝜂Innp

]
⪰T O.

max
𝜂,�

−𝜂 s.t.

[
𝜂Immp P(�)

P(�)⊤ 𝜂Innp

]
⪰T O.

‖X‖2 ≤ 1 ⟺

�
Immp X

X
⊤

Innp

�
⪰T O

(8)

max
X

⟨A,X⟩ = 1

2

��
O A

A
⊤
O

�
,

�
Immp X

X
⊤

Innp

��
s.t.

�
Immp X

X
⊤

Innp

�
⪰T O.
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thus, the dual problem of (8) can be formulated as

It is not difficult to show that there is no duality gap between (8) and (9). We omit 
the proof here.

Case 2. Minimizing the third-order tensor norm ‖ ⋅ ‖∗ with an equality 
constraint. In this part, we investigate the problem of minimizing the norm ‖ ⋅ ‖∗ 
of X ∈ ℝ

m×n×p over a given affine subspace. Usually, the subspace is described 
by a linear equations of the form AX = � as discussed in Sect. 5.1. This problem 
can be formulated as a convex optimization in the following form:

Then, by using the TSDP characterization of the dual norm of the l2 operator norm 
given in (9), we can rewrite (10) as

The above discussion demonstrates that the minimization problem of the third-order 
tensor norm ‖ ⋅ ‖∗ can also be solved by dealing with the corresponding TSDP prob-
lem. As is known to us, a lot of practical problems are usually turned out to be low-
rank models with third-order tensors, and most of them can be solved by the mini-
mization problem with another related tensor norm defined in [10], which has been 
shown to be widely applied in some practical problems, such as image processing, 
tensor principal component analysis, tensor completion, and so on. Then it is worth-
while to investigate these forms of convex relaxation by replacing the norm defined 
in [10] by the one given in [18], and the TSDP provides another path to achieve 
solutions of low-rank recovery problems with third-order tensors appearing in the 
real-life applications.

Application 4. Integer quartic programming. Analogue to the classic SDP 
relaxation of integer quadratic programming [53, 54], we investigate the TSDP 
relaxation for the following integer quartic programming:

where A ∈ Sℝn×n×n is given, � ∶= (xi ∶ i ∈ [n])⊤ ∈ ℝ
n , � ∈ ℝ

n×n and X ∈ ℝ
n×1×n 

is the corresponding tensor of the matrix �.
Noting that for any i ∈ [n] , xi ∈ {+1,−1} if and only if x2

i
= 1 , if and only if 

x2
i
(x2

1
+ x2

2
+⋯ + x2

n
) = n . Thus, problem (11) is equivalent to

⟨[
W1 O

O
⊤
W2

]
,

[
Immp X

X
⊤

Innp

]⟩
=

1

p
[Tr(W1) + Tr(W2)],

(9)min
W1,W2

1

2p
[Tr(W1) + Tr(W2)] s.t.

[
W1 A

A
⊤
W2

]
⪰T O.

(10)min
X

‖X‖∗ s.t. AX = �.

min
X,W1,W2

1

2p
[Tr(W1) + Tr(W2)] s.t.

[
W1 X

X
⊤
W2

]
⪰T O, AX = �.

(11)max
X

⟨X,A ∗ X⟩ s.t. � = ��⊤, xi ∈ {+1,−1}, ∀ i ∈ [n],
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Now, we try to arrive at the TSDP relaxation of (12) by using the Lagrangian multi-
plier method. By adding Lagrangian multiplier yi ∈ ℝ to each equality constraint in 
(12), we can obtain the Lagrangian function for (12):

where Diag(�) represents the F-diagonal tensor induced by � ∶= (yi ∶ i ∈ [n])⊤ with 
Diag(�)(1) being the diagonal matrix Diag(yi ∶ i ∈ [n]) and other frontal slices being 
zeroes, and � ∶= (1, 1,… , 1)⊤ ∈ ℝ

n . Since

the Lagrangian dual problem of (12) turns out to be

which is a TSDP model and its dual problem is

Previously, we have converted some optimization problems over tensor space and 
matrix space into TSDP problems, respectively. Next, we show that some optimiza-
tion problems over vector space can also be solved by TSDP problem models, such 
as polynomial optimization problems.

Application 5. Calculating the global lower bound of a polynomial of even 
degree. Consider the polynomial optimization problem:

where Un
2d

= {𝛼 ∈ ℕ
n ∶ 0 < |𝛼| ≤ 2d} . As is well-known to us, problem (13) can be 

solved by a relaxation into the following model through the sums of squares (SOS 
for short) method [55]:

Now, we consider the SDP relaxation of (14) by fixing the SOS polynomial in the 
right hand side of the constraint in (14) to be of degree 2d. Actually, define

(12)
max
X

⟨X,A ∗ X⟩ s.t. � = ��⊤, x2
i
(x2

1
+ x2

2
+⋯ + x2

n
) = n, ∀ i ∈ [n].

L(X, �) ∶= ⟨X,A ∗ X⟩ −
n∑
i=1

yi(x
2
i
(x2

1
+ x2

2
+⋯ + x2

n
) − n)

= ⟨X,A ∗ X⟩ − ⟨X,Diag(�) ∗ X⟩ + n�⊤�,

max
X

L(X, �) = max
X

[⟨X,A ∗ X⟩ − ⟨X,Diag(�) ∗ X⟩ + n�⊤�]

= −min
X

[⟨X, (Diag(�) −A) ∗ X⟩ − n�⊤�]

=

�
n�⊤�, if Diag(�) −A ⪰T O,

+∞, otherwise,

min
�

n�⊤� s.t. Diag(�) −A ⪰T O,

max
X

A ⋅X s.t. Xii1 = n, i ∈ [n], X ⪰T O.

(13)f uc ∶= min
�∈ℝn

f (�) = f0 +
∑
�∈Un

2d

f��
� ,

(14)f uc
sos

∶= max
(�,�)∈ℝn×ℝ

� s.t. f (�) − � is SOS.
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which is a column vector of size Cd
n+d

 consisting of all monomials whose degrees are 
no more than d =

deg(f )

2
 , then (14) can be transformed into a standard SDP as [56]:

where � = (f�)�∈Un
2d

 whose dimension is C2d
n+2d

− 1 , and � is a linear operator denoted 
as �� = (�� ⋅ �)�∈Un

2d
 with �� and � being constant symmetric matrices such that 

[�]d[�]
⊤
d
= � +

∑
𝛼∈Un

2d

���
𝛼 . In addition, f uc

sos
= f0 − f uc

sdp
.

As is known to us, in the process of solving the polynomial optimization prob-
lem with the SDP relaxation, one of the challenges is that the size of the SDP 
model increases significantly with the increasing of the number of variables or 
the degree of polynomial. Next, we show that the minimization problem of f can 
be relaxed into a standard TSDP problem by rearranging the above monomial 
vector [�]d into a third-order tensor form and then exploiting the properties of 
T-PSD tensors, which can be dealt with by solving an SDP problem of smaller 
size than the one in (15).

Suppose that Cd
n+d

= mp , then [�]d ∈ ℝ
mp . Let [X]d be a tensor in ℝm×1×p with 

[X]d = fold([�]d) . Then by Theorem  8, a tensor A ∈ Sℝm×m×p is T-PSD iff there 
exists some tensor P ∈ Sℝl×m×p such that A = P

⊤ ∗ P . Thus, f (�) − � must be 
SOS (and then be nonnegative) if there exists Z ∈ Sℝm×m×p such that

Therefore, finding the minimum value of f can be relaxed into the following 
problem:

Define constant symmetric tensors C  and A� such that

then (16) can be expressed as follows:

Noting that f (�) = f0 +
∑

�∈Un
2d

f��
� , hence � is feasible for (17) if and only if there 

exists Z ⪰T O such that C ⋅Z + � = f0 , and A� ⋅Z = f� for any � ∈ Un
2d

 . Define a 
linear operator from Sℝm×m×p into ℝ(C2d

n+2d
−1) as AZ = [A� ⋅Z]�∈Un

2d
 . Then up to a 

constant, the problem (17) is equivalent to the TSDP problem:

[�]d = (1, x1,… , xn, x
2
1
, x1x2,… , x1xn, x

2
2
, x2x3,… , x2

n
,… xd

1
,… , xd

n
)⊤,

(15)f uc
sdp

∶= max
�

� ⋅ � s.t. �� = �, � ⪰ �,

(16)f (�) − 𝛾 =
1

p
Tr([X]⊤

d
∗ Z ∗ [X]d) = Z ⋅ ([X]d ∗ [X]⊤

d
), Z ⪰T O.

(17)f uc
sos−tsdp

∶= max 𝛾 s.t. f (�) − 𝛾 = Z ⋅ ([X]d ∗ [X]⊤
d
), Z ⪰T O.

[X]d ∗ [X]⊤
d
= C +

∑
𝛼∈Un

2d

A𝛼�
𝛼 ,

f (�) − � = C ⋅Z +
∑
�∈Un

2d

(A� ⋅Z)�� , Z ⪰T O.

(18)f uc
tsdp

∶= max
Z

C ⋅Z s.t. AZ = �, Z ⪰T O,
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and f uc
sos−tsdp

= f0 − f uc
tsdp

.
Besides, from the above discuss, it is easy to see that (17) is both relaxation of 

(13) and (14) when p ≠ 1 , i.e., f uc ≥ f uc
sos

≥ f uc
sos−tsdp

 , and (17) reduces to (14) when 
p = 1 . Thereby, it should be noticed that (18) with p ≠ 1 is a further relaxation of 
(15). Then whether or not is there a case where the relaxation of (18) with p ≠ 1 
can achieve the same effect as (15)? Below, we answer this question by giving a 
theorem to show the necessary and sufficient condition of f uc

sdp
= f uc

tsdp
 under the 

assumption that p ≠ 1.

Theorem 12  Suppose that f (�) ∶ ℝ
n
→ ℝ is a 2d-degree polynomial, whose global 

lower bound can be solved by both an SDP relaxation as (15) and a TSDP relaxa-
tion as (18) with p ≠ 1 . Then f uc

sdp
= f uc

tsdp
 if and only if there exists an optimal solu-

tion �∗ of (15) which is p-block circular.

Proof  Recall that (18) is equivalent to (17), that is

and (15) is equivalent to (14), which is further equivalent to the following problem:

From

it is easy to see that if Z∗ is an optimal solution of (19), then bcirc(Z∗) must be a 
feasible solution of (20) and f uc

sdp
≤ f uc

tsdp
.

On one hand, suppose that Z∗ is an optimal solution of (19), if f uc
sdp

= f uc
tsdp

 , then 
bcirc(X∗) is exact an optimal solution of (20) and (15), which is a p-block circular 
matrix. On the other hand, if there exists an optimal solution �∗ of (15) which is 
p-block circular, then by choosing Z∗ = bcirc−1(�∗) we can find that Z∗ is a feasible 
solution of (19) and the corresponding value of � is f0 − f uc

sdp
 when Z = Z

∗ in (19). 
Noting that the optimal value of (19) is f0 − f uc

tsdp
 , then we have that 

f0 − f uc
sdp

≤ f0 − f uc
tsdp

 , which together with f uc
sdp

≤ f uc
tsdp

 implies that f uc
sdp

= f uc
tsdp

 . 	�  ◻

Theorem 12 states that if there exists an optimal solution �∗ of (15) is p-block 
circular, then the relaxation problem (18) can achieve not worse effect than 
(15). Below, we show that there are some benefits in computation costs and 
storage costs of (18) compared with (15) for the cases where the unconstrained 

(19)f0 − f uc
tsdp

∶= max 𝛾 s.t. f (�) − 𝛾 = Z ⋅ ([X]d ∗ [X]⊤
d
), Z ⪰T O;

(20)f0 − f uc
sdp

∶= max 𝛾 s.t. f (�) − 𝛾 = � ⋅ ([�]d ⋅ [�]
⊤
d
), � ⪰ �.

Z ⋅ ([X]d ∗ [X]⊤
d
) =

1

p
Tr([bcirc([X]d)]

⊤ ⋅ bcirc(Z) ⋅ bcirc([X]d))

=
1

p
bcirc([X]d) ⋅ [bcirc(Z) ⋅ bcirc([X]d)]

=
(

1

p
⋅ p

)
unfold([X]d) ⋅ [bcirc(Z) ⋅ unfold([X]d)]

= [�]d ⋅ [bcirc(Z) ⋅ [�]d]

= bcirc(Z) ⋅ ([�]d ⋅ [�]
⊤
d
),
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polynomial optimization can be solved by both TSDP relaxation as (18) and SDP 
relaxation as (15):

–	 The number of entries of the variable Z  in (18) is less than the one of � in (15). 
Since [X]d ∈ ℝ

m×1×p and [�]d ∈ ℝ
mp , it is easy to find that � in (15) is a matrix 

with mp × mp entries, while Z  in (15) turns out to be a tensor in Sℝm×m×p which 
contains only m × m × p entries.

–	 (18) can be solved by transformed into a CSDP problem with block diagonal 
sparse structure, which is not available for (15) even if the variable of (15) 
possess special structure since the constant matrice �� is fixed and do not 
possess the block diagonal structures. Specifically speaking, if we adopt the 
method described in Sect. 5.2 to deal with (18), we only need to solve a CSDP 
with p+1

2
 or p+2

2
 blocks of size m × m under some equality constraints, while 

(15) can be seen as dealing with an ordinary SDP with 1 block of size mp × mp 
under the same number of equality constraints. Hence, for the minimization 
problem of a real polynomial of even degree, solving via the TSDP relaxation 
built the above would lead to lower computation costs than the corresponding 
SDP relaxation, which can also be seen from the numerical experiments in the 
next subsection.

–	 The constant symmetric tensors A� for � ∈ Un
2d

 in (18) spend no more storage 
cost than those matrices �� in (15). Since the number of entries in the tensor 
[X]d ∗ [X]⊤

d
 is 1

p
 of those in the moment matrix [�]d[�]⊤d  and each entry of 

[X]d ∗ [X]⊤
d
 is consisted of a linear combination of p monomials whose 

degrees are no more than 2d. Thus it seems that we need to take as the same 
storage as those for matrices �� to store these tensors A� . However, noting 
that some entries of [X]d ∗ [X]⊤

d
 may be consisted of a linear combination of 

p same monomials whose degrees are no more than 2d, therefore the constant 
symmetric tensors A� for � ∈ Un

2d
 in (18) could sometimes save some storage 

than those matrices �� in (15). In addition, the storage capacity does not 
change in the transformation of TSDPs into CSDPs as shown in Sect. 5.2.

5.4 � Numerical computation

In this subsection, we report preliminary numerical results for solving TSDPs 
by the method shown in Sect.  5.2. Taking Application 5 discussed in Sect.  5.3 
for example, we consider two polynomial optimization problems and implement 
these problems in Matlab R2016a on our PC via SDPNAL+ [42]. The computa-
tion is performed on a Dell Laptop with CPU of 3.2 GHz and RAM of 4.0 GB. 
As pointed in Application 5 of Sect. 5.2, the TSDP relaxation of unconstrained 
polynomial optimization can achieve the same optimal value as the SDP relaxa-
tion sometimes, thus here we confirm this conclusion by two simple examples 
and illustrate the benefits of the TSDP relaxation furthermore.
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Example 1  Minimize the following polynomial:

It is obvious that the global minimum value f ∗ = 0 , the number of variables n = 2 , 
d =

deg(f )

2
= 3 and f (�) − f ∗ can be expressed as

where the square matrix is 5-block circular. Therefore, by Theorem  12, we know 
that the TSDP relaxation with p = 5 can achieve not worse effect than the SDP 
relaxation. Specifically, to solve this problem via the TSDP relaxation as described 
from (13) to (18), we first find the corresponding A� , C  and � in (18), then trans-
form A� and C  into the corresponding �� and � as the procedure from (PTSDP) 
to (P′′CSDP), and finally, call the package SDPNAL+ to solve the derived SDP. In 
addition, we also solve this problem via the traditional SDP relaxation as described 
from (13) to (15) for comparison.

Numerical results for Example 1 by SDP and TSDP via SDPNAL+ are shown 
in Table 1, where the size of the TSDP is replaced by the size of the corresponding 
CSDP with block structure and in each pair “(blk, N, m)”, blk, N and m mean the 
number of blocks, the length of each block and the number of equality constraints, 
respectively; “opt” means the computed optimal value of the corresponding relaxa-
tion; “cpu1” means the time in seconds spent for finding the corresponding matri-
ces �� of the SDP or the CSDP; “cpu2” means the time in seconds spent for solv-
ing corresponding SDP problem or CSDP problem via SDPNAL+ ; and “cpu3” 
means the total time in seconds spent for solving Example 1 by the SDP relaxation 
or the TSDP relaxation.

f (�) = (x1 + x3
2
+ x2

1
x2)

2 + (x1 + x2
1
+ x3

2
)2 + (x1 + x2

1
+ x2

2
)2

+ (x2
1
+ x2

2
+ x2

1
x2)

2 + (x2
2
+ x2

1
x2 + x3

2
)2.

f (�) − f ∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

x1
x2
x2
1

x1x2
x2
2

x3
1

x2
1
x2

x1x
2
2

x3
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊤⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0

0 3 0 2 0 1 0 1 0 2

0 0 0 0 0 0 0 0 0 0

0 2 0 3 0 2 0 1 0 1

0 0 0 0 0 0 0 0 0 0

0 1 0 2 0 3 0 2 0 1

0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 2 0 3 0 2

0 0 0 0 0 0 0 0 0 0

0 2 0 1 0 1 0 2 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

x1
x2
x2
1

x1x2
x2
2

x3
1

x2
1
x2

x1x
2
2

x3
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Table 1   Numerical results for Example 1 by the SDP and the TSDP via SDPNAL+

n d p (blk, N, m) opt cpu1(s) cpu2(s) cpu3(s)

SDP 2 3 1 (1,10,28) 2.1545e−09 0.021 0.969 1.008
TSDP 2 3 5 (5,2,28) −1.1183e−15 0.037 0.426 0.483
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From  1, we can see that the TSDP relaxation performs well for Example  1. 
Especially, for the TSDP relaxation, we obtain that the global minimum value 
f ∗
tsdp

= −1.1183e−15 by solving a CSDP problem with block diagonal structure, 
which only takes less than one-twice of the time of the corresponding SDP relax-
ation. In addition, the TSDP relaxation has higher accuracy than the SDP relaxa-
tion in this example.

Example 2  Minimize the following polynomial:

It is obvious that the global minimum value f ∗ = 1 , the number of variables n = 2 , 
and d =

deg(f )

2
= 29 . We test p = 3 and p = 15 for the TSDP relaxation of this prob-

lem, respectively. Especially, by the TSDP relaxation with p = 15 , we obtain that 
the global minimum value f ∗

tsdp
= 1 + 6.1507e−08 by solving a CSDP problem with 

block diagonal structure, which takes only 2.5 seconds; while the corresponding 
SDP relaxation takes 90.3 seconds. Meanwhile, the TSDP relaxation has higher 
accuracy than the SDP relaxation in this example.

Numerical results for Example 2 by the SDP relaxation and the TSDP relaxation 
are shown in Table 2, where “(blk, N, m)”, “opt” , “cpu1”,“cpu2” and “cpu3” are 
same as those in Table 1.

From Tables  1 and  2, we can see that the TSDP relaxation has better perfor-
mances both in time cost and precision than the traditional SDP relaxation for these 
test examples. Especially in the time cost, solving the CSDP problem transformed 
from the corresponding TSDP problem saves a lot of time compared with solving 
the corresponding SDP problem; while the time for finding the corresponding com-
plex matrices �� in the CSDP problem is almost the same as the time for finding 
the corresponding matrices �� in the SDP problem. In fact, it should be noticed that 
the time for finding the corresponding matrices �� can be removed from the total 
time of solving above polynomial optimization problems via the TSDP or the SDP 
relaxation because these �� are fixed as long as n, d and p are given, and we show 
them in Tables 1 and 2 just to make the time spent for the TSDP relaxation and the 
SDP relaxation more clear.

f (�) = 1 + x
10

1
x
4

2
+ x

8

1
x
12

2
+ x

24

1
x
2

2
+ x

24

1
x
6

2
+ x

32

1
x
2

2
+ x

8

1
x
28

2
+ x

28

1
x
12

2
+ x

10

1
x
32

2

+ x
42

1
x
4

2
+ x

30

1
x
18

2
+ x

20

1
x
30

2
+ x

12

1
x
40

2
+ x

6

1
x
48

2
+ x

2

1
x
54

2
+ x

58

2
.

Table 2   Numerical results for Example 2 by the SDP and the TSDP via SDPNAL+

n d p (blk, N, m) opt cpu1(s) cpu2(s) cpu3(s)

SDP 2 29 1 (1,465,1769) 1 − 1.1897e−07 109.453 90.303 199.896
TSDP 2 29 3 (2,155,1769) 1 − 4.3220e−08 107.834 61.426 170.272
TSDP 2 29 15 (8,31,1769) 1 + 6.1507e−08 103.302 2.515 110.483
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6 � Concluding remarks

In this paper, we aimed to generalize the SDP problem to the third-order tensor case. 
For this purpose, we first introduced the T-positive semidefiniteness of third-order 
symmetric tensors from the second-order discrimination condition of the convex-
ity of the twice continuously T-differentiable multi-variable real-valued function, 
and then, extended some of useful characterizations and properties of the symmet-
ric PSD matrix to the third-order symmetric T-PSD tensor. After that, we replaced 
the variable in the classic SDP by the third-order symmetric tensor to introduce the 
TSDP, which was dealt with by converting it to a CSDP with the block structure. 
Finally, several examples with respect to the TSDP problem were shown and some 
numerical results of minimizing two polynomials via the TSDP relaxation were 
reported, which demonstrated that our method by the TSDP relaxation performs bet-
ter than the traditional SDP relaxation for the test examples.

Some issues need to be studied in the future. 

	 (i)	 In Sect. 5.4, we have just done some preliminary numerical experiments to 
test the feasibility and effectiveness of solving TSDPs by dealing with the cor-
responding CSDPs. Surprisingly, we find that for some unconstrained polyno-
mial optimization, the method of the TSDP relaxation has good performance 
sometimes. Then what kind of polynomial optimization problems does the 
TSDP relaxation work well for? It deserves further study.

	 (ii)	 It is known to us that the SDP has shown great power in a very wide range of 
areas. In Sect. 5.3, we have just presented a few simple transformations from 
some other models into TSDPs. We believe that more problems can be mod-
eled (or relaxed) as TSDPs. It is also known that the T-product between third-
order tensors promotes the emergence of many algorithms with good perfor-
mance in many practical problems. It is possible that more efficient algorithms 
for TSDP problems can be designed by making use of the characteristics of 
the T-product and special-structures of practical problems. Furthermore, it 
deserves to study how to design efficient algorithms for solving large-scale 
realistic problems.
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