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Abstract
In this paper, we are concerned with efficient algorithms for solving the least squares 
semidefinite programming which contains many equalities and inequalities con-
straints. Our proposed method is built upon its dual formulation and is a type of 
active-set approach. In particular, by exploiting the nonnegative constraints in the 
dual form, our method first uses the information from the Barzlai–Borwein step to 
estimate the active/inactive sets, and within an adaptive framework, it then acceler-
ates the convergence by switching the L-BFGS iteration and the semi-smooth New-
ton iteration dynamically. We show the global convergence under mild conditions, 
and furthermore, the local quadratic convergence under the additional nondegener-
acy condition. Various types of synthetic as well as real-world examples are tested, 
and preliminary but promising numerical experiments are reported.
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1 Introduction

Let Sn
+
 be the cone of positive semidefinite matrices in the space Sn of n × n sym-

metric matrices, and ⟨A,B⟩ ∶= tr(ATB) with A,B ∈ Sn . In this paper, we consider 
the least squares semidefinite programming (LSSDP) [2, 10, 12, 17, 27] of the fol-
lowing form

where b = (b1,… , bm)
T ∈ ℝ

m , and G,Ai ∈ Sn for i = 1,… ,m are all given.
To solve the problem (1.1) numerically, in the literature, a couple of methods have 

been proposed and can be used in different situations. For instance, for small- to 
medium-size n and m, interior point methods implemented in, for example, SeDuMi 
[31] and SDPT3 [34], can solve efficiently the dual problem (1.2)

which is just to minimize a simple linear function subject to the constraints of lin-
ear equalities/inequalities, the second order cone, and the positive semidefinite 
cone. However, since a linear system associated with a dense Schur complement 
matrix of the size (m + 1 + n̄) × (m + 1 + n̄) with n̄ ∶=

1

2
n(n + 1) needs to be solved 

at each iteration, the efficiency of interior point methods decreases as n gets mod-
erately larger (say, 2000). In the literature, therefore, methods other than interior 
point methods have been proposed and applied. For example, Malick [17], Boyd and 
Xiao [2], and Gao and Sun [10] proposed the BFGS method, the projected gradient 
method, and semi-smooth Newton method respectively, to solve the Lagrangian dual 
problem of (1.1). Along the dual framework, Li and Li [15] introduced a projected 
semi-smooth Newton method. Unlike [2, 10, 17], He, Xu and Yuan [12] suggested 
the augmented Lagrangian function with an auxiliary matrix variable and then 
applied the alternating direction methods (ADM) [8, 9, 35] to (1.1). Very recently, 
Sun and Vandenberghe [33] considered decomposition methods for matrix nearness 
problems with some sparsity pattern.

We remark that each of the previously mentioned methods handles either the 
computational and memory costs per step or the fast local convergence. For exam-
ple, the projected gradient method [2] and the ADM methods [12] usually are of eco-
nomic computational costs at each step, but they have relatively slow convergence, 

(1.1)

min
1

2
‖X − G‖2

F

s.t. ⟨Ai,X⟩ = bi, i = 1,… , p,

⟨Ai,X⟩ ≥ bi, i = p + 1,… ,m,

X ∈ Sn
+
,

(1.2)

min t

s.t. ⟨Ai,X⟩ = bi, i = 1,… , p,

⟨Ai,X⟩ ≥ bi, i = p + 1,… ,m,

t ≥ 1

2
‖X − G‖2

F
,

X ∈ Sn
+
,
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especially when the iterates reach in the vicinity of a minimizer. The BFGS method 
[17] and the semi-smooth Newton method [10] locally converge fast, but the approx-
imate Hessian matrix in the BFGS method has to be stored at each step, while the 
generalized Newton equation has to be solved in the semi-smooth Newton method, 
which degrades the efficiency of the related method when m gets very large.

In this paper, relying on the dual technique, we attempt to handle both the com-
putational and memory costs per step and the local fast convergence. In particular, 
we combine the advantages of limited-BFGS (L-BFGS) and the semi-smooth New-
ton method to propose an accelerated active-set method for the dual problem. In 
our first stage, the Barzlai–Borwein (BB) step is used to draw information of the 
index of the final active/inactive sets. These active/inactive sets correspond to free/
fixed variables. The second stage employs the L-BFGS method and the semi-smooth 
Newton method to accelerate the convergence of these free variables. For a practical 
implementation, we propose an adaptive strategy to smoothly switch them so that 
it adaptively refines the estimated index of the final active/inactive sets, and also is 
able to use the full-power of the semi-smooth Newton method whenever the iterates 
are close to the minimizer. We establish the global convergence and the fast local 
convergence under some mild conditions.

The rest of this paper is organized as follows. In Sect. 2, we state the dual problem 
and give the first-order/second-order optimality conditions. In Sect.  3, we present 
the details of our accelerated active-set method by describing four main ingredients: 
identification of active/inactive sets, the L-BFGS acceleration, the semi-smooth 
Newton acceleration, and an adaptive acceleration strategy. The global convergence 
of the proposed algorithm is proved under some mild conditions in Sect. 4, and fast 
local convergence is established in Sect.  5. Numerical evaluation of the proposed 
method is conducted in Sect. 6, where LSSDP instances on both real and synthetic 
data are tested, and the performance of other solvers [10, 12, 14, 35] are reported 
and compared. Final remarks are drawn in Sect. 7.

2  The dual problem and optimality conditions

We first rewrite (1.1) into the following general form:

where Q = {0} ×ℝ
m−p
+  , K is a closed and convex cone, and A(X) is defined as

(2.1)
min

1

2
‖X − G‖2

F

s.t. A(X) ∈ b +Q,

X ∈ K,

A(X) =

⎛
⎜⎜⎜⎝

⟨A1,X⟩⟨A2,X⟩
⋮

⟨Am,X⟩

⎞⎟⎟⎟⎠
.
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Note that the primal form (2.1) is convex and the associated Lagrangian function is 
given by

where ⟨x, y⟩ ∶= xTy with x, y ∈ ℝ
n.

2.1  The dual problem

The Lagrangian dual of (2.1) (see [10]) is

where Q∗ = ℝ
p ×ℝ

m−p
+  is the dual cone of Q , A∗ is the adjoint operator of A defined 

by A∗(y) =
∑m

i=1
yiAi , and ΠK[Y] denotes the metric projection of Y ∈ Sn onto K , 

i.e.,

Denote

Obviously, the dual problem (2.2) is equivalent to the problem

For Y ∈ Sn , let the spectral decomposition be Y = PΛPT with Λ ∶= diag(�1,… , �n) , 
where �1 ≥ ⋯ ≥ �n are the eigenvalues of Y and P is a corresponding orthogonal 
matrix of orthonormal eigenvectors of Y. Note that this decomposition needs 9n3 
multiplications or so. From [26], we have

Hence, for (1.1), K = Sn
+
 , A∗(y) =

∑m

i=1
yiAi , and

where [⋅]+ = ΠSn
+
[⋅] . The function f(y) is convex, continuously differentiable and 

coercive (i.e., f (y) → ∞ as ‖y‖ → ∞ ) [25] under the Slater condition. The gradient 
is given by

L(X, y) =
1

2
‖X − G‖2

F
− ⟨A(X) − b, y⟩,

(2.2)
max −

1

2
‖ΠK[G +A∗(y)]‖2

F
+ ⟨b, y⟩ + 1

2
⟨G,G⟩

s.t. y ∈ Q∗,

ΠK[Y] = argminX∈K⟨X − Y ,X − Y⟩.

f (y) =
1

2
‖ΠK[(G +A∗(y))]‖2

F
− ⟨b, y⟩ − 1

2
⟨G,G⟩.

(2.3)
min f (y)

s.t. y ∈ Q∗.

ΠSn
+
[Y] = Pdiag(max(0, �1),… , max(0, �n))P

T .

f (y) =
1

2
��[G +A∗(y)]+

��2F − ⟨b, y⟩ − 1

2
⟨G,G⟩,

(2.4)∇f (y) = A[G +A∗(y)]+ − b, y ∈ ℝ
m,
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which is also Lipschitz continuous. Moreover, under the Slater constraint qualifica-
tion, it has zero duality gap between the primal problem (1.1) and its dual (2.3), 
which provides a possibility to solve (1.1) from the dual. We point out that, due to 
the projection ΠSn

+
[⋅] , ∇f (y) generally is not differentiable, and thus, the classical 

Newton method is not applicable for (2.3).

2.2  Optimality conditions

For convenience, we denote the index sets of equalities and inequalities of (1.1) by 
E ∶= {1,… , p} and I ∶= {p + 1,… ,m} , respectively. Also, we denote ∇f (y) by g(y) 
and the subvector of g(y) with components gi(y), i ∈ E by g

E
(y) . The meanings of 

g
I
(y) and y

I
 follow similarly.

Due to the special structure of the constraints yi ≥ 0 with i ∈ I  , the Mangasarian-
Fromovitz constraint qualification (MFCQ) is satisfied at any feasible point of (2.3). 
The first-order condition (i.e., the KKT condition) of (2.3) is

where � = (�1,… ,�m−p)
T ∈ ℝ

m−p is the multiplier vector corresponding to the con-
straints yi ≥ 0, i ∈ I  . If a pair (y,�) satisfies (2.5), we call it a KKT pair. One way to 
measure the KKT error is the KKT residual

where min(y
I
,�) is the componentwise minimum function of the vectors � and y

I
 . It 

is easy to verify that Ψ(y∗,�∗) = 0 if and only if (y∗,�∗) is a KKT pair for (2.3).
We now suppose Ψ(y∗,�∗) = 0 , and let

and

The (strong) second-order sufficient condition holds at y∗ if hTVh > 0 for all 
nonzero vectors h ∈ H�(y

∗) (h ∈ H̄𝜃(y
∗)) and all matrices V ∈ �B(∇f (y

∗)) , where 
�B(∇f (y

∗)) denotes the B-subdifferential of ∇f (y) at y∗ in the sense of Qi [21]. In [22, 

(2.5)

⎧⎪⎨⎪⎩

g
E
(y) = 0,

g
I
(y) − � = 0,

� ≥ 0, �Ty
I
= 0, y

I
≥ 0,

Ψ(y,�) =

�������

⎛⎜⎜⎝

g
E
(y)

g
I
(y) − �

min(y
I
,�)

⎞⎟⎟⎠

�������
,

I0(y
∗) ={i ∈ I|y∗

i
= 0},

I+(y
∗) ={i ∈ I0|𝜇∗

i
> 0},

I00(y
∗) ={i ∈ I0|𝜇∗

i
= 0},

H𝜃(y
∗) ={h ∈ ℝ

m|hi = 0, i ∈ I+(y
∗); hi ≥ 0, i ∈ I00(y

∗)},

H̄𝜃(y
∗) = {h ∈ ℝ

m|hi = 0, i ∈ I0(y
∗)}.
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Theorem 2.2], it is shown that y∗ is a strict local minimum of (2.3) if the (strong) 
second-order sufficient condition holds.

3  Algorithm

In this section, we will present our accelerated active set algorithm for solving the 
dual problem (2.3). Our approach consists of a procedure of active set detection 
by the BB step [1], and a smoothly-switching search direction procedure between 
L-BFGS and the semi-smooth Newton methods. The BB step aims at estimating 
the index of the active/inactive sets (free/fixed variables), and whenever this stage is 
fulfilled, the L-BFGS method or the semi-smooth Newton method will be triggered 
to accelerate the convergence of the free variables.

3.1  The BB step

Originated by Barzlai and Borwein [1], the BB method has been discussed by many 
other researchers and applied in a broad area of applications. In our case, at the cur-
rent iterate yk , we first use the BB step to generate a trial iterate ỹk which is called a 
BB point. There are two commonly used formula of the stepsize (see [1]), namely,

where sk−1 = yk − yk−1, wk−1 = g(yk) − g(yk−1) . It has been proved in theory that 
the long stepsize �k

l
 can guarantee the reduction of the objective function, and the 

short stepsize �k
s
 can induce a good descent direction for the next iteration. Based on 

this fact, Zhou, Gao and Dai [37] present an adaptive stepsize selection strategy and 
report numerical results for its efficiency. Specifically, such adaptive stepsize with 
some safeguards is defined as

where � ∈ (0, 1) , and 𝛼max > 𝛼min > 0 . The adaptive stepsize can be viewed as a 
combination of the long BB stepsize and the short BB stepsize, and the parameter � 
determines the trade-off between �k

l
 and �k

s
 . Generally, � is around 0.5. Other adap-

tive strategies are discussed in [5, 37].
In our case, we use the strategy in [37] to generate the BB point. In particular, for 

the dual problem (2.3), we generate the trial BB point as

�k
l
=

‖sk−1‖2
2

(sk−1)Twk−1
, (the long BB stepsize)

�k
s
=

(sk−1)Twk−1

‖wk−1‖2
2

, (the short BB stepsize)

(3.1)�k
B
=

{
min(�max, max(�min, �

k
s
)), �k

s
∕�k

l
≤ �;

min(�max, max(�min, �
k
l
)), otherwise,

(3.2)ỹk = ΠQ[y
k − 𝛼k

B
gk],
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where gk ∶= g(yk) , and the stepsize is determined by the adaptive stepsize �k
B
 in 

(3.1).

3.2  Identification of the active set

In this subsection, we will discuss how to detect the active/inactive sets at the trial BB 
point ỹk . Assume that y∗ is a minimizer of the problem (2.3). As the linear independ-
ence constraint qualification (LICQ) holds at y∗ , the uniqueness of the associated mul-
tiplier �∗ is ensured. Moreover, when the second-order sufficient condition holds, y∗ is 
isolated (see [22, Theorem 2.2]). According to [7, Theorem 3.6], we have the following 
theorem.

Theorem  3.1 Assume that the second-order sufficient condition holds at y∗ . Then 
there exist two scalars 𝜅1, 𝜅2 > 0 such that

for any pair (y,�) sufficiently close to (y∗,�∗).

Using [7, Theorems 3.7 and 2.2], the index set

correctly identifies all active constraints if (y,�) is sufficiently close to (y∗,�∗) . To 
apply this fact, by canceling the multiplier � in (2.5), we rewrite the KKT condition 
(2.5) as

and by � = g
I
(y) , we have

Here Π
Q
[x] denotes the metric projection of x ∈ ℝ

m onto Q , which can be easily 
calculated as

In our algorithm, at the BB point ỹk in (3.2), we define two index sets Bk and Fk 
associated with the point yk as

�1

‖‖‖‖‖

(
y − y∗

� − �∗

)‖‖‖‖‖
≤ Ψ(y,�) ≤ �2

‖‖‖‖‖

(
y − y∗

� − �∗

)‖‖‖‖‖

B̄(y,𝜇) = {i ∈ I�yi ≤
√
Ψ(y,𝜇)}

(3.3)
{

g
E
(y) = 0,

g
I
(y) ≥ 0, g

I
(y)Ty

I
= 0, y

I
≥ 0,

(3.4)Ψ(y,�) = Ψ(y, gI(y)) = ‖y − ΠQ[y − g(y)]‖ ∶= �(y).

(3.5)Π
Q
[y] =

{
0, i ∈ I with yi < 0,

yi, otherwise .

(3.6)

{
Bk = B(yk) = {i ∈ I|0 ≤ ỹk

i
≤ 𝜈k, or gk

i
≤ −𝜈k∕(2𝛼k

B
) & yk

i
≤ 𝜈k∕2} and

Fk = F(yk) = {1,… ,m}�Bk,
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where �k = min {�0,
√
�k} , �0 ∈ (0, 0.1) (generally, �0 is a small parameter of order, 

e.g., 10−6 ), and �k = �(yk) . One can see from the definition of Bk that components 
of ỹk and yk that approach the boundary are taken as the potential fix variables, and 
therefore, the corresponding indices are put in Bk . More explanations will be stated 
in Sect. 4.

As Bk differs slightly from B̄(yk,𝜇k) , we find that [7, Theorems 3.7, 2.2] is not 
directly applicable to Bk to detect the active set correctly. However, such a desired 
conclusion still holds as shown in the following theorem.

Theorem 3.2 Assume that the second-order sufficient condition holds at y∗ . Then Bk 
and Fk can correctly identify all active/inactive constraints respectively if yk is suf-
ficiently close to y∗.

Proof It suffices to prove that Bk can correctly identifies all active/inactive con-
straints if yk is close to y∗ enough. By the definition of �k and (3.5),

From (3.2) and (3.5), we obtain that for i ∈ I ,

Suppose y∗
i
= 0 for some i ∈ I  . Due to Theorem 3.1 and �(y) = Ψ(y,�) , it holds

It follows with the definition of �k that yk
i
≤ ‖yk − y∗‖ ≤ �k∕2 for yk close to y∗ 

enough. By (3.7) and the definition of �k , it holds |min(yk
i
, �k

B
gk
i
)| ≤ �k∕2 . This 

together with (3.8) and yk
i
≤ �k∕2 yields ỹk

i
≤ 𝜈k . So i ∈ Bk.

On the other hand, if y∗
i
> 0 for some i ∈ I  , then gi(y∗) = 0 due to the KKT con-

dition (3.3). By (3.8), ỹk
i
> 𝜈k if yk is sufficiently close to y∗ . By (3.9) and the defini-

tion of �k , we have

for yk sufficiently close to y∗ , where �k
B
∈ [�min, �max] is the BB stepsize from (3.1) 

and Lg > 0 is the Lipschitz constant of g(y). This combining with the Lipschitz con-
tinuity of g(y) gives

 Thus, −gk
i
< 𝜈k∕(2𝛼k

B
) for any yk sufficiently close to y∗ . So, i ∉ Bk and conse-

quently, Bk identifies all active constraints accurately.   ◻

(3.7)�k = �(yk) =
‖‖‖‖‖

(
g

E
(yk)

min(yk
I
, g

I
(yk))

)‖‖‖‖‖
.

(3.8)ỹk
i
= max(yk

i
− 𝛼k

B
gk
i
, 0) = yk

i
−min(yk

i
, 𝛼k

B
gk
i
).

(3.9)‖yk − y∗‖ = o(
√
�k).

‖yk − y∗‖ <
𝜈k

2Lg𝛼
k
B

�gk
i
� = �gk

i
− gi(y

∗)� ≤ Lg‖yk − y∗‖ < 𝜈k∕(2𝛼k
B
).
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Theorem 3.2 reveals that the problem (2.3), with the second-order sufficient condi-
tion (not the strict complementarity condition), locally can be reduced to an uncon-
strained minimization problem. This provides an important foundation for establishing 
the fast local convergence in Sect. 5.

3.3  The search direction

With the BB point ỹk computed by (3.2) at hand, we can determine the working sets 
Bk and Fk by (3.6). Let Jk be a generalized Hessian matrix of f(y) at yk . Without loss of 
generality, we assume Fk = {1, 2,… , |Fk|} with |Fk| being the cardinality of Fk , and 
then partition Jk and gk as

As a result, we present the entry dk
i
 of the search direction dk = d(yk) associated with 

yk as

where Z is a matrix of columns consisting of {ei|i ∈ Fk} with ei being the ith column 
of the identity matrix In (i.e., Z = (I|Fk|, 0)T ∈ ℝ

n×|Fk| when Fk = {1, 2,… , |Fk|} ), 
and H̄k is (Jk

FkFk
)−1 or a certain approximation of (Jk)−1

FkFk
 ; here (Jk)−1

FkFk
 denotes the top-

left block of (Jk)−1 with (Jk)−1 being partitioned similar as Jk.
The matrix H̄k is a key to define the search direction in (3.11). In the next subsec-

tion, we will specify two ways to compute H̄k : the way based on the L-BFGS formula 
and the one based on the semi-smooth Newton method. Here, we only mention that 
if the approximation Hk of (Jk)−1 is updated by the L-BFGS formula implicitly, then 
its top-left block Hk

FkFk
 can be considered as an approximation of (Jk)−1

FkFk
 , and thus 

H̄k = Hk

FkFk
= ZTHkZ , whereas if the semi-smooth Newton acceleration is applied, 

then H̄k = (Jk
FkFk

)−1 . The detailed information on computation of ZH̄kZTgk will be 
given in the next subsection.

3.4  The L‑BFGS and semi‑smooth Newton search direction

3.4.1  The L‑BFGS direction

The BFGS method [20, Chapter  7] is a well-known quasi-Newton method for the 
unconstrained minimization min f (y) . A basic iteration of BFGS is

where �k is a stepsize, and Hk is the inverse Hessian approximation updated by

(3.10)Jk =

(
Jk
FkFk

Jk
FkBk

Jk
BkFk

Jk
BkBk

)
and gk =

(
gk

Fk

gk
Bk

)
.

(3.11)dk
i
= di(y

k) =

{
ỹk
i
− yk

i
, i ∈ Bk,

−(ZH̄kZTgk)i, i ∈ Fk,

yk+1 = yk − �kHkgk, k = 0, 1, 2,… ,

Hk+1 = (Vk)THkVk + �ksk(sk)T ,
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where �k = 1∕(wk)Tsk , Vk = I − �kwk(sk)T , and sk = yk+1 − yk , wk = gk+1 − gk.
The L-BFGS algorithm (see [16, 20]) is an improvement of BFGS for large-scale 

problems which alleviates the memory requirement in storing Hk in each step. In 
particular, the matrix Hk in the L-BFGS algorithm is formed implicitly by the l 
most recent vectors pairs {si,wi} , i = k − l,… , k − 1 . Starting from an initial Hes-
sian approximation1 (Hk)0 , at the kth iteration, it uses the l most recent vector pairs 
{si,wi} , i = k − l,… , k − 1 to have

According to this formula, an efficient recursive procedure (see [20, Algorithm 7.4]) 
can be derived to compute Hkgk . In the case of the L-BFGS acceleration, the term 
ZH̄kZTgk in (3.11) is

With the partition Hk =

(
Hk

FkFk
Hk

FkBk

Hk

BkFk
Hk

BkBk

)
 , we know that the first sub-vector Hk

FkFk
gk

Fk
 is 

the same as that of Hk

(
gk

Fk

0

)
 , and therefore, the part of search direction of dk in 

(3.11) for the variables in Fk can be calculated by the recursive procedure with 
(3.12) (see [20, Algorithm 7.4]). Note that this recursive procedure requires about 
4ml multiplications.

3.4.2  The semi‑smooth Newton direction

Qi and Sun [24] introduced a semi-smooth Newton method to solve the correlation 
matrix approximation problem, and further extended it to the problem with general 
linear equality constraints. Numerical experiments show that the semi-smooth New-
ton method has better performance than methods using first-order information (for 
example, the projected gradient method and BFGS method).

For our case, we find that the semi-smooth Newton method can serve as a good 
acceleration for the solution of the dual problem. Let �g(yk) denote the general-
ized Jacobian of g(y) at yk in the sense of Clarke [4]. It is also the convex hull 
of �Bg(yk) [21]. For (2.4), let G(yk) = G +A∗(yk) and its spectral decomposition 
be G(yk) = PΛ(yk)PT , where Λ(yk) ∶= diag(�1(y

k),… , �n(y
k)) , �1(yk) ≥ ⋯ ≥ �n(y

k) 
are the eigenvalues and P ∈ 𝕆G(yk) ∶= {P ∈ ℝ

n×n|G(yk) = PΛ(yk)PT ,PTP = In} is 
a corresponding orthogonal matrix. Define three index sets associated with �i(yk) , 
i = 1,… , n as follows:

(3.12)

Hk =((Vk−1)T ⋯ (Vk−l)T )(Hk)0(Vk−l
⋯Vk−1)

+ �k−l((Vk−1)T ⋯ (Vk−l+1)T )sk−l(sk−l)T (Vk−l+1
⋯Vk−1)

+ �k−l+1((Vk−1)T ⋯ (Vk−l+2)T )sk−l+1(sk−l+1)T (Vk−l+2
⋯Vk−1)

+ ⋯

+ �k−1sk−1(sk−1)T .

ZH̄kZTgk = ZHk

FkFk
ZTgk =

(
Hk

FkFk
gk

Fk

0

)
.

1 The initial inverse Hessian approximation in L-BFGS is generally set to be � kI with � k = (sk−1)Twk−1

(wk−1)Twk−1
.
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and define

Then we have the following results.

Lemma 3.1 For any h ∈ ℝ
m,

where T = A∗(h) , W is a set of operators given by

and ◦ is the Hadamard product.

Proof The proof follows similarly to that of [24, Lemma 3.5].   ◻

At yk , let Jk ∈ �B(g(y
k)) be partitioned as (3.10) assuming, w.l.g., 

Fk = {1, 2,… , |Fk|} . Our choice of semi-smooth Newton search direction dk
Fk

 in 
dk for the variables in Fk satisfies the linear system

Thus, for the semi-smooth Newton acceleration, we can compute the part of search 
direction −ZH̄kZTgk in (3.11) as

where dk
Fk

 is from (3.15). Practically, by taking advantage of the convexity of the 
problem, we invoke a certain Krylov subspace method (for example CG) for this 
system to obtain approximations of dk

Fk
 , in which the main costs lie in the matrix-

vector products of the form Jk
FkFk

h
Fk

 for h
Fk
∈ ℝ

|Fk| . If NCG CG steps are used to solve 
for dk

Fk
 , excluding the multiplications in A(X) and A∗(y) , we require 

(4n3 + n2 + 2|Fk|)NCG multiplications.
Note the matrix-vector product Jk

FkFk
h

Fk
 is indeed the first sub-vector of length 

|Fk| of

Γk
1
∶= Γ

1
(yk) = {i|𝜆i(yk) > 0}, Γk

2
∶= Γ

2
(yk) = {i|𝜆i(yk) = 0}, Γk

3
∶= Γ

3
(yk) = {i|𝜆i(yk) < 0},

M =

⎧⎪⎨⎪⎩
M ∈ ℝ

n×n��M =

⎛⎜⎜⎝

EΓk
1
,Γk

1
EΓk

1
,Γk

2
(�ij)i∈Γk

1
,j∈Γk

3

EΓk
2
,Γk

1
(�ij)i,j∈Γk

2
0

(�ji)i∈Γk
1
,j∈Γk

3
0 0

⎞⎟⎟⎠

wij = wji ∈ [0, 1],

for i, j ∈ Γk
2
,

�ij = �k
i
∕(�k

i
− �k

j
),

for i ∈ Γk
1
, j ∈ Γk

3

⎫⎪⎬⎪⎭
.

(3.13)𝜕B(g(y
k))h ⊆ {A(WT) ∶ W ∈ W},

(3.14)W = {W|WT = P
(
M◦(PTTP)

)
PT ,M ∈ M,P ∈ 𝕆G(yk), h ∈ ℝ

m},

(3.15)Jk
FkFk

dk
Fk
= −gk

Fk
.

−ZH̄kZTgk =

(
dk

Fk

0

)
,

Jk
(
h

Fk

0

)
=

(
Jk
FkFk

h
Fk

Jk
BkFk

h
Fk

)
,
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and thus, Jk
FkFk

h
Fk
∈ {A

Fk
(WH) ∶ W ∈ W} , where the linear mapping AFk : 

Sn
→ ℝ

|Fk| is given by AFk (X) = [A(X)]Fk and H = A∗

��
h

Fk

0

��
=
∑

i∈Fk hiAi . 

This leads to the following corollary.

Corollary 3.1 For the index set Fk , define the linear mapping AFk : Sn
→ ℝ

|Fk| by 
AFk (X) = [A(X)]Fk , and the function F(y

Fk
) ∶ ℝ

|Fk|
→ ℝ

|Fk| by F(y
Fk
) = g

Fk
(y) in 

which the elements of y in Bk are fixed at yk
Bk

 , i.e., y
Bk
= yk

Bk
 , where Bk = (E ∪ I)�Fk . 

Then for any h
Fk
∈ ℝ

|Fk| , it follows

where H = A∗(Zh
Fk
) , the columns of Z ∈ ℝ

n×|Fk| are {ei|i ∈ Fk} , and W is defined 
in (3.14).

3.5  Algorithm

With the previous preparation, we now can summarize the procedure of our algo-
rithm. Let yk be the current iteration for (2.3). After computing the search direction 
dk in (3.11), we determine a stepsize �k by the backtracking line search technique to 
fulfill the following nonmonotone reduction condition on f(y) [36]:

where f k
p
 is a weighted average of the past function values that is no less than f (yk) , 

and � ∈ (0,
1

2
) . We mention that such condition (3.16) is more relaxable than the 

standard Armijo condition. The framework of our proposed algorithm is as follows:

Note that the generated sequence {f (yk)} by Algorithm  1 is nonmonotonically 
descent (see Lemma 4.2 and (4.24)) and the objective function f(y) is coercive, {yk} 
is bounded, and thereby, it has a convergent subsequence.

𝜕B(F(y
k

Fk
))h

Fk
⊆ {A

Fk
(WH) ∶ W ∈ W},

(3.16)f (ΠQ(y
k + �kdk)) ≤ f k

p
+ ��k(gk)Tdk,
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The final execution of Algorithm 1 needs the specification of the search direc-
tion dk+1 in step 9 of Algorithm  1. There are several possible ways for adap-
tively switching the directions (indexed by variable switch) between the one of 
L-BFGS (denoted by switch=“Q") and the semi-smooth Newton (denoted by 
switch=“N"). In the next subsection, we shall present an adaptive strategy.

3.6  An adaptive acceleration strategy

This subsection is to specify step 9 of Algorithm 1. In particular, we introduce a two-
stage adaptive acceleration strategy: “A-stage acceleration" (triggered by �k+1 ≤ �a ) 
and “B-stage acceleration" (triggered by �k+1 ≤ �b).

For “A-stage acceleration", we adaptively use the generalized Newton step to accel-
erate the inactive part of dk+1 while the active part of dk+1 still goes a BB step. For con-
venience, we use “N" (or N-step) and “Q" (or Q-step) to represent the generalized New-
ton acceleration step (denoted by dk+1

N
 ) and the L-BFGS acceleration step (denoted by 

dk+1
Q

 ), respectively. Generally, computing dk+1
N

 is more expensive than dk+1
Q

 , but dk+1
N

 can 
usually bring more improvements on reduction of the residual �k in (3.4). To measure 
the improvement at kth iteration, if the previous two steps, i.e., (k − 1) th and kth are 
both the generalized Newton steps, we introduce the 3-N-step improvement factor as

where the generalized Newton steps are used for �k−1, �k and �k+1 . The reason behind 
our 3-N-step improvement rate is that the generalized Newton step may not provide 
great reductions on the residual �k at each iteration, but it usually is able to reduce 
the residual in several successive steps. Our numerical experiments show that using 
three successive steps turns out a good choice in general. The “A-stage acceleration" 
of the adaptive acceleration strategy is stated in Lines 16–27 of Algorithm 2.

To achieve the fast local convergence speed, we introduce “B-stage acceleration" 
of the adaptive acceleration strategy. Notice from (3.11) that dk

i
, i ∈ Bk only involves 

the gradient information, and the stepsize can be cut to be very small in order to meet 
the nonmonotone reduction condition (3.16) on f. This implies that the fast local 
convergence may not be generally ensured in “A-stage acceleration". Fortunately, 
Theorem  3.2 shows that Bk and Fk can correctly identify all active/inactive con-
straints respectively in the final stage under the constraint nondegeneracy condition 
[10]. Thus, in “B-stage acceleration", we force yk+1

i
, i ∈ Bk+1 to be zero, i.e., restrict 

the fix variables to the boundary. To distinguish the iterate yk+1 in Algorithm 1, we 
denote the full successive generalized Newton iterates by zj for j = 1, 2,… with 
z1 = yk+1 used in this adaptive strategy. This means that the semi-smooth Newton 
acceleration is a first try at the (k+1) th iteration. Whenever the acceleration fails to 
meet our criterion to be specified, we shrink �b and go back to yk+1 , and then apply 
the L-BFGS acceleration to Algorithm 1 instead. The “B-stage acceleration" of the 
adaptive acceleration strategy is described in Lines 2–14 of Algorithm 2.

�k+1
N

=
�k−1 − �k+1

�k+1
,



14 C. Shen et al.

1 3

Remark 3.1 The condition in Line 6 of Algorithm 2 means that during iterations the 
sufficient decrease condition

holds and the working set F(zj) keeps unchanged.

Remark 3.2 The statement of ‘3-N-step fails to be accepted’ in Line 19 of Algo-
rithm 2 means that one of the following conditions holds: 

 (i) f (ΠQ(y
k+1 + dk+1

N
)) > f k+1

p
+ 𝛿(gk+1)Tdk+1

N
 ; that is, the generalized Newton step 

dk+1
N

 is not sufficiently descent for f in the sense of (3.16) with �k+1 = 1;
 (ii) in case that the previous two steps (k − 1) th and kth are both the generalized 

Newton steps, the 3-N-step improvement factor �k+1
N

≤ �� . (In our numerical 
testing, �� = 0.3)

(3.17)f (ΠQ(z
j + d̄

j

N
)) < f (zj) + 𝛿∇f (zj)TdN(z

j)
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Remark 3.3 For the computational costs of Algorithm 1 with Algorithm 2 embedded 
at each iteration, we first note that about 9n3 multiplications are required to compute 
the spectral decomposition of an n-by-n matrix; second, for the search direction, 
about 4lm multiplications are used in L-BFGS for computing dk

Q
 , while 

(4n3 + n2 + 2|Fk|)NCG multiplications for the generalized Newton step dk
N

 (or d̄j
N

 ). 
Therefore, by excluding the multiplications in computing A(X) and A∗(y) , the total 
computational amount is about 9n3 + 4lm multiplications for dk

Q
 and 

(4n3 + n2 + 2|Fk|)NCG multiplications for dk
N

 (or d̄j
N

 ). The cost in computing A(X) 
and A∗(y) is depend on the structure of the matrices Ai , i = 1,… ,m , and in particu-
lar, in our numerical experiments, A(X) and A∗(y) can be calculated efficiently due 
to the special structure of the matrices Ai , i = 1,… ,m.

4  Convergence analysis

We now turn to the issue of the global convergence of Algorithm 1. Define four subsets 
for the index set I = {p + 1,… ,m} : 

Remark 4.1 The index sets Ck
i
, i = 1, 2, 3, 4 are mutually exclusive and Bk =

⋃4

i=1
Ck
i
 . 

By (4.1), Ck
1
 indeed represents the set corresponding to variables on the constraint 

boundary. The index set Ck
2
 contains indices associated with variables that are within 

the boundary but will get to the boundary after the BB step. The index set Ck
3
 points 

to the indices corresponding to variables that do not reach the boundary after the BB 
step. The variables yk

i
 associated with Ck

4
 are very close to the boundary but might 

not be good “active" candidates due to gk
i
≤ −�k∕(2�k

B
) ≤ 0 ; nevertheless, in the 

limit, Ck
4
 might reduce to be empty or identify a part of active set which is said be 

degenerate (i.e., both gk
i
 and yk

i
 vanish in the limit).

The index Fk in (3.6) of the estimated inactive set now can be expressed as

where

(4.1a)Ck
1
= {i ∈ I|ỹk

i
= 0, yk

i
= 0},

(4.1b)Ck
2
= {i ∈ I|ỹk

i
= 0, yk

i
> 0},

(4.1c)Ck
3
= {i ∈ I|0 < ỹk

i
≤ 𝜈k},

(4.1d)Ck
4
= {i ∈ I|gk

i
≤ −𝜈k∕(2𝛼k

B
), yk

i
≤ 𝜈k∕2, ỹk

i
> 𝜈k}.

(4.2)Fk = (Dk ∩ (Ck
4
)0) ∪ E,

(4.3)Dk = {i ∈ I|ỹk
i
> 𝜈k}
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and

Here, Dk is actually the complementary set of 
⋃3

i=1
Ck
i
 in I  . Recalling 

ỹk = ΠQ[y
k − 𝛼k

B
gk] , we can rewrite dk in (3.11) equivalently as

This expression of dk facilitates our convergence analysis.
Our global convergence is based on the following assumption.

Assumption 4.1 There exist two scalars 𝛾1, 𝛾2 > 0 such that

are satisfied for all k.

Remark 4.2 We remark that Assumption  4.1 holds when 𝜆min(H̄
k) ≥ 𝛾1 and 

‖H̄k‖ ≤ 𝛾2 for all k, where 𝜆min(H̄
k) denotes the minimum eigenvalue of H̄k . Note 

that if the strong second-order sufficient condition for the problem (2.3) holds at 
a minimizer y∗ , then hTVh > 0 for all nonzero vectors h ∈ H̄𝜃(y

∗) and all matri-
ces V ∈ �B(∇f (y

∗)) . Equivalently, for all V ∈ �B(∇f (y
∗)) , all matrices (AVA∗)

FF
 

are positive definite, where F = (E ∪ I)�I0(y
∗) . Therefore, if H̄k is approaching 

(AVA∗)−1
FF

 , then Assumption  4.1 holds for some scalars 𝛾1, 𝛾2 > 0 . We will prove 
in Sect. 5 (refer to Theorem 5.2) that if the constraint nondegenercy condition [10] 
for the problem (1.1) holds at X∗ ( X∗ is associated with y∗ ), then the strong second-
order sufficient condition for the problem (2.3) holds at a minimizer y∗ . In this sense, 
Assumption  4.1 is consistent with the constraint nondegenercy condition for the 
problem (1.1).

Lemma 4.1 Suppose that Assumption 4.1 holds. Then

Furthermore, equality holds if and only if dk = 0.

Proof According to (4.5),

(4.4)(Ck
4
)0 = {i ∈ I| − gk

i
< 𝜈k∕(2𝛼k

B
) or yk

i
> 𝜈k∕2}.

(4.5)dk
i
=

⎧
⎪⎨⎪⎩

0, i ∈ Ck
1
,

−yk
i
, i ∈ Ck

2
,

−𝛼k
B
gk
i
, i ∈ Ck

3
∪ Ck

4
,

−(ZH̄kZTgk)i, i ∈ Fk.

(4.6)𝛾1‖ZTgk‖ ≤ (gk)TZH̄kZTgk,

(4.7)‖ZH̄kZT‖ ≤ 𝛾2,

(4.8)(dk)Tgk ≤ 0.

(4.9)(dk)Tgk = −
∑
i∈Ck

2

yk
i
gk
i
−

∑
i∈Ck

3
∪Ck

4

𝛼k
B
|gk

i
|2 − ∑

i∈Fk

(ZH̄kZTgk)ig
k
i
.
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For i ∈ Ck
2
 , due to (4.1b) and (3.2), yk

i
− �k

B
gk
i
≤ 0 and then 𝛼k

B
gk
i
≥ yk

i
> 0 , and there-

fore yk
i
gk
i
≥ (yk

i
)2∕𝛼k

B
> 0 for i ∈ Ck

2
 . Thus, the first term in the right hand side of 

(4.9) is no greater than 0. The second term is obviously non-positive. Also, the third 
term is also non-positive by (4.6). Consequently, (4.8) is true. From (4.9), we know 
that dk = 0 if and only if all the terms in the right-hand side of (4.9) vanish.   ◻

Lemma 4.2 Let {dk} and {yk} be generated by Algorithm 1. If Assumption 4.1 holds, 
then

where f k
p
= (�Qkf k−1

p
+ f (yk))∕Qk , and �k =

1

k+1

∑k

i=0
f (yi).

Proof The proof follows analogously from [36, Lemma 1.1].   ◻

Proposition 4.1 Given dk defined in (4.5), we have

where yk ∈ Q.

Proof Since 
⋃4

i=1
Ck
i
= Bk , the conclusion follows from (3.11) and (3.2).  ◻

Proposition 4.2 The index sets Ck
i
, i = 1, 2, 3 can be described as follows

Proof According to (4.1a), if i ∈ Ck
1
 , then ỹk

i
= max(0, yk

i
− 𝛼k

B
gk
i
) = max(0,−𝛼k

B
gk
i
) = 0 

and therefore (4.12a) is true. If i ∈ Ck
2
 , then

because of (3.2) and (4.1b). Thus, gk
i
≥ yk

i
∕𝛼k

B
> 0 which together with (4.1b) 

implies (4.12b). By (3.2) and (4.1c), 0 < yk
i
− 𝛼k

B
gk
i
= ỹk

i
≤ 𝜈k for i ∈ Ck

3
 and 

𝛼k
B
gk
i
< yk

i
≤ 𝜈k + 𝛼k

B
gk
i
 . Use (4.1c) to have (4.12c). Finally, by (4.3), if i ∈ Dk , then 

ỹk
i
= yk

i
− 𝛼k

B
gk
i
> 𝜈k which yields (4.12d).   ◻

(4.10)f (yk) ≤ f k
p
≤ �k,

(4.11)yk
i
+ dk

i
≥ 0, for all i ∈

4⋃
i=1

Ck
i
,

(4.12a)Ck
1
= {i ∈ I|ỹk

i
= 0, yk

i
= 0, gk

i
≥ 0},

(4.12b)Ck
2
= {i ∈ I|ỹk

i
= 0, yk

i
> 0, gk

i
> 0},

(4.12c)Ck
3
= {i ∈ I|0 < ỹk

i
≤ 𝜈k, 𝛼k

B
gk
i
< yk

i
≤ 𝜈k + 𝛼k

B
gk
i
},

(4.12d)Dk = {i ∈ I|yk
i
> 𝜈k + 𝛼k

B
gk
i
}.

(4.13)yk
i
− 𝛼k

B
gk
i
≤ ỹk

i
= 0
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The reformulation of Ck
i
, i = 1, 2, 3 in (4.12) facilitates our subsequent characteriza-

tion of optimality conditions.

Lemma 4.3 Let Assumption 4.1 hold, and {dk} and {yk} be generated by Algorithm 
1. Then yk is a KKT point of the problem (2.3) if and only if dk = 0.

Proof If yk is a KKT point of the problem (2.3), then �k = min {�0,
√
�k} =

√
�k = 0 

which implies

By (4.2), (4.3) and (4.4), if −gk
i
< 𝜈k∕(2𝛼k

B
) with i ∈ Fk ∩ I  ( = Dk ∩ (Ck

4
)0 ), then

and therefore yk
i
> 𝜈k∕2 = 0, i ∈ Fk ∩ I  . Thus use (4.14) to get gk

i
= 0, i ∈ Fk and 

dk
i
= 0, i ∈ Fk . If Ck

3
≠ ∅ , from (4.12c) and �k = 0 , we have 0 < ỹk

i
≤ 𝜈k = 0, i ∈ Ck

3
 , 

which is a contradiction. Therefore Ck
3
= � . In view of �k = 0 , (4.1d) and (4.14), 

yk
i
= gk

i
= 0 and ỹk

i
> 0 for i ∈ Ck

4
 . Using (4.5) gives dk

i
= 0 and ỹk

i
= 0 for i ∈ Ck

4
 , 

which contradicts ỹk
i
> 0 . So Ck

4
 is empty. By (4.12b) and (4.14), the index set Ck

2
 is 

empty, too. Hence, dk = 0.
Conversely, assume dk = 0 . From (4.5) and (4.12a), we have yk

i
= 0, gk

i
≥ 0, i ∈ Ck

1
 . 

By (4.5) and (4.12b), we know yk
i
= dk

i
= 0 indicating that Ck

2
 is empty. For i ∈ Ck

3
 , 

due to (4.5) and (4.12c), it is true that yk
i
> 0, gk

i
= 0 . Also, based on (4.5) and (4.1d), 

it holds that Ck
4
= � or �k = 0 , where the latter implies that yk is a KKT point of 

the problem (2.3). For the case Ck
4
= � , from (4.5), we have (ZH̄kZTgk)i = 0, i ∈ Fk 

which together with (4.6) gives gk
i
= 0 , i ∈ Fk . Overall, by (3.3), yk is a KKT point 

of the problem (2.3).   ◻

Lemma 4.4 Let {dk} and {yk} be generated by Algorithm 1. If dk ≠ 0 , then

where Q is defined in (2.1).

Before proving Lemma 4.4, we make some comments on the implication of this 
lemma. From the current iterate yk , the trial point yk + �dk is searched along dk . It 
can be seen that the largest step size that makes this trial point remain in the feasible 
region Q must be equal or greater than 𝛽k ∶= min{1,

𝜈k

2‖dk‖∞ } . Therefore, Lemma 4.4 
says that if 𝛼 ≤ 𝛽k ≤ 𝛽k , by (4.15), we have yk + �dk ∈ Q , and

Proof It suffices to prove that yk
i
+ 𝛽kdk

i
≥ 0 for all i ∈ I  . For i ∈ Bk and 0 < 𝛼 ≤ 1 , 

yk
i
+ �dk

i
= (1 − �)yk

i
+ �(yk

i
+ dk

i
) ≥ 0 due to yk

i
≥ 0 and Proposition  4.1. Hence, 

(4.14)min(yk
i
, gk

i
) = 0, i ∈ I and gk

i
= 0, i ∈ E.

𝜈k < ỹk
i
= yk

i
− 𝛼k

B
gk
i
< yk

i
+ 𝜈k∕2,

(4.15)�k ∶= sup
0≤�≤1

�
��yk + �dk ∈ Q

� ≥ min

�
1,

�k

2‖dk‖∞
�
,

(4.16)f (yk + �dk) = f
(
ΠQ[y

k + �dk]
)
.



19

1 3

An accelerated active-set algorithm for a quadratic…

yk
i
+ 𝛽kdk

i
≥ 0, i ∈ Bk . For i ∈ Fk ∩ I  ( = Dk ∩ (Ck

4
)0 ), yk

i
> 𝜈k + 𝛼k

B
gk
i
 due to (4.12d). 

This combining with (4.4) gives yk
i
> 𝜈k∕2, i ∈ Fk ∩ I  . Recall 𝛽k ≤ 𝜈k

2‖dk‖∞ . Thus, 
yk
i
+ 𝛽kdk

i
≥ 𝜈k

2
−

𝜈k

2‖dk‖∞ �d
k
i
� ≥ 0, i ∈ Fk ∩ I  .   ◻

Lemma 4.5 Suppose that Assumption 4.1 holds. Let {dk} and {yk} be generated by 
Algorithm 1. Then there exists a scalar ud > 0 such that

for all k, i.e., the sequence {dk} is bounded.

Proof From (4.5), we have

and together with (4.7) and (4.13), it follows

Since g(y) is continuous and {yk} is bounded, inequality (4.18) with �k
B
≤ �max 

implies {‖dk‖2} is bounded. Hence, there exists a scalar ud > 0 such that ‖dk‖∞ ≤ ud 
for all k.   ◻

The boundedness of {dk} and Lemma 4.4 lead to

The next lemma gives a lower bound of the step size �k , which also implies that 
Algorithm 1 is well-defined (i.e., the inner loop (from Line 5 to Line 7) terminates 
finitely).

Lemma 4.6 Suppose that Assumption 4.1 holds. Let {�k} be generated by Algorithm 
1. Then there exists a scalar �̄� > 0 such that

where 𝛽k is defined after Lemma 4.4, and � ∈ (0, 1) is from Algorithm 1.

Proof From (4.17), (4.7) and (4.13), we obtain

‖dk‖∞ ≤ ud

(4.17)‖dk‖2 =�
i∈Ck

2

�yk
i
�2 + �

i∈Ck
3
∪Ck

4

(𝛼k
B
)2�gk

i
�2 + ‖ZH̄kZTgk‖2,

(4.18)
‖dk‖2 ≤�

i∈Ck
2

(�k
B
)2�gk

i
�2 + �

i∈Ck
3
∪Ck

4

(�k
B
)2�gk

i
�2 + �

i∈Fk

�2
2
�gk

i
�2

≤((�k
B
)2 + �2

2
)‖gk‖2.

𝛽k ≥ 𝛽k ∶= min

{
1,

𝜈k

2ud

}
, ∀k.

(4.19)𝛼k ≥ min
{
𝜎𝛽k, �̄�

}
,
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where the last inequality follows from (4.9) and �k
B
≤ �max . We now prove that the 

step size �k generated by Algorithm 1 is no less than either 𝜎𝛽k or some constant 
�̄� > 0 . If 𝛼k < 𝜎𝛽k , then the trial step size �k

t
∶=

�k

�
 cannot be accepted in Algo-

rithm 1. As 𝛼k
t
< 𝛽k,

where the first equality follows from (4.16). By the mean value theorem,

where Lg is the Lipschitz constant of g(y). By (4.10), (4.21) and (4.22),

and together with (4.20), we get

As �k = ��k
t
 , it is true that 𝛼k ≥ �̄� in the case 𝛼k < 𝜎𝛽k , where �̄� =

2𝜎(1−𝛿)

Lg max(𝛼max,𝛾2)
 . 

Therefore,

holds in all cases.   ◻

Theorem  4.1 Suppose that Assumption  4.1 holds. Let {yk} be generated by Algo-
rithm 1. Then any accumulation point of the sequence {yk} is a KKT point of the 
problem (2.3).

Proof The update rule of Qk+1 given by Algorithm 1 yields

(4.20)

‖dk‖2 ≤ �
i∈Ck

2

𝛼k
B
yk
i
gk
i
+

�
i∈Ck

3
∪Ck

4

(𝛼k
B
)2�gk

i
�2 + 𝛾2(g

k)TZH̄kZTgk

≤ max(𝛼k
B
, 𝛾2)

⎛
⎜⎜⎝
�
i∈Ck

2

yk
i
gk
i
+

�
i∈Ck

3
∪Ck

4

𝛼k
B
�gk

i
�2 + (gk)TZH̄kZTgk

⎞
⎟⎟⎠

≤ −max(𝛼max, 𝛾2)(d
k)Tgk,

(4.21)f (ΠQ[y
k + 𝛼k

t
dk]) = f (yk + 𝛼k

t
dk) > f k

p
+ 𝛿𝛼k

t
(gk)Tdk,

(4.22)
f (yk + 𝛼k

t
dk) = f (yk) + 𝛼k

t
(gk)Tdk + (dk)T �

𝛼k
t

0

[g(yk + �̆�dk) − g(yk)]d�̆�

≤ f (yk) + 𝛼k
t
(gk)Tdk +

1

2
Lg(𝛼

k
t
)2‖dk‖2,

�k
t
(gk)Tdk +

1

2
Lg(�

k
t
)2‖dk‖2 ≥ ��k

t
(gk)Tdk,

�k
t
≥ −

2(1 − �)(gk)Tdk

Lg‖dk‖2
≥ 2(1 − �)

Lg

1

max(�max, �2)
.

𝛼k ≥ min
{
𝜎𝛽k, �̄�

}

(4.23)Qk+1 = 1 + �Qk = 1 +

k+1∑
j=1

�j ≤ 1

1 − �
.
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By the nonmonotone reduction condition of f and (4.10), we have

where the last inequality follows from (4.8) and (4.23). Since {yk} is bounded, 
{f (yk)} and {f k

p
} are bounded below by (4.10). Combine with (4.24) to have

Using (4.8), we obtain that

We now prove that any accumulation point of {yk} is a KKT point of the problem 
(2.3). Let y∗ be an accumulation point of {yk} , and the subsequence {yki} of {yk} 
converges to y∗ . It follows from the continuity of ∇f (y) that gki → g∗ ∶= ∇f (y∗) as 
ki → ∞ . Similarly, due to (3.4) of the KKT error �ki , we can assume, without loss of 
generality, that {�ki} converges to some limit point �∗ . If �∗ = 0 , then y∗ is already 
a KKT point. Otherwise, for all sufficiently large ki , �ki ≥ �∗

2
 . By (4.19) and Lem-

mas 4.5 and 4.6, �ki is bounded away from zero, and according to (4.25),

As k increases, we can assume without loss of generality that Ck
i
, i = 1, 2, 3, 4 and Fk 

are constants for all sufficiently large k = ki , and thereby, we drop the superscripts k 
by simply denoting Ci, i = 1, 2, 3, 4 and F  . Using (4.9) and (4.6), we have that

Recall the definitions of dk and Ck
i
, i = 1, 2 to have

Putting above equalities and inequalities together, we conclude that y∗ is a KKT 
point of the problem (2.3).   ◻

(4.24)

f k+1
p

=
�Qkf k

p
+ f (yk+1)

Qk+1

≤ (�Qk + 1)f k
p
+ �k�(dk)Tgk

Qk+1

= f k
p
+

�k�(dk)Tgk

Qk+1

≤ f k
p
+ �k(1 − �)�(dk)Tgk,

−

∞∑
k=1

𝛼k(1 − 𝜉)𝛿(dk)Tgk ≤
∞∑
k=1

(
f k
p
− f k+1

p

)
< ∞.

(4.25)lim
k→∞

�k(dk)Tgk = 0.

(4.26)lim
ki→∞

(dki )Tgki = 0.

y∗
i
g∗
i
= 0, i ∈ C2,

g∗
i
= 0, i ∈ C3 ∪ C4 ∪ F.

y∗
i
= 0, g∗

i
≥ 0, i ∈ C1,

g∗
i
≥ 0, y∗

i
≥ 0 i ∈ C2.
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5  Local quadratic convergence

We now investigate the convergence behavior of Algorithm  1 with Algorithm  2 
embedded in Line 9 for adaptively computing the search direction. For simplicity, 
we call such an implementation of Algorithm 1 as AASA(Adaptive), for which the 
sequences {yk} and {zj} are called the outer-loop and inner-loop sequence, respec-
tively. It should be noticed from Algorithm 2 that a particular inner-loop sequence 
{zj} starts from a certain outer-loop iterate yk+1 , and has one of the two mutually 
exclusive scenarios: (a) {zj} stops at some zjk and then the iteration of 
AASA(Adaptive) enters back to yk+1 , and continuously produces yk+2 , and (b) {zj} is 
an infinite sequence satisfying �(zj) → 0 as j → ∞ . For the former case (a), the 
intermediate {zj}jk

j=1
 are only trials which do not change current outer yk+1 , whereas 

for (b), AASA(Adaptive) converges. Therefore, one and only one of the following 
situations occurs in AASA(Adaptive): 

 (i) an infinite outer-loop sequence {yk}∞
k=1

 is generated, or
 (ii) from some yk+1 , a sequence {zj}∞

j=1
 is generated by Algorithm  2 and 

AASA(Adaptive) converges.

Theorem  5.1 Suppose that Assumption  4.1 holds, then any accumulation point of 
the sequence {yk} from case (i) or {zj} from case (ii) is a KKT point of the problem 
(2.3).

Proof If case (i) occurs, we know that all the inner-loop sequences {zj} are finite 
sequences, and the convergence analysis of Theorem 4.1 is true for the outer-loop 
sequence {yk}∞

k=1
 . Indeed, for a yk+1 , if AASA(Adaptive) generates a finite sequence 

{zj}
jk
j=1

 , the search direction at yk+1 will be reset as the L-BFGS direction dk+1
Q

 (cf. 
Line 14 of Algorithm 2), and thus Theorem 4.1 applies for this case.

For the case of (ii), the condition in Line 6 of Algorithm 2 ensures that

By Assumption 4.1 and Lemma 4.1,

and use (5.1) to conclude {f (zj)} is monotonically decreasing. The coercivity of f 
ensures the boundedness of {f (zj)} and further the convergence of {f (zj)} . Thus by 
(5.1) and Lemma 4.1, lim

j→∞
∇f (zj)TdN(z

j) = 0, a result similar to (4.26). With this and 
following analogously the proof of Theorem 4.1, we know any accumulation point 
of the sequence {zj} is a KKT point of (2.3).   ◻

Let y∗ be an accumulation point of the sequence {yk} (or {zj} ) generated by 
AASA(Adaptive). According to the convexity of (2.3), y∗ is also a minimizer. From 
[22, Theorem 2.2], we know that a minimizer y∗ is isolated under the second-order 

(5.1)f (zj+1) < f (zj) + 𝛿∇f (zj)TdN(z
j), ∀j.

∇f (zj)TdN(z
j) ≤ 0,
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sufficient condition, which, by Theorem 5.2 below, is true under the constraint non-
degeneracy condition for the primal problem (1.1). Therefore, we can assume that 
the sequence {yk} (or {zj} ) converges to a minimizer y∗ with the constraint nondegen-
eracy condition, and define accordingly

The constraint nondegenercy condition holds at X∗ if

where TK(X) denotes the tangent cone of K at X ∈ K , linTK(X) denotes the largest 
linear space contained in TK(X) , and Ie is the identity mapping from Sn to Sn . Let 
the primal index set of active constraints at X∗ be

Then the linear mapping AF̄  : Sn
→ ℝ

p+s̄ given by AF̄(X) = [A(X)]F̄  has its adjoint 
A∗

F̄
 , where F̄ = E ∪ Ip(X∗) , and s̄ denotes the cardinality of Ip(X∗).

Theorem 5.2 If the constraint nondegeneracy condition for the problem (1.1) holds 
at X∗ given in (5.2), then the strong second-order sufficient condition for the dual 
problem (2.3) holds at y∗.

Proof By [10, Lemma 4.3], for any V ∈ �B(ΠSn
+
[X∗]),

for any hF̄ ≠ 0 with h ∈ ℝ
m . Because of the complementarity between 

⟨Ai,X
∗⟩ = bi, i ∈ I  and y∗

I
 , F̄ ∪ I0(y

∗) equals E ∪ I  , but F̄ ∩ I0(y
∗) may not be 

empty. So, if i ∉ F̄  , then i ∈ I0(y
∗) . For any h ∈ H̄𝜃(y

∗)�{0} , hi = 0, i ∈ I0(y
∗) , and 

then A∗(h) =
∑

i∈F̄ hiAi +
∑

i∉F̄ hiAi = A∗

F̄
(hF̄) . Therefore, for any h ∈ H̄𝜃(y

∗)�{0} 
and any V ∈ �B(ΠSn

+
[X∗]),

which implies the strong second-order sufficient condition.   ◻

Under the constraint nondegeneracy condition for the primal problem (1.1), the 
following theorem shows that our algorithm converges to a minimizer of the dual 
problem (2.3) quadratically.

Theorem 5.3 Let y∗ be any limit point from case (i) or (ii) of AASA(Adaptive). If the 
strict complementarity condition for the dual problem (2.3) holds at y∗ and the 

(5.2)X∗ = ΠSn
+
[G +A∗(y∗)].

(
A

Ie

)
Sn +

(
linTQ(A(X∗) − b)

linTSn
+
(X∗)

)
=

(
ℝ

m

Sn

)
,

(5.3)Ip(X∗) = {i�⟨Ai,X
∗⟩ = bi, i = p + 1,… ,m}.

⟨hF̄,AF̄VA
∗

F̄
(hF̄)⟩ > 0

⟨h,AVA∗(h)⟩ = ⟨A∗(h),VA∗(h)⟩
= ⟨A∗

F̄
(hF̄),VA

∗

F̄
(hF̄)

= ⟨hF̄,AF̄VA
∗

F̄
(hF̄)⟩ > 0,
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constraint nondegeneracy condition holds at X∗ given by (5.2), then y∗ must be a 
limit point from case (ii); that is, y∗ is a limit point of {zj}∞

j=1
 generated at Line 7 of 

Algorithm 2 from some outer iterate yk+1 . Moreover, {zj}∞
j=1

 converges to y∗ 
quadratically.

Proof By assumption, Theorem 5.2 ensures that the strong second-order sufficient 
condition holds at the KKT point y∗ , which is a minimizer by the convexity. Using 
Theorem 3.2, for sufficiently large k, F(yk) (or F(zj) ) and B(yk) (or B(zj) ) can cor-
rectly identify the inactive and active sets F  and B , respectively.

Let X∗ and Ip(X∗) be defined by (5.2) and (5.3), respectively. Then the strict 
complementarity condition ensures F = F̄ ∶= E ∪ Ip(X∗) . Therefore, with the 
active (inactive) set identified by yk which is sufficiently close to y∗ , solving (2.3) is 
equivalent to minz∈Z f (z) , where Z = {z|zi = 0, i ∈ B} . At such yk , define an auxil-
iary function f̂ (z

F
) with the variables z

F
 extracted from z by F  and z

B
= 0 fixed, and 

f̂ (z
F
) = f|z∈Z(z) . Thus

 Due to the convexity of f̂ (z
F
) , (5.4) can be solved from

where ∇f (z) is given by (2.4).
Let {ẑj

F
}∞
j=1

 be the sequence from the generalized Newton iteration for F(z
F
) = 0 

via

where Ĵjd̂j
F
= −F(ẑ

j
F
) and Ĵj ∈ 𝜕BF(ẑ

j
F
) . For the index set F  , define the linear map-

ping A
F
 : Sn

→ ℝ
|F| by A

F
(X) = [A(X)]

F
 , whose adjoin mapping A∗

F
 : ℝ|F|

→ Sn is 
given by A∗

F
(h

F
) =

∑
i∈F

hiAi . By (2.4),

is locally Lipschitz continuous and also strongly semi-smooth on ℝ|F| [3, 32]. From 
[10, Lemma 4.3], for all V ∈ �B(ΠSn

+
[G +A∗

F
(y∗

F
)]) , every A

F
VA∗

F
∈ �BF(y

∗
F
) is posi-

tive definite. Consequently, by [23, Theorems 3.2 and 3.3], {ẑj
F
} converges to y∗

F
 

globally and quadratically provided that ẑ1
F
 is sufficiently close to y∗

F
.

Recall y∗ is a limit point from case (i) or (ii). By Theorem 5.1, we can assume, 
without loss of generality, that z1 (see Line 3 of Algorithm 2) is sufficiently close to 
the limit point y∗ of either case (i) or (ii). Let z1

F
 be the subvector of z1 indexed by F  . 

Starting from ẑ1
F
= z1

F
 , the sequence {ẑj

F
} generated by (5.5) converges to y∗

F
 globally 

and quadratically. Augment ẑj
F
 to ẑj by setting ẑj

B
= 0 accordingly to have an auxiliary 

sequence {ẑj} , and we know it converges to y∗ globally and quadratically. Our final 
task is to show {ẑj} is the same as that generated by Algorithm 2 (cf. Line 7).

(5.4)min
z∈Z

f (z) ⟺ min
zF∈ℝ

|F|
f̂ (z

F
).

F(z
F
) ∶= ∇f̂ (z

F
) = [∇f|z∈Z(z)]F = 0,

(5.5)ẑj+1
F

= ẑj
F
+ d̂j

F
, j = 1, 2,… ,

F(z
F
) = [∇f (z)]

F
= A

F
[G +A∗

F
(z

F
)]+ − b



25

1 3

An accelerated active-set algorithm for a quadratic…

The proof is by induction on j. First, z1 = ẑ1 . Suppose the conclusion holds for 
j > 0 and we will show zj+1 = ẑj+1 . In fact, as {ẑj} converges to y∗ and ẑ1(= z1) is 
sufficiently close to y∗ , by the inductive hypothesis, we know F(zj) = F  and 
B(zj) = B . This ensures that the later condition in Line 6 of Algorithm 2 is fulfilled. 
By (3.11) and (3.15), [d̄j

N
]
F
(= [dN(z

j)]
F
) is exactly d̂j

F
 in (5.5). Because of ẑj → y∗ 

and [d̄j
N
]
B
= 0 (see Lines 5 and 12 of Algorithm  2), dN(ẑj) → 0 . Second, due to 

y∗
F∩I

> 0 , assume, without loss of generality, ẑj
F∩I

> 0 . By induction, we further have 
ΠQ(z

j + d̄
j

N
) = ΠQ(ẑ

j + d̄
j

N
) = ẑj + d̄

j

N
= zj + d̄

j

N
 . Note that the strict complementa-

rity condition implies y∗
B
= 0 and g∗

B
> 0 . Assume g

B
(ẑj) > 0 , and thus g

B
(zj) > 0 . By 

(3.11) and (3.2),

Hence, zj
B
= 0 and g

B
(zj) > 0 imply [dN(zj)]B = 0 . Due to the generalized Newton 

equation Jj
FF
[d̄

j

N
]
F
= −g

F
(zj) with Jj

FF
∈ �BF(z

j
F
) , it holds that

and ‖zj
F
+ [d̄

j

N
]
F
− y∗

F
‖ = O(‖zj

F
− y∗

F
‖2) . By [10, Lemma 4.3], Jj

FF
 is uniformly posi-

tive definite for all zj
F
 , i.e., ∃�̄� > 0 such that

Applying [6, Lemma 3.2 and Theorem 3.3], we have

As zj
B
= 0 and [dN(zj)]B = 0 , it holds that

which together with (5.6) yields that

 Consequently, the sufficient decrease condition (3.17) is true due to 
ΠQ(z

j + d̄
j

N
) = zj + d̄

j

N
 . According to Algorithm 2 (see Lines 6-7), the new iterate is

where the last equality follows from [dN(zj)]F = d̂
j
F
 , [dN(zj)]B = 0 , and the inductive 

hypothesis. This completes the proof.   ◻

[dN(z
j)]

B
= max(0, zj

B
− 𝛼

j

B
g

B
(zj)) − zj

B
, 𝛼

j

B
> 0.

g
F
(zj)T [d̄

j

N
]
F
= −[d̄

j

N
]T
F
Jj
FF
[d̄

j

N
]
F

g
F
(zj)T [d̄

j

N
]
F
≤ −�̄�‖[d̄j

N
]
F
‖2, ∀zj

F
.

(5.6)f̂ (zj
F
+ [d̄

j

N
]
F
) < f̂ (zj

F
) + 𝛿g

F
(zj)T [dN(z

j)]
F
.

f (zj + d̄
j

N
) = f̂ (zj

F
+ [d̄

j

N
]
F
), f (zj) = f̂ (zj

F
), and g(zj)TdN(z

j) = g
F
(zj)T [dN(z

j)]
F
,

f (zj + d̄
j

N
) < f (zj) + 𝛿g(zj)TdN(z

j).

zj+1 = ΠQ(z
j + d̄

j

N
) = zj + d̄

j

N
= ẑj+1,
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6  Numerical experiments

In this section, we conduct numerical evaluation of Algorithm  1 with the adap-
tive acceleration of Algorithm  2 (denoted by AASA(Adaptive)) on various prob-
lems. Our numerical experiments are obtained by comparing with several other 
approaches or implementations, including the inexact smoothing Newton method 
(denoted by ISNM) [10], the projected BFGS method (denoted by P-BFGS) [14], 
Algorithm 1 accelerated by the pure limited memory BFGS (denoted by AASA(L-
BFGS)), and the alternating direction method (ADM) [12, 35]. The codes of ISNM 
and P-BFGS are available online,2 while the ADM is coded by ourselves. For com-
parison purpose, we report the number of iterations, CPU time and the KKT residu-
als �k . The numerical comparison was carried out on a PC under Windows 8 (64bits) 
system with Inter(R) Core(TM) i5-4590 CPU @ 2.4GHz and 4GB memory, in the 
Matlab environment (R2019a).

For the parameters involved, we terminate our algorithm whenever �k ≤ � = 10−6 ; 
other parameters in our implementation are given as follows:

All the parameters for AASA(L-BFGS) are the same as AASA(Adaptive). For 
ISNM, P-BFGS and ADM, we set � = 10−6 as tolerance and use default values for 
other parameters. We remark that the stopping conditions for AASA(Adaptive), 
ISNM, P-BFGS and ADM are not completely the same, due to their different opti-
mality measures involved.

Our numerical examples are in the following form:

where Be , Bl and Bu are three index subsets of {(i, j)|1 ≤ i ≤ j ≤ n} ; in particular, the 
values of lij for (i, j) ∈ Bl and uij for (i, j) ∈ Bu are lower and upper bounds, respec-
tively, satisfying lij < uij for all (i, j) ∈ Bl ∩ Bu.

We choose various specific problems for testing. The set of test problems includes 
synthetic data as well as real world data. Numerical results from synthetic prob-
lems are reported in Sect. 6.1, where the data matrix G is generated randomly with 
medium size problems ( n < 1000 ) and large-scale problems ( 1000 ≤ n ≤ 2000 ). 
Numerical results from real world data are shown in Sect.  6.2, where two data 
matrices are from financial markets (Shenzhen Stock Exchange and Shanghai Stock 

� = 0.2, � = 0.02, � = 0.85, �a = 0.2, �b = 0.005, �� = 0.3, y0 = 0.

(6.1)

⎧⎪⎪⎨⎪⎪⎩

min
1

2
‖X − G‖2

F

s.t. Xij = bij, (i, j) ∈ Be

Xij ≥ lij, (i, j) ∈ Bl,

Xij ≤ uij, (i, j) ∈ Bu,

X ∈ Sn
+
,

2 Codes of the approaches of ISNM and P-BFGS are available online at http://www.math.nus.edu.
sg/~matsu ndf/, and https ://ctk.math.ncsu.edu/matla b_darts .html, respectively.

http://www.math.nus.edu.sg/%7ematsundf/
http://www.math.nus.edu.sg/%7ematsundf/
https://ctk.math.ncsu.edu/matlab_darts.html
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Exchange in China) and constraint positions and constraint levels are specified to 
simulate some stress testing scenarios in financial risk management.

6.1  Synthetic examples

Similar to [10, 12], we randomly generate six synthetic examples (denoted by 
E1–E6) as follows:

E1: The matrix G is generated by Matlab built-in command rand via
G=2.0*rand(n,n)-ones(n,n); G=triu(G)*triu(G,1)’; for 

i=1:n; G(i,i)=1; end; The index sets are

where nr ≤ n is an positive integer. Moreover, bii = 1 for (i, i) ∈ Be , lij = −0.1 for 
(i, j) ∈ Bl , and uij = 0.1 for (i, j) ∈ Bu.

E2: G and Be are the same as in E1. The index sets Bl,Bu ⊂ {(i, j)|1 ≤ i < j ≤ n} 
consist of min(nr, n − i) pairs (i,  j) with j randomly generated at the ith row of X, 
i = 1,… , n . Similar to E1, bii = 1 for (i, i) ∈ Be , lij = −0.1 for (i, j) ∈ Bl , and uij = 0.1 
for (i, j) ∈ Bu.

E3: The settings are the same as in E1 except that lij = −0.5 for (i, j) ∈ Bl , and 
uij = 0.5 for (i, j) ∈ Bu.

E4: The settings are the same as in E2 except that lij = −0.5 for (i, j) ∈ Bl , and 
uij = 0.5 for (i, j) ∈ Bu.

E5: The settings are the same as in E1 except that lij = −0.5 ∗ ���� for (i, j) ∈ Bl , 
and uij = 0.5 ∗ ���� for (i, j) ∈ Bu.

E6: The settings are the same as in E2 except that lij = −0.5 ∗ ���� for (i, j) ∈ Bl , 
and uij = 0.5 ∗ ���� for (i, j) ∈ Bu.

6.1.1  Choice of the parameter l

Generally, the performance of the L-BFGS method is dependent on the param-
eter l in (3.12). Also, since AASA(Adaptive) and AASA(L-BFGS) both involve 
the L-BFGS update, a good choice l is desired practically. For that purpose, 
we particularly test AASA(L-BFGS) using various l = 2, 3, 5, 8 on E3 with 
n = 1000, 1500, 2000 and nr = 300, 600, 800, 1200 . The numerical results are 
listed in Table 1, where the label ‘Iter’ stands for the number of iterations, and 
m = 2(n − 1 − nr)nr + (1 + nr)nr + n is the number of constraints.

From Table 1, overall, we observed that l = 3 turns out to be a good choice for 
AASA(L-BFGS). In particular, the algorithm with l = 3 converges (in CPU time) 
fastest in general. Since AASA(Adaptive) generates the same iteration in the earlier 
stage as AASA(L-BFGS), we also set l = 3 for both AASA(Adaptive) and AASA(L-
BFGS) in the following numerical experiments.

Be = {(i, i)|i = 1,… , n} and Bl = Bu = {(i, min(i + j, n))|i = 1,… , n, j = 1,… , nr},



28 C. Shen et al.

1 3

6.1.2  Fast local convergence

We now demonstrate the fast local convergence of AASA(Adaptive) in practice. 
For illustration, we run AASA (Adaptive) on two instances of E2: one is a medium 
instance with n = 500 , nr = 200 and m = 90,400 , and the other is a large-scale 
instance with n = 2000 , nr = 500 and m = 1,751,500 . The tolerance3 � is set to be 
10−8 in order to observe the quadratic convergence.

In this experiment, AASA(Adaptive) solves the first instance within 160 itera-
tions, where the generalized Newton steps dk

N
 and d̄j

N
 are used 15 times ( ̄dj

N
 is rejected 

for once time, accepted 3 times, and dk
N

 is used for the remaining 11 times). For the 
second instance, it takes 311 iterations, where the generalized Newton steps dk

N
 and 

d̄
j

N
 are used 17 times ( ̄dj

N
 is rejected for 2 times, accepted 2 times, and dk

N
 is used for 

the remaining 13 times). The detailed information of iterations on the two instances 
is given in Tables 2 and 3, where the label ‘Res’ represents the KKT residual. The 
column of ‘Step dk ’ gives information about the search direction, and ‘Active set’ 
tells if the true active set is detected or not; moreover, the column labeled by ‘Full 
step d̄j

N
 ’ shows if the full semi-smooth Newton step d̄j

N
 (in Algorithm 2) is accepted 

or not. From Tables 2 and 3, we know that the residuals in the last 3 or 2 iterations 
drop very rapidly as long as the active set is identified. The semi-Newton direction 
d̄
j

N
 is used at the final several iterations and fast local convergence is observed.4

Table 1  Numerical results for AASA(L-BFGS) with different l on E3,

The best cases in terms of number of iterations and cpu time are bold

n nr m Iter CPU time (s)

l = 2 l = 3 l = 5 l = 8 l = 2 l = 3 l = 5 l = 8

1000 300 510,700 930 793 880 1039 258 233 280 371
1000 600 840,400 1636 1197 1174 1453 571 447 489 694
1000 800 960,200 1917 1447 1278 1651 726 590 586 859
1500 300 811,200 941 852 832 907 692 646 664 779
1500 600 1,440,900 1718 1405 1534 1645 1497 1284 1509 1760
1500 800 1,760,700 1927 1420 1638 1870 1806 1406 1811 2223
1500 1200 2,160,300 2670 1880 1772 2646 2751 2118 2178 3704
2000 300 1,111,700 787 787 952 1115 1268 1299 1618 1997
2000 600 2,041,400 1772 1427 1369 1891 3195 2700 2723 4159
2000 800 2,561,200 2097 1697 1555 2358 4072 3404 3335 5582
2000 1200 3,360,800 3231 2144 2138 3186 6771 4798 5192 8477

4 One may observe that the convergence in the final stage in Tables 2 and 3 is not indeed quadratic. This 
is due to the use of CG for the generalized Newton system where only a properly accurate approximation 
solution is computed.

3 We remark that � is set to be 10−8 only in this subsubsection because it is beneficial to observe the 
quadratic convergence rate from numerical results. In the rest numerical experiments, � is still set to be 
10

−6.
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6.1.3  Results from medium size problems

We test E1–E6 with n varying from 400 to 900 and nr from 100 to 500. In this 
testing, the maximum number of iterations for ISNM, AASA(L-BFGS), 
AASA(Adaptive), P-BFGS and ADM are set to be 1000, 2000, 2000, 2000 and 
3000, respectively, and the maximal allowed CPU consuming time is 1500 seconds 

Table 2  The information of 
intermediate iterations generated 
by AASA(Adaptive) on the 
medium instance of E2

The boldfaced indicates the occurrence of the superlinear conver-
gence

Iter Res Step dk Active set Full step d̄j
N

... ... ... ... ...
145 8.13E−02 dk

Q
Undetected –

146 3.10E−01 dk
N

Undetected –
147 1.74E−01 dk

Q
Undetected –

148 1.07E−01 dk
N

Undetected –
... ... ... ... ...
154 1.12E−03 dk

N
Undetected –

155 1.33E−02 d̄
j

N
Undetected Rejected

156 1.25E−03 dk
Q

Undetected –
157 2.33E−04 dk

N
Detected –

158 2.31E−06 d̄
j

N
Detected Accepted

159 2.14E−08 d̄
j

N
Detected Accepted

160 2.09E−10 d̄
j

N
Detected Accepted

Table 3  The information of 
intermediate iterations generated 
by AASA(Adaptive) on the 
large instance of E2

The boldfaced indicates the occurrence of the superlinear conver-
gence

Iter Res Step dk Active set Full step d̄j
N

... ... ... ... ...
300 1.03E−01 dk

N
Undetected –

301 6.72E−02 dk
N

Undetected –
302 2.75E−02 dk

N
Undetected –

303 2.72E−02 dk
N

Undetected –
304 2.85E−03 dk

N
Undetected –

305 8.36E−03 d̄
j

N
Undetected Rejected

306 6.86E−03 dk
Q

Undetected –
307 2.21E−04 dk

N
Undetected –

308 3.35E−05 d̄
j

N
Undetected Rejected

309 3.27E−05 dk
Q

Detected –
310 3.08E−07 d̄

j

N
Detected Accepted

311 2.98E−09 d̄
j

N
Detected Accepted
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for all solvers. The numerical results on E1 and E2 are listed in Tables  4 and 5, 
respectively, where the labels ‘t’, ‘N’ and ‘ Nu ’ represent CPU time (in seconds), the 
number of generalized Newton steps (both dk

N
 and d̄j

N
 ), the number of rejected gener-

alized Newton steps ( ̄dj
N

 ), respectively. It should be pointed out that the KKT residu-
als associated with each solver are recalculated by (3.4) for measuring the accuracy 
of the computed solutions; moreover, since ADM only gives the primal solution, 
which cannot be used to calculate the KKT residual �k directly, we omit the final 
residuals associated with ADM in Tables 4 and 5.

We observed from Tables  4 and 5 that ISNM, AASA(L-BFGS) and 
AASA(Adaptive) succeed in solving all the instances of E1 and E2, while the other two 
solvers fail (labeled by † ) in some instances. Particularly, ADM fails on all the cases as 
it cannot find approximate solutions within the prescribed accuracy in 3000 iterations. 
P-BFGS fails in almost all the instances due to either exceeding the maximum number 
(2000) of iterations. Also, we can see that the number Nu in Tables 4 and 5 is no more 
than 5, i.e., no more than 5 generalized Newton steps are rejected for each instance. The 
number N in Tables 4 and 5 is less than 40, which means that no more than 40 general-
ized Newton equations are solved for each instance. The numerical results in Tables 4 
and 5 show the efficiency of AASA(Adaptive) in terms of CPU time.

The numerical results on E3–E6 are presented on Table 6. Again, we can see that 
ASSA(adaptive) successfully solves all the problems efficiently, while P-BFGS and 
ADM both fail in most cases. ISNM generally terminates in a reasonable number of 
iterations but needs more CPU consuming times comparing with ASSA(adaptive) 
and ASSA(L-BFGS). Also, the magnitudes of N and Nu here are similar to those in 
Tables 4 and 5.

6.1.4  Results from large‑scale problems

Next, we increase n and nr to use various n ranging from 1000 to 2000, and nr from 
300 to 800. In this case, we also extend the maximum CPU time to 3600 seconds. 
The numerical results for E1 and E2 are omitted due to its similarity to those of 
E3–E6 in Table 7. Also, results from ADM and P-BFGS are exclusive due to their 
poor performance. It can be seen from Table 7 that, as n and nr increase, the effi-
ciency of AASA(Adaptive) gets more manifest.

Without the restriction on the consuming CPU time and the number of iterations, 
we provide two cases for medium-scale problems on E5 and E6: one (called case 
(i)) is (n, nr) = (1000, 500) and the other (called case (ii)) is (n, nr) = (2000, 500) . 
Figures 1 and 2 demonstrate the performances of three solvers in terms of the num-
ber of iterations, the residuals and the CPU time.



35

1 3

An accelerated active-set algorithm for a quadratic…

Ta
bl

e 
6 

 N
um

er
ic

al
 re

su
lts

 o
n 
E3

–E
6 

w
ith

  n
r
=
5
0
0

Th
e 

da
gg

er
 sy

m
bo

l (
†)

 in
di

ca
te

s t
he

 fa
ilu

re

Ty
pe

n
n
r

m
IS

N
M

A
A

SA
(L

-B
FG

S)
A

A
SA

(A
da

pt
iv

e)
A

D
M

P-
B

FG
S

Ite
r

t
Re

s
Ite

r
t

Re
s

Ite
r

t
Re

s
N

N
u

Ite
r

t
Ite

r
t

Re
s

E3
60

0
50

0
35

0,
10

0
31

3
34

8
1.

4E
−

07
87

8
11

1
9.

5E
−

07
20

7
29

9.
4E

−
09

6
1

30
00

†
15

3
81

9
15

6
8.

4E
−

07
70

0
50

0
45

0,
20

0
58

3
93

9
2.

0E
−

08
97

9
16

7
9.

3E
−

07
24

7
46

7.
4E

−
07

6
1

30
00

†
21

6
87

3
22

8
9.

4E
−

07
80

0
50

0
55

0,
30

0
47

6
94

8
4.

9E
−

07
11

13
25

6
9.

6E
−

07
23

0
60

2.
5E

−
08

6
1

30
00

†
30

7
20

01
†

>
 1

50
0

5.
5E

−
06

90
0

50
0

65
0,

40
0

56
6

>
 1

50
0

1.
7E

+
00

11
09

31
3

9.
9E

−
07

25
7

81
6.

9E
−

08
6

1
30

00
†

41
5

89
4

40
4

9.
0E

−
07

E4
60

0
50

0
35

0,
10

0
30

8
34

6
4.

7E
−

09
10

32
12

9
8.

9E
−

07
23

7
33

2.
1E

−
07

5
0

30
00

†
15

0
99

6
19

1
9.

6E
−

07
70

0
50

0
45

0,
20

0
60

6
98

4
2.

0E
−

07
10

64
18

2
9.

5E
−

07
25

1
46

9.
2E

−
07

5
0

30
00

†
21

7
81

9
21

1
8.

2E
−

07
80

0
50

0
55

0,
30

0
51

4
10

43
4.

6E
−

09
11

57
26

1
9.

3E
−

07
25

4
65

1.
3E

−
08

7
1

30
00

†
31

3
20

01
†

>
 1

50
0

1.
4E

−
06

90
0

50
0

65
0,

40
0

55
5

>
 1

50
0

1.
9E

+
00

11
48

32
7

9.
8E

−
07

27
4

85
7.

1E
−

07
6

1
30

00
†

42
0

94
8

41
8

7.
9E

−
07

E5
60

0
50

0
35

0,
10

0
17

6
32

0
1.

1E
−

07
90

1
11

5
8.

1E
−

07
27

5
52

1.
7E

−
07

32
2

30
00

†
15

1
20

01
†

40
2

1.
0E

−
04

70
0

50
0

45
0,

20
0

25
4

65
7

4.
1E

−
07

89
2

15
7

9.
4E

−
07

27
5

62
8.

3E
−

08
19

2
30

00
†

21
9

20
01

†
55

7
4.

6E
−

04
80

0
50

0
55

0,
30

0
28

7
10

21
2.

2E
−

08
10

89
25

1
1.

0E
−

06
28

6
10

0
3.

0E
−

08
33

4
30

00
†

32
0

20
01

†
74

2
7.

3E
−

04
90

0
50

0
65

0,
40

0
32

8
14

83
4.

3E
−

09
96

3
27

8
9.

7E
−

07
31

7
11

6
4.

8E
−

07
19

1
30

00
†

42
1

20
01

†
93

8
1.

3E
−

03
E6

60
0

50
0

35
0,

10
0

21
8

42
5

4.
9E

−
08

80
2

10
3

9.
8E

−
07

25
6

43
4.

2E
−

07
28

1
30

00
†

15
2

20
01

†
40

3
1.

2E
−

04
70

0
50

0
45

0,
20

0
25

0
64

9
3.

8E
−

07
83

8
14

6
8.

8E
−

07
24

5
54

6.
1E

−
07

17
2

30
00

†
21

9
20

01
†

55
9

3.
6E

−
04

80
0

50
0

55
0,

30
0

30
0

10
56

6.
2E

−
09

97
3

22
6

7.
6E

−
07

28
1

85
4.

2E
−

07
21

2
30

00
†

31
7

20
01

†
74

7
1.

0E
−

03
90

0
50

0
65

0,
40

0
32

3
14

36
1.

9E
−

08
11

02
32

2
8.

2E
−

07
31

2
13

1
6.

2E
−

08
26

2
30

00
†

41
8

20
01

†
93

4
1.

1E
−

03



36 C. Shen et al.

1 3

Ta
bl

e 
7 

 N
um

er
ic

al
 re

su
lts

 o
n 
E3

–E
6 

fo
r l

ar
ge

-s
ca

le
 p

ro
bl

em
s

Ty
pe

n
n
r

m
IS

N
M

A
A

SA
(L

-B
FG

S)
A

A
SA

(A
da

pt
iv

e)

Ite
r

t
Re

s
Ite

r
t

Re
s

Ite
r

t
Re

s
N

N
u

E3
10

00
30

0
51

0,
70

0
72

4
17

68
3.

7E
−

07
10

12
29

5
9.

9E
−

07
19

1
65

5.
6E

−
07

5
1

10
00

60
0

84
0,

40
0

79
6

25
54

4.
6E

−
08

13
18

48
3

9.
6E

−
07

21
8

99
6.

1E
−

08
11

5
10

00
80

0
96

0,
20

0
94

0
>

 3
60

0
6.

3E
−

01
13

10
52

3
9.

0E
−

07
28

9
12

3
3.

8E
−

07
5

0
15

00
30

0
81

1,
20

0
64

8
>

 3
60

0
7.

1E
−

01
88

0
65

9
9.

7E
−

07
21

9
17

4
1.

7E
−

08
5

1
15

00
60

0
1,

44
0,

90
0

46
7

>
 3

60
0

6.
9E

+
00

13
31

11
97

9.
1E

−
07

31
1

30
0

3.
6E

−
07

5
0

15
00

80
0

1,
76

0,
70

0
41

5
>

 3
60

0
1.

2E
+

01
18

09
17

58
9.

8E
−

07
39

2
40

5
2.

8E
−

07
5

1
20

00
30

0
1,

11
1,

70
0

30
7

>
 3

60
0

6.
5E

+
00

73
4

11
76

9.
8E

−
07

17
5

30
7

2.
7E

−
08

5
1

20
00

60
0

2,
04

1,
40

0
25

6
>

 3
60

0
1.

7E
+

01
12

61
23

36
9.

9E
−

07
31

6
62

4
1.

6E
−

07
5

1
20

00
80

0
2,

56
1,

20
0

21
7

>
 3

60
0

2.
2E

+
01

16
43

32
79

9.
2E

−
07

38
1

83
4

3.
8E

−
08

5
1

E4
10

00
30

0
51

0,
70

0
44

2
96

3
3.

1E
−

08
85

0
24

6
9.

4E
−

07
21

8
72

2.
2E

−
08

5
1

10
00

60
0

84
0,

40
0

10
49

>
 3

60
0

2.
6E

−
02

11
62

42
6

9.
8E

−
07

30
5

12
2

1.
6E

−
07

5
0

10
00

80
0

96
0,

20
0

82
0

>
 3

60
0

3.
8E

+
00

14
13

55
6

9.
6E

−
07

33
1

14
7

4.
9E

−
07

8
3

15
00

30
0

81
1,

20
0

60
5

>
 3

60
0

1.
4E

+
00

82
4

61
0

9.
9E

−
07

21
7

17
7

9.
2E

−
08

5
1

15
00

60
0

1,
44

0,
90

0
44

2
>

 3
60

0
9.

0E
+

00
14

07
12

81
9.

9E
−

07
32

2
32

2
4.

8E
−

07
7

3
15

00
80

0
1,

76
0,

70
0

40
1

>
 3

60
0

1.
2E

+
01

17
38

17
33

9.
4E

−
07

32
8

33
9

1.
2E

−
08

6
0

20
00

30
0

1,
11

1,
70

0
29

1
>

 3
60

0
7.

0E
+

00
89

4
14

58
9.

0E
−

07
21

9
38

6
2.

0E
−

08
5

1
20

00
60

0
2,

04
1,

40
0

24
6

>
 3

60
0

1.
7E

+
01

14
29

26
77

8.
8E

−
07

35
8

69
6

3.
2E

−
07

5
1

20
00

80
0

2,
56

1,
20

0
21

5
>

 3
60

0
2.

2E
+

01
16

78
33

73
9.

6E
−

07
45

0
94

9
3.

3E
−

07
5

0



37

1 3

An accelerated active-set algorithm for a quadratic…

Ta
bl

e 
7 

 (c
on

tin
ue

d)

Ty
pe

n
n
r

m
IS

N
M

A
A

SA
(L

-B
FG

S)
A

A
SA

(A
da

pt
iv

e)

Ite
r

t
Re

s
Ite

r
t

Re
s

Ite
r

t
Re

s
N

N
u

E5
10

00
30

0
51

0,
70

0
65

6
27

41
9.

7E
−

09
70

5
20

6
9.

7E
−

07
24

8
11

8
6.

8E
−

08
36

4

10
00

60
0

84
0,

40
0

36
8

20
84

1.
6E

−
07

12
24

45
9

8.
8E

−
07

31
0

14
6

7.
4E

−
07

19
2

10
00

80
0

96
0,

20
0

51
4

>
 3

60
0

1.
3E

−
01

10
84

44
2

9.
1E

−
07

34
2

20
4

2.
3E

−
08

37
3

15
00

30
0

81
1,

20
0

46
5

>
 3

60
0

1.
5E

−
01

88
8

66
7

8.
8E

−
07

23
0

20
6

3.
7E

−
07

13
2

15
00

60
0

1,
44

0,
90

0
31

5
>

 3
60

0
3.

3E
+

00
12

63
11

49
9.

4E
−

07
35

2
39

8
9.

5E
−

07
27

2

15
00

80
0

1,
76

0,
70

0
27

0
>

 3
60

0
8.

0E
+

00
15

24
15

13
9.

6E
−

07
42

6
49

8
7.

5E
−

07
21

2

20
00

30
0

1,
11

1,
70

0
26

7
>

 3
60

0
3.

5E
+

00
72

7
11

95
9.

9E
−

07
22

3
42

9
6.

0E
−

07
11

2

20
00

60
0

2,
04

1,
40

0
19

3
>

 3
60

0
1.

3E
+

01
15

75
29

83
7.

7E
−

07
40

0
10

05
1.

9E
−

07
38

3

20
00

80
0

2,
56

1,
20

0
17

1
>

 3
60

0
1.

6E
+

01
16

69
33

78
9.

9E
−

07
45

0
11

63
1.

6E
−

08
30

3
E6

10
00

30
0

51
0,

70
0

53
0

22
59

3.
8E

−
07

76
0

22
4

8.
1E

−
07

27
9

11
4

1.
4E

−
07

23
3

10
00

60
0

84
0,

40
0

36
6

21
34

1.
3E

−
07

12
30

46
9

9.
7E

−
07

33
4

20
5

2.
7E

−
07

47
2

10
00

80
0

96
0,

20
0

48
9

33
76

1.
9E

−
07

14
59

59
3

9.
6E

−
07

38
5

21
5

9.
5E

−
08

20
2

15
00

30
0

81
1,

20
0

41
1

>
 3

60
0

1.
0E

+
00

77
6

57
9

1.
0E

−
06

36
8

35
9

2.
0E

−
07

28
2

15
00

60
0

1,
44

0,
90

0
30

1
>

 3
60

0
3.

7E
+

00
12

04
11

02
8.

9E
−

07
35

6
44

7
1.

3E
−

08
33

5
15

00
80

0
1,

76
0,

70
0

26
6

>
 3

60
0

8.
3E

+
00

13
09

13
09

9.
5E

−
07

42
0

56
8

2.
8E

−
07

37
5

20
00

30
0

1,
11

1,
70

0
23

7
>

 3
60

0
3.

9E
+

00
84

9
13

99
9.

4E
−

07
25

2
48

4
1.

8E
−

07
13

2
20

00
60

0
2,

04
1,

40
0

18
8

>
 3

60
0

1.
2E

+
01

17
13

33
69

9.
8E

−
07

38
1

86
4

3.
2E

−
08

19
2

20
00

80
0

2,
56

1,
20

0
17

0
>

 3
60

0
1.

6E
+

01
17

64
>

 3
60

0
1.

1E
−

03
46

0
12

82
5.

5E
−

07
46

1



38 C. Shen et al.

1 3

It can be seen from Fig. 1a that the residual corresponding to AASA(Adaptive) 
gradually decreases as the number of iterations increases from 1 to 240 (the L-BFGS 
acceleration works in this phase), and then rapidly drops to the preset tolerance (the 
semi-smooth Newton acceleration works at that stage). The residual corresponding 
to ISNM declines slowly at the beginning, and drops rapidly in the last period. This 
also verifies the fast convergence of the semi-smooth Newton method numerically. 
From Fig. 1b, the three curves of CPU time are nearly linear. Similar observation 
can be seen from Fig. 1c and d and from Fig. 2 for case (ii). Again, the comparison 
also indicates that AASA(Adaptive) is the most efficient one.

6.2  Real examples

In this subsection, we test two real world instances whose data are obtained from 
financial markets.

In calculating value at risk in financial markets, the correlation matrix [28] is a critical 
factor. For example, it is noticed that the market correlation structure serves as a reflection 
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of the Great Crash, which changes around the Great Crash in several aspects [11] like 
abrupt regime changes [29, 30] or periodic economic cycle. In particular, the average cor-
relation coefficient after the critical point of crash usually gets higher than that before the 
crash [18, 19] and will approach to a steady state gradually. Moreover, the correlation 
coefficients can be used in the stress testing: the correlation coefficients between certain 
underlying assets and others are adjusted largely to simulate the stress scenarios [28]; in 
financial industry, people usually try to find an approximation of the restricted correlation 
matrix in stress testing scenario in order to recover the adjusted matrix back to a correla-
tion matrix. Such task can be mathematically formulated as the model (6.1).

In our numerical verification, the correlation matrices to be approximated are 
calculated from the sample data in the Shenzhen Stock Exchange and the Shang-
hai Stock Exchange in China. For the constraints of (6.1), we notice that particu-
lar restrictions may be associated with a historical stressful event (such as the 
1987 stock market crash and 2008 economic crisis), or can be a set of hypotheti-
cal changes related with same possible future stressful market event [13]. Gener-
ally, identifying accurately the stress events set and restricting the correlation coef-
ficients between stress events and other underlying events [13] are very difficult, and 
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therefore, following [27], in our experiments, we just randomly generate the con-
straints and their positions to imitate the stress testing scenarios.

Precisely, for the first real world example (denoted by E7), we follow the way 
in [27] and calculate the data matrix using the daily closing price of 792 stocks 
listed in Shanghai Stock Exchange (from September 2016 to September 2018). For 
the constraints, we restrict all entries of the correlation matrix to be no less than 
−�.� ∗ ���� + �.� and there are no restrictions on the upper bounds, which can 
mimic some sort of scenarios in the period of economic depression or economic crisis.

For the second real world example (denoted by E8), the data matrix is obtained 
from 1187 stocks in Shenzhen Stocks Exchange (from September 2016 to Septem-
ber 2018). Again, we follow the way in [27] to generate the correlation matrix. For 
the constraints, here, we choose 400 random positions at each row of the matrix X, 
and set −�.� ∗ ���� + �.� and �.� ∗ ���� + �.� as the lower and upper bounds cor-
responding to the selected positions, respectively.

We plotted Fig. 3 to show how the residual changes against the number of itera-
tions when applying the five solvers to solve E7 and E8. It can be seen that all the 
solvers succeed in solving the two real data examples within the maximum number 
of iterations. We remark that the residual used in ADM is different from others but 
it is a default option in [12]. Figure 3 (both left and right) shows that the residuals 
corresponding to AASA(Adaptive) and ISNM drop very fast as the number of itera-
tions increases. This is explainable because AASA(Adaptive) and ISNM both make 
use of the second-order information, while the other three solvers (AASA(L-BFGS), 
P-BFGS and ADM) are based on the first-order information which generally need 
less computational effort per iteration but converges (in the sense of the residuals) 
slower. Besides the behavior of the residual against the number of iterations, we also 
reported the consuming CPU times in Fig. 3 for the overall performance of these 
algorithms. One can see that AASA(Adaptive) in general is one of the best and can 
be an efficient and robust approach for solving the problem (6.1).
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7  Conclusion

In this paper, we have presented a type of active-set algorithm for solving a generali-
zation of least squares semidefinite programming. Treating it from its equivalent dual 
form, our algorithm begins with estimating the active/inactive sets using the BB step 
information, and then adaptively applies the L-BFGS and the semi-smooth Newton 
methods to accelerate the convergence of the free variables. Under some mild con-
ditions, the proposed algorithm is proved to be globally convergent, and fast local 
convergence is guaranteed in a refined adaptive strategy. Numerical experiments on 
both synthetic and real world data problems are conducted. The reported numerical 
results are preliminary but very promising, indicating our proposed AASA(Adaptive) 
algorithm is an efficient and robust approach for this programming.
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