Computational Optimization and Applications (2021) 78:1-42
https://doi.org/10.1007/510589-020-00228-5

™

Check for
updates

An accelerated active-set algorithm for a quadratic
semidefinite program with general constraints

Chungen Shen' - Yunlong Wang? - Wenjuan Xue? - Lei-Hong Zhang*

Received: 9 September 2019 / Accepted: 12 September 2020 / Published online: 27 September 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

In this paper, we are concerned with efficient algorithms for solving the least squares
semidefinite programming which contains many equalities and inequalities con-
straints. Our proposed method is built upon its dual formulation and is a type of
active-set approach. In particular, by exploiting the nonnegative constraints in the
dual form, our method first uses the information from the Barzlai-Borwein step to
estimate the active/inactive sets, and within an adaptive framework, it then acceler-
ates the convergence by switching the L-BFGS iteration and the semi-smooth New-
ton iteration dynamically. We show the global convergence under mild conditions,
and furthermore, the local quadratic convergence under the additional nondegener-
acy condition. Various types of synthetic as well as real-world examples are tested,
and preliminary but promising numerical experiments are reported.

Keywords Semidefinite programs - Active set - Barzlai-Borwein step - L-BFGS -
Semi-smooth Newton

Mathematics Subject Classification 65K05 - 95C55 - 90C30

Wenjuan Xue: The work of this author was supported in part by the National Natural Science
Foundation of China NSFC-11601318. Lei-Hong Zhang: The work of this author was supported in
part by the National Natural Science Foundation of China (NSFC-11671246, NSFC-12071332), the
National Key R&D Program of China (No. 2018 YFB0204404) and Double Innovation Program of
Jiangsu Province, Year 2018.

P4 Chungen Shen
shenchungen @usst.edu.cn

Lei-Hong Zhang

longzlh@suda.edu.cn

College of Science, University of Shanghai for Science and Technology, Shanghai 200093,
China

Antai College of Economics and Management, Shanghai Jiao Tong University,
Shanghai 200030, China

School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090,
China

School of Mathematical Sciences, Soochow University, Suzhou 215006, Jiangsu, China

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-020-00228-5&domain=pdf

2 C.Shenetal.

1 Introduction

Let S be the cone of positive semidefinite matrices in the space §" of n X n sym-
metric matrices, and (A, B) := tr(ATB) with A,B € S". In this paper, we consider
the least squares semidefinite programming (LSSDP) [2, 10, 12, 17, 27] of the fol-
lowing form

1)
min §||X -Gl

st (ApX)=b;, i=1,...,p, (1.1)
(A, X)>b;, i=p+1,....m,
XeSs,,

where b = (b, ... ,bm)T e R, and G,A; € §"fori =1, ..., m are all given.

To solve the problem (1.1) numerically, in the literature, a couple of methods have
been proposed and can be used in different situations. For instance, for small- to
medium-size n and m, interior point methods implemented in, for example, SeDuMi
[31] and SDPT3 [34], can solve efficiently the dual problem (1.2)

min ¢t

st. (A, X)=b, i=1,...,p,
A, XY>b, i=p+1,...,m,
<,1> » I=D m (12)

t2 IX -Gl

XeS,,

which is just to minimize a simple linear function subject to the constraints of lin-
ear equalities/inequalities, the second order cone, and the positive semidefinite
cone. However, since a linear system associated with a dense Schur complement
matrix of the size(m+ 1+n)X(m+ 1+ n) withn := %n(n + 1) needs to be solved
at each iteration, the efficiency of interior point methods decreases as n gets mod-
erately larger (say, 2000). In the literature, therefore, methods other than interior
point methods have been proposed and applied. For example, Malick [17], Boyd and
Xiao [2], and Gao and Sun [10] proposed the BFGS method, the projected gradient
method, and semi-smooth Newton method respectively, to solve the Lagrangian dual
problem of (1.1). Along the dual framework, Li and Li [15] introduced a projected
semi-smooth Newton method. Unlike [2, 10, 17], He, Xu and Yuan [12] suggested
the augmented Lagrangian function with an auxiliary matrix variable and then
applied the alternating direction methods (ADM) [8, 9, 35] to (1.1). Very recently,
Sun and Vandenberghe [33] considered decomposition methods for matrix nearness
problems with some sparsity pattern.

We remark that each of the previously mentioned methods handles either the
computational and memory costs per step or the fast local convergence. For exam-
ple, the projected gradient method [2] and the ADM methods [12] usually are of eco-
nomic computational costs at each step, but they have relatively slow convergence,

@ Springer

An accelerated active-set algorithm for a quadratic... 3

especially when the iterates reach in the vicinity of a minimizer. The BFGS method
[17] and the semi-smooth Newton method [10] locally converge fast, but the approx-
imate Hessian matrix in the BFGS method has to be stored at each step, while the
generalized Newton equation has to be solved in the semi-smooth Newton method,
which degrades the efficiency of the related method when m gets very large.

In this paper, relying on the dual technique, we attempt to handle both the com-
putational and memory costs per step and the local fast convergence. In particular,
we combine the advantages of limited-BFGS (L-BFGS) and the semi-smooth New-
ton method to propose an accelerated active-set method for the dual problem. In
our first stage, the Barzlai—-Borwein (BB) step is used to draw information of the
index of the final active/inactive sets. These active/inactive sets correspond to free/
fixed variables. The second stage employs the L-BFGS method and the semi-smooth
Newton method to accelerate the convergence of these free variables. For a practical
implementation, we propose an adaptive strategy to smoothly switch them so that
it adaptively refines the estimated index of the final active/inactive sets, and also is
able to use the full-power of the semi-smooth Newton method whenever the iterates
are close to the minimizer. We establish the global convergence and the fast local
convergence under some mild conditions.

The rest of this paper is organized as follows. In Sect. 2, we state the dual problem
and give the first-order/second-order optimality conditions. In Sect. 3, we present
the details of our accelerated active-set method by describing four main ingredients:
identification of active/inactive sets, the L-BFGS acceleration, the semi-smooth
Newton acceleration, and an adaptive acceleration strategy. The global convergence
of the proposed algorithm is proved under some mild conditions in Sect. 4, and fast
local convergence is established in Sect. 5. Numerical evaluation of the proposed
method is conducted in Sect. 6, where LSSDP instances on both real and synthetic
data are tested, and the performance of other solvers [10, 12, 14, 35] are reported
and compared. Final remarks are drawn in Sect. 7.

2 The dual problem and optimality conditions
We first rewrite (1.1) into the following general form:

.1
min zllX - G||12p
st. AX)eb+ Q, 2.1
XekK,
where Q = {0} X R} ™, K is a closed and convex cone, and A(X) is defined as
(A, X)
A, X
AX) = { 2:’) .
(A, X)

@ Springer

4 C.Shenetal.

Note that the primal form (2.1) is convex and the associated Lagrangian function is
given by

1
LXKy = 511X = Gl = (AX) = b,y),
where (x,y) :=xTy with x,y € R".

2.1 The dual problem
The Lagrangian dual of (2.1) (see [10]) is

1 - 1
max S I [G + A WIIlE +<b.y) + 2<G, G) 22)
st ye 9,

where Q* = R? x R’/ is the dual cone of Q, A* is the adjoint operator of A defined
by A*(y) = X1, viA;, and II;[Y] denotes the metric projection of ¥ € " onto K,
ie.,

I [Y] = argminy (X - Y, X - Y).

Denote

1 ¥ 1
fO) = SITIG + A" ODE = (b, y) = 5(G, G).
Obviously, the dual problem (2.2) is equivalent to the problem

min f(y)

st ye Q. (2.3)

ForY € &, let the spectral decomposition be Y = PAPT with A := diag(4,, ..., 4,),
where A, > -+ > A, are the eigenvalues of Y and P is a corresponding orthogonal
matrix of orthonormal eigenvectors of Y. Note that this decomposition needs 9n?
multiplications or so. From [26], we have

HS’l [Y] = Pdiag(max(0, 4,), ..., max(0, ﬂ,,))PT.
Hence, for (1.1), K = S}, A*(y) = X1, v;A;, and
1) = 3G+ A G - b) = 5(G.0),
where [-], = Hsi[‘]' The function f{y) is convex, continuously differentiable and

coercive (i.e., f(y) = oo as ||y|| = o0) [25] under the Slater condition. The gradient
is given by

Vi) = AIG+ A", —b, ye€R", (2.4)

@ Springer

An accelerated active-set algorithm for a quadratic... 5

which is also Lipschitz continuous. Moreover, under the Slater constraint qualifica-
tion, it has zero duality gap between the primal problem (1.1) and its dual (2.3),
which provides a possibility to solve (1.1) from the dual. We point out that, due to
the projection HSL[']’ Vf(y) generally is not differentiable, and thus, the classical

Newton method is not applicable for (2.3).

2.2 Optimality conditions

For convenience, we denote the index sets of equalities and inequalities of (1.1) by
E:={1,....,p}and 7 := {p+ 1, ...,m}, respectively. Also, we denote Vf(y) by g(y)
and the subvector of g(y) with components g;(y),i € £ by g.(y). The meanings of
g,(y) and y, follow similarly.

Due to the special structure of the constraints y; > 0 with i € Z, the Mangasarian-
Fromovitz constraint qualification (MFCQ) is satisfied at any feasible point of (2.3).
The first-order condition (i.e., the KKT condition) of (2.3) is

gg())) =0,
& —-u=0, 2.5)
u>0, uly, =0, y, >0,

where y = (u, ..., Mm_p)T € R™77 is the multiplier vector corresponding to the con-
straints y; > 0,i € Z. If a pair (y, u) satisfies (2.5), we call it a KKT pair. One way to
measure the KKT error is the KKT residual

8y
Yo, w) = ||| 800 —u ||
min(y,, u)

where min(y,,) is the componentwise minimum function of the vectors ¢ and y,. It
is easy to verify that ¥(y*, u*) = 0 if and only if (y*, u*) is a KKT pair for (2.3).
We now suppose Y(y*, u*) = 0, and let
o) =li € Ily; = 0},
7,0°) =i € Tolu! > 0},
Ty ={i € Zy|u; = 0},
Ho()={heR"|h; =0, i€, () h >0, i€y},

and
Ho(y*) = (h € R™h, =0, i€y}

The (strong) second-order sufﬁcif_:nt condition holds at y* if hTVh > 0 for all
nonzero vectors h € Hy(y*) (h € Hy(y*)) and all matrices V € dz(Vf(y*)), where
05(Vf(y*)) denotes the B-subdifferential of Vf(y) at y* in the sense of Qi [21]. In [22,

@ Springer

6 C.Shen etal.

Theorem 2.2], it is shown that y* is a strict local minimum of (2.3) if the (strong)
second-order sufficient condition holds.

3 Algorithm

In this section, we will present our accelerated active set algorithm for solving the
dual problem (2.3). Our approach consists of a procedure of active set detection
by the BB step [1], and a smoothly-switching search direction procedure between
L-BFGS and the semi-smooth Newton methods. The BB step aims at estimating
the index of the active/inactive sets (free/fixed variables), and whenever this stage is
fulfilled, the L-BFGS method or the semi-smooth Newton method will be triggered
to accelerate the convergence of the free variables.

3.1 The BB step

Originated by Barzlai and Borwein [1], the BB method has been discussed by many
other researchers and applied in a broad area of applications. In our case, at the cur-
rent iterate y*, we first use the BB step to generate a trial iterate * which is called a
BB point. There are two commonly used formula of the stepsize (see [1]), namely,

‘ ||Sk_1||§ .
%= W’ (the long BB stepsize)
k—INT k=1
= w, (the short BB stepsize)
* ||Wk_1||§

where s = yk — yk=1 k=1 = o(1¥) — g(y*~1). It has been proved in theory that
the long stepsize a;‘ can guarantee the reduction of the objective function, and the
short stepsize af can induce a good descent direction for the next iteration. Based on
this fact, Zhou, Gao and Dai [37] present an adaptive stepsize selection strategy and
report numerical results for its efficiency. Specifically, such adaptive stepsize with
some safeguards is defined as

. k k /o k .
o = { Ny, MAX (Ui, @), @)/t < K A1)
B min(a,,,,, Max(ay,. @,)), otherwise, :

where k¥ € (0, 1), and a,,,, > @i, > 0. The adaptive stepsize can be viewed as a
combination of the long BB stepsize and the short BB stepsize, and the parameter x
determines the trade-off between a;‘ and ai‘ . Generally, « is around 0.5. Other adap-
tive strategies are discussed in [5, 37].

In our case, we use the strategy in [37] to generate the BB point. In particular, for

the dual problem (2.3), we generate the trial BB point as

¥ =Ty — g, (3.2)

@ Springer

An accelerated active-set algorithm for a quadratic... 7

where gf := g(y*), and the stepsize is determined by the adaptive stepsize ag in
3.1).

3.2 Identification of the active set

In this subsection, we will discuss how to detect the active/inactive sets at the trial BB
point 7*. Assume that y* is a minimizer of the problem (2.3). As the linear independ-
ence constraint qualification (LICQ) holds at y*, the uniqueness of the associated mul-
tiplier u* is ensured. Moreover, when the second-order sufficient condition holds, y* is
isolated (see [22, Theorem 2.2]). According to [7, Theorem 3.6], we have the following
theorem.

Theorem 3.1 Assume that the second-order sufficient condition holds at y*. Then
there exist two scalars x,, k, > 0 such that

y=y

u—p*

y=y
K
“(Wﬂ*)

for any pair (y, u) sufficiently close to (y*, u™*).

S T(y?/’l) S K2

Using [7, Theorems 3.7 and 2.2], the index set

By, u) = {i € Ily; < V¥,)}

correctly identifies all active constraints if (y,) is sufficiently close to (y*, u*). To
apply this fact, by canceling the multiplier u in (2.5), we rewrite the KKT condition
(2.5) as

{ gg(y) = 0» (33)

820, &My, =0, y, 20,
and by u = g,(y), we have
Y, 1) =¥, 8200)) = lly = Hgly = gWIIl := o(y). (3.4)

Here I1,[x] denotes the metric projection of x € R” onto Q, which can be easily
calculated as

_] 0, ieZIwithy; <0,
b= { y;, otherwise . (3-3)

In our algorithm, at the BB point 5)" in (3.2), we define two index sets B and F*
associated with the point y* as
B'=BG*) ={i € 7|0 < §* <K, or gk < —vF/(2ak) & ¥ <VF/2} and
F=FoM ={1,...,m}\B,
3.6)

@ Springer

8 C.Shenetal.

where v¢ = min {eo \/E }, €y € (0,0.1) (generally, ¢, is a small parameter of order,
e.g., 107%), and o* = o(y*). One can see from the definition of B that components
of 3 and y* that approach the boundary are taken as the potential fix variables, and
therefore, the corresponding indices are put in BX. More explanations will be stated
in Sect. 4.

As Bt differs slightly from B’(yk, %), we find that [7, Theorems 3.7, 2.2] is not
directly applicable to B to detect the active set correctly. However, such a desired
conclusion still holds as shown in the following theorem.

Theorem 3.2 Assume that the second-order sufficient condition holds at y*. Then B*
and F* can correctly identify all active/inactive constraints respectively if y* is suf-

ficiently close to y*.

Proof 1t suffices to prove that B' can correctly identifies all active/inactive con-
straints if y* is close to y* enough. By the definition of o* and (3.5),

o = 00" =

ky
‘ <mm(§iygf(y")) H (3.7
From (3.2) and (3.5), we obtain that fori € 7,
5 = max(y} — aggl,0) =y} — min(y, azgl). (3.8)
Suppose y = 0 for some i € 7. Due to Theorem 3.1 and o(y) = ¥(y, u), it holds

I = y*Il = o(\/0b). (3.9)

It follows with the definition of V¥ that y* < |[y¥ — y*|| < V¢ /2 for y* close to y*
enough. By (3.7) and the definition of v it holds |m1n(y a gf)| < vk/2. This
together with (3.8) and y¥ < v /2 yields ¥ < k. Soi € B

On the other hand, if y > 0 for some i € 7, then g,(y*) = 0 due to the KKT con-
dition (3 3). By (3.8), y > vk if y* is sufficiently close to y*. By (3.9) and the defini-
tion of V¥, we have

I =y Il < =——
2L 0y

for y* sufficiently close to y*, where ag € [Apins *max] 1S the BB stepsize from (3.1)
and L, > 0 is the Lipschitz constant of g(y). This combining with the Lipschitz con-
tinuity of g(y) gives

gk = g} — g, < LIy =yl < v*/Qaj).

Thus, —g < vk/(2a") for any y* sufficiently close to y*. So, i ¢ B and conse-
quently, B* identifies all active constraints accurately. O

@ Springer

An accelerated active-set algorithm for a quadratic... 9

Theorem 3.2 reveals that the problem (2.3), with the second-order sufficient condi-
tion (not the strict complementarity condition), locally can be reduced to an uncon-
strained minimization problem. This provides an important foundation for establishing
the fast local convergence in Sect. 5.

3.3 The search direction

With the BB point * computed by (3.2) at hand, we can determine the working sets
B* and 7 by (3.6). Let J* be a generalized Hessian matrix of f{y) at y*. Without loss of
generality, we assume F* = {1,2, ..., |F*|} with | 7| being the cardinality of ¥, and
then partition J* and g as

k k
7= <ikf* f) and ¢" = <ng*>. (3.10)

Bkrk Bk Bk 8 Bk

As a result, we present the entry df.‘ of the search direction d* = d(y*) associated with
k
y<as

, i e B,
df = d,(*) = {y(ngzr o, e P G.11)

where Z is a matrix of columns consisting of {¢;|i € F*} with e; being the ith column
of the identity matrix I, (ie., Z = (Ilfkl,O)T € R™I7| when]:k ={L2,....| 7D,
and A* is (J; ﬂ) or a certain approximation of (J¥)~! s here (J k) denotes the top-
left block of (J*)~! with (J*¥)~! being partitioned similar as J*.

The matrix H¥ is a key to define the search direction in (3.11). In the next subsec-
tion, we will specify two ways to compute H¥: the way based on the L-BFGS formula
and the one based on the semi-smooth Newton method. Here, we only mention that
if the approximation H* of (J%)~!is updated by the L-BFGS formula implicitly, then
its top-left block H, , can be considered as an approximation of (J¥)7! o and thus
H*=H = ZTH"Z whereas if the semi-smooth Newton acceleration is applied,
then H¥ = (Jk)~!. The detailed information on computation of ZH*Z"g* will be
given in the next subsection.

3.4 The L-BFGS and semi-smooth Newton search direction
3.4.1 The L-BFGS direction

The BFGS method [20, Chapter 7] is a well-known quasi-Newton method for the
unconstrained minimization min f(y). A basic iteration of BFGS is

Y =k —akHRGE, k=0,1,2,...

k

where o is a stepsize, and H* is the inverse Hessian approximation updated by

Hk+l — (Vk)THkvk +pksk(sk)T’

@ Springer

10 C.Shen etal.

where pk — 1/(Wk)TSk, Vk =] - pka(Sk)T, and Sk — yk+1 _ yk, Wk — gk+1 _ gk.

The L-BFGS algorithm (see [16, 20]) is an improvement of BFGS for large-scale
problems which alleviates the memory requirement in storing H¥ in each step. In
particular, the matrix H* in the L-BFGS algorithm is formed implicitly by the [
most recent vectors pairs {(s',wil,i=k—1,...,k—1 Starting from an initial Hes-
sian approximation' (H*)°, at the kth iteration, it uses the / most recent vector pairs
{s',wil,i=k—1,...,k—1to have

Hk =((vk—l)T ... (Vk—Z)T)(Hk)O(Vk—l . Vk—l)
+ pk—l((vk—l)T . (Vk—l+l)T)sk—l(sk—l)T(Vk—l+l . Vk—l)
+ pk—l+1 ((Vk—l)T .. (Vk—l+2)T)Sk—]+1 (sk—l+l)T(Vk—l+2 . Vk— l) (3 1 2)
+ .os
T G
According to this formula, an efficient recursive procedure (see [20, Algorithm 7.4])

can be derived to compute H*g*. In the case of the L-BFGS acceleration, the term
ZH*ZT g% in (3.11) is

k k
ZHkZTgk — ZHk ZTgk — H]_-kﬁkg}-k)
F 0

. .. H* , H* .
With the partition H* = < Hfﬂ‘ HJZ‘Bk , we know that the first sub-vector Hﬁk fk g/; is
ktskﬂ Bk Bk
the same as that of H* 8n , and therefore, the part of search direction of d* in

0
(3.11) for the variables in F* can be calculated by the recursive procedure with
(3.12) (see [20, Algorithm 7.4]). Note that this recursive procedure requires about
4ml multiplications.

3.4.2 The semi-smooth Newton direction

Qi and Sun [24] introduced a semi-smooth Newton method to solve the correlation
matrix approximation problem, and further extended it to the problem with general
linear equality constraints. Numerical experiments show that the semi-smooth New-
ton method has better performance than methods using first-order information (for
example, the projected gradient method and BFGS method).

For our case, we find that the semi-smooth Newton method can serve as a good
acceleration for the solution of the dual problem. Let dg(y*) denote the general-
ized Jacobian of g(y) at y* in the sense of Clarke [4]. It is also the convex hull
of dzg(¥*) [21]. For (2.4), let GGH¥) = G + A*(¥*) and its spectral decomposition
be G(¥) = PAGX)PT, where A(Y) := diag(4,(%), ..., 4,05), 4,(F) > -+ > 4,(5)
are the eigenvalues and P € Oy, = {P € R™|G(*) = PAGHPT,PTP =1,} is
a corresponding orthogonal matrix. Define three index sets associated with 4;(y¥),
i=1,...,nas follows:

(sk=1yT k-1

(wh=1)T k=17

! The initial inverse Hessian approximation in L-BFGS is generally set to be ¢¥1 with ¢* =

@ Springer

An accelerated active-set algorithm for a quadratic... 1

It =T,05 = {405 > 0}, Tk :=T,0 ={il4,0" =0}, T%:=T505 = {il4,0" <0},
and define

w. =w. € [0,1],

o Erkl,rf Epe (Tij-);eg*]‘,/erg fér i ’e' It
M=<IMeR |M = Ik I (a)ij)i,jel"’; 7, = ﬂ.k/(ﬂ% ﬂk)

(Tidiertjert 0 0 for ieTt,je 1—~k

Then we have the following results.

Lemma 3.1 For any h € R™,
058! C {AWT) : W e W}, (3.13)
where T = A*(h), W is a set of operators given by
W = {W|WT = P(Mo(P"TP))P",M € M,P € Oy, heER"}, (3.14)
and o is the Hadamard product.

Proof The proof follows similarly to that of [24, Lemma 3.5]. O

At ., let J* € dg(g(y*)) be partitioned as (3.10) assuming, w.l.g.,
F*=1{1,2,...,|F}. Our choice of semi-smooth Newton search direction dk in
d* for the Varlables in ¥ satisfies the linear system

Jiud = =g, (3.15)

Thus, for the semi-smooth Newton acceleration, we can compute the part of search
direction —ZH*Z" g*in (3.11) as

k
-JH%Tk=<%O,

where d’}; is from (3.15). Practically, by taking advantage of the convexity of the
problem, we invoke a certain Krylov subspace method (for example CG) for this
system to obtain approx1mat10ns of d*,, in which the main costs lie in the matrix-
vector products of the form J ahxforhy € R If N CG steps are used to solve
for d" excluding the multlphcatlons in AX) and A*(y), we require
(4n? + n? + 2| FDNeg multlphcatlons

Note the matrix-vector product L is indeed the first sub-vector of length

| 7| of
ﬁ<w>=<@ﬁw>
0 I h

@ Springer

12 C.Shenetal.

and thus, JY h. € (A«(WH): WEW), where the linear mapping A
8" - R is given by Ax(X) = [AX)]x and H = A*((hgk >> = Ycp hA
This leads to the following corollary.

Corollary 3.1 For the index set F*, define the linear mapping Ap: §' — RIF| by
Apx(X) = [AX)] 5. and the function F(y,) : R = RIF by Fy.) = g(y) in
which the elements of y in B* are fixed at y’;k, e, yx = y’;k, where BX = (£ U D)\ F*.
Then for any h € RIF, it follows

Op(FOS s S {LAL(WH) © W e W),

where H = A*(Zh), the columns of Z € R™F1 gre {e;li € F*Y, and W is defined
in (3.14).

3.5 Algorithm

With the previous preparation, we now can summarize the procedure of our algo-
rithm. Let y* be the current iteration for (2.3). After computing the search direction
d* in (3.11), we determine a stepsize a* by the backtracking line search technique to
fulfill the following nonmonotone reduction condition on f{y) [36]:

f@MgO* + a*dY) < f + sak(gh d, (3.16)

where f*is a weighted average of the past function values that is no less than f(y¥),
and 6 € (0, %). We mention that such condition (3.16) is more relaxable than the
standard Armijo condition. The framework of our proposed algorithm is as follows:

Algorithm 1: Accelerated Active Set Algorithm (AASA)

1 Givene >0, ¢ >0, € (0,3), 0 €(0,1), £€(0,1), €a > €, > 0;

2 Initialization: y° € R™, Q° = 1, fz? = f(¥°), d® = —¢° k =0, switch= “Q";

3 while ¢* > ¢ do

4 Set aw = 1;

5 | while f(IIo[y* + ad*]) > f* 4 5a(g*)Td* do

6 ‘ a=ow

7 end

5 | aF =, gt =Tigly + akdl], QM1 = €QF + 1, and fEF = (€QF S + F(5H))/QM
9 Compute the next search direction d*+! in (3.11) adaptively by L-BFGS or the semi-smooth

Newton iteration according to Algorithm 2 (stated in the next subsection);

10 Set k=k+1;

11 end

Note that the generated sequence {f(y*)} by Algorithm 1 is nonmonotonically
descent (see Lemma 4.2 and (4.24)) and the objective function f(y) is coercive, {y*}
is bounded, and thereby, it has a convergent subsequence.

@ Springer

An accelerated active-set algorithm for a quadratic... 13

The final execution of Algorithm 1 needs the specification of the search direc-
tion d**!' in step 9 of Algorithm 1. There are several possible ways for adap-
tively switching the directions (indexed by variable switch) between the one of
L-BFGS (denoted by switch="Q") and the semi-smooth Newton (denoted by
switch="N"). In the next subsection, we shall present an adaptive strategy.

3.6 An adaptive acceleration strategy

This subsection is to specify step 9 of Algorithm 1. In particular, we introduce a two-
stage adaptive acceleration strategy: “A-stage acceleration" (triggered by o**! < ¢,)
and “B-stage acceleration" (triggered by o**! < ¢,).

For “A-stage acceleration”, we adaptively use the generalized Newton step to accel-
erate the inactive part of d**! while the active part of d**! still goes a BB step. For con-
venience, we use “N" (or N-step) and “Q" (or Q-step) to represent the generalized New-
ton acceleration step (denoted by dﬁ,“) and the L-BFGS acceleration step (denoted by
d’é“), respectively. Generally, computing dfv“ is more expensive than d’gl, but df/“ can
usually bring more improvements on reduction of the residual ¢* in (3.4). To measure
the improvement at kth iteration, if the previous two steps, i.e., (k — 1)th and kth are
both the generalized Newton steps, we introduce the 3-N-step improvement factor as

o -0
= ,

okt
where the generalized Newton steps are used for o', ¢* and ¢**!. The reason behind
our 3-N-step improvement rate is that the generalized Newton step may not provide
great reductions on the residual oF at each iteration, but it usually is able to reduce
the residual in several successive steps. Our numerical experiments show that using
three successive steps turns out a good choice in general. The “A-stage acceleration”
of the adaptive acceleration strategy is stated in Lines 1627 of Algorithm 2.

To achieve the fast local convergence speed, we introduce “B-stage acceleration”
of the adaptive acceleration strategy. Notice from (3.11) that dl’.< ,i € B only involves
the gradient information, and the stepsize can be cut to be very small in order to meet
the nonmonotone reduction condition (3.16) on f. This implies that the fast local
convergence may not be generally ensured in “A-stage acceleration". Fortunately,
Theorem 3.2 shows that B* and F* can correctly identify all active/inactive con-
straints respectively in the final stage under the constraint nondegeneracy condition
[10]. Thus, in “B-stage acceleration", we force yf.‘“,i e B! to be zero, i.e., restrict
the fix variables to the boundary. To distinguish the iterate y**! in Algorithm 1, we
denote the full successive generalized Newton iterates by z for j = 1,2, ... with
7! = y**! used in this adaptive strategy. This means that the semi-smooth Newton
acceleration is a first try at the (k+1)th iteration. Whenever the acceleration fails to
meet our criterion to be specified, we shrink €, and go back to y**!, and then apply
the L-BFGS acceleration to Algorithm 1 instead. The “B-stage acceleration" of the
adaptive acceleration strategy is described in Lines 2—14 of Algorithm 2.

@ Springer

14 C.Shenetal.

Algorithm 2: An adaptive acceleration strategy for Algorithm 1

1 Given €, > ¢, > 0;

2 if o**! < ¢, then

0, i€ Byt

ut ie Pyt

4 Set j =1, and switch="“N";

5 | Set [dy]ii= { 0 . Z c B(ZJ:.>
[dn(z));, 1€ F(27)

6 | while f(Tlg(2’ + di)) < f(z/) + 6V () Tdn (") & F()) = F(y**') do

3 | Initialize 2] == { where B(y*+1) and F(y*+1) are defined by (3.6);

where dy(27) is defined by (3.11) associated with 2/;

7 Set 2711 =Tg(27 + d4);

8 if o(29*!) < e then

9 return z/*! as an approximation solution to (2.3);

10 end

11 Set j=j5+1;

12 Set [d]i= { 0. Z € B(Z]_) where dy(27) is defined by (3.11) associated with z7;
ldn(27)];, i€ F(27)

13 end

14 Set switch="“Q” and d**! = dg+1;
15 Set €, = €,/5;

16 else

bl if o"*! < ¢, then

18 Set switch=“N";

19 if 3-N-step fails to be accepted then
20 ‘ Set switch="“Q";

21 end

22 end

23 if switch=“N" then

24 || Set dit=di
25 else

26 ‘ Set dFtl = dg“;
27 end

28 end

Remark 3.1 The condition in Line 6 of Algorithm 2 means that during iterations the
sufficient decrease condition

Mg +d) < f(@) + 6Vf(@) dy() (3.17)

holds and the working set F(z') keeps unchanged.

Remark 3.2 The statement of ‘3-N-step fails to be accepted’ in Line 19 of Algo-
rithm 2 means that one of the following conditions holds:

() fAIgOM*! +d) > f"Jr1 + 8(g 1T diH thatis, the generalized Newton step
dy e is not sufﬁc1ently descent for fin the sense of (3.16) with a**! = 1;

(i) in case that the previous two steps (k — 1)th and kth are both the generalized
Newton steps, the 3-N-step improvement factor ;(k“ < ¢€,. (In our numerical
testing, € Y= =0.3)

@ Springer

An accelerated active-set algorithm for a quadratic... 15

Remark 3.3 For the computational costs of Algorithm 1 with Algorithm 2 embedded
at each iteration, we first note that about 97> multiplications are required to compute
the spectral decomposition of an n-by-n matrix; second, for the search direction,
about 4lm multiplications are used in L-BFGS for computing d*, while
@n® +n* + 2|]—'k|)NCG multiplications for the generalized Newton step d]’i, (or L_f]['v).
Therefore, by excluding the multiplications in computing A(X) and A*(y), the total
computational amount is about 9n®+4lm multiplications for d" and

@n® +n* + 2|.7:k|)NCG multiplications for dk (or d). The cost in computlng AX)

and A*(y) is depend on the structure of the matrlces A;,i=1,...,m, and in particu-
lar, in our numerical experiments, A(X) and A*(y) can be calculated efficiently due
to the special structure of the matrices A;,,i=1,...,m.

4 Convergence analysis

We now turn to the issue of the global convergence of Algorithm 1. Define four subsets
fortheindexsetZ={p+1,...,m}:

¢ ={i eIl =0,)F =0}, (4.1a)
Gy ={i € II3¥ = 0,5 > 0}, (4.1b)
A ={ie1|0 <3 <f), (4.1¢)
Ch = (i e TIgh < —v}/Qab),yk <V /2,55 > Wk (4.1d)

Remark 4.1 The index sets Ck i =1,2,3,4 are mutually exclusive and B* = Ul | Ck
By (4.1), Ck indeed represents the set corresponding to variables on the constralnt
boundary. The index set C contains indices associated with variables that are within
the boundary but will get to the boundary after the BB step. The index set C3 points
to the indices corresponding to variables that do not reach the boundary after the BB
step. The variables y associated with C are very close to the boundary but might
not be good “active" candidates due t0 g < —vk/ (2ak) < 0; nevertheless, in the
limit, Ck might reduce to be empty or 1dent1fy a part of active set which is said be
degenerate (i.e., both gl and yl vanish in the limit).

The index ¥ in (3.6) of the estimated inactive set now can be expressed as
F=DnC)HUE, 4.2)
where

D' = {i € II§* > v/} 4.3)

@ Springer

16 C.Shenetal.

and
€’ ={i e I — gk <V} /Qak) or y* > VE/2}. (4.4)

Here, D’ is actually the complementary set of U?=1 Cf.‘ in Z. Recalling

= Iy [— aggk], we can rewrite d in (3.11) equivalently as
0, i€ Czl’
k .
-y ecC
dt =1 Vi L€y
—agg;‘, i€ C]; U Cﬁ, 3)
—(ZH*Z" M., i € F*.
This expression of d* facilitates our convergence analysis.
Our global convergence is based on the following assumption.
Assumption 4.1 There exist two scalars y;, y, > 0 such that
nlZ"gk N < (M ZH* ZT ¢, (4.6)
IZH*Z"|| < 1. 4.7)

are satisfied for all k.

Remark 4.2 We remark that Assumption 4.1 holds when A, (H*) >y, and
|E*¥|| < y, for all k, where A, (H*) denotes the minimum eigenvalue of H*. Note
that if the strong second-order sufficient condition for the problem (2.3) holds at
a minimizer y*, then A" Vh > 0 for all nonzero vectors i € H,(y*) and all matri-
ces V € 0x(Vf(y*)). Equivalently, for all V € dz(Vf(y*)), all matrices (AV.A"),.
are positive definite, where F = (£UZ)\Z,(y*). Therefore, if H* is approaching
(AVA* ;}, then Assumption 4.1 holds for some scalars y,y, > 0. We will prove
in Sect. 5 (refer to Theorem 5.2) that if the constraint nondegenercy condition [10]
for the problem (1.1) holds at X* (X* is associated with y*), then the strong second-
order sufficient condition for the problem (2.3) holds at a minimizer y*. In this sense,
Assumption 4.1 is consistent with the constraint nondegenercy condition for the
problem (1.1).

Lemma 4.1 Suppose that Assumption 4.1 holds. Then
@)'g" <o. (4.8)

Furthermore, equality holds if and only if d* = 0.

Proof According to (4.5),

@'g ==Y vigt = Y alelP - FEAZ g

ieCh ieCucy i€

@ Springer

An accelerated active-set algorithm for a quadratic... 17

Fori € Ck due to (4.1b) and (3.2), y; — Bg < 0 and then a k> y > 0, and there-
fore ykgk > ()2 /ak >0 for i€ Ck Thus, the first term in the rlght hand side of
(4.9) is no greater than 0. The second term is obviously non-positive. Also, the third
term is also non-positive by (4.6). Consequently, (4.8) is true. From (4.9), we know
that @* = 0 if and only if all the terms in the right-hand side of (4.9) vanish. O

Lemma 4.2 Let {d*} and {y*} be generated by Algorithm 1. If Assumption 4.1 holds,
then

ﬂﬂsﬁs%, (4.10)
where f* = (EQ*" +£(}) /0, and y* = = T* F(3).
Proof The proof follows analogously from [36, Lemma 1.1]. O

Proposition 4.1 Given d* defined in (4.5), we have

4
Y+di>0, forall ielJc, @.11)
i=1

where y* € Q.
Proof Since U Ck B, the conclusion follows from (3.11) and (3.2). O

Proposition 4.2 The index sets Cf, i =1,2,3 can be described as follows

C={iezls* =0,y =0, >0}, (4.12a)

G ={i€Il3* =0,y >0,g" >0}, (4.12b)
C’3‘={ieI|0<y <K aBg <y <K +aBg} (4.12¢)
D ={i e IyF > vV + kgl (4.12d)

Proof According to (4.1a), if i € C*, then 7 = max(0,)} — afgh) = max(0, —afgh) =0

and therefore (4.12a) is true. If i € C}‘ then

Vi apgf <3 =0 4.13)

because of (3.2) and (4.1b). Thus, g 2y /a > 0 Wthh together with (4.1b)
1mp11es (4 12b) By (3.2) and (4. lc) 0<yi— ak g = y <k for ie Ck and

g < y < vk + akgk. Use (4.1c) to have (4. 12c) Flnally, by 4.3),ifi e Dk then
yg = y gk > vg which yields (4.12d). O

@ Springer

18 C.Shenetal.

The reformulation of Cf,‘ ,i =1,2,3in (4.12) facilitates our subsequent characteriza-
tion of optimality conditions.

Lemma 4.3 Let Assumption 4.1 hold, and {d*} and {y*} be generated by Algorithm
1. Then y* is a KKT point of the problem (2.3) if and only if d* =

Proof If y* is a KKT point of the problem (2.3), then vk = min {&, \/0*} = v/ok =0
which implies

min(}, ") =0,i € Tand g¥ = 0,i € £. (4.14)
By (4.2), (4.3) and (4.4), if —g* < v/(2ak) withi € 7N T (= D' n (C}))"), then
vk < yff = yf - aggff < yf +vh/2,

and therefore y >vk/2=0,i e F*NZ. Thus use (4.14) to get g =0,ie F and
dk Olekaka;éﬂ from(4120)andv OwehaV60<y < vk OIGCk
Wthh 1s a contradiction. Therefore C =§. In view of v, =0, (4 1d) and (4. 14)
y —g —Oandy >0f0rzECk Usmg (4.5) gives dk Oandy —OforzeCk
Wthh contradlcts k> 0. So C'k is empty. By (4.12b) and 4.14), the index set Ck is
empty, too. Hence, dk 0.

Conversely, assume dc = 0. From (4.5) and (4.12a), we have y =0, g >0,ieC
By (4.5) and (4.12b), we know y =d"=0 1ndlcat1ng that Ck is empty. Fori € C}‘
due to (4.5) and (4.12c¢), 1t is true that yé >0, g = 0. Also, based on (4.5) and (4. ld)
it holds that Ck @ or vk = 0, where the latter implies that y* is a KKT point of
the problem (2 3). For the case Ck @, from (4.5), we have (ZH"ZT b, =0,ie F*
which together with (4.6) gives g =0, i€ F*. Overall, by (3.3), y* is a KKT point
of the problem (2.3). O

Lemma 4.4 Let {d*} and {y*} be generated by Algorithm 1. If d* # 0, then

k
pr = sup {yly +ydt e Q} >m1n{1, 2||c‘l/k|| }, (4.15)

0<y<

where Q is defined in (2.1).

Before proving Lemma 4.4, we make some comments on the implication of this
lemma. From the current iterate y*, the trial point y* + ad* is searched along d*. It
can be seen that the largest step size that makes this trlal pomt remain in the feasible
region Q must be equal or greater than f* := min{1 }. Therefore, Lemma 4.4

’ 2IIdeI
says that if @ < Bk < Bk, by (4.15), we have y* + ad* € Q, and
f6* + ad) = f (D" + ad"]). (4.16)

Proof It suffices to prove that y + ﬂkdk > 0 for all i€eZ.Forie Band0<a <1,
y + adk =(1- a)y + (x(y + dk) > 0 due to y > 0 and Proposition 4.1. Hence,

@ Springer

An accelerated active-set algorithm for a quadratic... 19

i+ Brdf 2 0,i € BS. Fori € F*n I (= DN (C)"), yf > V! + apgl due to (4.12d).
This combining with (4.4) gives y;‘ > Vk/2,i€ F*NZ. Recall pk < 2“‘;,” . Thus,
W B 2 L - e ldl 2 0.i € FN T, O

Lemma 4.5 Suppose that Assumption 4.1 holds. Let {d*} and {y*} be generated by
Algorithm 1. Then there exists a scalar uy; > 0 such that

k
"Ml < ug

for all k, i.e., the sequence {d*} is bounded.

Proof From (4.5), we have

112 =D AP+ D) (@fPIghl? + I ZH 2" 4|12,

c=k sk ook
i€C, ieC3uCy

(4.17)

and together with (4.7) and (4.13), it follows
a1 < D @pIg P+ Y @)k +) vl

ieCh ieChuct i€ (4.18)
<((ap)® + 7l I

Since g(y) is continuous and {y*} is bounded, inequality (4.18) with afg < Opax
implies {||d*||?} is bounded. Hence, there exists a scalar u,; > 0 such that ||d*|| , < u,
for all k. u

The boundedness of {d*} and Lemma 4.4 lead to

~ k
ﬂkZﬂk:=min{1,—v } Vk.
2u,

The next lemma gives a lower bound of the step size a*, which also implies that
Algorithm 1 is well-defined (i.e., the inner loop (from Line 5 to Line 7) terminates
finitely).

Lemma 4.6 Suppose that Assumption 4.1 holds. Let {a*} be generated by Algorithm
1. Then there exists a scalar a > 0 such that

a* > min {cpt,a}, (4.19)

where B is defined after Lemma 4.4, and o € (0, 1) is from Algorithm 1.

Proof From (4.17), (4.7) and (4.13), we obtain

@ Springer

20 C.Shenetal.

a1 <) afyiel+ D (@b 11 + 1a(e) ZH Z" ¢

ok k| ok
i€C, i€C3UC,

- 4.20

<max@o)| Yoket+ Y ablgP+ @z | ¢V
iec ieciuct

< = max (@ 12)(d)' gk,

where the last inequality follows from (4.9) and ag ®ax- We now prove that the

step size a* generated by Algorithm 1 is no less than either ¢ or some constant

a>0.If o < o-ﬂ" then the trial step size a" 1= O’; cannot be accepted in Algo-

rithm 1. As a < pk,
FM* + afd) = fO* + afd) > £} + Saj (8" d", 4.21)

where the first equality follows from (4.16). By the mean value theorem,

SO +aid") =01 + (g d" + @' / 180 + i) - gOM)ldi

4.22)
<SFON + (g d + Lg(o)l |1%,
where L, is the Lipschitz constant of g(y). By (4.10), (4.21) and (4.22),
af(g)'d" + Lg(a)(|d|* > saf(g")Td",
and together with (4.20), we get
s 20 -0Ed 21-8) 1
t Lg”dk”2 h Lg max(amaw yZ)
26(1-6)

As af = 6(1 , it is true that a* > @ in the case af < o, where @ = —=1—9
Lg max(amaxvh)

Therefore,
a® > min {o-ﬁ_k, 6:}
holds in all cases. O

Theorem 4.1 Suppose that Assumption 4.1 holds. Let {y*} be generated by Algo-
rithm 1. Then any accumulation point of the sequence {y*} is a KKT point of the
problem (2.3).

Proof The update rule of Q**! given by Algorithm 1 yields

k+1
1

Qk+1 -1 +§Qk =1+ 251 < m 4.23)
=

@ Springer

An accelerated active-set algorithm for a quadratic... 21

By the nonmonotone reduction condition of fand (4.10), we have

EQYF +10M)

kel _
p Qk+l
(E0* + ff + ako(dyT gt
< ofr (4.24)
aké(dk)Tgk

<fE+ak (1 - 88 g,

where the last inequality follows from (4.8) and (4.23). Since {y*} is bounded,
{(f(*)} and {flf } are bounded below by (4.10). Combine with (4.24) to have

- Y a1 =08 ¢ < Y (- f) < oo.
k=1 k=1
Using (4.8), we obtain that
lim ok (dTgk = 0. (4.25)

We now prove that any accumulation point of {y*} is a KKT point of the problem
(2.3). Let y* be an accumulation point of {y*}, and the subsequence {y%} of {y*}
converges to y*. It follows from the continuity of Vf(y) that gk — g* := Vf(y*) as
k; = oo. Similarly, due to (3.4) of the KKT error 0k, we can assume, without loss of
generality, that {05} converges to some limit point ¢*. If o* = 0, then y* is already
a KKT point. Otherwise, for all sufficiently large k;, o% > % By (4.19) and Lem-
mas 4.5 and 4.6, a*i is bounded away from zero, and according to (4.25),

Jim (@) g% = 0. (4.26)

As k increases, we can assume without loss of generality that Cf.‘,i =1,2,3,4and F*
are constants for all sufficiently large k = k;, and thereby, we drop the superscripts &
by simply denoting C;,i = 1,2,3,4 and F. Using (4.9) and (4.6), we have that

vigr=0,i€C,,
g =0, ieCUCUF

Recall the definitions of d* and Cf ,i=1,2to have

y;‘=0,g;‘20, i€,
g 20,y:20 ieC,.

Putting above equalities and inequalities together, we conclude that y* is a KKT
point of the problem (2.3). O

@ Springer

22 C.Shenetal.

5 Local quadratic convergence

We now investigate the convergence behavior of Algorithm 1 with Algorithm 2
embedded in Line 9 for adaptively computing the search direction. For simplicity,
we call such an implementation of Algorithm 1 as AASA(Adaptive), for which the
sequences {y*} and {7/} are called the outer-loop and inner-loop sequence, respec-
tively. It should be noticed from Algorithm 2 that a particular inner-loop sequence
{7/} starts from a certain outer-loop iterate y**!, and has one of the two mutually
exclusive scenarios: (a) {Z/} stops at some zt and then the iteration of
AASA(Adaptive) enters back to y**!, and continuously produces y**2, and (b) {Z'} is
an infinite sequence satisfying o(z) — 0 as j — oco. For the former case (a), the
intermediate {7/ }j‘: , are only trials which do not change current outer y**+1, whereas
for (b), AASA(Adaptive) converges. Therefore, one and only one of the following
situations occurs in AASA(Adaptive):

(i) an infinite outer-loop sequence {y* 170, is generated, or
(i) from some y**!, a sequence {zj}]i‘il is generated by Algorithm 2 and
AASA(Adaptive) converges.

Theorem 5.1 Suppose that Assumption 4.1 holds, then any accumulation point of
the sequence {y*} from case (i) or {Z} from case (ii) is a KKT point of the problem
(2.3).

Proof If case (i) occurs, we know that all the inner-loop sequences {z/} are finite
sequences, and the convergence analysis of Theorem 4.1 is true for the outer-loop
sequence {y* }re ;- Indeed, for a y**+1, if AASA(Adaptive) generates a finite sequence
{7 }jkz ;» the search direction at y*+1 will be reset as the L-BFGS direction d’gl (cf.
Line 14 of Algorithm 2), and thus Theorem 4.1 applies for this case.

For the case of (ii), the condition in Line 6 of Algorithm 2 ensures that

fE@ < f(@) +6VFE@) dy(@). V). (5.1)
By Assumption 4.1 and Lemma 4.1,
VFE@) dy() <0,

and use (5.1) to conclude {f(z)} is monotonically decreasing. The coercivity of f

ensures the boundedness of {f()} and further the convergence of {f(z)}. Thus by

(5.1) and Lemma 4.1, lim Vf(z)7dy(z) = 0, a result similar to (4.26). With this and
Jj—oo

following analogously the proof of Theorem 4.1, we know any accumulation point
of the sequence {7} is a KKT point of (2.3). O

Let y* be an accumulation point of the sequence {y*} (or {Z/}) generated by
AASA(Adaptive). According to the convexity of (2.3), y* is also a minimizer. From
[22, Theorem 2.2], we know that a minimizer y* is isolated under the second-order

@ Springer

An accelerated active-set algorithm for a quadratic... 23

sufficient condition, which, by Theorem 5.2 below, is true under the constraint non-
degeneracy condition for the primal problem (1.1). Therefore, we can assume that
the sequence {y*} (or {z/}) converges to a minimizer y* with the constraint nondegen-
eracy condition, and define accordingly

X' =Tg [G+ A (] (5.2)

The constraint nondegenercy condition holds at X* if

A 5 linTo(AX*) = b)) _ (R™
7)o * linTg: (X*) =\s)
where T (X) denotes the tangent cone of K at X € K, linT-(X) denotes the largest

linear space contained in Ty (X), and Z, is the identity mapping from S" to S". Let
the primal index set of active constraints at X* be

X ={il{(A,X*y=b;, i=p+1,...,m}. (5.3)

Then the linear mapping Az: 8" — RP* given by A#(X) = [LA(X)]# has its adjoint
A}, where F = £U Z7(X*), and 5 denotes the cardinality of 77 (X*).

Theorem 5.2 If the constraint nondegeneracy condition for the problem (1.1) holds
at X* given in (5.2), then the strong second-order sufficient condition for the dual
problem (2.3) holds at y*.

Proof By [10, Lemma 4.3], for any V € dB(l'[Si [X*D),
(hz AzVAL(hz) > 0

for any hz#0 with h€R"™ Because of the complementarity between
(A, X*) =b;,i €7 and y;, FUZy(y*) equals S_U Z, but FnZ,(y*) may not be
empty. So, ifi € F, theni € Z,(y*). For any h € H,(y*)\{0}, h; =0,i € _Io(y*), and
then A*(h) = X, cxhiA; + Xigr A = A;__(hj:). Therefore, for any i € H,(*)\{0}
andany V € aB(Hgi [X*D,
(h, AVA*(h)) = (A"(h), VA" (h))

= (AL(hp), VAL hy)

= <hj:, .A}-V.A;__(hj-)) > 0,
which implies the strong second-order sufficient condition. O

Under the constraint nondegeneracy condition for the primal problem (1.1), the

following theorem shows that our algorithm converges to a minimizer of the dual
problem (2.3) quadratically.
Theorem 5.3 Let y* be any limit point from case (i) or (ii) of AASA(Adaptive). If the

strict complementarity condition for the dual problem (2.3) holds at y* and the

@ Springer

24 C.Shenetal.

constraint nondegeneracy condition holds at X* given by (5.2), then y* must be a
limit point from case (ii); that is, y* is a limit point of (< }j?'il generated at Line 7 of

k+1

Algorithm 2 from some outer iterate Y**'. Moreover, {7 };:1 converges to y*

quadratically.

Proof By assumption, Theorem 5.2 ensures that the strong second-order sufficient
condition holds at the KKT point y*, which is a minimizer by the convexity. Using
Theorem 3.2, for sufficiently large k, F(y*) (or F(')) and B(y*) (or B(z')) can cor-
rectly identify the inactive and active sets F and B, respectively.

Let X* and Z°(X*) be defined by (5.2) and (5.3), respectively. Then the strict
complementarity condition ensures F=F :=£UZ’(X*). Therefore, with the
active (inactive) set identified by y* which is sufficiently close to y*, solving (2.3) is
equivalent to min,. z f(z), where Z = {z|z; = 0,i € B}. At such y*, define an auxil-
iary function f(z,) with the variables z, extracted from z by and z, = 0 fixed, and
@) =f,_, - Thus

min/() <= min f(z,). (54)

Due to the convexity of f (z,), (5.4) can be solved from
Fz,) :=Vf() = Vfi @], =0,

where Vf(z) is given by (2.4).
Let { 2;}]?’21 be the sequence from the generalized Newton iteration for F(z,) =0
via
=y +d, j=12,..., (5.5)
where j’fl’f =-F (2’}) and JV € dgF (2’}). For the index set F, define the linear map-
ping A,: " - R¥1 by A (X) = [AX)],, whose adjoin mapping A*: R¥1 — &" is
given by A(h,) = Y., iA;. By (2.4),

F(z,) = [Vf(@], = AIG + A(z)], — b

is locally Lipschitz continuous and also strongly semi-smooth on R¥1[3, 32]. From
[10, Lemma 4.3], for all V € dB(HS»l [G+ ALy, every A VA" € dzF(y?) is posi-
tive definite. Consequently, by [23, Theorems 3.2 and 3.3], {2’f} converges to yj
globally and quadratically provided that 2; is sufficiently close to y?.

Recall y* is a limit point from case (i) or (ii). By Theorem 5.1, we can assume,
without loss of generality, that z' (see Line 3 of Algorithm 2) is sufficiently close to
the limit point y* of either case (i) or (ii). Let z) be the subvector of z' indexed by F.
Starting from ilf = z'f, the sequence {2} generated by (5.5) converges to y; globally
and quadratically. Augment 2, to # by setting 2, = 0 accordingly to have an auxiliary
sequence {%}, and we know it converges to y* globally and quadratically. Our final
task is to show {#} is the same as that generated by Algorithm 2 (cf. Line 7).

@ Springer

An accelerated active-set algorithm for a quadratic... 25

The proof is by induction on j. First, z! = z!. Suppose the conclusion holds for
j> 0 and we will show z*! = #*1, In fact, as {#} converges to y* and 2!(= z!) is
sufficiently close to y* by the inductive hypothesis, we know () =F and
B(z) = B. This ensures that the later condition in Line 6 of Algorithm 2 is fulfilled.
By (3.11) and (3.15), [ZZ’N]f(: [dy()],) is exactly El’f in (5.5). Because of ¥ — y*
and [d)], = 0 (see Lines 5 and 12 of Algorithm 2), dy(%) — 0. Second, due to
Vi, > O assume, without loss of generality, z’m > (. By induction, we further have
M@ + d) =T + d =%+ d’ =7 +d),. Note that the strict complementa-
rity condmon implies y* = 0 and g > 0. Assume 25(%) > 0, and thus g,(7) > 0. By
(3.11) and (3.2),

[dy ()], = max(0,2, — o 185()) — ocﬁ3 > 0.

Hence, 7, = 0 and g,(z) > 0 imply [dy(z)], = 0. Due to the generalized Newton
equation J}, [,], = —g () with /. € 05F(2,), it holds that
&A1, = —[d)F [d,],

FFF

and ||Z. + (&1, — Il = O(llZ. — y*[I»). By [10, Lemma 4.3], /,, is uniformly posi-
tive definite for all Z,, i.e., 35 > 0 such that

2@ 1dy), < -l 1IP, V.
Applying [6, Lemma 3.2 and Theorem 3.3], we have
FE +1d,1,) <J@) + 88, [dy (@], (5.6)
As Z, = 0 and [dy ()], = 0, it holds that
f@+d) =FE+1d],), f@)=]E), and g@) dy(@) = g&) ldy(@)],.
which together with (5.6) yields that
@ +d) < f(@)+ 8g() dy(2).

Consequently, the sufficient decrease condition (3.17) is true due to
Ny(@ + d)) = & + d),. According to Algorithm 2 (see Lines 6-7), the new iterate is

=M@ +d) =7 +d, =",

where the last equality follows from [dy ()], = Ei’f [dy(@)], = 0, and the inductive
hypothesis. This completes the proof. O

@ Springer

26 C.Shenetal.

6 Numerical experiments

In this section, we conduct numerical evaluation of Algorithm 1 with the adap-
tive acceleration of Algorithm 2 (denoted by AASA(Adaptive)) on various prob-
lems. Our numerical experiments are obtained by comparing with several other
approaches or implementations, including the inexact smoothing Newton method
(denoted by ISNM) [10], the projected BFGS method (denoted by P-BFGS) [14],
Algorithm 1 accelerated by the pure limited memory BFGS (denoted by AASA(L-
BFGS)), and the alternating direction method (ADM) [12, 35]. The codes of ISNM
and P-BFGS are available online,> while the ADM is coded by ourselves. For com-
parison purpose, we report the number of iterations, CPU time and the KKT residu-
als o*. The numerical comparison was carried out on a PC under Windows 8 (64bits)
system with Inter(R) Core(TM) i5-4590 CPU @ 2.4GHz and 4GB memory, in the
Matlab environment (R2019a).

For the parameters involved, we terminate our algorithm whenever ofF<e=1075
other parameters in our implementation are given as follows:

6=02, 6§=002, £=085 ¢,=02 ¢ =0005 €, =03, ' =0.

X

All the parameters for AASA(L-BFGS) are the same as AASA(Adaptive). For
ISNM, P-BFGS and ADM, we set € = 107° as tolerance and use default values for
other parameters. We remark that the stopping conditions for AASA(Adaptive),
ISNM, P-BFGS and ADM are not completely the same, due to their different opti-
mality measures involved.

Our numerical examples are in the following form:

. 1 2
min §||X—G||F N
st. X;=b;, (i,)€DB,

X;=21l;,) €EB, 6.1)
X; <u; (Q.)) € B,
XeSs,,

where 3,, B, and B, are three index subsets of {(i,j)|1 < i < j < n}; in particular, the
values of [; for (i,j) € B, and u;; for (i,j) € B, are lower and upper bounds, respec-
tively, satisfying /; < u; for all (i, j) € B, n B,

We choose various specific problems for testing. The set of test problems includes
synthetic data as well as real world data. Numerical results from synthetic prob-
lems are reported in Sect. 6.1, where the data matrix G is generated randomly with
medium size problems (n < 1000) and large-scale problems (1000 < n < 2000).
Numerical results from real world data are shown in Sect. 6.2, where two data
matrices are from financial markets (Shenzhen Stock Exchange and Shanghai Stock

2 Codes of the approaches of ISNM and P-BFGS are available online at http://www.math.nus.edu.
sg/~matsundf/, and https://ctk.math.ncsu.edu/matlab_darts.html, respectively.

@ Springer

http://www.math.nus.edu.sg/%7ematsundf/
http://www.math.nus.edu.sg/%7ematsundf/
https://ctk.math.ncsu.edu/matlab_darts.html

An accelerated active-set algorithm for a quadratic... 27

Exchange in China) and constraint positions and constraint levels are specified to
simulate some stress testing scenarios in financial risk management.

6.1 Synthetic examples

Similar to [10, 12], we randomly generate six synthetic examples (denoted by
E1-E6) as follows:
E1: The matrix G is generated by Matlab built-in command rand via
G=2.0*rand(n,n)-ones (n,n); G=triu(G)*triu(G,1)’; for
i=1l:n; G(i,1)=1; end; The index sets are

B,={Gnli=1,....,n} and B;=B,={GminG+jn)li=1,....,n, j=1,...,n.},

where n, < n is an positive integer. Moreover, b; = 1 for (i, i) € B,, [;; = —0.1 for
(i,j) € B, and u; = 0.1for (i,)) € B,

E2: G and B, are the same as in E1. The index sets 3, B, C {(i,j)|1 <i<j < n}
consist of min(n,,n — i) pairs (i, j) with j randomly generated at the ith row of X,
i=1,...,n Similar to E1, b;, = 1for (i,7) € B,, l[j = —0.1for (i,j) € B;, and u; = 0.1
for (i,)) € B,.

E3: The settings are the same as in E1 except that lij = —0.5 for (i,j) € B;, and
w; = 0.5 for (i,j) € B,

E4: The settings are the same as in E2 except that lij = —0.5 for (i,j) € B;, and
w; = 0.5 for (i,j) € B,

ES: The settings are the same as in E1 except that l,-j = —0.5 * rand for (i,j) € B,,
and u; = 0.5 * rand for (i,j) € B,.

E6: The settings are the same as in E2 except that l,-j = —0.5 * rand for (i,j) € B,,
and u; = 0.5 * rand for (i,) € B,.

6.1.1 Choice of the parameter /

Generally, the performance of the L-BFGS method is dependent on the param-
eter [in (3.12). Also, since AASA(Adaptive) and AASA(L-BFGS) both involve
the L-BFGS update, a good choice [is desired practically. For that purpose,
we particularly test AASA(L-BFGS) using various [/ =2,3,5,8 on E3 with
n = 1000, 1500,2000 and n, = 300, 600, 800, 1200. The numerical results are
listed in Table 1, where the label ‘Iter’ stands for the number of iterations, and
m=2n-1-=n.)n.+ (1+n.)n, + nis the number of constraints.

From Table 1, overall, we observed that / = 3 turns out to be a good choice for
AASA(L-BFGS). In particular, the algorithm with / = 3 converges (in CPU time)
fastest in general. Since AASA(Adaptive) generates the same iteration in the earlier
stage as AASA(L-BFGS), we also set [= 3 for both AASA(Adaptive) and AASA(L-
BFGS) in the following numerical experiments.

@ Springer

28 C.Shenetal.

Table 1 Numerical results for AASA(L-BFGS) with different / on E3,

n n m Iter CPU time (s)

r

=2 [=3 [I=5 1[=8 [=2 [=3 [=5 1=8

1000 300 510,700 930 793 880 1039 258 233 280 371
1000 600 840,400 1636 1197 1174 1453 571 447 489 694
1000 800 960,200 1917 1447 1278 1651 726 590 586 859
1500 300 811,200 941 852 832 907 692 646 664 779
1500 600 1,440,900 1718 1405 1534 1645 1497 1284 1509 1760
1500 800 1,760,700 1927 1420 1638 1870 1806 1406 1811 2223
1500 1200 2,160,300 2670 1880 1772 2646 2751 2118 2178 3704
2000 300 1,111,700 787 787 952 1115 1268 1299 1618 1997
2000 600 2,041,400 1772 1427 1369 1891 3195 2700 2723 4159
2000 800 2,561,200 2097 1697 1555 2358 4072 3404 3335 5582
2000 1200 3,360,800 3231 2144 2138 3186 6771 4798 5192 8477

The best cases in terms of number of iterations and cpu time are bold

6.1.2 Fastlocal convergence

We now demonstrate the fast local convergence of AASA(Adaptive) in practice.
For illustration, we run AASA (Adaptive) on two instances of E2: one is a medium
instance with n = 500, n, =200 and m = 90,400, and the other is a large-scale
instance with n = 2000, n, = 500 and m = 1,751,500. The tolerance® ¢ is set to be
1073 in order to observe the quadratic convergence.

In this experiment, AASA(Adaptive) solves the first instance within 160 itera-
tions, where the generalized Newton steps d" and d’ are used 15 times (d’ is rejected
for once time, accepted 3 times, and dk is used for the remaining 11 tlmes) For the
second instance, it takes 311 1terat10ns where the generalized Newton steps dk and
d’ are used 17 times (d’ is rejected for 2 times, accepted 2 times, and dk is used for
the remaining 13 t1mes). The detailed information of iterations on the two instances
is given in Tables 2 and 3, where the label ‘Res’ represents the KKT residual. The
column of ‘Step d** gives information about the search direction, and ‘Active set’
tells if the true active set is detected or not; moreover, the column labeled by ‘Full
step d’ shows if the full semi-smooth Newton step d’ (in Algorithm 2) is accepted
or not From Tables 2 and 3, we know that the res1duals in the last 3 or 2 iterations
drop very rapidly as long as the active set is identified. The semi-Newton direction
d’ is used at the final several iterations and fast local convergence is observed.*

3 We remark that ¢ is set to be 1078 only in this subsubsection because it is beneficial to observe the
quadratic convergence rate from numerical results. In the rest numerical experiments, ¢ is still set to be
107S.

One may observe that the convergence in the final stage in Tables 2 and 3 is not indeed quadratic. This
is due to the use of CG for the generalized Newton system where only a properly accurate approximation
solution is computed.

@ Springer

An accelerated active-set algorithm for a quadratic... 29

Table 2 The information of . i
It R k Act t 4
intermediate iterations generated e e Stepd clive se Full step d,
by AASA(Adaptive) on the
medium instance of E2 -
145 8.13E-02 d’é Undetected -
146 3.10E-01 d}’\‘] Undetected -
147 1.74E-01 d’é Undetected -
148 1.07E-01 d]’i/ Undetected -
154 1.12E-03 dfv Undetected -
155 1.33E-02 &]1.\/ Undetected Rejected
156 1.25E-03 d’é Undetected -
157 2.33E-04 d}’\‘] Detected -
158 2.31E-06 _1.\/ Detected Accepted
159 2.14E-08 [gll'v Detected Accepted
160 2.09E-10 ‘_ilz.v Detected Accepted

The boldfaced indicates the occurrence of the superlinear conver-

gence
iTr?tl;IrenfedFiFa}i: ;?e:?artrir:rllzogegirated fter Res Step d* Active set Full step ‘_l;\’
by AASA(Adaptive) on the
large instance of E2
300 1.03E-01 d;‘v Undetected -
301 6.72E—02 ds Undetected -
302 2.75E-02 d}k\'] Undetected -
303 2.72E-02 dfv Undetected -
304 2.85E-03 ds Undetected -
305 8.36E-03 gfll'v Undetected Rejected
306 6.86E—03 d’é Undetected -
307 2.21E-04 d]k\'/ Undetected -
308 3.35E-05 ajv Undetected Rejected
309 3.27E-05 d‘é Detected -
310 3.08E-07 ajv Detected Accepted
311 2.98E-09 &]1.\/ Detected Accepted

The boldfaced indicates the occurrence of the superlinear conver-
gence

6.1.3 Results from medium size problems

We test E1-E6 with n varying from 400 to 900 and n, from 100 to 500. In this
testing, the maximum number of iterations for ISNM, AASA(L-BFGS),
AASA(Adaptive), P-BFGS and ADM are set to be 1000, 2000, 2000, 2000 and
3000, respectively, and the maximal allowed CPU consuming time is 1500 seconds

@ Springer

C.Shenetal.

30

90—d0L 109 4100C L6€ .000¢ § ¢ LO—HI'T 6C YOI L0—HL'6 €S 6ce L0—HTT LOI 88 008°0LT 001 006
€0—dET 0SL 4100C 90¢ .000€ € 0¢ L0-HOT ¥OI 88C LO0—H6'6 061 LTS8 LO—HEE I¥Il +E€C 00E0SS 00S 008
€0—d+'l 869 L100C ¢o¢ ,000€ ¢ T Lo-"H¥6 OL 9¢C L0—dE8 T8I 998 LO—HOY €8 ¥0T 00¥°08% 00F 008
Y0—HEL €9 L100C 66T 1000€ € ¥ 80—H9Y €9 0T L0—H6'6 LTl 8.9 LO—ATT ¥00I 68T 00S°06€ 00¢ 008
$0—H9'T 19§ 4100 L6T .000¢ § 96 LO0—HSL 08 91T L0—dH6'8 I8 91§ 80—H9C 10T $IT 009°08C 00T 008
90—-d96 19% 4100C v6T .000¢ ¢ €1 LO-HOE 1T 901 LO—HI'6 LE 86C 80—HOL 08 I8 00L‘0ST 001 008
$0—dS9 $9¢ (100C ¢IT L000€ € ST 80-HS9 9 9¢C L0—d86 9¥I L¥8 60—HTL S¥9 ¥L1 00T°0S¥ 00S 00L
$0—dL9 STS 4100 TIT .000¢ I ¢ 80—dI't 8¢ 0¢Cc L0—dI'8 0TI 8yL 80—HLL 8FS 9L1 00€00¥ 00F OOL
YO—dI'v ILy (100C 11T ,000€ € 8¢ L0—HLT L¥ L8T LO—H96 S6 SL9 80—HLT 6CC ITT 00F'0€E 00¢ 0OL
S0—H9'¢ ¥0o¥ L100C 60T .000€ ¢ SI 80—d8T LT 091 L0—d6'8 8S yor 60—dHS'6 9¥C ¢ST 00S°0vC 00T 00L
90—d8'¢ vee 4100C Loz L000€ T 6 80—dL'T €I L8 LO—HEL 9T 86C 80—HTE ¥S CL 009°0€1 001 00L
Y0—dLT SOF 4100C 8¥I L000€ ¢ 0C 8o0o—dl'e OF LTC L0—H6'6 V6 6€L 80—HL6 6¥¢ 66l 001°0S¢ 00S 009
Y0—d¥y'CT ¢8¢ L100C Ly1 ,000€ ¢ L1 LO-HSS ¥E 661 LO—HL6 T6 SLL LO—HTT 661 €0I 00T'0CE 00 009
$0—H0'T SS¢ (100C 9v1 L000€ ¢ 8¢ 80—H99 ¢ 90C L0—HE8 IL ¥99 L0—HST ¥91 10T 00€°0LC 00¢ 009
S0—dZ'1T 86C (100C v¥1I ,000€ ¢ vI LO-HEE 6l vl 90—d0'1 ¢ 6y 80—d¥'l <91 6C1 00¥°00C 00T 009
90—d0'€ 0¢C (I00C +¥I L000€ ¢ 71 80—a¥1 o0l L6 LO—HI'6 61 L0E LO—HET LT LS 00S°0IT 001 009
go—-d¥'c §9C L100C L6 1000€ ¢ Ll LO-"¥T T L0C LO—HI'8 9S I1L9 60—dTS ¢l S6 0or‘'orc 00¥ 00S
S0—d¢L LvT L100C L6 1000€ € I 80—HEIT ¥C 10 Lo—dL'6 Sv 16§ 80—dHTT LII 0ZI 00T°0IC 00¢ 00S
90-49'¢ cCIc 100C S6 1000¢€ I 12 L0—d9L ¢SI 191 L0—H6'6 0¢f 06y 80—dEl COI IT1 00€°091 00T 00S
90—dL1T LyT L100C t6 1000€ € LT 80—d¥'S8 1I 911 L0—H6'8 VI €Ie 60-49'S 1€ 99 00706 001 00S
90-49'¢ ILT :100C +9 1000€ I 0¢ 80—d8tv &I 061 L0—dH¥'6 0¢ 98¢ 80—HI'EC €8 6 00I°0ST 00€ 00F
L0—dS6 I€I 0z6l 9 1000€ ¢ 1T 80—dHTT OI IST L0—d88 0T 687 60—HS'6 €S 8L 00T'0CT 00T 00¥
L0—dE6 88 ¢sST 9 1000€ ¢ < Lo-drvy ¢ 66 L0—d1'6 11 ore 80—HST C¢ IL 00€£0L 00T 00F
soy) 19)]] L N N soy [231 § soy R =) sy 1 1)
SOdd-d nav (9Andepy)VSyv (SOAg-DVSVV JANSI w “u u

swo[qo1d wnIpaw 10J T3] UO S)NSAI [eLIOWNN { d|qeL

pringer

As

31

An accelerated active-set algorithm for a quadratic...

aInyrej oy} sajedIpul (L) joquiks 1033ep oy,

€0—dLT Oove :100C ¢Iv ,000€ ¢ 6C 80—d¥CT €¢Il Toc LO—HI'6 VY¥C ¥S8 80—HCTT LEI L1T 00¥°0S9 00S 006
€0—d9'¢ 9.8 L100C 90F .000€ ¢ SI LO—HLE 68 6vc L0—dL8 CTIT L08 LO—HYE <98 L6T 00S°09S 00F 006
€0—H9'1 T6L 4100C COo¥ .000€ ¢ LI LO-HTY 89 ¢6l L0—H86 L9T 9IL 80—H6'lT S€9 €81 009°0S¥ 00€ 006
y0—dCtv 80L +100C 66€ .000¢ ¢ 6C 80—dHSS LS 991 L0—HS6 66 96 60—HEL CTv L9T 00L°0CE 00T 006

oy] 19)]]) N N soy 1 19 soy] 19 oy 1]
SO449-d nav (eandepy)VSVY (SOd9-DVSVV JANSI w “u u

(ponunuoo) t 3|qey

pringer

As

C.Shenetal.

32

0—dS9 19 .100Cc oy 1000€ € ol LO—HS6 9¢ ¢l LO—d¥'6 €9 ¢8¢ 80—HT6 O9II 16 008°0LT 00T 006
€0—d8'L 6vL .100C Log L000€ ¢ ST L0—dI'l ¢8 8YC L0—H6'6 90T 868 60—H6'8 8C6 10T 00€0SS 00S 008
Y0—d9°'L TOL .100C 91¢ ,000¢ € <& 80—d8Y T8 vve L0—H6'8 LSI LyL 80—H6C VIL G81 00¥'087 00F 008
v0—d6'v 9¢9 .100C $0¢ ,000€ T Ll 80—4d8'T 9¢ ¥0C L0—H96 6fl 8¢L 60—HO'S €€S L91 00S°06€ 00¢ 008
Y0—H0'S LSS .100C T0E€ .000€ T LT LO-HOY I¥ 9¢T LO-HY'S €6 €8S 80-HI't T6T SET 009°08T 00T 008
So—d¥'s L9y L100C 66C 1000€ ¢ SI 80—H6'S ST 141! LO—HT6 &P Sbe 80—H9'S 0ST 091 00L'0ST 00l 008
YO—dv'6 99¢ .100C LIT ,000€ ¢ € L0—HTI 99 09¢ L0—dHE6 Tvl GI8 80—dHTt Lo LST 00T'0S¥ 00S 00L
¥0—d46'9 TS L100C SIT 4000¢ T L L0—d0E 6F 60C L0—HE8 8CI 96L 80—HY'I £evs €LT 00€00¥ 00F OOL
yO—dI1'¢ 18y .100C ¥IT ,000€ ¢ € L0—dT6 9 61C L0—dT'6 001 169 80—H9'I 1849 €81 00v'0ce 00€ 00L
¥0—H0'C ciy L100C vICT 1000€ S 6¢ 80—dE'T Sy 861 LO—H8'8 IL 068 LO—HSY 99¢ 161 00S°0¥C 00T 00L
so—de6'¢ 8¢ .100C 112 ,000¢ [80—H9'S LI 801 LO—HE6 €€ 0LE L0—HLE V8 88 009°0€T 001 00L
y0—dE¢T €or 4100C 0SI 1000¢ € v LO-HTT V¥ LTC L0—HdE6 Y6 IvL 80—HE'1 6¢¢ 14! 001°0S¢ 00S 009
Y0—d8°1 68¢ L100C 8Pl 1000€ ¢ ¢ 80—dTL 8¢ 61C LO0—HT8 16 19L 80—dS'I 65¢C 12T 00T°0CE 00F 009
$0—9S'T TS€ ,100C 8FT ,000€ ¢ LT 80-HTY 9¢ €T 90-HOT LL LIL 80-HI'E ¥81 801 00€0LC 00€ 009
co—dege vog L100C Lyl 1000¢€ c ¥l LO—HI'C TC 8LI LO0—H06 8F €vSe 80—HI'6 891 911 00¥'00C 00T 009
so—d+v'I ve€¢ 100 SpI 1000€ T v 80—dH6'I 81 cel L0—d6'6 VT 69¢ LO—HI'I 8 89 00S°0IT 00T 009
S0—dL'S 0Lz 4100C L6 1000€ ¢ 0T 80—d9¥% ST ¢IC LO—H6'6 6S L0L 60—d8S 9IC 9c1 00T°'0¥C 00¥ 00S
S0—H9°¢ 9¥T L100C L6 1000€ ¢ 6T 80—d¥9 €T €0C LO—HE6 LY 619 60—dI'L 00T id! 00T'0IC 00€ 00S
go—d1'c SIc .100C 96 1000¢€ v 81 80—dT'1 L1 691 L0—Hd88 €€ ¢cs 80—dL9 8¢ 0L 00€09T 00T 00S
90—H6'1 651 L100C 96 1000€ I Ll 80—HLT 6 801 LO—dT8 91 ¥ee LO—HI'Y IS 88 00+°06 00l 00§
SO—dS'I 1L1 100C 69 1000¢ I ¢ 80—dI't ¥l 661 L0—dS'8 0¢ SLS LO—HIT Ly €9 001°0ST ~ 00€ 00¥
90-d49C OVl 1100 69 1000€ I 0T 80—dST 1T eLT L0—Hd98 CC 1e6 80-de¢e L9 88 00T°0CT 00T 00¥
90—dS€ I6l .(I00C ¥9 1000¢€ T €1 LO—HI'L € ! LO0—dE6 TI 1L 80—H9'T 9¢ €L 00€°0L 001 00%
soy) 19)]] L N N soy [231 § soy R =) sy 191
S$D49-d nav (eandepy)vsvv (SOIF-DVSVV ANSI w “u u

swo[qo1d 9z1s WNIpaw 10J 73] UO S)NSAI [edLIownN § d|qeL

pringer

As

33

An accelerated active-set algorithm for a quadratic...

aInyrej oy} sajedIpul (L) joquiks 1033ep oy,

€0—do'¢ 1.8 4100C 6Tk L000E ¢ 81 L0—HEL €Il 68T LO—H88 86C 0C6 80—HI'I YTl LIT 00¥'0S9 00S 006
€0—dLT 168 :100C 11+ ,000€ ¢ 6l LO—HTT 86 LST L0-HT6 €LT ¥66 80—HY'T 068 L6T 00S°09S 00F 006
€0—H9'1T <08 LI00C OIF .000¢ ¢ 6t LO-H9Y S6 66C LO—HS86 6SI ¥L9 80—HOE 8TOI 9€T 009°0S¥ 00E 006
€0—dr1'1 vcL 4100C Loy .000€ ¢ S¢ 80—dIc @9 861 LO0—H9'L ITI S6S LO—HI'T 6V €SI 00L°0TE 00T 006

oy] 19)]]) N N soy 1 19 soy] 19 oy 1 19
SO449-d nav (eandepy)VSVY (SOd9-DVSVV JANSI w “u u

(ponunuoo) g s|qey

pringer

As

34 C.Shen etal.

for all solvers. The numerical results on E1 and E2 are listed in Tables 4 and 5,
respectively, where the labels ‘t’, ‘N” and ‘N’ represent CPU time (in seconds), the
number of generalized Newton steps (both dfv and c_z’jv), the number of rejected gener-
alized Newton steps (Eijv), respectively. It should be pointed out that the KKT residu-
als associated with each solver are recalculated by (3.4) for measuring the accuracy
of the computed solutions; moreover, since ADM only gives the primal solution,
which cannot be used to calculate the KKT residual ¢* directly, we omit the final
residuals associated with ADM in Tables 4 and 5.

We observed from Tables 4 and 5 that ISNM, AASA(L-BFGS) and
AASA(Adaptive) succeed in solving all the instances of E1 and E2, while the other two
solvers fail (labeled by 7) in some instances. Particularly, ADM fails on all the cases as
it cannot find approximate solutions within the prescribed accuracy in 3000 iterations.
P-BFGS fails in almost all the instances due to either exceeding the maximum number
(2000) of iterations. Also, we can see that the number N, in Tables 4 and 5 is no more
than 5, i.e., no more than 5 generalized Newton steps are rejected for each instance. The
number N in Tables 4 and 5 is less than 40, which means that no more than 40 general-
ized Newton equations are solved for each instance. The numerical results in Tables 4
and 5 show the efficiency of AASA(Adaptive) in terms of CPU time.

The numerical results on E3-E6 are presented on Table 6. Again, we can see that
ASSA (adaptive) successfully solves all the problems efficiently, while P-BFGS and
ADM both fail in most cases. ISNM generally terminates in a reasonable number of
iterations but needs more CPU consuming times comparing with ASSA(adaptive)
and ASSA(L-BFGS). Also, the magnitudes of N and N, here are similar to those in
Tables 4 and 5.

6.1.4 Results from large-scale problems

Next, we increase n and n, to use various n ranging from 1000 to 2000, and n, from
300 to 800. In this case, we also extend the maximum CPU time to 3600 seconds.
The numerical results for E1 and E2 are omitted due to its similarity to those of
E3-E6 in Table 7. Also, results from ADM and P-BFGS are exclusive due to their
poor performance. It can be seen from Table 7 that, as n and n, increase, the effi-
ciency of AASA(Adaptive) gets more manifest.

Without the restriction on the consuming CPU time and the number of iterations,
we provide two cases for medium-scale problems on ES and E6: one (called case
(1)) is (n,n,) = (1000, 500) and the other (called case (ii)) is (n, n,) = (2000, 500).
Figures 1 and 2 demonstrate the performances of three solvers in terms of the num-
ber of iterations, the residuals and the CPU time.

@ Springer

35

An accelerated active-set algorithm for a quadratic...

QInyrey Y3 sajedIpur (L) joquiAs 1933ep Y],

€0-dI'T t£6 (100T 8IF 4000 T 9T 80-dATY 1€l TIE LO-HTS TTE TOIT 80—HO6T 9€vI €€ 00¥'0S9 00S 006
€0—H0T LVL (100 L1€ 10006 T 1T LO-HCTY S8 I8C LO—H9L 9T €46 60—HT9 9SOI 00€ 00£0SS 00S 008
Y0—H9°¢ 65 (100T 61T 4000€ T L1 LO-AI9 $S SPT LO-H8S 91 8€8 LO—HSE 69 0ST 00T°0SF 00S 00L
YO-dTT €0V J100T TSI 40006 1 8T LO-HTY €F 9ST LO-HS6 €0l T08 80—-d6t STP 81T 001°0S€ 00S 009 94
€0—dET 8€6 J100C 1T 40006 1 61 LO-HS8F¥ OII LIE LO-HL6 8L €96 60—HEv €8¥I 8TE 0040S9 00S 006
YO—HEL THL (100T 0ze 4000€ v €€ 80—HO'E 00T 98T 90—-HO'T ST 6801 80—HZT 1201 L8T 00E0SS 00S 008
YO—49% LSS (100T 61T 4000 T 61 80-AES 79 SLT LO-AY6 LST T68 LO—HIY LS9 ¥ST 00T°0SF 00S 00L
Y0—-40°'T 20V J100T 16T 40006 T T€ LO-ALT TS SLT LO-AI'S SIT 106 LO—HI'T 0TE 9L 001°0S¢ 00S 009 SA
LO-F6'L 81¥ 86 O0cy 000 1 9 L0-HI'L S8 ¥LT LO—H86 LTE SPII 00+A6T 00ST < SSS 00¥'0S9 00S 006
90—-d¥'T 00SI< 4100C €I¢ 0006 I L 80—HET S9 +ST LO-HE6 19T LSIT 60—d9t €bOI +IS 00£0SS 00S 008
LO-AT8 11T 618 LIT 4000€ 0 S LO-HT6 9¢ IST LO-HS6 T8I $90I LO—HOT V86 909 00ZT°0S¥ 00S 00L
L0-H9'6 161 966 0S1 40006 0 S LO-HIT €€ L£T LO-H6'8 6T1 TEOI 60-dALY 9pE 80¢ 00I°0SE 00S 009 +A
LO-H0'6 0¥ v68 SIy 1000€ I 9 80-H69 18 LST LO—H6'6 €I€ 60I1 OQ0+HLT 00SI < 995 00F0S9 00S 006
90-dS'S 00SI < 4100C LOE 4000E I 9 80—HST 09 0€T LO-H96 9ST €IIl LO-H6t 816 9Ly 00£0SS 00S 008
LO-AY'6 8T €8 91c 0006 1 9 LO-H¥L 9v LYC LO-HE6 L9T 6L6 80-HOT 6£6 €85 00T0SF 00S 00L
LO-TY'8 9SI 618 €SI 40006 I 9 60-H¥6 6C LOT LO-HS6 IIl 8.8 LO-AFT 8 €I¢ 001°0S¢ 00S 009 €H
Sy] 191] ™M NN Sy] 19 Sy] 191 Sy] 19
$049-d Nav (oandepy)VSVY (SOI9-DVSVV ANSI w - u u odAy,

00S = “u YIIM 9F—€] UO SI[NSAI [eoLIdWNN 9 3|qel

pringer

As

C.Shenetal.

36

0 S LO-HE'E 676 0st LO-H9°6 €LEE 8L91 10+dCC 009¢ < ST 00T°195°T 008 000T
I S LO—HTE 969 86¢ L0—H8'8 LL9T 6Tyl 10+AL'T 009¢ < 9T 00 1¥0°T 009 0002
I S 80—H0'C 98¢ 61¢C LO—H0'6 8SH1 768 00+40°L 009¢ < 16T 00LTIT'T 00€ 000¢
0 9 80—HC'I 6€€ 8¢ LO—4¥6 €eLl 8€ELI 10+ATT 009¢ < 107 00L09LT 008 00ST
¢ L L0—-d8'Y (443 (443 LO—H6'6 1821 LOYT 00+40°6 009¢ < 4% 0060t 009 00ST
I S 80—dC 6 LLY LIT L0966 019 ¥28 00+t 009¢ < S09 00CT'T18 00€ 00ST
¢ 8 LO—H6t L¥1 €3 LO0—H9°6 96¢ A 00+d8°¢ 009¢ < 08 002°096 008 0001
0 S LO—H9'T (44! S0¢ L0—H8'6 9Ty 911 20-99°C 009¢ < 6¥01 00%'0%8 009 0001
I S 80—HC'C L 81¢ LO—aY'6 9T 0S8 80—dI'€ £96 (447 00L°0TS 00€ 0001 v
I S 80—4d8'¢ €8 18€ LO—HT6 6LT¢ P91 10+4d2C 009¢ < L1T 002°198°C 008 0002
I S LO—H9'T ¥29 91¢ LO-H6'6 9€€T 1921 10+dL'T 009¢ < 95T 00¥ 1#0°C 009 0002
I S 80—4LT LOE SLI LO—H8'6 9L11 YeL 00+4d59 009¢ < LOE 00LTITT 00€ 0002
I S LO—H8'C Sov T6€ LO0-A8'6 8SLI 6081 10+4C'1 009¢ < Siv 00L09L°T 008 00ST
0 S LO—H9°E 00€ 813 LO-AT'6 L6TT Te€l 00+d6'9 009¢ < L9V 006071 009 00ST
I S 80—HL'1 YL 61T LO-AL6 659 088 10-4I'L 009¢ < 89 007118 00€ 00ST
0 S LO-A8'E €zl 68¢C LO—H0'6 €S 01¢€1 10—HE9 009¢ < 0r6 002096 008 0001
S 11 80—HI1"9 66 81¢C L0996 €8t 8I¢l 80—H9't ¥$ST 96L 00708 009 0001
T S LO—H9°S 9 161 LO—H6'6 S6¢ TIo1 LO-AL'E 89L1 YL 00L°01S 00€ 0001 I |
"N N N 19 N] 19)] sy] 19)]
(aandepy)vSyv (SDA9-DVSVV JANSI w ‘u u odAL

swo[qoid a[eos-031e] 10J 9F—€F UO SINSAI [eOLIOWNN / 3|qe]

-
)
50
R
-t
(=9
7
&l

37

An accelerated active-set algorithm for a quadratic...

I 9% LO—HS'S (474! 09% €041l 009¢ < YOLI 10+89°T 009€ < 0Ll 00T°195°C 008 000T
z 61 80—HC'E 98 18¢ LO—H8'6 69¢€ €ILT 10+AC° T 009¢ < 881 007 1¥0°C 009 000T
T €1 LO—H8'T 8t (454 LO—A¥'6 66€1 6V8 00+d6°€ 009¢ < LT 00LTIT‘T 00€ 0002
S LE LO—H8'T 89 0Ty LO—HS6 60€1 60€1 00+d¢'8 009€ < 99T 00L09L°T 008 0081
S €€ 80—HE'T Ly 95¢ LO—H6'8 7011 YOI 00+AL'E 009€ < 10€ 006071 009 00ST
z 8T LO—H0'T 65¢ 89¢ 90—H0'1 6LS 9LL 00+H0°1 009¢ < 487 00T118 00€ 0081
(4 0T 80—HS6 914 8¢ LO-H9°6 €65 6SH1 LO=H61 9Lg€ 68% 002°096 008 0001
z Ly L0—4LT 0T 1453 L0-4L'6 69 0¢Tl LO—HET YEIT 99¢ 00%0¥8 009 0001
€ €T LO=4¥'T Il 6LT L0418 ¥eT 09L LO—H8'E 65T 0€s 00L01S 00€ 0001 9l
€ 0¢ 80—H9'T €911 0S¥ L0—H96'6 8LEE 6991 10+39°T 009€ < L1 00T'198°C 008 000C
€ 8¢ L0—H6'T 001 00% LO—4L'L €867 SLST 10+AET 009¢ < €61 00+ 170°C 009 000T
4 I L0=H0'9 6T €T L0—H96'6 611 LTL 00+aS°€ 009€ < L9 00LTTTT 00€ 000T
T 1T LO=HASL 861 9TH LO=H9'6 €181 vest 00+40°'8 009¢ < 0LT 00L'09LT 008 00S1
4 LT L0—4S'6 86¢ (433 LO—9¥'6 611 €921 00+HAE'E 009€ < SIg 006071 009 00ST
T €1 LO-ALE 90T 0€T LO0-H8'8 L99 888 10-4S°'1 009¢ < S9F 00T°118 00€ 00S1
€ LE 80—HET Y0T e LO—HI'6 T 7801 10—4¢1 009¢ < IS 00T°096 008 0001
z 61 LO—F¥'L 91 or¢ L0—H8'8 65t yeel LO—H9'T ¥80C 89¢ 00+078 009 0001
v 9 80—H8'9 811 8T LO—HL6 90T 0L 60—HL6 1¥LT 959 00L01S 00€ 0001
"N N SOy] 19 SOy] 191 soy 1 191
(eandepy)VSVV (SOI9-DVSVV ANSI w “u u edy,

(ponunuoo) £ s|qey

pringer

As

38 C.Shenetal.

E3: n=1000 n =500 E3: n=1000 n =500

10T —T— T 2000 ———— T
—E— AASA(Adaptive)(91s) 'l —E— AASA(Adaptive)
5 AASA(L-BFGS)(379s) 1800 p s
10° [—-4)—- AASA(L-BFGS)(1983s) | 7 ,
" 1600 VA
960 4
9] A
10 - e ﬂs‘*os(}*} 1400 &
1 0\& &
2 1200 .
g 10° ¢ : S
2 : £ 1000 5
o 4 o) A
& 10 ¢ % 00 &
! '3
106 o3 600 ¥
i
(‘5 400 dﬂ
10 JE
200+ @
i s
010 S S S S S S S SO S P e R SR S S S S S S
100 200 300 400 500 600 700 800 900 1000 1100 100 200 300 400 500 600 700 800 900 1000 1100
Iteration number Iteration number
(a) Residuals on E3 (b) CPU time on E3
E4: n=1000 nr=500 E4: n=1000 n’=500
10* 2000
8 —E— AASA(Adaptive)(93s) o
AASA(L-BFGS)(418s) 1800 e
—<)—- AASA(L-BFGS)(1848s) | | /
1600 o
koo 4
BX 00 1400 &
10° l“!*u 2 906 i 0/
B 0. = ‘
o | 9, @ 1200 &
Ef U 2 o
B 1072 i = 1000 -
H 8 2 !
i [§)
’ i
10 i
i
10 i
i
o
10
200 400 600 800 1000 1200 400 600 800 1000 1200
Iteration number Iteration number
(c) Residuals on E4 (d) CPU time on E4

Fig. 1 Performance profile for residuals (left) and CPU time (right) on E3 (top) and E4 (bottom)

It can be seen from Fig. 1a that the residual corresponding to AASA(Adaptive)
gradually decreases as the number of iterations increases from 1 to 240 (the L-BFGS
acceleration works in this phase), and then rapidly drops to the preset tolerance (the
semi-smooth Newton acceleration works at that stage). The residual corresponding
to ISNM declines slowly at the beginning, and drops rapidly in the last period. This
also verifies the fast convergence of the semi-smooth Newton method numerically.
From Fig. 1b, the three curves of CPU time are nearly linear. Similar observation
can be seen from Fig. 1c and d and from Fig. 2 for case (ii). Again, the comparison
also indicates that AASA(Adaptive) is the most efficient one.

6.2 Real examples

In this subsection, we test two real world instances whose data are obtained from
financial markets.

In calculating value at risk in financial markets, the correlation matrix [28] is a critical
factor. For example, it is noticed that the market correlation structure serves as a reflection

@ Springer

An accelerated active-set algorithm for a quadratic... 39

E3: n=2000 n =500 E3: n=2000 n =500

x10%

10* T T T T 35
—E— AASA(Adaptive)(475s)
GS)(21425)
— <)~ AASA(L-BFGS)(30283s) 3
25
oeoo
z v
3 ey o 2 0990
3 54 E &
3 > Nl
14 a 15F 9@6
1 © &
i P
o
? 1 o?
i Rt
i '
. 05F —&— AASA(Adaptive)
3 AASA(L-BFGS)
—-<)—- AASA(L-BFGS)
10 0o fanan ; I N h
200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration number Iteration number
(a) Residuals on E3 (b) CPU time on E3
E4: n=2000 n =500 4 E4: n=2000 n =500
i %10 r
—E— AASA(Adaptive)(485s)
AASA(L-BFGS)(23285)
-9 AAS GS)(322335) 3
25
. % @
= S o 2r
= | E
@
& ¢ & 15f
i 8]
10 .
¢ 1
i
i
10 e 05 0000 —E— AASA(Adaptive)
i b 9 AASA(L-BFGS)
—-<)—- AASA(L-BFGS)
10° o it
200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration number Iteration number
(C) Residuals on E4 (d) CPU time on E4

Fig. 2 Performance profile for residuals (left) and CPU time (right) on E3 (top) and E4 (bottom)

of the Great Crash, which changes around the Great Crash in several aspects [11] like
abrupt regime changes [29, 30] or periodic economic cycle. In particular, the average cor-
relation coefficient after the critical point of crash usually gets higher than that before the
crash [18, 19] and will approach to a steady state gradually. Moreover, the correlation
coefficients can be used in the stress testing: the correlation coefficients between certain
underlying assets and others are adjusted largely to simulate the stress scenarios [28]; in
financial industry, people usually try to find an approximation of the restricted correlation
matrix in stress testing scenario in order to recover the adjusted matrix back to a correla-
tion matrix. Such task can be mathematically formulated as the model (6.1).

In our numerical verification, the correlation matrices to be approximated are
calculated from the sample data in the Shenzhen Stock Exchange and the Shang-
hai Stock Exchange in China. For the constraints of (6.1), we notice that particu-
lar restrictions may be associated with a historical stressful event (such as the
1987 stock market crash and 2008 economic crisis), or can be a set of hypotheti-
cal changes related with same possible future stressful market event [13]. Gener-
ally, identifying accurately the stress events set and restricting the correlation coef-
ficients between stress events and other underlying events [13] are very difficult, and

@ Springer

40 C.Shenetal.

n=792, n =n n=1187, n =400
' r
10%¢ T T T 103 T T T T
L —-e—-ADM % — = -ADM
10’ —&— AASA(Adaptive) | —=— AASA(Adaptive) | |
AASA(L-BFGS) AASA(L-BFGS)
10° ¢ -0 ISNM —0—-ISNM
P-BFGS P-BFGS
107"
o 107 2
© ©
3 103 3
b b}
& 10 | e ..
| CPU:148(s) ®oe,
sl | v, CPU:254(s) |
10
s CPU:31(s) ..
07 rL I CPU:42(s) .
<— CPU:24(s) CPU:23(s)
108
0 500 1000 1500 2000 2500 0 200 400 600 800 1000 1200 1400
Iteration number Iteration number
(a) Real Example (ET) (b) Real Example (E8)

Fig. 3 Performance profile on E7 (left) and E8 (right)

therefore, following [27], in our experiments, we just randomly generate the con-
straints and their positions to imitate the stress testing scenarios.

Precisely, for the first real world example (denoted by E7), we follow the way
in [27] and calculate the data matrix using the daily closing price of 792 stocks
listed in Shanghai Stock Exchange (from September 2016 to September 2018). For
the constraints, we restrict all entries of the correlation matrix to be no less than
—0.1 % rand + 0.6 and there are no restrictions on the upper bounds, which can
mimic some sort of scenarios in the period of economic depression or economic crisis.

For the second real world example (denoted by ES8), the data matrix is obtained
from 1187 stocks in Shenzhen Stocks Exchange (from September 2016 to Septem-
ber 2018). Again, we follow the way in [27] to generate the correlation matrix. For
the constraints, here, we choose 400 random positions at each row of the matrix X,
and set —0.3 * rand + 0.1 and 0.3 * rand + 0.1 as the lower and upper bounds cor-
responding to the selected positions, respectively.

We plotted Fig. 3 to show how the residual changes against the number of itera-
tions when applying the five solvers to solve E7 and E8. It can be seen that all the
solvers succeed in solving the two real data examples within the maximum number
of iterations. We remark that the residual used in ADM is different from others but
it is a default option in [12]. Figure 3 (both left and right) shows that the residuals
corresponding to AASA(Adaptive) and ISNM drop very fast as the number of itera-
tions increases. This is explainable because AASA(Adaptive) and ISNM both make
use of the second-order information, while the other three solvers (AASA(L-BFGS),
P-BFGS and ADM) are based on the first-order information which generally need
less computational effort per iteration but converges (in the sense of the residuals)
slower. Besides the behavior of the residual against the number of iterations, we also
reported the consuming CPU times in Fig. 3 for the overall performance of these
algorithms. One can see that AASA(Adaptive) in general is one of the best and can
be an efficient and robust approach for solving the problem (6.1).

@ Springer

An accelerated active-set algorithm for a quadratic... 41

7 Conclusion

In this paper, we have presented a type of active-set algorithm for solving a generali-
zation of least squares semidefinite programming. Treating it from its equivalent dual
form, our algorithm begins with estimating the active/inactive sets using the BB step
information, and then adaptively applies the L-BFGS and the semi-smooth Newton
methods to accelerate the convergence of the free variables. Under some mild con-
ditions, the proposed algorithm is proved to be globally convergent, and fast local
convergence is guaranteed in a refined adaptive strategy. Numerical experiments on
both synthetic and real world data problems are conducted. The reported numerical
results are preliminary but very promising, indicating our proposed AASA(Adaptive)
algorithm is an efficient and robust approach for this programming.

Acknowledgements The authors would like to thank the Associate Editor and anonymous referees for
their helpful suggestions.

References

1. Barzilai, J., Borwein, J.M.: Two point step size gradient methods. IMA J. Numer. Anal. 8, 141-148
(1988)

2. Boyd, S., Xiao, L.: Least squares covariance matrix adjustment. SIAM J. Matrix Anal. Appl. 27,
532-546 (2005)

3. Chen, X., Qi, H., Tseng, P.: Analysis of nonsmooth symmetric-matrix-valued functions with appli-
cations to semidefinite complementarity problems. SIAM J. Optim. 13, 960-985 (2003)

4. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

5. Dai, Y.H.: Alternate step gradient method. Optimization 52, 395415 (2003)

6. Facchinei, F.: Minimization of SC! functions and the Maratos effect. Oper. Res. Lett. 17(3), 131-
137 (1995)

7. Facchinei, F., Fischer, A., Kanzow, C.: On the accurate identification of active constraints. STAM J.
Optim. 9(1), 14-32 (1998)

8. Gabay, D.: Application of the method of multipliers to variational inequalities. In: Fortin, M., Glow-
inski, R. (eds.) Augmented Lagrangian Methods: Application to the Numerical Solution of Bound-
ary-Value Problems, pp. 299-331. North-Holland, Amsterdam (1983)

9. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite
element approximations. Comput. Math. Appl. 2, 17-40 (1976)

10. Gao, Y., Sun, D.E.: Calibrating least squares semidefinite programming with equality and inequality
constraints. SIAM J. Matrix Anal. Appl. 31, 1432-1457 (2009)

11. Han, R.Q., Xie, W.J., Xiong, X.: Market correlation structure changes around the great crash: a ran-
dom matrix theory analysis of the Chinese stock market. Fluct. Noise Lett. 16(02), 1750018 (2017)

12. He, B.S., Xu, M.H., Yuan, X.M.: Solving large-scale least squares covariance matrix problems by
alternating direction methods. SIAM J. Matrix Anal. Appl. 32, 136-152 (2011)

13. Kupiec, P.H.: Stress testing in a value-at-risk framework. J. Deriv. 6, 7-24 (1998)

14. Kelley, C.T.: Iterative Methods for Optimization, pp. 102-104. SIAM, Philadelphia (1999)

15. Li, Q.N,, Li, D.H.: A projected semi-smooth Newton method for problems of calibrating least
squares covariance matrix. Oper. Res. Lett. 39, 103-108 (2011)

16. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large-scale optimization. Math.
Program. 45, 503-528 (1989)

17. Malick, J.: A dual approach to semidefinite least squares problems. SIAM J. Matrix Anal. Appl. 26,
272-284 (2004)

18. Nobi, A., Maeng, S.E., Ha, G.G., Lee, J.W.: Random matrix theory and cross-correlations in global
financial indices and local stock market indices. J. Korean Phys. Soc. 62(4), 569-574 (2013)

@ Springer

42 C.Shenetal.

19. Nobi, A., Maeng, S.E., Ha, G.G., Lee, J.W.: Effects of global financial crisis on network structure in
a local stock market. Phys. A 407, 135-143 (2014)

20. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Berlin (2006)

21. Qi, L.Q.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper.
Res. 18, 227-244 (1993)

22. Qi, L.Q.: Superlinearly convergent approximate Newton methods for LC' optimization problems.
Math. Program. 64(1-3), 277-294 (1994)

23. Qi, L.Q., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353-367 (1993)

24. Qi, H.D., Sun, D.F.: A quadratically convergent Newton method for computing the nearest correla-
tion matrix. SIAM J. Matrix Anal. Appl. 28, 360-385 (2006)

25. Rockafellar, R.T.: Conjugate Duality and Optimization. SIAM, Philadelphia (1974)

26. Schwertman, N.C., Allen, D.M.: Smoothing an indefinite variance—covariance matrix. J. Stat. Com-
put. Simul. 9, 183-194 (1979)

27. Shen, C.G., Fan, C.X., Wang, Y.L., Xue, W.J.: Limited memory BFGS algorithm for the matrix
approximation problem in Frobenius norm. Comput. Appl. Math. 39, 43 (2020)

28. So, M.K.P.,, Wang, J., Asai, M.: Stress testing correlation matrices for risk management. North Am.
J. Econ. Finance 26, 310-322 (2013)

29. Sornette, D.: Critical market crashes. Phys. Rep. 378(1), 1-98 (2003)

30. Sornette, D.: Why Stock Markets Crash: Critical Events in Complex Financial Systems. Princeton
University Press, Princeton (2017)

31. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.
Optim. Methods Softw. 11, 625-653 (1999)

32. Sun, D.F., Sun, J.: Semi-smooth matrix valued functions. Math. Oper. Res. 27, 150-169 (2002)

33. Sun, Y.F.,, Vandenberghe, L.: Decomposition methods for sparse matrix nearness problems. SIAM J.
Matrix Anal. Appl. 36, 1691-1717 (2015)

34. Tiitiincii, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using
SDPT3. Math. Program. 95, 189-217 (2003)

35. Ye, C.H., Yuan, X.M.: A descent method for structured monotone variational inequalities. Optim.
Methods Softw. 22, 329-338 (2007)

36. Zhang, H., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained
optimization. SIAM J. Optim. 14, 1043-1056 (2004)

37. Zhou, B., Gao, L., Dai, Y.H.: Gradient methods with adaptive step-sizes. Comput. Optim. Appl. 35,

69-86 (2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

@ Springer

	An accelerated active-set algorithm for a quadratic semidefinite program with general constraints
	Abstract
	1 Introduction
	2 The dual problem and optimality conditions
	2.1 The dual problem
	2.2 Optimality conditions

	3 Algorithm
	3.1 The BB step
	3.2 Identification of the active set
	3.3 The search direction
	3.4 The L-BFGS and semi-smooth Newton search direction
	3.4.1 The L-BFGS direction
	3.4.2 The semi-smooth Newton direction

	3.5 Algorithm
	3.6 An adaptive acceleration strategy

	4 Convergence analysis
	5 Local quadratic convergence
	6 Numerical experiments
	6.1 Synthetic examples
	6.1.1 Choice of the parameter l
	6.1.2 Fast local convergence
	6.1.3 Results from medium size problems
	6.1.4 Results from large-scale problems

	6.2 Real examples

	7 Conclusion
	Acknowledgements
	References

