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Abstract
In the case of singular (and possibly even nonisolated) solutions of nonlinear equa-
tions, while superlinear convergence of the Newton method cannot be guaranteed, 
local linear convergence from large domains of starting points still holds under cer-
tain reasonable assumptions. We consider a linesearch globalization of the Newton 
method, combined with extrapolation and over-relaxation accelerating techniques, 
aiming at a speed up of convergence to critical solutions (a certain class of singular 
solutions). Numerical results indicate that an acceleration is observed indeed.

Keywords Nonlinear equation · Newton method · Singular solution · Critical 
solution · 2-regularity · Linear convergence · Superlinear convergence · 
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1 Introduction

In this paper, we are interested in the behavior of various forms of linesearch New-
ton methods for a system of nonlinear equations
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where Φ ∶ ℝ
p
→ ℝ

p is a sufficiently smooth mapping. We are especially interested 
in the case when this system has singular (and possibly even nonisolated) solutions. 
Here, by singularity of a solution ū we mean that the Jacobian Φ�(ū) is a singular 
matrix.

For a given iterate uk ∈ ℝ
p , the basic Newton method generates the next iterate 

by the update uk+1 = uk + vk , where vk solves the linear system

The classical theory says that when initialized close to a nonsingular solution, this 
method uniquely defines a sequence of iterates, converging to this solution superlin-
early. Moreover, the standard linesearch technique employing the residual of (1.1), 
used to globalize convergence, accepts the unit stepsize asymptotically, thus ensur-
ing fast local convergence of the overall algorithm. See, e.g., [17, Chapter 5.1.1].

In case of a singular solution ū , it is evident that one cannot guarantee conver-
gence of the Newton method from all starting points in the entire neighborhood of ū , 
as the iteration equation (1.2) need not even be solvable for some uk arbitrarily close 
to such ū . Nevertheless, local convergence at a linear rate can still be established 
from some large domains of starting points, and under reasonable assumptions. The 
most relevant (from our perspective) results of this kind are those obtained in [9, 
10]. See also the survey in [11], and rich literature on the subject cited therein. These 
results will be discussed in Sect. 2, where a certain special pattern of convergence 
will be highlighted. As demonstrated in [15, 16], the key assumption needed for 
these results to be valid may only hold at those singular solutions which are called 
critical. The property of criticality is characterized by violation of the local Lipschit-
zian error bound near such solution. This implies that critical solutions (when they 
exist) are specially attractive for Newtonian sequences, even when every neighbor-
hood of such solution contains other (typically noncritical) solutions.

It should be mentioned at this point that there exist some stabilized modifica-
tions of the basic Newton scheme, possessing superlinear or even quadratic local 
convergence to a nearby solution, when initialized close to a noncritical one. And 
this is so even if this solution is singular, or even nonisolated. The examples are 
the classical Levenberg–Marquardt method [13, 14] with an appropriate adaptive 
control of the regularization parameter [5, 7, 21], the stabilized Newton–Lagrange 
method (stabilized sequential quadratic programming) when (1.1) corresponds to 
the Lagrange optimality system for an equality-constrained optimization problem 
[6, 12, 20], and the LP-Newton method [3, 4]. All these methods possess simi-
lar strong local convergence properties specified above. In particular, their attrac-
tion domains to critical solutions become smaller than those for the basic Newton 
method, and in this sense, these stabilization techniques locally serve the goal 
of avoiding convergence to critical solutions. However, as demonstrated in [15], 
domains of attraction to critical solutions may still be quite large, and in cases 
of convergence to such solutions, the superlinear rate is still lost. For that rea-
son, the specified nice local convergence properties of the stabilized Newton-type 

(1.1)Φ(u) = 0,

(1.2)Φ(uk) + Φ�(uk)v = 0.
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methods near noncritical solutions may not show up in computation, because their 
sequences may never enter a sufficiently small neighborhood of any noncritical 
solution. Especially when considering globalized versions of these methods with 
initialization at remote starting points. For this reason, here we pursue a different 
path. We do not try to avoid convergence to a critical solution (which appears dif-
ficult in the singular case). Instead, the idea is to make use of the special conver-
gence pattern of the basic Newton method to critical solutions, in order to ensure 
relatively fast linear convergence to such solutions for versions of this method 
employing linesearch for globalization. When considering the latter, the key issue 
is the ultimate acceptance of the unit stepsize: even for linear convergence this 
question must be answered in the affirmative. This turned out to be highly non-
trivial in the context of singular solutions, but the problem was recently success-
fully resolved in [8]. We shall comment on the corresponding results in Sect. 2.

Some known approaches for accelerating convergence to singular solutions are 
extrapolation and overrelaxation techniques, developed in [9, 11]. Incorporating 
these essentially local constructions into a linesearch globalization framework is 
the main subject of this paper. Both extrapolation and overrelaxation rely upon 
the special convergence pattern of the basic Newton method to critical solutions. 
Hence, this pattern should be preserved within the linesearch framework, thus 
making the results from [8] on ultimate acceptance of unit stepsize essential for 
justification of the resulting algorithms.

The rest of the paper is organized as follows. We provide some necessary pre-
liminaries in Sect. 2. In Sect. 3, we discuss extrapolation and overrelaxation tech-
niques, as well as linesearch globalization of the Newton method, and the related 
convergence theory. Finally, Sect. 4 presents some numerical results highlighting 
the effect of acceleration techniques. Somewhat surprisingly (and to the best of 
our knowledge), there appear to be no previous studies in the literature comparing 
various acceleration options, not even in the local setting. So, we think, what we 
report is also useful for this reason.

2  Preliminaries

Throughout the paper, ⟨⋅, ⋅⟩ and ‖ ⋅ ‖ stand for the Euclidian inner product and 
norm, respectively.

Recall that a set U ⊂ ℝ
p is called starlike with respect to ū ∈ ℝ

p if, for every 
u ∈ U and t ∈ (0, 1] , it holds that tu + (1 − t)ū ∈ U . Any v ∈ ℝ

p is called an 
excluded direction for a set U starlike with respect to ū if ū + tv ∉ U for all t > 0 . 
A set which is starlike with respect to a given point is called asymptotically dense 
if the corresponding set of excluded directions is thin, i.e., the complement of the 
latter is open and dense.

The key role in local analyses of Newton-type methods near singular solutions 
is played by the notion of 2-regularity. Assuming that Φ is twice differentiable at 
ū , we call it 2-regular at ū in a direction v ∈ ℝ

p if
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Evidently, if Φ�(ū) is nonsingular, then Φ is 2-regular at ū in every direction, includ-
ing v = 0 . What is important, is that 2-regularity may naturally hold at singular (and 
even nonisolated) solutions in nonzero directions, including those from kerΦ�(ū) . 
This plays a key role in the results presented in this section.

The following theorem summarizes the main conclusions from [10, Theo-
rem 6.1]; see also [11, Theorem 2.1].

Theorem 2.1 Let Φ ∶ ℝ
p
→ ℝ

p be twice differentiable near ū ∈ ℝ
p , with its second 

derivative Lipschitz-continuous with respect to ū , that is,

as u → ū . Let ū be a singular solution of Eq. (1.1), and assume that there exists 
v̄ ∈ kerΦ�(ū) such that Φ is 2-regular at ū in this direction.

Then there exists a set U ⊂ ℝ
p starlike with respect to ū , asymptotically dense at 

ū , and such that for every starting point u0 ∈ U , the basic Newton method with sub-
problems (1.2) uniquely defines the sequence {uk} ⊂ ℝ

p ⧵ {ū} , this sequence con-
verges to ū,

and the sequence {(uk − ū)∕‖uk − ū‖} converges to some v ∈ kerΦ�(ū).

The standard approach to globalization of convergence of the Newton method 
is the Armijo linesearch procedure in the computed direction, for the residual 
‖Φ(⋅)‖ or the squared residual. Here, we prefer to stay with the residual (without 
square), as this allows for somewhat larger stepsizes, in general. Observe that the 
residual is differentiable at every point uk which is not a solution of (1.1), and 
its gradient is (Φ�(uk))TΦ(uk)∕‖Φ(uk)‖ . Then, as is easily seen, the inner product 
of this gradient and the Newton direction vk solving (1.2) is equal to −‖Φ(uk)‖ . 
Hence, vk is a direction of descent for the residual at uk , which justifies the use of 
the Armijo linesearch in this direction. Moreover, these calculations imply that 
condition (2.2) below is precisely the Armijo inequality for the residual and the 
Newton direction.

We next recall the result on acceptance of the unit stepsize, obtained in [8, Theo-
rem 1]; it is concerned with the following prototype algorithm.

Algorithm  2.1 Choose the parameters � ∈ (0, 1) and � ∈ (0, 1) . Choose u0 ∈ ℝ
p , 

and set k = 0 . 

1. If Φ(uk) = 0 , stop.
2. Compute vk ∈ ℝ

p as a solution of (1.2).
3. Set � = 1 . If the inequality 

imΦ�(ū) + Φ��(ū)[v, kerΦ�(ū)] = ℝ
p.

Φ��(u) − Φ��(ū) = O(‖u − ū‖)

(2.1)lim
k→∞

‖uk+1 − ū‖
‖uk − ū‖

=
1

2
,
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 is satisfied, set �k = � . Otherwise, replace � by �� , check inequality (2.2) again, 
etc., until (2.2) becomes valid.

4. Set uk+1 = uk + �kv
k.

5. Increase k by 1 and go to Step 1.

Theorem 2.2 Under the assumptions of Theorem 2.1, there exists a set U ⊂ ℝ
p star-

like with respect to ū , asymptotically dense at ū , and such that for every starting 
point u0 ∈ U , Algorithm 2.1 with � ∈ (0, 3∕4) uniquely defines the sequence {uk} , 
and �k = 1 is accepted at Step 3 of this algorithm for all k large enough.

3  Extrapolation, overrelaxation, and globalization

Under its assumptions, Theorem 2.1 reveals a very special pattern of convergence of 
the basic Newton method to singular solutions: the convergence rate is linear with 
the exact asymptotic ratio equal to 1/2, and convergence is along a single direction 
v ∈ kerΦ�(ū).

One technique for accelerating the Newton method in case of convergence to 
a singular solution, naturally suggested by the specified convergence pattern, is 
extrapolation [11]. In its simplest form, it consists of generating, along with the 
Newton sequence {uk} , an auxiliary sequence {ûk} obtained by doubling the Newton 
step: for each k compute

There are no reasons to expect that this would lead to superlinear convergence, but 
it follows from [11, Theorem 4.1] that under the assumptions of Theorem 2.1 above, 
{ûk} converges linearly with the asymptotic ratio of 1/4 (instead of 1/2 for {uk} ), 
from all points in the domain of convergence of Newtonian sequences {uk} . Observe 
that the main iterative sequences {uk} are themselves not affected by this acceler-
ation technique in any way, and that generating the auxiliary sequence {ûk} costs 
(basically) nothing. Therefore, extrapolation can be easily incorporated into any glo-
balization of the Newton method, like in Algorithm 2.1: the extrapolated iterates ûk 
can be generated according to (3.1) all the way from the beginning of the process, 
in parallel with the main iterates uk . Moreover, Theorem 2.2 allows to expect that 
extrapolation will take effect when combined with linesearch globalization in such 
a way.

At this point, we must observe that “deeper” extrapolation provides further accel-
eration of convergence, and in principle, gives arbitrarily fast linear convergence [9, 
11]. However, and unfortunately, this faster convergence of the iterates is not directly 
reflected in the rate of decrease of the residual of the equation. More in detail, close to 
a singular solution, the residual need not be proportional to the distance to the solution. 
According to our experience, when using the residual-based stopping rules like (4.2) 

(2.2)‖Φ(uk + �vk)‖ ≤ (1 − ��)‖Φ(uk)‖

(3.1)ûk+1 = uk + 2vk.
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below, the algorithms always employing extrapolation, say “of depth 2”, do not termi-
nate any faster (on average) than those using the simplest extrapolation, even though 
the iterates at termination produced by “deeper” extrapolation are usually (much) closer 
to the solution. For this reason, numerical results for “deeper” extrapolation would be 
more-or-less the same as for the simplest extrapolation, like those reported in Sect.  4 of 
this paper (with understanding that the quality of approximate solution obtained would 
be higher). An observation about numerical behavior of residuals for “deeper” extrapo-
lation in [9, p. 150] might be helpful to overcome this difficulty. But, at the moment, 
it is not clear how this observation can be reasonably incorporated into globalization 
schemes. Finally, note also that increasing the “depth” of extrapolation requires more 
evaluations of Φ . Thus, for the reasons specified above, in what follows we deal with 
the simplest extrapolation only.

Another acceleration technique is 2- or 3-step overrelaxation [11]. Unlike extrapo-
lation, these techniques do not generate any auxiliary sequences in parallel with the 
usual Newton sequence, but rather modify the latter by (almost) doubling every second 
or every third step, respectively. A seemingly appealing idea of simply doubling every 
step would not work, because this may result in leaving the convergence domain. And 
in any case, this would destroy the convergence pattern of the Newton method. In case 
of doubling the step, some intermediate basic Newton iterations are needed to restore 
this pattern. As demonstrated in [11, Theorems 4.2, 4.3], under the appropriate assump-
tions one can expect 2-step superlinear convergence rate for the method with 2-step 
overrelaxation, and 3-step quadratic rate for the method with 3-step overrelaxation.

Incorporating overrelaxation into globalized algorithms is more tricky than for 
extrapolation, in particular because it should only be initiated when the needed con-
vergence pattern to a singular solution is detected, as in cases of convergence to 
nonsingular solutions increasing the length of vk at every second or third iteration of 
Algorithm 2.1 might evidently be only harmful. Since correct identification of the con-
vergence pattern can never be guaranteed, full theoretical justification of a globalized 
algorithm equipped with overrelaxation can hardly be possible. Nevertheless, Theo-
rem 2.2 gives it some chances to be successful, and the numerical results in Sect. 4 
confirm that this is often the case.

Interesting acceleration strategies may come out of combining extrapolation and 
overrelaxation, but we do not elaborate on this idea in the current work.

Observe now that the prototype Algorithm 2.1 is of course impractical, in particular 
because the Newton direction may not exist at remote points, as well as at points arbi-
trarily close to singular solutions. The following algorithm complements the prototype 
Algorithm 2.1 by introducing safeguards for the cases when the Newton direction does 
not exist or is too large (the latter indicating that it might not be a “good choice”). In 
those cases, the method resorts to the gradient step for the merit function � ∶ ℝ

p
→ ℝ,

with the gradient given by

(3.2)�(u) =
1

2
‖Φ(u)‖2,

(3.3)��(u) = (Φ�(u))TΦ(u).
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By itself, this construction is of course quite standard; see, e.g., [17, Sect. 5.1]. How-
ever, here we highlight the important feature that if the Newton direction is used 
infinitely often, and the generated iterative sequence is bounded, then all limit points 
of this sequence are necessarily solutions of the equation (1.1). In particular, using 
Newton directions always leads to solutions, and cannot lead to stationary points of 
the residual which are not solutions of (1.1), even when the Jacobian of Φ at such 
point is singular (if the Jacobian is nonsingular, this property is well-known and 
obvious). We also emphasize that the behavior specified in Theorem 2.2 subsumes 
that the Newton direction actually tends to zero as the sequence of iterates converges 
to the solution possessing the needed properties, and thus, the test on the size of the 
direction, (3.4) below, is always satisfied in cases of such convergence, at least from 
some iteration on.

Algorithm  3.1 Choose the parameters C > 0 , 𝜏 > 0 , � ∈ (0, 1) , and � ∈ (0, 1) . 
Choose u0 ∈ ℝ

n , and set k = 0 . 

1. If Φ(uk) = 0 , stop.
2. Compute vk ∈ ℝ

n as a solution of (1.2). If such vk cannot be found, or violates 

 go to Step 4.
3. Set � = 1 . If inequality (2.2) is satisfied, set �k = � . Otherwise, replace � by �� , 

check inequality (2.2) again, etc., until (2.2) becomes valid, and then set �k = � , 
and go to Step 6.

4. Set vk = −��(uk) , with � defined by (3.2) [(see (3.3)]. If vk = 0 , stop.
5. Set � = 1 . If the inequality 

 is satisfied, set �k = � . Otherwise replace � by �� , check the inequality again, 
etc., until (3.5) becomes valid.

6. Set uk+1 = uk + �kv
k.

7. Increase k by 1 and go to Step 1.

Global convergence properties of Algorithm 3.1 are as follows.

Theorem 3.1 Let Φ ∶ ℝ
n
→ ℝ

n be continuously differentiable.

Then, for any starting point u0 ∈ ℝ
n , Algorithm 3.1 either terminates with some 

iterate uk satisfying

or generates an infinite sequence {uk} such that every accumulation point ū of this 
sequence satisfies

(3.4)‖vk‖ ≤ max{C, 1∕‖Φ(uk)‖�},

(3.5)�(uk + �vk) ≤ �(uk) − ��‖vk‖2

(3.6)(Φ�(uk))TΦ(uk) = 0,
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Moreover, if for some ū there exists an infinite subsequence {ukj} convergent to ū 
such that the Newton direction is used by Algorithm 3.1 for all indices k = kj [i.e., 
for all j, for k = kj Eq. (1.2) is solvable, and the computed solution satisfies (3.4)], 
then

as k → ∞ , and in particular, all accumulation points of {uk} are solutions of (1.1).

Proof If for a current iterate uk it holds that Φ(uk) = 0 , the algorithm terminates, 
and (3.6) is evidently satisfied in this case. Otherwise, if the algorithm accepts the 
Newton direction vk , then the discussion before Algorithm 2.1 implies that (2.2) is 
always satisfied after a finite number of backtrackings, i.e., the linesearch procedure 
at Step 4 of Algorithm 3.1 terminates with some 𝛼k > 0 , as this is the standard Arm-
ijo linesearch for a function which is smooth at uk , and in a direction of descent for 
this function at uk . If the Newton direction is not used, then vk = −��(uk) . In this 
case, the linesearch rule (3.5) at Step 5 of the algorithm terminates finitely for the 
same reason if ��(uk) ≠ 0 , while otherwise the algorithm terminates with (3.6) being 
satisfied according to (3.3).

Thus, Algorithm  3.1 either terminates with some iterate uk satisfying (3.6), or 
generates an infinite sequence {uk} . We proceed with analysis of the latter case. 
Observe that the sequence {‖Φ(uk)‖} is monotonically non-increasing, whichever 
search directions are used. Then, since it is bounded below (by zero), it converges.

Consider first the case when there exists an infinite subsequence {ukj} convergent 
to some ū , and such that the Newton direction is accepted by Algorithm 3.1 at every 
point of this subsequence.

If

then (2.2) implies that for infinitely many indices kj , the residual ‖Φ(ukj )‖ is reduced 
at least linearly (by a factor of at least (1 − 𝜎�̄�∕2)).

Recalling the monotonicity of {‖Φ(uk)‖} , we conclude that (3.8) holds.
On the other hand, if we do not have (3.9), then it holds that

implying that for each j large enough the initial stepsize value had been reduced at 
least once, i.e., the value 𝛼kj∕𝜃 > 𝛼kj does not satisfy (2.2). Thus, it holds that

(3.7)(Φ�(ū))TΦ(ū) = 0.

(3.8){Φ(uk)} → 0

(3.9)�̄� = lim sup
j→∞

𝛼kj > 0,

(3.10)lim
j→∞

�kj = 0,

(3.11)
‖Φ(ukj + 𝛼kj v

kj∕𝜃)‖ − ‖Φ(ukj )‖
𝛼kj∕𝜃

> −𝜎‖Φ(ukj )‖.
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Observe again that ‖Φ(⋅)‖ can only be nondifferentiable at solutions of (1.1). How-
ever, if for infinitely many j the line segments [ukj , ukj + �kj v

kj∕�] contain points ũkj 
such that Φ(ũkj ) = 0 , then we obtain (3.8) yet again, since {�ukj} → ū by {ukj} → ū 
and (3.10).

So let ‖Φ(⋅)‖ take no zero values in the intervals [ukj , ukj + �kj v
kj∕�] for all j. In 

this case, ‖Φ(⋅)‖ is differentiable on these sets, with the gradient of the form 
(Φ�(⋅))TΦ(⋅)∕‖Φ(⋅)‖ . Employing the mean-value theorem [17, Theorem  A.10(a)], 
we then obtain from (3.11) that for each j there exists tkj ∈ [0, 1] such that

If the sequence {vkj} of Newton directions were to be unbounded, condition (3.4) 
implies that

This, in view of the monotonicity of the sequence in question, again yields (3.8). 
Therefore, it remains to consider the case when {vkj} is bounded. Taking a further 
subsequence, if necessary, we may assume that {vkj} converges to some ṽ , and there-
fore, by (1.2),

Suppose that Φ(ū) ≠ 0 . Then by (3.10) and (3.13), passing onto the limit in (3.12) as 
j → ∞ , we obtain that

in contradiction with Φ(ū) ≠ 0.
It remains to consider the case when there exists an infinite subsequence {ukj} 

convergent to some ū , and such that the Newton direction is not accepted by Algo-
rithm 3.1 at every point of this subsequence. In this case, the iterates {ukj+1} are gen-
erated by the gradient steps with Armijo linesearch for the merit function (3.2). That 
being the case, (3.7) follows by standard argument (see, e.g., [1, Proposition 1.2.3]). 
 ◻

Remark 3.1 An alternative to using the safeguard gradient direction of the (squared) 
residual in our context is the Levenberg–Marquardt direction (see [13, 14]), i.e., vk 
being the (unique) solution of the linear system

where 𝜌k > 0 is the regularization parameter. Employing (3.3), for this direction we 
have that

(3.12)

�
(Φ�(ukj + tkj𝛼kj v

kj∕𝜃))TΦ(ukj + tkj𝛼kj v
kj∕𝜃)

‖Φ(ukj + tkj𝛼kj v
kj∕𝜃)‖

, vkj

�
> −𝜎‖Φ(ukj )‖.

lim inf
j→∞

‖Φ(ukj )‖ = 0.

(3.13)Φ(ū) = −Φ�(ū)�v.

−‖Φ(ū)‖ = −
⟨Φ(ū), Φ(ū)⟩

‖Φ(ū)‖ =

�
Φ(ū)

‖Φ(ū)‖ ,Φ
�(ū)�v

�
=

�
(Φ�(ū))TΦ(ū)

‖Φ(ū)‖ ,�v

�
≥ −𝜎‖Φ(ū)‖,

(3.14)(Φ�(uk))TΦ(uk) + ((Φ�(uk))TΦ�(uk) + �kI)v = 0,
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In particular, the Levenberg–Marquardt direction vk is always of descent for the 
merit function defined in (3.2), unless vk = 0 (in which case (3.6) holds). With 
proper choices of the parameter �k , global convergence analysis of the correspond-
ing linesearch algorithms can be found in [5, 21], and it can be easily combined with 
the one in Theorem 3.1 above, leading to the same conclusions.

Algorithm 3.1 allows to incorporate extrapolation or overrelaxation, in a way dis-
cussed above for Algorithm 2.1. This is precisely what we shall do in the numerical 
testing in the next section.

4  Numerical results

We next provide some numerical results demonstrating the global performance of 
Algorithm 3.1 and the effect of accelerating techniques. We note that, to the best of 
our knowledge, there are no studies in the literature comparing various acceleration 
options, not even in the local setting.

The algorithms being tested are the following (the abbreviations correspond to 
the names of rows in the tables below, and also to what appears in the figures):

• NM (for “Newton Method”) is Algorithm  3.1 without any modifications, and 
with parameter values C = 107 , � = 2 , � = 0.01 , and � = 0.5.

• NM-EP (for “ExtraPolation”) is Algorithm  3.1, generating also an auxiliary 
sequence {ûk} according to (3.1).

• NM-OR2 (for “2-step OverRelaxation”) is Algorithm 3.1, but with vk obtained 
at Step  2 replaced (when accepted) by (2 − ‖vk‖1∕2)vk for all k = k̂ + 2i − 1 , 
i = 1, 2, … , where the choice of k̂ will be discussed below.

• NM-OR3 (for “3-step OverRelaxation”) is Algorithm 3.1, but with vk obtained at 
Step 2 replaced (when accepted) by 2vk for all k = k̂ + 3i − 2 , i = 1, 2, ….

• LM (for “Levenberg–Marquardt method”) can be seen as Algorithm  3.1 with-
out Steps 2 and 4, and with vk at Step 3 replaced by the solution of (3.14) (see 
Remark 3.1), with the following choice of the regularization parameter: 

 Locally this rule agrees with the one in [21], while the form of the denominator 
allows to avoid large values of this parameter, potentially blocking long steps of 
the algorithm.

The number k̂ for OR2 and OR3 is the first iteration number k = 1, 2, … such that 
�k = �k−1 = 1 , and the following tests are passed:

⟨��(uk), vk⟩ =⟨(Φ�(uk))TΦ(uk), vk⟩
= − ⟨((Φ�(uk))TΦ�(uk) + �kI)v

k, vk⟩
≤ − �k‖vk‖2.

�k =
‖Φ(uk)‖2

1 + ‖Φ(uk)‖2
.
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where the tolerances were taken as �stab = �ker = �rate = 0.1.
Algorithms terminate, with success declared, after an iterate uk is generated 

satisfying

The only exception is EP, for which, for k = 1, 2, … , we first generate ûk , and termi-
nate with success if

Convergence to the primal solution of interest ū is declared when, at successful ter-
mination, it holds that

(with uk replaced by ûk for EP when termination happened because of (4.2)). If suc-
cessful termination did not occur after 100 iterations, or any of the backtracking 
procedures in Algorithm 3.1 produced a trial value � such that �‖vk‖ ≤ 10−10 , the 
process was terminated declaring failure.

We report on the results for a set of nonlinear equations possessing singular 
solutions, obtained the following way. We used all test problems from [18] for 
which an exact solution is known, except for the three linear problems Lin-
ear—full rank, Linear—rank 1, and Linear—rank 1 with zero 
columns and rows. Some of thus selected problems have more equations 
than variables, in which cases some extra equations were removed (always linear, 
except for Beal for which the choice of an equation to be removed does not seem 
to affect the performance in any significant way). The resulting test problems 
are listed in Table 1, supplied with information on dimensions of the problems, 
on removed equations, and on the choice of starting points when nonstandard. 
All other test problems were used with standard starting points provided in [18]. 
Nonstandard starting points were used for Freudenstein and Roth and for 
Helical valley in order to force the algorithm to converge to singular solu-
tions; the specific choices were u0 = (4.5, 3.5) and u0 = (2, 1, 1) , respectively.

Furthermore, using the technique proposed in [19], selected test problems were 
transformed into systems of equations of the same sizes, in such a way that a 
known solution ū remains a solution of the modified system, but the rank of the 
Jacobian of the modified system at ū becomes equal to n − 1 . This transformation 
was not applied to Powell singular, Extended Powell singular, 

����
vk

‖vk‖
−

vk−1

‖vk−1‖
����
≤ �stab,

����
Φ�(uk)

vk

‖vk‖
����
≤ �ker,

�����

‖vk‖
‖vk−1‖

−
1

2

�����
≤ �rate,

(4.1)‖Φ(uk)‖ ≤ 10−8.

(4.2)‖Φ(ûk)‖ ≤ 10−8.

‖uk − ū‖ ≤ 10−4
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and Variably dimensioned, as these test problems possess known singular 
solutions in their original form.

In order to get more statistics, apart from the starting points u0 discussed above, 
we have also used −10u0 , −u0 and 10u0 , 100u0 for the choices of u0 resulting in con-
vergence to the solution of interest.

The obtained results are presented in Figure 1, in the form of performance pro-
files [2]. In Figure 1a, the measure of efficiency is the iteration count, while in Fig-
ure 1b, it is the number of evaluations of Φ (for successful runs). These figures dem-
onstrate the accelerating effect of OR, and especially of EP. Moreover, the use of the 
former does not alter robustness of NM, which is somewhat surprising, considering 

Table 1  Selected test problems from [18]

Test n Comments

1. Rosenbrock 2
2. Freudenstein and Roth 2 Nonstandard u0

4. Brown badly scaled 2 Eq. # 2 removed
5. Beale 2 Eq. # 2 removed
7. Helical valley 3 Nonstandard u0

11. Gulf research and development 3
12. Box three-dimensional 3
13. Powell singular 4
14. Wood 4 Eqs. # 2, 4 removed
18. Biggs EXP6 6
21. Extended Rosenbrock 500
22. Extended Powell singular 500
25. Variably dimensioned 10, 500 Eqs. # n − 2 , n − 1 removed
26. Trigonometric 30
27. Brown almost-linear 10, 500
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Fig. 1  Performance profiles: number of iterations and evaluations of Φ
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that our ways of combining OR with NM do not rely on any strict theoretical justi-
fication. On the other hand, the accelerating effect of EP is much higher than that 
of OR, which might indicate that OR should be combined with NM in some other 
(smarter) way. This will be the subject of our future research.

As for the number of evaluations of Φ , observe that if, say, the unit stepsize is 
accepted at some iteration of NM, and the corresponding iteration of NM-EP does 
not end up with termination, the latter requires two evaluations of Φ , while the for-
mer only one. This is the main reason why the effect of EP on efficiency in this 
sense is somehow less strong than on iteration count, on this test set. However, the 
effect on efficiency is still evident.

Let us underline again that Newton-type methods (like NM and LM) may not 
show a superlinear or quadratic rate of convergence if, as in our experiments, they 
operate in a neighborhood of a critical solution. Regardless of this, the reason for the 
difference of performance between NM and LM in Figure 1 is not fully understood 
at this time; it might depend on globalization techniques and is a subject for further 
research.

Finally, in Figure  2 we present results in terms of CPU times for problem 
instances Extended Rosenbrock, Extended Powell singular, 
Variably dimensioned, and Brown almost-linear, all with n = 500 . 
Since we perform 5 runs for each problem, it makes 20 runs altogether. We do not 
report CPU times for other instances, because for small(er) problems this charac-
teristic can hardly be reliable or informative.

Acknowledgements This research was supported by Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) – 409756759, by the Russian Foundation for Basic Research Grants 19-51-
12003 NNIO_a and 20-01-00106, by CNPq Grant 303913/2019-3, by FAPERJ Grant E-26/202.540/2019, 

100 101 102

0

0.2

0.4

0.6

0.8

1

NM
NM-EP
NM-OR2
NM-OR3
LM

Fig. 2  Performance profiles: CPU times for selected problems



286 A. Fischer et al.

1 3

by PRONEX–Optimization, and by Volkswagen Foundation. The authors thank Ivan Rodin and Dmitriy 
Bannikov for their assistance with numerical experiments, and the two anonymous referees for helpful 
comments on the original version of the paper.

References

 1. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena, Belmont (1999)
 2. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-

gram. 91, 201–213 (2002)
 3. Facchinei, F., Fischer, A., Herrich, M.: A family of Newton methods for nonsmooth constrained 

systems with nonisolated solutions. Math. Meth. Oper. Res. 77, 433–443 (2013)
 4. Facchinei, F., Fischer, A., Herrich, M.: An LP-Newton method: Nonsmooth equations, KKT sys-

tems, and nonisolated solutions. Math. Program. 146, 1–36 (2014)
 5. Fan, J.-Y., Yuan, Y.-X.: On the quadratic convergence of the Levenberg-Marquardt method. Com-

puting 74, 23–39 (2005)
 6. Fernández, D., Solodov, M.: Stabilized sequential quadratic programming for optimization and a 

stabilized Newton-type method for variational problems. Math. Program. 125, 47–73 (2010)
 7. Fischer, A.: Local behavior of an iterative framework for generalized equations with nonisolated 

solutions. Math. Program. 94, 91–124 (2002)
 8. Fischer, A., Izmailov, A.F., Solodov, M.V.: Unit stepsize for the Newton method close to critical 

solutions. Math. Program. (2020). https ://doi.org/10.1007/s1010 7-020-01496 -z
 9. Griewank, A.: Analysis and modification of Newton’s method at singularities. PhD Thesis. Austral-

ian National University, Canberra, (1980)
 10. Griewank, A.: Starlike domains of convergence for Newton’s method at singularities. Numer. Math. 

35, 95–111 (1980)
 11. Griewank, A.: On solving nonlinear equations with simple singularities or nearly singular solutions. 

SIAM Rev. 27, 537–563 (1985)
 12. Izmailov, A.F., Solodov, M.V.: Stabilized SQP revisited. Math. Program. 122, 93–120 (2012)
 13. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. 

Math. 2, 164–168 (1944)
 14. Marquardt, D.W.: An algorithm for least squares estimation of non-linear parameters. SIAM J. 11, 

431–441 (1963)
 15. Izmailov, A.F., Kurennoy, A.S., Solodov, M.V.: Critical solutions of nonlinear equations: Local 

attraction for Newton-type methods. Math. Program. 167, 355–379 (2018)
 16. Izmailov, A.F., Kurennoy, A.S., Solodov, M.V.: Critical solutions of nonlinear equations: Stability 

issues. Math. Program. 168, 475–507 (2018)
 17. Izmailov, A.F., Solodov, M.V.: Newton-Type Methods for Optimization and Variational Problems. 

Springer Series in Operations Research and Financial Engineering. Springer, Switzerland (2014)
 18. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM 

Trans. Math. Softw. 7, 17–41 (1981)
 19. Schnabel, R.B., Frank, P.D.: Tensor methods for nonlinear equations. SIAM J. Numer. Anal. 21, 

815–843 (1984)
 20. Wright, S.J.: Superlinear convergence of a stabilized SQP method to a degenerate solution. Comput. 

Optim. Appl. 11, 253–275 (1998)
 21. Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg-Marquardt method. In: 

Alefeld, G., Chen, X. (eds.) Topics in Numerical Analysis, pp. 239–249. Springer, Vienna (2001)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1007/s10107-020-01496-z

	Accelerating convergence of the globalized Newton method to critical solutions of nonlinear equations
	Abstract
	1 Introduction
	2 Preliminaries
	3 Extrapolation, overrelaxation, and globalization
	4 Numerical results
	Acknowledgements 
	References




