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Abstract
In this work, we introduce self-adaptive methods for solving variational inequali-
ties with Lipschitz continuous and quasimonotone mapping(or Lipschitz continu-
ous mapping without monotonicity) in real Hilbert space. Under suitable assump-
tions, the convergence of algorithms are established without the knowledge of the 
Lipschitz constant of the mapping. The results obtained in this paper extend some 
recent results in the literature. Some preliminary numerical experiments and com-
parisons are reported.
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mapping · Convex set
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1 Introduction

Let C be a nonempty closed and convex set in a real Hilbert space H and 
F ∶ H ⟶ H is a continuous mapping, ⟨⋅, ⋅⟩ and ∥ ⋅ ∥ denote the inner product and 
the induced norm in H, respectively. The variational inequality (VI(C, F)) is

(1)find x∗ ∈ C such that ⟨F(x∗), y − x∗⟩ ≥ 0, ∀y ∈ C.
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Weak converge of the sequence {xn} to a point x is denoted by xn ⇀ x while xn → x 
to denote the sequence {xn} converges strongly to x. Let S be the solution set of (1) 
and SD be the solution set of the following problem,

It is obvious that SD is a closed convex set (possibly empty). As F is continuous and 
C is convex, we get

If F is a pseudomonotone and continuous mapping, then S = SD(see Lemma 2.1 in 
[1]). The inclusion S ⊂ SD is false, if F is a quasimonotone and continuous mapping 
[2]. For solving quasimonotone variational inequalities, the convergence of interior 
proximal algorithm [3, 4] was obtained under more assumptions than SD ≠ ∅ . Under 
the assumption of SD ≠ ∅ , Ye and He [2] proposed a double projection algorithm for 
solving quasimonotone (or without monotonicity) variational inequalities in Rn . For 
a nonempty closed and convex set C ⊆ H , PC is called the projection from H onto C, 
that is, for every element x ∈ H such that ‖x − PC(x)‖ = min{∥ y − x ∥∣ y ∈ C} . It 
is easy to check that problem (1) is equivalent to the following fixed point problem:

for any 𝜆 > 0 . Various projection algorithms have been proposed and analyzed for 
solving variational inequalities [2, 5–27]. Among them, the extragradientmethod 
was proposed by Korpelevich [5] and Antipin [18], that is

where � ∈ (0,
1

L
) and L is the Lipschitz constant of F. Tseng [8] modified the extra-

gradient method with the following method

where � ∈ (0,
1

L
) . Recently, Censor et  al.[7] introduced the following subgradient 

extragradient algorithm

where Tn = {x ∈ H�⟨xn − �F(xn) − yn, x − yn⟩ ≤ 0} and � ∈ (0,
1

L
) . In the original 

papers, the methods (5), (6) and (7) were applied for solving monotone variational 
inequalities. It is known that these methods can be applied for solving pseudomono-
tone variational inequalities in infinite dimensional Hilbert spaces [22]. Very 
recently, Yang et al. [19–21] proposed modifications of gradient methods for solving 
monotone variational inequalities with the new step size rules. But the step sizes are 
non-increasing and the algorithms [19–21] may depend on the choice of initial step 
size. The natural question is whether the gradient algorithms still hold using non-
monotonic step sizes for solving quasimonotone variational inequalities (or without 
monotonicity). The goal of this paper is to give an answer to this question.

(2)find x∗ ∈ C such that ⟨F(y), y − x∗⟩ ⩾ 0, ∀y ∈ C.

(3)SD ⊆ S.

(4)find x∗ ∈ C such that x∗ = PC(x
∗ − �F(x∗))

(5)yn = PC(xn − �F(xn)), xn+1 = PC(xn − �F(yn)),

(6)yn = PC(xn − �F(xn)), xn+1 = yn + �(F(xn) − F(yn)),

(7)yn = PC(xn − �F(xn)), xn+1 = PTn
(xn − �F(yn)),
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The paper is organized as follows. In Sect. 2 , we first give some preliminaries 
that will be needed in the sequel. In Sect. 3 , we present algorithms and analyze their 
convergence. Finally, in Sect. 4 we provides numerical examples and comparisons.

2  Preliminaries

In this section, we give some concepts and results for further use.

Definition 2.1 A mapping F ∶ H ⟶ H is said to be as follows: 

(a) �-strongly monotone on H if there exists a constant 𝛾 > 0 such that 

(b) monotone on H if 

(c) pseudomonotone on H, if 

(d) quasimonotone on H, if 

(e) Lipschitz-continuous on H, if there exists L > 0 such that 

From the above definitions, we see that (a) ⇒ (b) ⇒ (c) ⇒ (d) . But the converses 
are not true.

In this paper, we assume that the following conditions hold 

(A1)  SD ≠ ∅.

(A2)  The mapping F is Lipschitz-continuous with constant L > 0.
(A3)  The mapping F is sequentially weakly continuous, i.e., for each sequence 

{xn} : {xn} converges weakly to x implies {F(xn)} converges weakly to F(x).
(A4)  The mapping F is quasimonotone on H.
(A4�)  If xn ⇀ x and lim supn→∞⟨F(xn), xn⟩ ≤ ⟨F(x), x⟩ , then 

lim
n→∞

⟨F(xn), xn⟩ = ⟨F(x), x⟩.
(A5)  The set A = {z ∈ C ∶ F(z) = 0} ⧵ SD is a finite set.
(A5�)  The set B = S ⧵ SD is a finite set.

(8)⟨F(x) − F(y), x − y⟩ ≥ � ∥ x − y ∥2, ∀x, y ∈ H.

(9)⟨F(x) − F(y), x − y⟩ ≥ 0, ∀x, y ∈ H.

(10)⟨F(y), x − y⟩ ≥ 0 ⇒ ⟨F(x), x − y⟩ ≥ 0, ∀x, y ∈ H.

(11)⟨F(y), x − y⟩ > 0 ⇒ ⟨F(x), x − y⟩ ≥ 0,∀x, y ∈ H.

(12)∥ F(x) − F(y) ∥≤ L ∥ x − y ∥, ∀x, y ∈ H.
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Remark 2.1 

 (i) If xn ⇀ x and the function g(x) = ⟨F(x), x⟩ is weak lower semicontinuous(i.e., 
lim inf
n→∞

⟨F(xn), xn⟩ ≥ ⟨F(x), x⟩ for every sequence {xn} converges weakly to x ), 
then F satisfies (A4�).

 (ii) If xn ⇀ x and F is sequentially weakly-strongly continuous( i.e., 
xn ⇀ x ⇒ F(xn) → F(x) ), then F satisfies (A4�) . Indeed, since xn ⇀ x and F is 
sequentially weakly-strongly continuous, we obtain lim

n→∞
⟨F(x), xn⟩ = ⟨F(x), x⟩ 

and lim
n→∞

‖F(xn) − F(x)‖ = 0 . Thus, we have 

 That is, lim supn→∞⟨F(xn), xn⟩ = lim
n→∞

⟨F(xn), xn⟩ = ⟨F(x), x⟩.
 (iii) If xn ⇀ x and F is sequentially weakly continuous and monotone mapping, 

we get 

 Which means that 

 Let n → ∞ in the last inequality, we have lim supn→∞⟨F(xn), xn⟩ ≥ ⟨F(x), x⟩. 
We have F satisfies (A4�).

Remark 2.2 If intC ≠ ∅ , F is a continuous and quasimonotone mapping, then the con-
dition (A5) is equivalent to (A5�) . It is easy to see that (A5�) ⇒ (A5) . On the other hand, 
from intC ≠ ∅ , we obtain {z ∈ C ∶ F(z) = 0} = {z ∈ C ∶ ⟨F(z), y − z⟩ = 0,∀y ∈ C}

(see Theorem 2.1 in [2]). Since F is a continuous and quasimonotone mapping, we 
have S ⧵ {z ∈ C ∶ ⟨F(z), y − z⟩ = 0,∀y ∈ C} ⊂ SD (see Lemma 2.7 in [2]). Hence 
S ⧵ {z ∈ C ∶ F(z) = 0} ⊂ SD ⊂ S. It follow that S ⧵ SD ⊂ {z ∈ C ∶ F(z) = 0} ⧵ SD. 
By (A5), we get {z ∈ C ∶ F(z) = 0} ⧵ SD is a finite set. This implies that (A5′) holds.

Lemma 2.1 [2] If either

(i) F is pseudomonotone on C and S ≠ ∅;
(ii) F is the gradient of G, where G is a differentiable quasiconvex function on 

anopen set K ⊃ C and attains its global minimum on C;
(iii) F is quasimonotone on C, F ≠ 0 on C and C is bounded;
(iv) F is quasimonotone on C, F ≠ 0 on C and there exists a positive number r such 

that, for every x ∈ C with ‖x‖ ≥ r , there exists y ∈ C such that ‖y‖ ≤ r and 
⟨F(x), y − x⟩ ≤ 0;

(v) F is quasimonotone on C, intC is nonempty and there exists x∗ ∈ S such that 
F(x∗) ≠ 0 . Then SD is nonempty.

lim
n→∞

(⟨F(xn), xn⟩ − ⟨F(x), x⟩) = lim
n→∞

⟨F(xn) − F(x), xn⟩
+ lim

n→∞
(⟨F(x), xn⟩ − ⟨F(x), x⟩) = 0.

⟨F(xn) − F(x), xn − x⟩ ≥ 0.

⟨F(xn), xn⟩ ≥ ⟨F(xn), x⟩ + ⟨F(x), xn⟩ − ⟨F(x), x⟩.
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Proof See Proposition 2.1 in [2] and Proposition 1 in [28].   ◻

Lemma 2.2 Let C be a nonempty, closed and convex set in H and x ∈ H . Then

Lemma 2.3 (Opial) For any sequence {xn} in H such that xn ⇀ x , then

3  Main results

First, we give a iterative algorithm for solving variational inequality.

Algorithm 3.1 (Step 0) Take 𝜆0 > 0 , x0 ∈ H, 0 < 𝜇 < 1 . Choose a nonnegative real 
sequence {pn} such that 

∑∞

n=0
pn < +∞.

(Step 1) Given the current iterate xn , compute

If xn = yn (or F(yn) = 0 ), then stop: yn is a solution. Otherwise,
(Step 2) Compute

and

Set n ∶= n + 1 and return to step 1.

Remark 3.1 If Algorithm  3.1 stops in a finite step of iterations, then yn is a solu-
tion of the variational inequality. So in the rest of this section, we assume that the 
Algorithm 3.1 does not stop in any finite iterations, and hence generates an infinite 
sequence.

Remark 3.2 In numerical experiments, the condition A5(or A5′ ) does not need to be 
considered. Indeed, if ‖yn − xn‖ < 𝜖 , Algorithm 3.1 terminates in a finite step of iter-
ations. In the process of proving the conclusion lim

n→∞
‖xn − yn‖ = 0 , the condition 

A5(or A5′ ) is not used (see(26) in Lemma 3.2).

Lemma 3.1 Let {�n} be the sequence generated by Algorithm 3.1. Then we get 
lim
n→∞

�n = � and � ∈ [min{
�

L
, �0}, �0 + P]. Where P =

∑∞

n=0
pn.

⟨PCx − x, y − PCx⟩ ≥ 0, ∀y ∈ C.

(13)lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖, ∀y ≠ x.

(14)yn = PC(xn − �nF(xn)).

(15)xn+1 = yn + �n(F(xn) − F(yn))

(16)�n+1 =

�
min

�
�‖xn−yn‖

‖F(xn)−F(yn)‖ , �n + pn

�
, if F(xn) − F(yn) ≠ 0,

�n + pn, otherwise.
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Proof Since F is Lipschitz-continuous with constant L > 0 , in the case of 
F(yn) − F(xn) ≠ 0 , we get

By the definition of �n+1 and mathematical induction, then the sequence 
{�n} has upper bound �0 + P and lower bound min{

�

L
, �0} . Let 

(�n+1 − �n)
+ = max{0, �n+1 − �n} and (�n+1 − �n)

− = max{0,−(�n+1 − �n)} . From 
the definition of {�n} , we have

That is, the series 
∑∞

n=0
(�n+1 − �n)

+ is convergence. Next we prove the convergence 
of the series 

∑∞

n=0
(�n+1 − �n)

− . Assume that 
∑∞

n=0
(�n+1 − �n)

− = +∞ . From the fact 
that

we get

Taking k → +∞ in (20), we have �k → −∞(k → ∞) . That is a contradiction. From 
the convergence of the series 

∑∞

n=0
(�n+1 − �n)

+ and 
∑∞

n=0
(�n+1 − �n)

− , taking 
k → +∞ in (20), we obtain lim

n→∞
�n = �. Since {�n} has the lower bound min{

�

L
, �0} 

and the upper bound �0 + P , we have � ∈ [min{
�

L
, �0}, �0 + P].   ◻

Remark 3.3 The step size in Algorithm 3.1 is allowed to increase from iteration to 
iteration and so Algorithm 3.1 reduces the dependence on the initial step size �0 . 
Since the sequence {pn} is summable, we get lim

n→∞
pn = 0. So the step size �n may 

non-increasing when n is large. If pn ≡ 0, then the step size in Algorithm 3.1 is simi-
lar to the methods in [19, 21].

Lemma 3.2 Under the conditions (A1) and (A2). Then the sequence {xn} generated 
by Algorithm 3.1 is bounded and lim

n→∞
‖xn+1 − xn‖ = 0.

Proof Let u ∈ SD, since xn+1 = yn + �n(F(xn) − F(yn)) , we obtain

(17)
�‖xn − yn‖

‖F(xn) − F(yn)‖ ≥
�‖xn − yn‖
L‖xn − yn‖ =

�

L
.

(18)
∞∑
n=0

(𝜆n+1 − 𝜆n)
+ ≤

∞∑
n=0

pn < +∞.

(19)�n+1 − �n = (�n+1 − �n)
+ − (�n+1 − �n)

−,

(20)�k+1 − �0 =

k∑
n=0

(�n+1 − �n) =

k∑
n=0

(�n+1 − �n)
+ −

k∑
n=0

(�n+1 − �n)
−.
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Note that yn = PC(xn − �nF(xn)) and u ∈ SD ⊆ S ⊆ C , by Lemma 2.2, we obtain 
⟨yn − xn + �nF(xn), yn − u⟩ ≤ 0. It follows that

Using yn ∈ C and u ∈ SD, we get ⟨F(yn), yn − u⟩ ≥ 0, ∀n ≥ 0. From (16), (21) and 
(22), we have

Since

we obtain ∃N ≥ 0, ∀n ≥ N, such that 1 − 𝜆2
n

𝜇2

𝜆2
n+1

> 0.
It implies that ∀n ≥ N, ‖xn+1 − u‖ ≤ ‖xn − u‖. This implies that {xn} is bounded 

and lim
n→∞

‖xn − u‖ exists. Returning to (23), we have

This implies that

Observe that

we obtain lim
n→∞

‖xn+1 − xn‖ = 0.   ◻

(21)

‖xn+1 − u‖2 = ‖yn − �n(F(yn) − F(xn)) − u‖2
= ‖yn − u‖2 + �2

n
‖F(yn) − F(xn)‖2 − 2�n⟨F(yn) − F(xn), yn − u⟩

= ‖xn − u‖2 + ‖yn − xn‖2 + 2⟨yn − xn, xn − u⟩
+ �2

n
‖F(yn) − F(xn)‖2 − 2�n⟨F(yn) − F(xn), yn − u⟩

= ‖xn − u‖2 + ‖yn − xn‖2 − 2⟨yn − xn, yn − xn⟩ + 2⟨yn − xn, yn − u⟩
+ �2

n
‖F(yn) − F(xn)‖2 − 2�n⟨F(yn) − F(xn), yn − u⟩.

(22)⟨yn − xn, yn − u⟩ ≤ −�n⟨F(xn), yn − u⟩.

(23)

‖xn+1 − u‖2 ≤‖xn − u‖2 − ‖yn − xn‖2 − 2�n⟨F(xn), yn − u⟩
+ �2

n
‖F(yn) − F(xn)‖2 − 2�n⟨F(yn) − F(xn), yn − u⟩

=‖xn − u‖2 − ‖yn − xn‖2 + �2
n
‖F(yn) − F(xn)‖2 − 2�n⟨yn − u,F(yn)⟩

≤‖xn − u‖2 − ‖yn − xn‖2 + �2
n

�2

�2
n+1

‖yn − xn‖2.

(24)lim
n→∞

(
1 − 𝜆2

n

𝜇2

𝜆2
n+1

)
= 1 − 𝜇2 > 0,

(25)

�
1 − �2

n

�2

�2
n+1

�
‖yn − xn‖2 ≤ ‖xn − u‖2 − ‖xn+1 − u‖2.

(26)lim
n→∞

‖xn − yn‖ = 0.

‖xn+1 − xn‖ = ‖yn + �n(F(xn) − F(yn)) − xn‖
≤ ‖yn − xn‖ + (�0 + P)L‖yn − xn‖,
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Remark 3.4 We note that the quasimonotonicity of the mapping is not used in the 
proof of the Lemma 3.2. In finite dimensional Hilbert space, under the conditions 
(A1) and (A2), then all the accumulation points of {xn} belong to S. Indeed, the exist-
ence of the accumulation points can be obtained by boundedness of the {xn} . If x∗ 
is an accumulation point of {xn} , then there exists a subsequence {xnk} of {xn} that 
converges to some x∗ ∈ C. In view of the fact that ynk = PC(xnk − �nkF(xnk )) and the 
continuity of F, we get

We deduce from (4) that x∗ ∈ S.

Lemma 3.3 Assume that  (A1)–(A4) hold. Let {xn} be the sequence generated by 
Algorithm 3.1. Then at least one of the following must hold : x∗ ∈ SD or F(x∗) = 0 . 
Where x* is one of the weak cluster point of {xn}.

Proof By Lemma 3.2, we have the sequence {xn} is bounded. Moreover, there exist a 
subsequence {xnk} that converges weakly to x∗ ∈ H . Using (26), we obtain ynk ⇀ x∗ 
and x∗ ∈ C. We divide the following proof into two cases.

Case 1 If lim supk→∞ ‖F(ynk )‖ = 0 , we have lim
k→∞

‖F(ynk )‖ = lim inf
k→∞

‖F(ynk )‖ = 0 . 
Since {ynk} converges weakly to x∗ ∈ C and F is sequentially weakly continuous on 
C, we have {F(ynk )} converges weakly to F(x∗) . Since the norm mapping is sequen-
tially weakly lower semicontinuous, we have

We obtain F(x∗) = 0.
Case 2 If lim supk→∞ ‖F(ynk )‖ > 0 , without loss of generality, we take 

lim
k→∞

‖F(ynk )‖ = M > 0(Otherwise, we take a subsequence of {F(ynk )}) . That is, there 
exists a K ∈ ℕ such that ‖F(ynk )‖ >

M

2
 for all k ≥ K . Since ynk = PC(xnk − �nkF(xnk )) 

and Lemma 2.2, we have

That is

Therefore, we get

Fixing z ∈ C , let k → ∞ , using the facts lim
k→∞

‖xnk − ynk‖ = 0 , {ynk} is bounded and 
lim
k→∞

𝜆nk = 𝜆 > 0, we obtain

x∗ = lim
k→∞

ynk = lim
k→∞

PC(xnk − �nkF(xnk )) = PC(x
∗ − �F(x∗)).

0 ≤ ‖F(x∗)‖ ≤ lim inf
k→∞

‖F(ynk )‖ = 0.

⟨ynk − xnk + �nkF(xnk ), z − ynk⟩ ≥ 0, ∀z ∈ C.

⟨xnk − ynk , z − ynk⟩ ≤ �nk⟨F(xnk ), z − ynk⟩, ∀z ∈ C.

(27)

1

�nk

⟨xnk − ynk , z − ynk⟩ − ⟨F(xnk ) − F(ynk ), z − ynk⟩ ≤ ⟨F(ynk ), z − ynk⟩, ∀z ∈ C.
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If lim supk→∞⟨F(ynk ), z − ynk⟩ > 0 , there exists a subsequence {ynki } such that 
lim
i→∞

⟨F(ynki ), z − ynki
⟩ > 0 . Then there exists an i0 ∈ ℕ such that ⟨F(ynki ), z − ynki

⟩ > 0 
for all i ≥ i0 . By the definition of quasidomonotone, we obtain ∀i ≥ i0,

Let i → ∞ , we get x∗ ∈ SD.

If lim supk→∞⟨F(ynk ), z − ynk⟩ = 0 , we deduce from (28) that

Let �k = �⟨F(ynk ), z − ynk⟩� + 1

k+1
 . This implies that

Let znk =
F(ynk )

‖F(ynk )‖2
 (∀k ≥ K) , we get ⟨F(ynk ), znk⟩ = 1 . Moreover, from (29), we have 

∀k > K,

By the definition of quasidomonotone, we obtain ∀k > K,

This implies that ∀k > K,

Let k → ∞ in (31), using the fact lim
k→∞

�k = 0 and boundedness of {‖z + �kznk − ynk‖} 
, we get

This implies that x∗ ∈ SD.   ◻

(28)0 ≤ lim inf
k→∞

⟨F(ynk ), z − ynk⟩ ≤ lim sup
k→∞

⟨F(ynk ), z − ynk⟩ < +∞.

⟨F(z), z − ynki
⟩ ≥ 0.

lim
k→∞

⟨F(ynk ), z − ynk⟩ = lim sup
k→∞

⟨F(ynk ), z − ynk⟩ = lim inf
k→∞

⟨F(ynk ), z − ynk⟩ = 0.

(29)⟨F(ynk ), z − ynk⟩ + 𝜀k > 0.

⟨F(ynk ), z + 𝜀kznk − ynk⟩ > 0.

(30)⟨F(z + �kznk ), z + �kznk − ynk⟩ ≥ 0.

(31)

⟨F(z), z + �kznk − ynk⟩ =⟨F(z) − F(z + �kznk ), z + �kznk

− ynk⟩ + ⟨F(z + �kznk ), z + �kznk − ynk⟩
≥⟨F(z) − F(z + �kznk ), z + �kznk − ynk⟩
≥ − ‖F(z) − F(z + �kznk )‖‖z + �kznk − ynk‖
≥ − �kL‖znk‖‖z + �kznk − ynk‖
= − �k

L

‖F(ynk )‖
‖z + �kznk − ynk‖

≥ − �k
2L

M
‖z + �kznk − ynk‖.

⟨F(z), z − x∗⟩ ≥ 0. ∀z ∈ C.
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Lemma 3.4 Assume that (A1) − (A5) hold. Then the sequence {xn} generated by 
Algorithm 3.1 has finite weak cluster points in S.

Proof First we prove {xn} has at most one weak cluster point in SD.
Assume that {xn} has at least two weak cluster points x∗ ∈ SD and x̄ ∈ SD such 

that x∗ ≠ x̄ . Let {xni} be a sequence such that xni ⇀ x̄ as i → ∞ , noting the fact that 
lim
n→∞

‖xn − u‖ exists for all u ∈ SD , by Lemma 2.3, we obtain

which is impossible. Since A = {z ∈ C ∶ F(z) = 0} ⧵ SD is a finite set, using Lemma 
3.3, then {xn} has finite weak cluster points in S.   ◻

Lemma 3.5 Assume that  (A1)–(A5) hold and {xn} has finite weak cluster points 
z1, z2,… zm . Then There exists N1 > N, ∀n ≥ N1, such that xn ∈ B . Where 
B =

⋃m

j=1
Bj , Bl =

⋂m

j=1,j≠l
{x ∶ ⟨x, zl−zj

‖zl−zj‖ ⟩ > 𝜖0 +
‖zl‖2−‖zj‖2
2‖zl−zj‖ } and 

�0 = min{
‖zl−zj‖

4
∶ l, j ∈ {1, 2,… ,m}, l ≠ j}.

Proof Let {xl
ni
} be a subsequence of {xn} such that xl

ni
⇀ zl as → ∞ , we get ∀ j ≠ l

For j ≠ l , one has

This implies that ∀ j ≠ l

From (33) and (35), when i is sufficiently large, we have 
xl
ni
∈ {x ∶ ⟨x, zl−zj

‖zl−zj‖ ⟩ >
‖zl−zj‖

4
+

‖zl‖2−‖zj‖2
2‖zl−zj‖ } . Therefore, when i is sufficiently large, 

we have

(32)

lim
n→∞

‖xn − x̄‖
= lim

i→∞
‖xni − x̄‖ = lim inf

i→∞
‖xni − x̄‖

< lim inf
i→∞

‖xni − x∗‖ = lim
n→∞

‖xn − x∗‖ = lim
k→∞

‖xnk − x∗‖ = lim inf
k→∞

‖xnk − x∗‖
< lim inf

k→∞
‖xnk − x̄‖ = lim

n→∞
‖xnk − x̄‖ = lim

n→∞
‖xn − x̄‖,

(33)lim
i→∞

⟨xl
ni
, zl − zj⟩ = ⟨zl, zl − zj⟩.

(34)
⟨zl, zl − zj⟩ =‖zl‖2 − ⟨zl, zj⟩ = ‖zl − zj‖2

2
+

‖zl‖2
2

−
‖zj‖2
2

>
‖zl − zj‖2

4
+

‖zl‖2
2

−
‖zj‖2
2

.

(35)
�
zl,

zl − zj

‖zl − zj‖
�

>
‖zl − zj‖

4
+

‖zl‖2 − ‖zj‖2
2‖zl − zj‖ .

xl
ni
∈ Bl,
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where

and �0 = min
�‖zl−zj‖

4
∶ l, j ∈ {1, 2,… ,m}, l ≠ j

�
. It is obvious that

Set B =
⋃m

j=1
Bj . Next we prove xn ∈ B for sufficiently large n. Assume that there 

exists 
{
xnk

}
 of 

{
xn
}
 such that xnk ∉ B (∀k) . Using the boundedness of the 

{
xnk

}
 , 

there exists a subsequence of xnk convergent weakly to z ∈ C . Without loss of gen-
erality, we still denote the subsequence as 

{
xnk

}
 , that is, xnk ⇀ z . Since xnk ∉ B , for 

∀l ∈ {1, 2,… ,m} , we have

Using the principle of drawer, there exists subsequence 
{
xnki

}
 of 

{
xnk

}
 and 

l0 ∈ {1, 2,… ,m}�{l} such that ∀i ≥ 0

We have

Combining (34), (40) and 
�
zl,

zl−zl0

‖zl−zl0‖
�
>

‖zl−zl0‖
4

+
‖zl‖2−‖zl0‖2
2‖zl−zl0‖ ≥ 𝜖0 +

‖zl‖2−‖zl0‖2
2‖zl−zl0‖  , we 

get z ≠ zl . As l is arbitrary, we have z ∉
{
z1, z2,… zm

}
 , which is impossible. So we 

have xn ∈ B for sufficiently large n. That is, ∃N1 > N, ∀n ≥ N1, such that xn ∈ B .  
 ◻

Theorem 3.1 Assume that (A1) − (A5) hold. Let 
{
xn
}
 be a sequence generated by 

Algorithm 3.1. Then 
{
xn
}
 converges weakly to a point x∗ ∈ S.

Proof By Lemma 3.2, we have lim
n→∞

‖xn+1 − xn‖ = 0. It follows that 
∃N2 > N1 > N, ∀n ≥ N2, such that ‖xn+1 − xn‖ < 𝜖0 . Assume that 

{
xn
}
 has more than 

one weak cluster point, from Lemma 3.5, then ∃N3 ≥ N2 > N1 > N, we have xN3
∈ Bl , 

xN3+1
∈ Bj . Where l ≠ j , l, j ∈ {1, 2,… ,m} and m ≥ 2. In particular, we have

Using (36) and (37), we get

(36)Bl =

m�
j=1,j≠l

�
x ∶

�
x,

zl − zj

‖zl − zj‖
�

> 𝜖0 +
‖zl‖2 − ‖zj‖2
2‖zl − zj‖

�

(37)Bl =

m�
j=1,j≠l

�
x ∶

�
−x,

zl − zj

‖zj − zl‖
�

< −𝜖0 +
‖zj‖2 − ‖zl‖2
2‖zl − zj‖

�
.

(38)xnk ∉ Bl =

m�
j=1,j≠l

�
x ∶

�
x,

zl − zj

‖zl − zj‖
�

> 𝜖0 +
‖zl‖2 − ‖zj‖2
2‖zl − zj‖

�
.

(39)xnki
∉

�
x ∶

�
x,

zl − zl0

‖zl − zl0‖
�

> 𝜖0 +
‖zl‖2 − ‖zl0‖2
2‖zl − zl0‖

�
,

(40)z ∉

�
x ∶

�
x,

zl − zl0

‖zl − zl0‖
�

> 𝜖0 +
‖zl‖2 − ‖zl0‖2
2‖zl − zl0‖

�
.

(41)‖xN3+1
− xN3

‖ < 𝜖0.
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and

Moreover, we obtain

and

Combining (44) and (45), we get

Which is impossible. This implies that {xn} has only a weak cluster point in S.
Hence we deduce that xn ⇀ x∗ .   ◻

Now we prove the convergence of the Algorithm 3.1 without monotonicity.

Theorem 3.2 Assume that (A1) − (A3) , (A4�) and (A5�) hold. Let {xn} be a sequence 
generated by Algorithm 3.1. Then {xn} converges weakly to a point x∗ ∈ S.

Proof According to (28) and the proof in Lemma 3.3, fixing z ∈ C , we have 
yn ⇀ x∗, x∗ ∈ C and

We choose a positive sequence {�k} such that lim
k→∞

�k = 0 and

It follows that

In particular, set z = x∗ in (47), we have

Let k → ∞ in the last inequality, from (A3) and ynk ⇀ x∗ , we obtain

(42)xN3
∈ Bl =

m�
j=1,j≠l

�
x ∶

�
x,

zl − zj

‖zl − zj‖
�

> 𝜖0 +
‖zl‖2 − ‖zj‖2
2‖zl − zj‖

�

(43)xN3+1
∈ Bj =

m�
l=1,l≠j

�
x ∶

�
−x,

zj − zl

‖zj − zl‖
�

< −𝜖0 +
‖zl‖2 − ‖zj‖2
2‖zj − zl‖

�
.

(44)
�
xN3

,
zl − zj

‖zl − zj‖
�

> 𝜖0 +
‖zl‖2 − ‖zj‖2
2‖zl − zj‖

(45)
�
−xN3+1

,
zl − zj

‖zj − zl‖
�

> 𝜖0 +
‖zj‖2 − ‖zl‖2
2‖zl − zj‖ .

(46)2𝜖0 <

�
xN3

− xN3+1
,

zl − zj

‖zj − zl‖
�

≤ ‖xN3+1
− xN3

‖ < 𝜖0.

lim inf
k→∞

⟨F(ynk ), z − ynk⟩ ≥ 0.

⟨F(ynk ), z − ynk⟩ + 𝜀k > 0, ∀k ≥ 0.

(47)⟨F(ynk ), z⟩ + 𝜀k > ⟨F(ynk ), ynk⟩, ∀k ≥ 0.

⟨F(ynk ), x∗⟩ + 𝜀k > ⟨F(ynk ), ynk⟩, ∀k ≥ 0.
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From (A4�) , we get lim
n→∞

⟨F(ynk ), ynk⟩ = ⟨F(x∗), x∗⟩.
At the same time, from (47), we obtain

which implies that

We have x∗ ∈ S . By the condition (A5�) , similar to the proof of Lemmas 3.4, 3.5 and 
Theorem 3.1, we get {xn} converges weakly to a point x∗ ∈ S .   ◻

For the extragradient method and the subgradient extragradient, we introduce 
the following algorithms.

Algorithm 3.2 (Step 0) Take 𝜆0 > 0 , x0 ∈ H, � ∈ (0, 1) . Choose a nonnegative real 
sequence {pn} such that 

∑∞

n=0
pn < +∞.

(Step 1) Given the current iterate xn , compute

If xn = yn(or F(yn) = 0 ), then stop: yn is a solution. Otherwise, go to Step 2.
(Step 2) Compute

(Step 3) Compute

Set n ∶= n + 1 and return to step 1.

Algorithm 3.3 (Step 0) Take 𝜆0 > 0 , x0 ∈ H, � ∈ (0, 1) . Choose a nonnegative real 
sequence {pn} such that 

∑∞

n=0
pn < +∞.

(Step 1) Given the current iterate xn , compute

If xn = yn(or F(yn) = 0 ), then stop: yn is a solution. Otherwise, go to Step 2.
(Step 2) Construct Tn = {x ∈ H�⟨xn − �nF(xn) − yn, x − yn⟩ ≤ 0} and compute

⟨F(x∗), x∗⟩ ≥ lim sup
k→∞

⟨F(ynk ), ynk⟩.

⟨F(x∗), z⟩ = lim
k→∞

(⟨F(ynk ), z⟩ + �k)

≥ lim inf
k→∞

⟨F(ynk ), ynk⟩
= lim

n→∞
⟨F(ynk ), ynk⟩ = ⟨F(x∗), x∗⟩.

⟨F(x∗), z − x∗⟩ ≥ 0. ∀z ∈ C.

yn = PC(xn − �nF(xn)).

xn+1 = PC(xn − �nF(yn)).

𝜆n+1 =

�
min

�
𝜇(‖xn−yn‖2+‖xn+1−yn‖2)
2⟨F(xn)−F(yn),xn+1−yn⟩ , 𝜆n + pn

�
, if ⟨F(xn) − F(yn), xn+1 − yn⟩ > 0,

𝜆n + pn, otherwise.

yn = PC(xn − �nF(xn)).
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(Step 3) Compute

Set n ∶= n + 1 and return to step 1.

Remark 3.5 If pn ≡ 0, then the step sizes in Algorithms 3.2 and 3.3 are similar to the 
method in [20]. The conclusion in Theorems 3.1 and 3.2 still hold for Algorithms 
3.2 and 3.3.

4  Numerical experiments

In this section, we compare the proposed methods with the Algorithm 2.1 in [2]. We 
choose � = 0.5 , pn =

100

(n+1)1.1
 and �0 = 1 for our algorithms. We choose � = 0.4 and 

� = 0.99 for Algorithm 2.1 in [2]. The stopping criterion are the following

Algorithms 3.1, 3.2, 3.3    ‖yn − xn‖∕min{�n, 1} ≤ � and ‖F(yn)‖ ≤ � .    (45)
Algorithm 2.1 in [2]   ‖xn − zn‖ = ‖xn − PC(xn − F(xn))‖ ≤ � .    (46)

We do not use the criterion ‖xn − PC(xn − F(xn))‖ ≤ � and ‖F(yn)‖ ≤ � for Algo-
rithms 3.1, 3.2 and 3.3 because we do not want to compute ‖xn − PC(xn − F(xn))‖ 
extra. If 𝜆n < 1 , we have

If �n ≥ 1 , we have

Moreover, we notice that termination criteria (45) is stronger than (46). We denoted 
by x0 the starting point of the experiment and by x the solution of the variational 
inequality. We also added the total number (nf) of all values F that is evaluated. For 
the test problems, we also have generated random samples with different choice of 
x0 in C. For all algorithms, we take � = 10−6.

Problem 1 Let C = [−1, 1] and

xn+1 = PTn
(xn − �nF(yn)).

𝜆n+1 =

�
min

�
𝜇(‖xn−yn‖2+‖xn+1−yn‖2)
2⟨F(xn)−F(yn),xn+1−yn⟩ , 𝜆n + pn

�
, if ⟨F(xn) − F(yn), xn+1 − yn⟩ > 0,

𝜆n + pn, otherwise.

(47)
‖xn − PC(xn − F(xn))‖ ≤ ‖xn − PC(xn − �nF(xn))‖∕�n = ‖yn − xn‖∕min{�n, 1}.

(48)
‖xn − PC(xn − F(xn))‖ ≤ ‖xn − PC(xn − �nF(xn))‖ = ‖yn − xn‖∕min{�n, 1}.

F(x) =

⎧⎪⎨⎪⎩

2x − 1, x > 1,

x2, x ∈ [−1, 1],

−2x − 1, x < −1.
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Then F is a quasimonotone and Lipschitz continuous mapping. We have SD = {−1} 
and S = {−1, 0} . The results are presented in Table 1. As we can see from Table 1, 
the number of iterations of our Algorithms is much smaller than Algorithm 2.1 in 
[2].

Problem 2 Let C = {x ∈ R2 ∶ x2
1
+ x2

2
≤ 1, 0 ≤ x1} and F(x1, x2) = (−x1e

x2 , x2) . It is 
not difficulty to check that F is not a quasimonotone mapping. Indeed, take x = (0,

1

4
) 

and y = (
√
3

2
,
1

2
), we have ⟨F(y), x − y⟩ = 3

4
e0.5 −

1

8
> 0 and ⟨F(x), x − y⟩ = −

1

16
< 0. 

It’s easy to validate that (1, 0) ∈ SD . By the KKT conditions to the VI(C, F) and con-
vexity of SD , we have S = {(1, 0), (0, 0)} and (0, 0) ∉ SD . This problem is tested in 
Table 2. Tables 2 shows that our Algorithms work better.

Problem 3 This problem was considered in [10, 29]. Let C = [0, 1]m and

When n greater than 1000, we aborted the evaluation of Algorithm 2.1 in [2](Since 
it involves the calculation of quadratic programming). The results are presented 
in Tables  3 and 4. In this example, our Algorithms are faster than Algorithm 2.1 

F(x) =(f1(x), f2(x),… , fm(x)),

fi(x) =x
2
i−1

+ x2
i
+ xi−1xi + xixi+1

− 2xi−1 + 4xi + xi+1 − 1, i = 1, 2,… ,m, x0 = xm+1 = 0.

Table 1  Problem 1

x
0

Algorithm 3.1 Algorithm 3.2 Algorithm 3.3 Algorithm 2.1 in [2] x

Iter (nf) Time (s) Iter (nf) Time (s) Iter (nf) Time (s) Iter (nf) Time (s)

0.8 53(108) 1 × 10
−4 50(102) 7 × 10

−5 50(102) 7 × 10
−5 990(991) 6 × 10

−5 0
0.5 48(98) 9 × 10

−5 45(92) 7 × 10
−5 45(92) 6 × 10

−5 992(993) 6 × 10
−5 0

0.1 35(72) 7 × 10
−5 33(68) 4 × 10

−5 33(68) 6 × 10
−5 986(987) 9 × 10

−5 0
−0.8 21(44) 3 × 10

−5 1(4) 7 × 10
−6 1(4) 7 × 10

−6 1(2) 7 × 10
−6 − 1

random 43(88) 7 × 10
−5 40(82) 4 × 10

−5 40(82) 7 × 10
−5 991(992) 4 × 10

−5 0
random 34(70) 6 × 10

−5 33(68) 4 × 10
−5 33(68) 6 × 10

−5 985(986) 6 × 10
−5 0

Table 2  Problem 2

x
0

Algorithm 3.1 Algorithm 3.2 Algorithm 3.3 Algorithm2.1 in [2] x

Iter (nf) Time (s) Iter (nf) Time (s) Iter (nf) Time (s) Iter (nf) Time (s)

(0.5,0.5) 44(90) 0.002 21(44) 0.003 38(78) 0.002 1197(3536) 7.25 (1,0)
(0.1,0.2) 41(84) 0.003 22(46) 0.003 45(92) 0.005 1193(3539) 7.23 (1,0)
(0.25,0.25) 42(86) 0.002 21(44) 0.002 37(76) 0.002 1199(3581) 7.28 (1,0)
(0.75,0.25) 41(84) 0.002 20(42) 0.003 36(74) 0.002 1194(3537) 7.28 (1,0)
(0.5,-0.6) 44(90) 0.003 21(44) 0.003 39(80) 0.002 1743(4091) 11.9 (1,0)
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in [2]. In Fig. 1, we illustrate the behavior of the stepsisizes for this problem with 
n = 100000.

Table 3  Problem 3

n x
0

Algorithm 3.1 Algorithm 3.2 Algorithm 3.3 Algorithm 2.1 in 
[2]

Iter (nf) Time (s) Iter (nf) Time (s) Iter (nf) Time (s) Iter (nf) Time (s)

500 (0, 0,… , 0) 71(144) 0.006 62(126) 0.006 72(146) 0.006 29(117) 7.44
500 Random 71(144) 0.005 63(128) 0.006 68(138) 0.006 41(170) 4.07
500 Random 70(142) 0.006 64(130) 0.008 68(138) 0.006 45(190) 4.43
1000 (0, 0,… , 0) 72(146) 0.009 63(128) 0.016 78(158) 0.012 29(177) 47.1
1000 Random 71(144) 0.009 65(132) 0.011 69(140) 0.011 44(184) 25.2
1000 Random 72(146) 0.009 65(130) 0.014 70(142) 0.010 43(179) 24.7

Table 4  Problem 3

n x
0

Algorithm 3.1 Algorithm 3.2 Algorithm 3.3

Iter (nf) Time (s) Iter (nf) Time (s) Iter (nf) Time (s)

10000 (0, 0,… , 0) 76(154) 0.115 68(138) 0.112 82(166) 0.131
50000 (0, 0,… , 0) 79(160) 0.546 70(142) 0.537 88(178) 0.639
100000 (0, 0,… , 0) 80(162) 1.09 72(146) 1.26 94(190) 1.662
1000000 (0, 0,… , 0) 84(170) 16.7 76(154) 18.9 92(186) 24.8
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Fig. 1  Comparison of different p
n
 and x

0
= (0, 0,… , 0) with � = 10

−6 for the Problem  3 with 
n = 100000 , (a): �

n
 for Algorithm 3.1; (b): �

n
 for Algorithm 3.2
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5  Conclusions

In this paper, we consider convergence results for variational inequalities involv-
ing Lipschitz continuous quasimonotone mapping (or without monotonicity) but 
the Lipschitz constant is unknown. We modify the gradient methods with the new 
step sizes. Weak convergence theorems are proved for sequences generated by the 
Algorithms. Numerical experiments confirm the effectiveness of the proposed 
Algorithms.
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