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Abstract

In this work, we introduce self-adaptive methods for solving variational inequali-
ties with Lipschitz continuous and quasimonotone mapping(or Lipschitz continu-
ous mapping without monotonicity) in real Hilbert space. Under suitable assump-
tions, the convergence of algorithms are established without the knowledge of the
Lipschitz constant of the mapping. The results obtained in this paper extend some
recent results in the literature. Some preliminary numerical experiments and com-
parisons are reported.
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1 Introduction

Let C be a nonempty closed and convex set in a real Hilbert space H and
F : H— H is a continuous mapping, (-, -) and || - || denote the inner product and
the induced norm in H, respectively. The variational inequality (VI(C, F)) is

find x* € C suchthat (F(x*),y—x*)>0, VyeC. (D
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Weak converge of the sequence {x,} to a point x is denoted by x, = x while x,, — x
to denote the sequence {x, } converges strongly to x. Let S be the solution set of (1)
and S, be the solution set of the following problem,

find x* € C suchthat (F(y),y—x*)>0, VyeC. ()

It is obvious that S, is a closed convex set (possibly empty). As F is continuous and
C is convex, we get

Sp € S. 3)

If F is a pseudomonotone and continuous mapping, then S = Sp(see Lemma 2.1 in
[1]). The inclusion S C S}, is false, if F is a quasimonotone and continuous mapping
[2]. For solving quasimonotone variational inequalities, the convergence of interior
proximal algorithm [3, 4] was obtained under more assumptions than S;, # @J. Under
the assumption of S;, # @, Ye and He [2] proposed a double projection algorithm for
solving quasimonotone (or without monotonicity) variational inequalities in R". For
a nonempty closed and convex set C C H, P is called the projection from H onto C,
that is, for every element x € H such that ||x — P-(x)|| = min{||y—x |||y € C}. It
is easy to check that problem (1) is equivalent to the following fixed point problem:

find x"* € C suchthat x* =P (x* — AF(x¥)) 4)

for any A > 0. Various projection algorithms have been proposed and analyzed for
solving variational inequalities [2, 5-27]. Among them, the extragradientmethod
was proposed by Korpelevich [5] and Antipin [18], that is

Yu = Pclx, = AF(x,),  Xpyy = Pe(x, — AF(y,)), (5)

where 4 € (0, l) and L is the Lipschitz constant of F. Tseng [8] modified the extra-
gradient method with the following method

Yn = PC('xn - j'F('xn))’ Xp41 = Yn + j'(F('xn) - F(yn))’ (6)

where 4 € (0, %). Recently, Censor et al.[7] introduced the following subgradient
extragradient algorithm

Yn = PC(xn - /IF(')CH))7 Xntl = PTn(xn - AF(yn))’ 1)

where T, = {x € H|(x, — AF(x,) — y,,x—Y,) <0} and 4 € (0, %). In the original
papers, the methods (5), (6) and (7) were applied for solving monotone variational
inequalities. It is known that these methods can be applied for solving pseudomono-
tone variational inequalities in infinite dimensional Hilbert spaces [22]. Very
recently, Yang et al. [19-21] proposed modifications of gradient methods for solving
monotone variational inequalities with the new step size rules. But the step sizes are
non-increasing and the algorithms [19-21] may depend on the choice of initial step
size. The natural question is whether the gradient algorithms still hold using non-
monotonic step sizes for solving quasimonotone variational inequalities (or without
monotonicity). The goal of this paper is to give an answer to this question.
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The paper is organized as follows. In Sect. 2 , we first give some preliminaries
that will be needed in the sequel. In Sect. 3 , we present algorithms and analyze their
convergence. Finally, in Sect. 4 we provides numerical examples and comparisons.

2 Preliminaries
In this section, we give some concepts and results for further use.
Definition 2.1 A mapping F : H — H is said to be as follows:

(a) y-strongly monotone on H if there exists a constant y > 0 such that
(F) =F).x=yy 2y lx=y % VxyeH. ®)
(b) monotone on H if
(F(x) — F(y),x—y) >0, Vx,y € H. 9)
(¢c) pseudomonotone on H, if
(FO),x=y)20=>(F(x),x—y) 20, Vx,y€H. (10)
(d) quasimonotone on H, if
(Fy),x=y)> 0= (F(x),x—y) 20,Vx,y € H. (11)
(e) Lipschitz-continuous on H, if there exists L > 0 such that

| Fo)—FOM ISL |l x=yll, Vx,y € H. (12)

From the above definitions, we see that (a) = (b) = (¢) = (d). But the converses
are not true.
In this paper, we assume that the following conditions hold

Al S, #40.

(A2) The mapping F is Lipschitz-continuous with constant L > 0.

(A3) The mapping F' is sequentially weakly continuous, i.e., for each sequence
{x,}: {x,} converges weakly to x implies { F(x,) } converges weakly to F(x).

(A4) The mapping F is quasimonotone on H.

A4y If X, =~ X and limsup,_, . (F(x,),x,) < (FX),x), then
lim (F(x,). x,) = (FG, ).

(45) ThesetA = {z € C : F(z) = 0} \ S, is a finite set.

(A5’) Theset B=S\ S, is a finite set.
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Remark 2.1

(i) Ifx, — x and the function g(x) = (F(x), x) is weak lower semicontinuous(i.e.,
liminf(F(x,),x,) > (F(x),x) for every sequence {x, } converges weakly to x),
then F satisfies (A4").

(i) If x, =X and F is sequentially weakly-strongly continuous( i.e.,
x, = X = F(x,) = F(x)), then F satisfies (A4’). Indeed, since x,, — X and F'is
sequentially weakly-strongly continuous, we obtain lim (F(X), x,) = (F(x),X)
and lim ||F(x,) — F(x)|| = 0. Thus, we have

lim ((F(x,), x,) = (FG, ) = lim (F(x,) = FG),%,)
+ lim ((FG), x,) = (F@,%) = 0.

That is, limsup,_, . (F(x,),x,) = lim (F(x,), x,) = (F(x), x).
(iii) If x, — x and F is sequentially weakly continuous and monotone mapping,
we get

<F(xn) - F(x)’xn - ;> = 0.
Which means that
(F(x,),x,) 2 (F(x,),X) + (F(X), x,) — (F(X),X).

Let n — oo in the last inequality, we have lim sup,_, .. (F(x,), x,,) > (F(X),X).
We have F satisfies (44).

Remark 2.2 1f intC # @, F is a continuous and quasimonotone mapping, then the con-
dition (A5) is equivalent to (A5). It is easy to see that (A5") = (A5). On the other hand,
from intC # @, we obtain {z € C : F(z) =0} ={z€ C : (F(z),y—2)=0,Vy € C}
(see Theorem 2.1 in [2]). Since F is a continuous and quasimonotone mapping, we
have S\ {z€ C : (F(z2),y—2z)=0,Yy € C} C S, (see Lemma 2.7 in [2]). Hence
S\{zeC : F(zx=0}c S, cS. It follow that S\ S, C {ze€ C : F(z) =0} \ Sp.
By (AS), we get{z € C : F(z) =0} \ Spis a finite set. This implies that (A5") holds.

Lemma 2.1 [2] If either

(i) F is pseudomonotone on C and S # @,

(ii) F is the gradient of G, where G is a differentiable quasiconvex function on
anopen set K D C and attains its global minimum on C;

(iii) F is quasimonotone on C, F # 0 on C and C is bounded,

(iv) Fis quasimonotone on C, F # 0 on C and there exists a positive number r such
that, for every x € C with ||x|| > r, there exists y € C such that ||y|| < r and
(F(0,y — x) < 0;

(v) F is quasimonotone on C, intC is nonempty and there exists x* € S such that
F(x*) # 0. Then S, is nonempty.
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Proof See Proposition 2.1 in [2] and Proposition 1 in [28]. O

Lemma 2.2 Let C be a nonempty, closed and convex set in H and x € H. Then
(Pex—x,y—Pex) 20, VyeC.
Lemma 2.3 (Opial) For any sequence {x,} in H such that x,, = x, then

liminf ||x, — x|| < liminf|[x, —y||, Vy #x. (13)

3 Main results
First, we give a iterative algorithm for solving variational inequality.

Algorithm 3.1 (Step 0) Take 4, > 0, x, € H,0 < u < 1. Choose a nonnegative real
sequence {p, } such that Z:io p, < +oo.
(Step 1) Given the current iterate x,, compute

Yn = PC(xn - )’nF(xn))' (14)

If x, =y, (or F(y,) = 0), then stop: y, is a solution. Otherwise,
(Step 2) Compute

X1 =Yn T A’n(F(xn) - F(yn)) (15)

and
- f _ule eyl , _
Ayt = { ’”’”{ )0, +p”}’ v oFEE)=FO#0 (6

Ay + Do otherwise.

Setn :=n+ 1and return to step 1.

Remark 3.1 If Algorithm 3.1 stops in a finite step of iterations, then y, is a solu-
tion of the variational inequality. So in the rest of this section, we assume that the
Algorithm 3.1 does not stop in any finite iterations, and hence generates an infinite
sequence.

Remark 3.2 In numerical experiments, the condition A5(or A5’) does not need to be

considered. Indeed, if ||y, — x, || < €, Algorithm 3.1 terminates in a finite step of iter-

ations. In the process of proving the conclusion lim |[x, —y,|| = 0, the condition
n—-oo

A5(or A5') is not used (see(26) in Lemma 3.2).

Lemma 3.1 Let {4,} be the sequence generated by Algorithm 3.1. Then we get
lim A, = Aand A € [min{%, Ay}, Ay + P). Where P = 32\ p,,.

n—oo
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Proof Since F is Lipschitz-continuous with constant L > 0, in the case of
F(y,) — F(x,) # 0, we get

A%, =yl > X, = yll _p an
I1FC) = Foll — Lilx, =yl L

By the definition of A4,,; and mathematical induction, then the sequence
{A,} has upper bound A,+P and lower bound min{%,4,}. Let
(Aye1 — A* =max{0, 4, — 4,} and (4,,, — 4,)” = max{0,—(4,,, — 4,)}. From
the definition of {4, }, we have

D G = 4T S Y p, < +oo, (18)
n=0 n=0

That is, the series Y°> (4,1 — 4,)" is convergence. Next we prove the convergence
of the series ) (4,,; — 4,)”. Assume that }'*" (4,,, — 4,)” = +co. From the fact
that

j'n+1 - )'n = (in+1 - }'n)+ - (/ln+l - j'n)_’ (19)

we get

k k k
/1k+l - )’0 = 2(ﬂn+1 - /In) = Z(An+l - )’n)+ - Z()‘rﬁl - )’n)_' (20)
n=0 n=0 n=0

Taking k — +oco in (20), we have 4, = —oo(k — o0). That is a contradiction. From
the convergence of the series > (4,,; —4,)% and Y (4, —4,)", taking
k — 400 in (20), we obtain lim A4, = A. Since {4, } has the lower bound min{ %, Ao}

and the upper bound 4, + P, we have A € [min{ % A}y Ag + Pl. O

Remark 3.3 The step size in Algorithm 3.1 is allowed to increase from iteration to

iteration and so Algorithm 3.1 reduces the dependence on the initial step size A.

Since the sequence {p, } is summable, we get lim p, = 0. So the step size 4, may
n—oo

non-increasing when n is large. If p, = 0, then the step size in Algorithm 3.1 is simi-
lar to the methods in [19, 21].

Lemma 3.2 Under the conditions (A1) and (A2). Then the sequence {x,} generated
by Algorithm 3.1 is bounded and lim ||x,,; — x,|| = 0.

Proof Letu € Sy, since x,,,.; =y, + 4,(F(x,) — F(y,)), we obtain
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11 = ull® = 1y, = A,(F(,) — F(x,)) — ull?
= lly, —ull® + LNIF»,) = Fe)I? = 24,(F(,) = F(x,),y, — u)
= |lx, = ull> + 11y, = x, 1> + 2(y, — x,..x, — u)
+ ZIIF(y,) = Fe)II* = 24,(F(,) — F(x,).y, — u)
= I, = ull? + 11y, = 5,17 = 200, = X0 2 = %) + 203, = %3, — )
+ ZIIF(Y,) — F&)IP = 24,(F(,) = F(x,).y, — u).

2n

Note that y, = Po(x, — 4,F(x,)) and u € S;, €S C C, by Lemma 2.2, we obtain
o, —x, + 4,F(x,),y, —u) < 0.1t follows that

O = X Y = ) < =2 (F (%), = ). (22)
Using y, € C and u € ), we get (F(y,),y, —u) >0, Vn > 0. From (16), (21) and
(22), we have
1% = ull® <llx, = ull® =y, = 5,11> = 24,(F(x,), y,, — )
+ AFY,) = Fa)I? = 24,(F(,) = F(x,), ¥, — u)
=llx, = ull® = 1y, = x> + ZNF ) = Fa)I? = 22,0, — u, F(v,))

2 2 2 s 2
Sl =l = Wy, = 51+ 2751y, =5,
n+1

(23)

Since

MZ
lim | 1=2—— | =1-w>0, (24)
+1

n

we obtain N > 0, Vn > N, such that 1 — 12"—2 > 0.

It implies that Vi > N, ||x, ., —ull < ||x, — u|| This implies that {x,} is bounded
and lim ||x, — u|| exists. Returning to (23), we have

u?
(1 o >”y" — 5P < i, =l = i =l -

n+1

This implies that

lim {|x, —y,[l = 0. (26)
Observe that
I, = X0 = 1y, + 4,(F@&,) = F(,)) = x|l
<y = Xl + (Ao + P)LIly, = x|,
we obtain V}LI?O [[x,41 = x,l = 0. O
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Remark 3.4 We note that the quasimonotonicity of the mapping is not used in the
proof of the Lemma 3.2. In finite dimensional Hilbert space, under the conditions
(A1) and (A2), then all the accumulation points of {x, } belong to S. Indeed, the exist-
ence of the accumulation points can be obtained by boundedness of the {x,}. If x*
is an accumulation point of {x,}, then there exists a subsequence {xnk} of {x,} that
converges to some x* € C.In view of the fact that y, = Pc(x, — 4, F(x, ))and the
continuity of F, we get

x* = klgg Vu, = kllglo Pe(x, — 4, F(x,)) = Po(x" — AF(x™)).
We deduce from (4) that x* € S.

Lemma 3.3 Assume that (AI)—(A4) hold. Let {x,} be the sequence generated by
Algorithm 3.1. Then at least one of the following must hold : x* € Sp, or F(x*) = 0.
Where x* is one of the weak cluster point of {x,}.

Proof By Lemma 3.2, we have the sequence {x, } is bounded. Moreover, there exist a
subsequence {xnk} that converges weakly to x* € H. Using (26), we obtain Vo, = x*
and x* € C. We divide the following proof into two cases.

Case 1 If limsup, _, ||F(ynk)|| = 0, we have klgg ||F(ynk)|| = 1i]£1’_1)glf ||F(ynk)|| =0.
Since {y, } converges weakly to x* € C and F is sequentially weakly continuous on
C, we have {F(y, )} converges weakly to F(x*). Since the norm mapping is sequen-
tially weakly lower semicontinuous, we have

0 < IFG) < liminf [IF(y,, ) = 0.

We obtain F(x*) = 0.
Case 2 If limsup,_ ||F (y,,k)ll > 0, without loss of generality, we take
klim [| F' (y,,k)|| = M > 0(Otherwise, we take a subsequence of { F (y,,k)}). That is, there

exists a K € N such that ||F(ynk)|| > %Ifor all k > K. Since Yn, = Pclx,, — 4, F(x, )
and Lemma 2.2, we have
O =X, + 4 F(x,),2=3,) 20, VzeC.
That is
<xnk _ynk’z_ynk> < ﬂnk<F(xnk)’Z_ynk>? vz e C.

Therefore, we get

1
7 O = Ve 2 V) — (F0G) = FO ). 2= 3 ) SCFO ) 2= y). VZEC
1y
(27)
Fixing z € C, let k —> oo, using the facts klim ||xnk - ynkll =0, {y,, } is bounded and

lim ﬂnk = A > 0, we obtain

k— o0
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0 < liminf(F(y, ).z = y,) < lifl igp(F O )s 2= Y, ) < +00. 28)

If limsup,_ . (F W )s 2= ynk) >0, there exists a subsequence {y, } such that
lim(F(y, ),z =, ) > 0. Then there exists an i, € N such that (F(y,, ),z =y, } >0
11— 00 i i i i

for all i > i,. By the definition of quasidomonotone, we obtain Vi > i,

<F(Z)’Z _ynk[> > 0.

Leti — oo, we get x* € Sp,.
If lim supy_, oo (F (¥, ) 2 = ¥,,, ) = 0, we deduce from (28) that

lim(F(y, ),z =y, ) = limsup(F(y, ).z —y, ) = liminf(F(y, ),z -y, ) =0.
k— o0 & k ko0 k k k—00 k k
Lete; = [(F(y,),2 = ¥, )| + o= This implies that
(FOp 2= Yp,) + &> 0. (29)

_ _fow)
Let an - ”F(y”k)nz

Vk > K,

(Vk > K), we get (F' (ynk),znk) = 1. Moreover, from (29), we have

(FOp)s 2+ €42y, — ¥y, ) > 0.
By the definition of quasidomonotone, we obtain Vk > K,
(Fz+£2,).2+ €2, = ,) 2 0. (30)
This implies that Vk > K,
(FQ@), 2+ €2, = ¥,) =(F@) = Fa+ 2, ), 2+ €2,
= V) H(FE+€2,). 2+ &2, —Yy,)
2(F(2) = F(z+ &2, ), 2 + €2, — V)

>~ |F@) — F+ ez + €2, = v

31
> — e, Lllz, 2 + &2, =, | ©1

L
— e |z + &2, — ¥y
IFG,)ll e

2L
2 - Ekﬁ”Z + 6kznk _ynk”'

Let k — oo in (31), using the fact klim &, = 0 and boundedness of { ||z + &;z, — v, II}
, we get

(F(z),z—x*)>0. VzeC.

This implies that x* € Sp,. O
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Lemma 3.4 Assume that (A1) — (AS) hold. Then the sequence {x,} generated by
Algorithm 3.1 has finite weak cluster points in S.

Proof First we prove {x,} has at most one weak cluster point in S,

Assume that {x,} has at least two weak cluster points x* € S, and x € S, such
that x* # . Let {x, } be a sequence such that x, — X as i — oo, noting the fact that
r}l—{go [[x, — u|| exists for all u € S}, by Lemma 2.3, we obtain

lim ||x, — X||
n—-oo
= lim ||x, —X|| = liminf||x, —X||
=00 ! 1—00 !
< liminf|lx, —x*|| = lim ||x, —x*|| = lim ||x, —x*|| = liminf|lx, —x"|]
i—o0o i n—oo k—o0 k k—o0 K

<liminf|lx, — | = lim |lx, — | = lim [lx, — ||,
k— oo k n—oo K n—-oo

(32)
which is impossible. Since A = {z € C : F(z) = 0} \ S, is a finite set, using Lemma
3.3, then {x, } has finite weak cluster points in S. O

Lemma 3.5 Assume that (Al)—(A5) hold and {x,} has finite weak cluster points
71,22, ...7". Then There exists N, >N, Vn>N,, such that x, € B. Where

_||m j [ _ A" . =7 e
B= Uj:l B]l, ) B = ﬂj:u#l{x 2 {(x, |Iz’—zf||> > €+ m} and
e =min{l=H L je (1,2, m), 1 # ).

Proof Let {x! } be a subsequence of {x,} such that x/ — z/as — oo, we get V j # /
lim(x! 7 — 2y = (Z,Z - Z). (33)
For j # [, one has

[Eentecd | (<l

I 2 I |
) - = - ) = + -
(.2 =) =IzZII" - (2.2) 7 5 5 -
I =211 10 101
4 2 2
This implies that V' j # [
;=7 S I =2l + 2117 — 1117 35)
"Izt =l 4 20l =2l

From (33) and (35), when i is sufficiently large, we have

[ 1_j 112114112
! . Z—7 llz"=Zl = =121l - :
xef{x:(x , - 1. Therefore, when i is sufficiently large
n; { x, ||z’—z’||> 4 2|-7|| J ’ Y arge,
we have

X eB,

n;
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m . .
I 1212 — 112112
I ) 7 -z
B = ﬂ {x'<x’l—j>>€0+l—j (36)
=1l llz" = Z1| 21|z =2

and ¢, = mln{M%Z” lje {1,2,...,m},1¢j}.1tis obvious that

m . .

g 12112 = 1)1
B = {x:<—x,z,—z><—€0+—. . 37
jLL [ERE] 21 =l @7

Set B=J, B. Next we prove x, € B for sufficiently large n. Assume that there
exists {x, } of {x,} such that x, & B (Vk). Using the boundedness of the {x, },
there exists a subsequence of x, convergent weakly to z € C. Without loss of gen-
erality, we still denote the subsequence as {x } that is, x, — z. Since x, & B, for
vie {l1,2,...,m}, we have

i g 1212 = 1212
x, £B = Rt SN 4 kel g
: 1 { < =2/~ 2 =4l %)

J=Lj#L

where

Using the principle of drawer, there exists subsequence {xnk} of {xnk} and
Iy e {1,2,...,m}\{l} such that Vi > 0

) l 112 Iy 112
7t —zh 1'% = NIz ]| }
X, €4x:(x,——— )>€e+ — 5, 39
{ < ||zf—zlo||> LY P 39)
We have
) l 112 1112
- 7 —zh 1'% = |z ]| }
€ x i {x,——— )>eg+——"— 7. 40
{ < ||z1—zlo||> 21— 2] 40
— le=doll BRIl o I = 110 |
Combining (34), (40) and <z e “> > 2 + Ty 2 o+ ERET we

get 7 # Z. Aslis arbitrary, we have z ¢ {zl, 2, ... zm}, which is 1mp0531ble So we
have x,, € B for sufficiently large n. That is, 3N, > N, Va > N, such that x,, € B.
O

Theorem 3.1 Assume that (A1) — (A5) hold. Let {x } be a sequence generated by
Algorithm 3.1. Then {x } converges weakly to a point x* € S.

Proof By Lemma 3.2, we have hm 1%, = x,0l = It follows that

N, > N, > N, Vn > N,, such that||x,,, — x | < €. Assume that {x }has more than
one weak cluster point, from Lemma 3.5, then 3N; > N, > N; > N, we have x,, € B,
Xn4+1 € B/.Wherel #j,1,j € {1,2,...,m}and m > 2.1In particular, we have ’

I, +1 = 2w, Il < €. (41)

Using (36) and (37), we get
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m . )
-7 12112 = 112|I2
Z Z Z Z
xy, EB'= xi{x, 2T Vs b 20 -
" J‘=Q#l{ < 12! —Z’||> 20|z =2l 42)

m ) l 2 ) 2

‘ -7 2112 = 112
~ € B} = X —X, f < —€n + —_— . 43
m 1=O¢j{ < 7 - Zl||> LY TP T (43)

Moreover, we obtain

and

I 7 217 — 111>
Z Z Z Ve
Xy, ——— ) > €+ —— 44
<N3 IIZ’—ZJII> 07 2l - Al @4
and
oy 211> = 11211
Z Z
XNy ) > €t ————. 45
< Mot IIZJ—z’I|> 07 2l - (“43)

Combining (44) and (45), we get

L _
i
2 < <XN3 N Iz — zl||> < lxvger = Xy Il < €o- (46)

Which is impossible. This implies that {x, } has only a weak cluster point in S.
Hence we deduce that x, — x*. O

Now we prove the convergence of the Algorithm 3.1 without monotonicity.

Theorem 3.2 Assume that (A1) — (A3), (A4’) and (A5') hold. Let {x,} be a sequence
generated by Algorithm 3.1. Then {x, } converges weakly to a point x* € S.

Proof According to (28) and the proof in Lemma 3.3, fixing z € C, we have
v, =~ x*,x* € Cand

ligglf(F(ynk), 2=Y,) 20
We choose a positive sequence {&, } such that klirglo g, =0and
(F(ynk),z —ynk> +e>0, Vk>0.
It follows that
(FG,.2) + &> (F,)03,), VA 20, 47)
In particular, set z = x*in (47), we have
(FOu ). x") + & > (F, )5 y,), - VE 2 0.

Let k — oo in the last inequality, from (A3) and y, — x*, we obtain
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(F(x*),x*) > liin Sup(F (Y, )s Vi, )-
From (A4'), we get lim (F(y,, ).y, ) = (F(x"),x").
At the same time, from (47), we obtain
(F&"),2) = lim ((F (), 2) + &)

> liminf(F(y,).v,,)

= lim (F(y,),v,,) = (FG&*),2%).
which implies that

(F(x*),z—x*) > 0. VzeC.

We have x* € S. By the condition (A5’), similar to the proof of Lemmas 3.4, 3.5 and
Theorem 3.1, we get {x, } converges weakly to a point x* € S. O

For the extragradient method and the subgradient extragradient, we introduce
the following algorithms.

Algorithm 3.2 (Step 0) Take 4, > 0, x, € H, u € (0, 1). Choose a nonnegative real
sequence {p, } such that Z:’:O P, < +oo.
(Step 1) Given the current iterate x,,, compute

v, = Po(x, — A, F(x,)).

If x, = y,(or F(y,) = 0), then stop: y, is a solution. Otherwise, go to Step 2.
(Step 2) Compute

Xl = PC('xn - inF(yn))

(Step 3) Compute

2FO)=F0,) %41 =)

o [ =y P =3 1) ;
A= mm{ﬂllx Yl 1 =, ,/1n+pn}, if (F(x,)—F,),%,01 =Y. >0,
" Ay + Dy otherwise.

Setn :=n+ 1and return to step 1.

Algorithm 3.3 (Step 0) Take 4, > 0, x, € H, u € (0, 1). Choose a nonnegative real
sequence {p, } such that 37 'p, < +co.
(Step 1) Given the current iterate x,,, compute

v, = Po(x, — A,F(x,)).

If x, = y,(or F(y,) = 0), then stop: y, is a solution. Otherwise, go to Step 2.
(Step 2) Construct T, = {x € H|{x, — 4,F(x,) — y,,x —,) < 0} and compute
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Xptl = PT“('xn - inF(yn))

(Step 3) Compute

2AF@)=F ) X01=Y0)

: ( n_n2 n+_An2) ;.

2 _ mln{w’in—'—pn}’ lf <F(xn)_F(yn)’xn+l _yn> >07

=
" Ay + Dy otherwise.

Setn :=n+ 1and return to step 1.

Remark 3.5 If p, = 0, then the step sizes in Algorithms 3.2 and 3.3 are similar to the
method in [20]. The conclusion in Theorems 3.1 and 3.2 still hold for Algorithms
3.2 and 3.3.

4 Numerical experiments

In this section, we compare the proposed methods with the Algorithm 2.1 in [2]. We

choose y = 0.5, p, = % and A, = 1 for our algorithms. We choose y = 0.4 and

o = 0.99 for Algorithm 2.1 in [2]. The stopping criterion are the following

Algorithms 3.1,3.2,3.3 ||y, —x,||/ min{4,,1} < eand ||F(y,)|| <e. (45)
Algorithm 2.11in [2] ||x, — z,|| = |Ix, — Pc(x, — F(x, )|l < €. (46)

We do not use the criterion ||x, — Po(x, — F(x,))|| < € and ||[F(y,)|| < € for Algo-
rithms 3.1, 3.2 and 3.3 because we do not want to compute ||x, — P-(x, — F(x,))||
extra. If 4, < 1, we have

lx, = Pe(x, = Fe ) < lx, = Pe(x, = A, FG )N/ A, = |1y, — x,1I/ min{4,, 1}.
“47)
If 2, > 1, we have

”xn - PC(xn - F(xn))“ < ”xn - PC(xn - AnF(xn))” = ”yn _xn”/min{ﬂn’ 1}
(48)
Moreover, we notice that termination criteria (45) is stronger than (46). We denoted
by x, the starting point of the experiment and by x the solution of the variational
inequality. We also added the total number (nf) of all values F that is evaluated. For
the test problems, we also have generated random samples with different choice of
X, in C. For all algorithms, we take € = 1075,

Problem 1 LetC =[-1,1]and
2x—1, x> 1,

F(x) =4 x2, xe[-1,1],
2x-1, x<-1.
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Table 1 Problem 1
Xy Algorithm 3.1 Algorithm 3.2 Algorithm 3.3 Algorithm 2.1in [2] X

Iter (nf) Time (s) Iter (nf) Time (s) Iter (nf) Time (s) Iter (nf) Time (s)

0.8 53(108) 1x 1074 50(102) 7x10-5 50(102) 7x10~5 990(991) 6x 1073
0.5 48(98) 9% 105 45(92) Tx10-5 45(92) 6x10~5 992(993) 6x10~°
0.1 35(72)  7x 1075 33(68) 4x1075 33(68) 6x10~° 986(987) 9x 1075
-0.8 21(44)  3x107° 14 7x10°¢  1(4) 7x107%  1(2) 7x107% -1

random 43(88) 7x 107 40(82) 4x107 40(82) 7x1070 991(992) 4x10> O
random 34(70) 6x 1075 33(68) 4x107> 33(68) 6x107° 985(986) 6x107°

Then F is a quasimonotone and Lipschitz continuous mapping. We have S, = {—1}
and S = {—1,0}. The results are presented in Table 1. As we can see from Table 1,
the number of iterations of our Algorithms is much smaller than Algorithm 2.1 in

[2].

Problem2 LetC={x€R* : x1 +x3 < 1,0 < x; }and F(x|, x,) = (—x,€2,x,). It i is
not difficu \}y to check that F'is not a qua51m0n0t0ne mapping. Indeed, take x = (0 )
and y = (X, 2), we have (F(y),x = y) = 3¢ — £ > 0 and (F(x), x - y) = == < 0.
It’s easy to vahdate that (1,0) € Sp,. By the KKT COIldlthIlS to the VI(C, F) and con-
vexity of Sj,, we have § = {(1,0),(0,0)} and (0,0) & Sp,. This problem is tested in
Table 2. Tables 2 shows that our Algorithms work better.

Problem 3 This problem was considered in [10, 29]. Let C = [0, 1]" and

F(x) =(f,(0),5(0), ... . [, (X)),
[0 —x +x + X1 X+ XX
- 2xi_l +4x;+x—-Li=12,...,mxy=x,,,;=0.
When n greater than 1000, we aborted the evaluation of Algorithm 2.1 in [2](Since

it involves the calculation of quadratic programming). The results are presented
in Tables 3 and 4. In this example, our Algorithms are faster than Algorithm 2.1

Table2 Problem 2
Xy Algorithm 3.1 Algorithm 3.2 Algorithm 3.3 Algorithm?2.1 in [2] X

Iter (nf) Time (s) Iter (nf) Time (s) Iter (nf) Time (s) Iter (nf) Time (s)

(05,05  44(90) 0.002  21(44) 0003  38(78) 0.002  1197(3536) 725  (1,0)
(0.1,02)  41(84) 0.003  22(d6) 0003  4592) 0005  1193(3539) 723  (1,0)
(0.25,025) 42(86) 0.002  21(44) 0002  37(76) 0.002  11993581) 728  (1,0)
(0.75,0.25) 41(84) 0.002  2042) 0003  36(74) 0002  11943537) 728  (1,0)
(0.5-0.6)  44(90) 0.003  21(44) 0.003  39(80) 0.002  1743(4091) 11.9 (1,0)
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Table 3 Problem 3

n X Algorithm 3.1 Algorithm 3.2 Algorithm 3.3 Algorithm 2.1 in
[2]
Iter (nf) Time (s) Iter (nf) Time (s) Iter (nf) Time (s) Iter (nf) Time (s)

500 (0,0,...,0) 71(144) 0.006 62(126) 0.006 72(146) 0.006 29(117)  7.44
500 Random 71(144) 0.005 63(128) 0.006 68(138) 0.006 41(170)  4.07
500 Random 70(142) 0.006 64(130) 0.008 68(138) 0.006 45(190) 443
1000 (0,0,...,0) 72(146) 0.009 63(128) 0.016 78(158) 0.012 29(177) 47.1
1000 Random 71(144) 0.009 65(132) 0.011 69(140) 0.011 44(184) 252
1000 Random 72(146) 0.009 65(130) 0.014 70(142) 0.010 43(179) 24.7

Table4 Problem 3

n Xy Algorithm 3.1 Algorithm 3.2 Algorithm 3.3
Iter (nf) Time (s) Iter (nf) Time (s) Iter (nf) Time (s)
10000 ©,0,...,0) 76(154) 0.115 68(138) 0.112 82(166) 0.131
50000 0,0,...,0) 79(160) 0.546 70(142) 0.537 88(178) 0.639
100000 ©,0,...,0) 80(162) 1.09 72(146) 1.26 94(190) 1.662
1000000 0,0,...,0) 84(170) 16.7 76(154) 18.9 92(186) 24.8
n=100000 n=100000
100 T T T T 10° T T T T
p,=1(n+)"! ‘I p, =1+ 1)
— % —p =0 \I — % —p_ =0
|
‘ |
=4 I c |
o] 1 © I
E al E AL
E 10 E 10 I
I 1 S
¥
J
102 . - - - . - . 102 - . . - . >
0 50 100 150 200 250 300 350 400 0 10 20 30 40 50 60 70 80
iter iter
(@) (b)

Fig. 1 Comparison of different p, and x;, =(0,0,...,0) with €= 107 for the Problem 3 with
n = 100000, (a): 4, for Algorithm 3.1; (b): 4, for Algorithm 3.2

in [2]. In Fig. 1, we illustrate the behavior of the stepsisizes for this problem with

n = 100000.
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5 Conclusions

In this paper, we consider convergence results for variational inequalities involv-
ing Lipschitz continuous quasimonotone mapping (or without monotonicity) but
the Lipschitz constant is unknown. We modify the gradient methods with the new
step sizes. Weak convergence theorems are proved for sequences generated by the
Algorithms. Numerical experiments confirm the effectiveness of the proposed
Algorithms.
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