
Vol.:(0123456789)

Computational Optimization and Applications (2020) 77:465–490
https://doi.org/10.1007/s10589-020-00211-0

1 3

The distance between convex sets with Minkowski sum
structure: application to collision detection

Xiangfeng Wang1 · Junping Zhang2 · Wenxing Zhang2

Received: 21 July 2019 / Published online: 13 July 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The distance between sets is a long-standing computational geometry problem. In
robotics, the distance between convex sets with Minkowski sum structure plays
a fundamental role in collision detection. However, it is typically nontrivial to be
computed, even if the projection onto each component set admits explicit formula.
In this paper, we explore the problem of calculating the distance between convex
sets arising from robotics. Upon the recent progress in convex optimization com-
munity, the proposed model can be efficiently solved by the recent hot-investigated
first-order methods, e.g., alternating direction method of multipliers or primal-dual
hybrid gradient method. Preliminary numerical results demonstrate that those first-
order methods are fairly efficient in solving distance problems in robotics.

Keywords  Distance · Minkowski sum of sets · Projection · Alternating direction
method of multipliers · Primal-dual hybrid gradient method · Collision detection

1  Introduction

The Minkowski sum of sets (also known as dilation, sumset) is a long-standing and
fundamental nomenclature in computational geometry. It plays an important role
in the fields, such as mathematical morphology in image processing [44], colli-
sion detection in robotics [29], configuration space computation in mechanics [48],

 *	 Wenxing Zhang
	 zhangwx@uestc.edu.cn

	 Xiangfeng Wang
	 xfwang@sei.ecnu.edu.cn

	 Junping Zhang
	 zjunping1208@126.com

1	 School of Computer Science and Technology, East China Normal University, Shanghai 200062,
China

2	 School of Mathematical Sciences, University of Electronic Science and Technology of China,
Chengdu 611731, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-020-00211-0&domain=pdf

466	 X. Wang et al.

1 3

numerical control machining in computer-aided manufacturing [45], and aggrega-
tion theory in economics [33]. Given two sets A ⊂ ℝ

n and B ⊂ ℝ
n (henceforth, we

symbolize set by capital calligraphic), the Minkowski sum of A and B , denoted by
A⊕ B , is defined as

Specially, if one of the sets consists of a unique element, e.g., A = {a} , we briefly
adopt the notation a⊕ B to indicate the translation of set B toward a. It follows
immediately from (1.1) that the zero set {0} plays the role of identity element under
the additive operation ⊕ . Figure 1 displays the diagrams of Minkowski sum of ball,
box and convex polytope in two- and three-dimensions.

Let F ⊂ ℝ
n be a nonempty set. The support function of F  , denoted by

�F ∶ ℝ
n
→ (−∞,+∞] , is defined as

where ⟨x, y⟩ ∶= x⊤y is the inner product endowed on ℝn . Because of the closedness
and sublinearity of �F (see Proposition 2.3 in Sect. 2), it essentially indicates a norm
on ℝn whenever F fulfils some prerequisites (e.g., compactness, convexity, and
symmetry). Accordingly, the generalized distance from an x0 ∈ ℝ

n to a set C ⊂ ℝ
n ,

denoted by dF ∶ ℝ
n
→ [0,+∞] , can be quantified by the metric �F as follows

Note that the optima of (1.3) (if exist) are coined as the generalized projection of
x0 onto C , denoted by ΠF(x

0;C) . Particularly, if F = {x ∈ ℝ
n ∣ ‖x‖2 ≤ 1} is an ori-

gin-centered unit ball under the �2-norm, the �F  , dF and ΠF reduce to the canoni-
cal Euclidean norm, Euclidean distance and Euclidean projection (also known as
orthogonal projection), respectively. The (generalized) projection onto set, espe-
cially onto the convex set, is crucial for both theoretical and practical purposes in
numerical optimization and computational geometry. For some “simple” sets such
as the �2-norm ball, hyperplane, second-order cone and spectral set, the Euclidean
projections onto those sets can be trivially derived by closed-form formulae (see e.g,

(1.1)A⊕ B ∶= {a + b ∣ a ∈ A, b ∈ B}.

(1.2)�F(x) ∶= sup {⟨x, y⟩ ∣ y ∈ F},

(1.3)dF(x
0;C) ∶= inf

{
�F(x − x0) ∣ x ∈ C

}
.

Fig. 1   Diagram representations of the Minkowski sum of Ω1 = {x ∈ ℝ
n ∣ ‖x‖1 ≤ 1, x

n
≥ 0} ,

Ω2 = {x ∈ ℝ
n ∣ ‖x‖2 ≤ 1} and Ω3 = {x ∈ ℝ

n ∣ ‖x‖∞ ≤ 1} . Top row: the case of n = 2 . Bottom row: the
case of n = 3

467

1 3

The distance between convex sets with Minkowski sum structure:…

[2, Chapter 28] and the references therein). There is also abundant literature on solv-
ing projections onto, e.g., the �1-norm ball [12, 49], manifolds [30], �1,q-norm ball
[47], and isotone projection cone [35]. In other words, the distance (1.3) can be effi-
ciently computed for the above “simple” sets. However, the effort on computing the
distance (1.3) may be significantly intensive if F and C are generic convex sets.

In this paper, our particular interest is to compute the generalized distance from
an x0 ∈ ℝ

n to a convex set with Minkowski sum structure, i.e.,

where Ωi ⊂ ℝ
li (i = 1, 2,… ,m) are nonempty closed convex sets with

∑m

i=1
li = l ,

and Ti(Ωi) ⊂ ℝ
n denotes the image of Ωi under affine mapping Ti , i.e.,

with Mi ∈ ℝ
n×li and ai ∈ ℝ

n . For brevity, the −Ωi denotes the opposite set of Ωi , i.e.,
the case of Mi = −In and ai = � in (1.5). Due to the closedness and convexity of Ωi ,
it follows from Lemma 2.2 (see Sect. 2) that those Ti(Ωi) in (1.5) and C in (1.4) are
closed convex sets. Problem (1.4) has plenty of applications in robotics. For exam-
ple, to guarantee a robot operate freely in workspace with obstacles, collision detec-
tion is conducted to inspect whether the robot and obstacles are overlapped [17].
Concretely, let Ωi ⊂ ℝ

n ( i = 1, 2 ) be convex sets. The collision detection, which is
measured by the distance between Ω1 and Ω2 , can be formalized as (see e.g., [8, 51]
for details)

which is a special case of (1.4) with specifications m = 2 , x0 = 0 , M1 = −M2 = −In
and a1 = a2 = 0.

However, the (1.4) is nontrivial to be tackled, even if all Ti ’s are identity map-
pings. Take the sets in Fig. 1 as examples, although those Ωi ’s are simple enough in
the sense that the projection onto individual set admits closed-form solutions or can
be easily solved up to high precisions, the projection onto their Minkowski sum set
(i.e., the Ω1 ⊕Ω2 ⊕Ω3 in Fig. 1) is challenging to acquire. Typically, the projec-
tion onto a set with Minkowski sum structure does not possess explicit formula and
should be approximated numerically. A large number of methods have been devised
for solving (1.6) (a special case of (1.4)) with compact convex sets (especially for
polytopes) over the past decades. The existing methods for solving (1.6) can be
roughly classified into two categories: optimization-based methods [1, 13, 32, 34,
43, 50, 52] and geometry-based methods [8, 19–21, 31, 39, 51]. Empirically, the
optimization-based methods can be adaptive for (1.6) with generic convex sets in
high dimension but may be computational intensive, whilst the geometry-based ones
usually perform efficiently but are confined to (1.6) with low-dimensional structured
sets (e.g., 2D/3D polytopes).

Gilbert et al. [21] proposed a recursion (named as GJK method) for solving (1.6)
by approximating C as simplices. It can also be extended to solve (1.4) with n = 3
and �F(⋅) = ‖ ⋅ ‖2 . Some improvements of GJK method were explored in, e.g., [8,

(1.4)
dF(x

0;C) = inf
{
𝜎F(x − x0) ∣ x ∈ C ∶= T1(Ω1)⊕ T2(Ω2)⊕⋯⊕ Tm(Ωm)

}
,

(1.5)Ti(Ωi) = {Mi� + ai ∣ � ∈ Ωi}, i = 1, 2,… ,m

(1.6)dF(0;C) = inf
{
𝜎F(x) ∣ x ∈ C ∶= Ω1 ⊕ (−Ω2)

}
,

468	 X. Wang et al.

1 3

20, 39]. Recently, Qin and An [40] proposed a fast recursion for solving the dual of
(1.4) by using Nesterov’s gradient-like method [36] and smoothing technique [37].
Herein, our paper is devoted to tackling (1.4) with generic component sets by refor-
mulating it as a separable convex optimization, and solving it by the recent state-of-
the-art first-order optimization methods with O(1/k) convergence rate. Moreover, the
proposed methods favour the parallel computing system [4, 6] when the number of
component sets Ωi ’s in (1.4) is huge-size.

The rest of the paper is organized as follows. In Sect. 2, some basic definitions
and propositions are stated for the sequel discussion. In Sect. 3, the reformulations
of (1.4) in primal, dual, and primal-dual fashions are presented, followed by the
implementation details on handling (1.4) in Sect. 4. In Sect. 5, numerical simula-
tions are conducted to illustrate the performances of alternating direction method
of multipliers (ADMM) and primal-dual hybrid gradient method (PDHG). Finally,
some concluding remarks are drawn in Sect. 6.

2 � Preliminaries

In this section, we summarize some basic concepts and their properties that will be
useful for the sequel discussions.

For any vector x = (x1, x2,… , xn) ∈ ℝ
n , let ‖x‖p ∶= (

∑n

i=1
�xi�p)1∕p ( 1 ≤ p < ∞ )

denote the �p-norm and ‖x‖∞ ∶= maxi=1,…,n �xi� denote the �∞-norm. Given a sym-
metric matrix Q ∈ ℝ

n×n , the Q ≻ 0 (resp. Q ⪰ 0 ) denotes the positive definite (resp.
positive semi-definite) matrix. For any Q ≻ 0 , we denote by ‖x‖Q ∶= (x⊤Qx)1∕2 the
Q-norm of x. We use diag(x) to represent a diagonal matrix whose diagonal elements
are xi’s. Let � and I denote the all-one and identity matrix (whose dimensions will be
clear from the context), respectively.

We now review some basic definitions and properties from convex analysis (see
e.g., the monograph [2]).

Definition 2.1  Let C ⊂ ℝ
n be a set. Then

i)	 C is closed if the limit of any convergent sequence in C belongs to C.
ii)	 C is compact if any sequence of C has a cluster point in C (or equivalently, C is

closed and bounded).
iii)	 The convex hull of C , denoted by conv(C) , is the intersection of all convex sets

containing C (or equivalently, the smallest convex set containing C ). Particularly,
the conv(C) is a polytope if C comprises a finite number of elements.

iv)	 The decomposition of C , denoted by �(C) , is defined as

Furthermore, the convex decomposition of C , denoted by �̂(C) , is a decomposition
of C with only convex component sets, i.e.,

�(C) ∶=
�
Ci ⊂ ℝ

n ∣
⋃m

i=1
Ci = C, and Ci

⋂
Cj = � for any i ≠ j

�
.

469

1 3

The distance between convex sets with Minkowski sum structure:…

Besides the commutative and associative properties, the Minkowski sum oper-
ation “ ⊕ ” admits the following important propositions.

Lemma 2.2  Let Ci ⊂ ℝ
li (i = 1, 2) be nonempty sets (possibly nonconvex).

i)	 conv(C1 ⊕ C2) = conv(C1)⊕ conv(C2).
ii)	 If Ci (i = 1, 2) are convex (resp. compact) sets and Ti ∶ ℝ

li → ℝ
n ( i = 1, 2 ) are

affine mappings, then T1(C1)⊕ T2(C2) is a convex (resp. compact) set.

More generally, the above lemma remains true on the occasion of a finite num-
ber of sets or affine mappings.

Let f ∶ ℝ
n
→ (−∞,+∞] . The domain and epigraph of f are defined by

dom(f) ∶= {x ∈ ℝ
n ∣ f (x) < +∞} and epi(f) ∶= {(x, y) ∈ ℝ

n ×ℝ ∣ f (x) ≤ y} ,
respectively. If the dom(f) is nonempty, then f is said to be proper. If the epi(f) is
closed, then f is said to be closed. The indicator function of a set C ⊂ ℝ

n , denoted
by �C , is defined as

The following properties and examples of support function �F can be referred to,
e.g., [2].

Proposition 2.3  Let F ⊂ ℝ
n be a nonempty set. Then,

i)	 �F is closed and convex.
ii)	 �F is finite everywhere if and only if F is a bounded set.
iii)	�F is Lipschitz continuous with supx∈F ‖x‖ as Lipschitz constant if F is a compact

convex set.
iv)	 �F is sublinear, i.e., �F(�1x1 + �2x2) ≤ �1�F(x1) + �2�F(x2) for any scalars �i ≥ 0

and vectorsxi ∈ ℝ
n ( i = 1, 2).

v)	 �F is a norm on ℝn if F is compact, convex, symmetric (i.e., F = −F  ) and con-
tains the origin as an interior point.

Example 2.1  Let F ⊂ ℝ
n be a nonempty set.

i)	 If F = {x ∈ ℝ
n ∣ ‖x‖† ≤ 1} is a unit ball associated with a norm ‖ ⋅ ‖† , then the

support function �F(x) = ‖x‖‡ , where ‖ ⋅ ‖‡ is the dual norm of ‖ ⋅ ‖† . For instance,
i f F = {x ∈ ℝ

n ∣ ‖x‖Q ≤ 1} w i t h Q ≻ 0  , t h e n �F(x) = ‖x‖Q−1  ; i f
F = {x ∈ ℝ

n ∣ ‖x‖p ≤ 1} with p ∈ [1,∞] , then �F(x) = ‖x‖ p

p−1
 . Herein, the p

p−1

takes value ∞ (resp. 1) when p = 1 (resp. p = ∞).

��(C) ∶= {Ci ⊂ ℝ
n ∣ Ci ∈ �(C), and all Ci’s are convex sets}.

(2.1)�C(x) ∶=

{
0, if x ∈ C,

+∞, otherwise.

470	 X. Wang et al.

1 3

ii)	 If F is a closed convex cone, then the support function �F(x) = �Fo(x) , where
F

◦ ∶= {x ∈ ℝ
n ∣ x⊤y ≤ 0, ∀y ∈ F} denotes the polar cone of F .

iii)	 If F = {x ∈ ℝ
n ∣ Ax = b} is an affine set with A ∈ ℝ

m×n , then the support function

As aforementioned, the generalized projection ΠF(⋅;C) in (1.3) reduces to the
canonical Euclidean projection when F = {x ∈ ℝ

n ∣ ‖x‖2 ≤ 1} . For notational brev-
ity, we use Π(⋅;C) for the Euclidean projection operator. The followings are some
examples of Euclidean projections possessing closed-form formulae. The interested
reader is referred to, e.g., [2, Chapter 28], for more examples.

Example 2.2  Let C ⊂ ℝ
n be a nonempty closed convex set.

i)	 If C = {x ∈ ℝ
n ∣ a ≤ x ≤ b} is a box with a ∈ ℝ

n and b ∈ ℝ
n , then

[Π(x;C)]i = median{ai, xi, bi} for i = 1, 2,… , n.
ii)	 If C =

�
x ∈ ℝ

n ∣ ‖x‖2 ≤ �
�
 is a ball with 𝛼 > 0 , then Π(x;C) = min

�
1,

�

‖x‖2

�
x.

iii)	 If C = {x ∈ ℝ
n ∣ Ax = b} is an affine set with A ∈ ℝ

m×n and b ∈ ℝ
m , then

Π(x;C) = x − A†(Ax − b) , where A† is the Moore–Penrose pseudo-inverse1 of A.
Particularly, if C = {x ∈ ℝ

n ∣ a⊤x = b, a ≠ 0 ∈ ℝ
n} is a nonvertical hypeplane,

then Π(x;C) = x −
a⊤x−b

‖a‖2
2

a.
iv)	 If C = {(x, t) ∈ ℝ

n ×ℝ ∣ ‖x‖2 ≤ �t} is a second-order cone with 𝛼 > 0 , then

The followings are some propositions of Euclidean projection onto convex set
with Minkowski sum structures.

Proposition 2.4  Let 𝛼 > 0 be a scalar, A and C be nonempty closed convex sets in
ℝ

n , and x, x0 be vectors in ℝn .

i)	 If A = x0 ⊕ C , then Π(x;A) = x0 + Π(x − x0;C).
ii)	 I f A ⟂ C (i . e . , a⊤c = 0 fo r a ny a ∈ A a n d c ∈ C  ) , t h e n

Π(x;A⊕ C) = Π(x;A) + Π(x;C).

(2.2)𝜎F(x) =

{
b⊤z, if x = A⊤z,

+∞, otherwise.

Π(x;C) =

⎧⎪⎨⎪⎩

(x, t), if ‖x‖2 ≤ �t;

(0, 0), if ‖x‖2 ≤ −t∕�;
�‖x‖2+t

(�2+1)‖x‖2 (�x, ‖x‖2), otherwise.

1  The Moore–Penrose pseudo-inverse exists and is unique for any A ∈ ℂ
m×n . Let rank(A) = r and

A = UΣV∗ be the singular value decomposition with U ∈ ℂ
m×r , Σ ∈ ℝ

r×r and V ∈ ℂ
m×r . Then

A
† = VΣ−1

U
∗ . Particularly, A† = (A∗

A)−1A∗ when A is of full column rank, and A† = A
∗(AA∗)−1 when A

is of full row rank.

471

1 3

The distance between convex sets with Minkowski sum structure:…

iii)	 I f A = B⊕ C w i t h B = {x ∈ ℝ
n ∣ ‖x‖2 ≤ �}   , t h e n

Π(x;A) = Π(x;C) +min
�
1,

�

‖x−Π(x;C)‖2

�
(x − Π(x;C)).

Proof  The proofs of i) and ii) can be referred to [2, Propositions 28.1 and 28.6],
respectively. The assertion iii) can be proved as follows.

By combining the definition of Euclidean projection with the Minkowski sum
structure of A , we have Π(x;A) = argmin

y∈A
‖y − x‖2 = w∗

1
+ w∗

2
 , where (w∗

1
,w∗

2
) is an

optimum of

By invoking the first-order optimality conditions, we have

Without loss of generality, by setting �1 = 1 in (2.3), it follows from Example 2.5 ii)
that

In the case of ‖x − w∗
2
‖2 > 𝛼 , by substituting w∗

1
=

�(x−w∗
2
)

‖x−w∗
2
‖2 into (2.4) and setting

�2 = (1 −
�

‖x−w∗
2
‖2)

−1 , we obtain w∗
2
= Π(x;C) , and thus w∗

1
=

�(x−Π(x;C))

‖x−Π(x;C)‖2 . Finally, we
get

which completes the proof. 	� ◻

The set A in Proposition 2.6 iii) is widely known as the offsetting of C by a
radius � . As a special case of Proposition 2.6 i), if C = {x ∈ ℝ ∣ ‖x‖2 ≤ �} , it fol-
lows that A is an x0-centred �2-norm ball with radius � . Accordingly, the follow-
ing corollary holds.

Corollary 2.5  If A = {x ∈ ℝ
n ∣ ‖x − x0‖2 ≤ �} with 𝛼 > 0 , then

Π(x;A) = x0 +min
�
1,

�

‖x−x0‖2

�
(x − x0).

min
w1∈B,w2∈C

‖w1 + w2 − x‖2
2
.

(2.3)w∗
1
= Π

(
w∗
1
− 𝛽1(w

∗
1
+ w∗

2
− x);B

)
, ∀ 𝛽1 > 0,

(2.4)w∗
2
= Π

(
w∗
2
− 𝛽2(w

∗
1
+ w∗

2
− x);C

)
, ∀ 𝛽2 > 0.

(2.5)w∗
1
= Π

�
x − w∗

2
;B
�
=

�
𝛼(x−w∗

2
)

‖x−w∗
2
‖2 , if ‖x − w∗

2
‖2 > 𝛼,

x − w∗
2
, otherwise.

(2.6)w∗
1
+ w∗

2
=

�
Π(x;C) +

𝛼(x−Π(x;C))

‖x−Π(x;C)‖2 , if ‖x − Π(x;C)‖2 > 𝛼,

x, otherwise,

472	 X. Wang et al.

1 3

We now present some preliminaries involving functions and operators, which will
be useful in the sequel discussion.

The subdifferential of f, denoted by �f ∶ ℝ
n
→ 2ℝ

n, is defined as

If f ∶ ℝ
n
→ (−∞,+∞] is a convex function, then the subdifferential �f (x) is a non-

empty compact convex set for all x ∈ ℝ
n (see e.g., [2] for details). We state below

some examples of subdifferential.

Example 2.3  Let C ⊂ ℝ
n be a nonempty closed convex set. Then,

where NC and FC are the so-called normal cone and exposed face of C.

Example 2.4  Let ‖ ⋅ ‖† be a norm of ℝn and ‖ ⋅ ‖‡ be its dual norm. Then

In particular, the subdifferential of �p-norm ( p ∈ [1,+∞] ) at origin is the unit
ball associated with its dual norm, i.e., �‖0‖p = {� ∈ ℝ

n ∣ ‖�‖ p

p−1
≤ 1} , whilst the

subdifferetial of �p-norm at x ≠ 0 can be stated as

where I(x) ∶= {i ∣ �xi� = ‖x‖∞} and ei ∈ ℝ
n accounts for the canonical basis vector

(i.e., the vector whose only nonzero element is 1 in the ith coordinate). The conju-
gate of f, denoted by f ∗ , is defined as

Note that f ∗ is always a closed convex function (even if f is not closed convex). Fur-
thermore, if f is a closed convex proper function, then f ∗∗ = f  . It follows by (2.9)
that the indicator function �C and support function �C are conjugate with each other.
Let f ∶ ℝ

n
→ (−∞,+∞] be a closed convex proper function. The proximity of f,

denoted by proxf  , is defined as

(2.7)𝜕f (x) ∶=
{
𝜉 ∈ ℝ

n ∣ f (y) ≥ f (x) + 𝜉⊤(y − x), ∀y ∈ ℝ
n
}
, ∀x ∈ dom(f).

𝜕𝜄C(x) =

{
NC(x) ∶= {𝜉 ∈ ℝ

n ∣ 𝜉⊤(y − x) ≤ 0, ∀y ∈ C}, if x ∈ C,

�, otherwise,

𝜕𝜎C(x) =

{
C, if x = 0,

FC(x) ∶= {𝜉 ∈ C ∣ 𝜉⊤x = 𝜎C(x)}, otherwise,

(2.8)𝜕‖x‖† =
�

{𝜉 ∈ ℝ
n ∣ ‖𝜉‖‡ ≤ 1}, if x = 0,

{𝜉 ∈ ℝ
n ∣ ‖𝜉‖‡ ≤ 1, 𝜉⊤x = ‖x‖†}, otherwise.

�‖x‖1 =
�
� ∈ ℝ

n ∣ �i =
xi

�xi� for xi ≠ 0, and �i ∈ [−1, 1] for xi = 0
�
,

�‖x‖p =
�
� ∈ ℝ

n ∣ �i =
xi�xi�p−2
‖x‖p−1p

for xi ≠ 0, and �i = 0 for xi = 0
�
,

�‖x‖∞ = conv
�xiei
�xi� ∣ i ∈ I(x)

�
,

(2.9)f ∗(𝜆) ∶= sup
{
x⊤𝜆 − f (x) ∣ x ∈ dom(f)

}
, ∀𝜆 ∈ ℝ

n.

473

1 3

The distance between convex sets with Minkowski sum structure:…

The followings are some properties of proximity which will be useful for the sequel
analysis. The interested reader is referred to [11, Table 10.2] for more instances and
properties of proximity operators in Hilbert space.

Proposition 2.6  Let 𝛼 > 0 and � ∈ ℝ be scalars, b ∈ ℝ
n be a vector, A ∈ ℝ

n×m be
a matrix, C ⊂ ℝ

n be a nonempty closed convex set, and � ∶ ℝ
n
→ (−∞,+∞] be a

closed convex proper function.

i)	 If f (x) = �(Ax + b) with A satisfying AA⊤ = 𝛼In , then

ii)	 If f (x) = 𝜑(x) +
𝛼

2
‖x‖2

2
+ b⊤x + 𝛾 , then proxf (x) = prox �

�+1

(
x−b

�+1

)
.

iii)	 Recall that �∗ is the conjugate of � , then x = prox��(x) + �prox �∗

�

(
x

�
) for any

x ∈ ℝ
n.

iv)	 If f (x) = �C(x) is indicator function, then proxf (x) = Π(x;C) ; and if f (x) = �C(x) is
support function, then proxf (x) = x − Π(x;C).

Note that Proposition 2.10 iii) is the celebrated Moreau’s identity, which indicates
the relationship of proximities between � and its conjugate.

3 � Reformulations of (1.4) into variant forms

In this section, we first reformulate (1.4) into variant forms, and then deduce the
equivalent monotone inclusion problems by employing the first-order optimality
conditions. It will be demonstrated that the problem (1.4) can be tractably solved by
a large family of splitting methods.

We start the discussion by restating (1.4) as follows

 The existence of optima of (3.1) follows immediately by the Weierstrass’ theorem
(see e.g., [2, Chapter 11]).

Proposition 3.1  Problem (3.1) admits at least one optimum if one of the following
conditions is satisfied: (i) Ti(Ωi) ( i = 1, 2,… ,m ) are compact sets; (ii) 0 ∈ int(F).

(2.10)proxf (x) ∶= argmin
y∈ℝn

�
f (y) +

1

2
‖y − x‖2

2

�
, ∀x ∈ ℝ

n.

(2.11)proxf (x) = x − 𝛼−1A⊤
(
Ax + b − prox𝛼𝜑(Ax + b)

)
.

(3.1a)min �F(x − x0)

(3.1b)subject to x ∈ T1(Ω1)⊕ T2(Ω2)⊕⋯⊕ Tm(Ωm).

474	 X. Wang et al.

1 3

Proof 

i)	 By the compactness of Ti(Ωi) and Lemma 2.2 ii), we have that the Minkowski
sum of Ti(Ωi) is a compact set. Moreover, as �F is closed (see Proposition 2.3),
the assertion holds by the Weierstrass’ theorem.

ii)	 If 0 ∈ int(F) , there exists a neighbourhood of 0, denoted by N�(0) , satisfying
N𝛿(0) ⊂ F  . For any x ∈ ℝ

n , we have y0 ∶= �(x−x0)

2‖x−x0‖2 ∈ N�(0) . Accordingly,

which indicates that �F(⋅ − x0) is coercive (i.e., lim‖x‖2→∞
�F(x − x0) = +∞ ). Again, the

assertion (ii) follows from the Weierstrass’ theorem. 	� ◻

Because of the affine property of Ti , it is obvious that Proposition 3.1 (i) holds if
all Ωi ’s are compact sets. Under some stringent premise, the uniqueness of optimum
of (3.1) can be guaranteed. For instance, if Ω and F in (3.1) are convex, normally
smooth and round,2 then (3.1) admits a unique optimum [40].

By recalling the affine mappings Ti in (1.5), the constraint (3.1b) can be described
as

Hereafter, for notational convenience, we denote � ∈ ℝ
l , a ∈ ℝ

n , M ∈ ℝ
n×l and

Ω ⊂ ℝ
l as follows

3.1 � Primal reformulation

With notations in (3.3), the constraint (3.2) can be narrowed down to x = M� + a
with � ∈ Ω . Accordingly, problem (3.1) can be cast as

or concisely,

𝜎F(x − x0) = sup
y∈F

y⊤(x − x0) ≥ sup
y∈N𝛿(0)

y⊤(x − x0) ≥ (y0)⊤(x − x0) =
𝛿

2
‖x − x0‖2,

(3.2)x =
m∑
i=1

(Mi�i + ai), �i ∈ Ωi, i = 1, 2,… ,m.

(3.3)

� ∶=

⎛⎜⎜⎜⎝

�1

�2

⋮

�m

⎞⎟⎟⎟⎠
, a ∶=

m∑
i=1

ai, M ∶=
�
M1,M2,… ,Mm

�
and Ω ∶= Ω1 ×⋯ × Ωm.

(3.4)min �F(x − x0) subject to x = M� + a, � ∈ Ω,

2  Let bd(C) and NC(x) denote the topological boundary and normal cone (see also Example 2.8 for defini-
tion) of a set C ⊂ ℝ

n , respectively. The C is called normally smooth if, for any x ∈ bd(C) , there exists an
a
x
∈ ℝ

n such that NC(x) = cone{a
x
} . The C is said to be round if NC(x) ≠ NC(y) for any x, y ∈ bd(C) and

x ≠ y.

475

1 3

The distance between convex sets with Minkowski sum structure:…

where �Ω is the indicator function defined in (2.1). For simplicity, the (3.5) is termed
as the primal reformulation of (1.4). The first-order optimality conditions of (3.5)
read

where ��Ω and ��F are subdifferential operators (see Example 2.8) of �Ω and �F  ,
respectively. Particularly, if the dynamic set F = {x ∈ ℝ

n ∣ ‖x‖Q−1 ≤ 1} with Q ≻ 0
(or equivalently, �F(x) = ‖x‖Q ), the (3.5) can be equivalently cast as

which implies that the projection onto Minkowski sum set (1.4) is substantially
a constrained least squares problem. Obviously, the objective function of (3.7) is
strongly convex if M is of full column rank, which implies that the (3.7) admits
unique optimum. Moreover, a corollary can be immediately deduced for particular
M.

Corollary 3.2  If F = {x ∈ ℝ
n ∣ ‖x‖Q−1 ≤ 1} with Q ≻ 0 , i.e., �F(x) = ‖x‖Q , and

M ∈ ℝ
n×l satisfies M⊤QM = diag{

1

𝜈1
Il1 ,

1

𝜈2
Il2 ,… ,

1

𝜈m
Ilm} with 𝜈i > 0 for all

i = 1, 2,… ,m (i.e., the columns of M are Q-conjugate vectors), then the optimum of
(3.5), denoted by �∗ = (�∗

1
,�∗

2
,… ,�∗

m
) , admits the explicit formula

Proof  By the first-order optimality conditions of (3.7) , we derive

Furthermore, it follows from the assumption M⊤
i
QMi =

1

𝜈i
Ili and the fact

Ω = Ω1 ×⋯ × Ωm that

which indicates that w∗
i
= (Ili + 𝜈i𝜕𝜄Ωi

)−1(𝜈iM
⊤
i
Q(x0 − a)) = Π(𝜈iM

⊤
i
Q(x0 − a);Ω) . 	

� ◻

The corollary above indicates that if the column vectors of Mi are Q-conjugate, then
the projection onto a convex set with Minkowski sum structure admits closed-form
solution.

(3.5)min
�∈ℝl

�F(M� + a − x0) + �Ω(�),

(3.6)0 ∈ M⊤𝜕𝜎F(M𝜔 + a − x0) + 𝜕𝜄Ω(𝜔),

(3.7)min
�∈ℝl

1

2
‖M� + a − x0‖2

Q
+ �Ω(�),

(3.8)w∗
i
= Π

(
𝜈iM

⊤
i
Q(x0 − a);Ωi

)
, i = 1, 2,… ,m.

0 ∈ M⊤Q(M𝜔∗ + a − x0) + 𝜕𝜄Ω(𝜔
∗).

𝜈iM
⊤
i
Q(x0 − a) ∈ w∗

i
+ 𝜈i𝜕𝜄Ωi

(𝜔∗
i
), i = 1, 2,… ,m,

476	 X. Wang et al.

1 3

3.2 � Dual reformulation

On the other hand, by deploying Fenchel–Rockafellar duality (see e.g., [2, Chap-
ter 15]), the dual of (3.5) can be formulated as

Accordingly, the first-order optimality conditions of (3.9) read

The explicit formula of �Ω can be available if Ω is special set, e.g, ball, closed con-
vex cone, and affine set (see Example 2.4). For example, if Ω is a convex cone, the
(3.9) can be cast as max𝜆∈ℝn{𝜆⊤(a − x0) − 𝜄F(𝜆) − 𝜄Ω◦(−M⊤𝜆)} . Furthermore, if
F = {x ∈ ℝ

n ∣ ‖x‖∞ ≤ �} and Ω = {x ∈ ℝ
n ∣ Ax ≤ 0} be a polyhedral cone, the

Ω◦ = {x ∈ ℝ
n ∣ x = A⊤z, z ≥ 0} is exactly the finite generated cone by columns of A.

Thus, the (3.9) can be reduced to

which is essentially a linear programming in variables (�, z).

3.3 � Primal‑dual reformulation

Moreover, by applying the conjugate (see (2.9) for definition) of �F to (3.5), we
derive a saddle point problem

Again, by the first-order optimality conditions, the saddle point problem (3.11)
amounts to

or equivalently,

As the (3.11) is linearly coupled in � and � , there always exists a saddle point
(�∗, �∗) satisfying (3.12), where �∗ and �∗ are solutions of primal and dual problem,
respectively (see e.g., [3, Chapter 3]).

Remark 3.3  In a word, the (1.4) can be equivalently reformulated as variant optimi-
zation forms, whose optimality conditions correspond to finding zeros of a series of

(3.9)max
𝜆∈ℝn

𝜆⊤(a − x0) − 𝜄F(𝜆) − 𝜎Ω(−M
⊤𝜆).

(3.10)0 ∈ a − x0 − 𝜕𝜄F(𝜆) +M𝜕𝜎Ω(−M
⊤𝜆).

max
𝜆∈ℝn

𝜆⊤(a − x0) subject to ‖𝜆‖∞ ≤ 𝛼, M⊤𝜆 + A⊤z = 0, z ≥ 0,

(3.11)min
𝜔∈ℝl

max
𝜆∈ℝn

𝜓(w, 𝜆) ∶= 𝜆⊤(M𝜔 + a − x0) − 𝜄F(𝜆) + 𝜄Ω(𝜔).

{
0 ∈ 𝜕𝜄Ω(𝜔) +M⊤𝜆,

0 ∈ 𝜕𝜄F(𝜆) −M𝜔 − a + x0,

(3.12)
(

0

a − x0

)
∈

(
𝜕𝜄Ω M⊤

−M 𝜕𝜄F

)(
𝜔

𝜆

)
.

477

1 3

The distance between convex sets with Minkowski sum structure:…

monotone inclusion problems, e.g., (3.6), (3.10) and (3.12). To solve those mono-
tone inclusion problems, numerous splitting schemes can be employed, e.g., proxi-
mal point method (PPA), forward-backward splitting (FBS), forward-backward-for-
ward splitting (FBFS), Douglas-Rachford splitting (DRS) and Peaceman-Rachford
splitting (PRS), to name a few. The interested reader is referred to, e.g., [15, 38,
42], for overviews and recent advances in splitting schemes. Among those splitting
schemes for tackling monotone inclusion problems, the most popular ones include
the application of PPA to (3.12) which results in the well-known PDHG method [9,
24], the application DRS to (3.10) which results in ADMM [18, 23], the application
DRS to (3.6) which results in the Spingarn’s method [46], etc. In a nutshell, the (1.4)
can be tractably solved by a large family of first-order optimization methods except
for the computational geometry based algorithms.

4 � Solvers for projection onto Minkowski sum set

As discussed in Sect. 3, the (1.4) can be reformulated into variant manners, then
solved by numerous state-of-the-art methods. The analysis and numerical compari-
sons on all those methods are beyond the scope of this paper. Herein, we focus on
ADMM [23] and PDHG [24] for solving (1.4).

4.1 � ADMM based solver

We first consider a generic linearly constrained convex optimization problem with
separable structure

 where �i ∶ ℝ
ni → (−∞,+∞] are all closed convex proper functions (possibly non-

smooth); Xi ⊆ ℝ
ni ( i = 1, 2 ) are nonempty closed convex sets; Ai ∈ ℝ

l×ni ( i = 1, 2 )
are full column rank matrices; b ∈ ℝ

l ; and n1 + n2 = n . A large family of instances
arising from the area such as compressive sensing, image processing, computer
vision and machine learning can be boiled down to the abstract model (4.1). A
state-of-the-art algorithm for solving (4.1) is ADMM originated in [18, 23]. Given
(xk

2
, �k) ∈ ℝ

n2 ×ℝ
l , the recursion of ADMM for solving the abstract model (4.1) can

be stated as follows:

(4.1a)min �1(x1) + �2(x2)

(4.1b)subject to A1x1 + A2x2 = b, x1 ∈ X1, x2 ∈ X2,

(4.2)

⎧⎪⎪⎨⎪⎪⎩

xk+1
1

= argmin
x1∈X1

L�(x1, x
k
2
, �k),

xk+1
2

= argmin
x2∈X2

L�(x
k+1
1

, x2, �
k),

�k+1 = �k − ��(A1x
k+1
1

+ A2x
k+1
2

− b),

478	 X. Wang et al.

1 3

where 𝛽 > 0 is a penalty parameter and � ∈ (0,
√
5+1

2
) is a relaxation factor. Herein,

the L� ∶ ℝ
n1 ×ℝ

n2 ×ℝ
l
→ ℝ denotes the augmented Lagrangian function of (4.1),

which is defined as

where � ∈ ℝ
l is the Lagrange multiplier. As ADMM allows us to independently

cope with individual sub-function �i by the aid of augmented Lagrangian function, it
has gained much popularity in diverse applications (see, e.g., the overviews [6, 22]
and references therein). The convergence of ADMM has been restated in the tutorial
[14], and its O(1/k) convergence rate was established in [25].

Now, we present the implementation details of ADMM on solving (1.4). Essen-
tially, the primal reformulation of (3.1) falls into the framework of (4.1) with the
following specifications:

•	 the variables x1 ∶= x , x2 ∶= � , and the abstract sets X1 = ℝ
n and X2 = Ω;

•	 the objective functions �1(x1) ∶= �F(x − x0) and �2(x2) ∶= 0;
•	 the matrices and vector in linear constraint (4.1b) are A1 ∶= I , A2 ∶= −M and

b ∶= a.

Therefore, the resulting subproblems when applying ADMM (or rather, the iterative
scheme (4.2)) to (3.4) read

Unfortunately, the �-subproblem in (4.4) is a least squares problem with constraint
Ω = Ω1 ×⋯ × Ωm , which probably requires internally nested iteration to derive an
approximate solution (albeit the projection onto individual Ωi admits closed-form
solution). Note that the compelling numerical performance of ADMM is established
in the sense that all resulting subproblems have close-form solutions or can be effi-
ciently approximated by some subroutines. Accordingly, it is sensible to reformulate
(3.4) by an alternative fashion. Concretely, by further introducing an auxiliary vari-
able z ∈ ℝ

l , the (3.4) is equivalent to

Likewise, the problem (4.5) falls into the abstract model (4.1) with the following
specifications:

•	 the variables x1 ∶= (x,w) , x2 ∶= z , and the abstract sets X1 ∶= ℝ
n × Ω ,

X2 ∶= ℝ
n;

•	 the objective functions �(x1) ∶= �F(x − x0) and �2(x2) ∶= 0;
•	 The matrices and vector with respect to the linear constraint (4.1b) are

(4.3)
L𝛽(x1, x2, 𝜆) ∶= 𝜃1(x1) + 𝜃2(x2) − 𝜆⊤(A1x1 + A2x2 − b) +

𝛽

2
‖A1x1 + A2x2 − b‖2

2
,

(4.4)

⎧⎪⎨⎪⎩

xk+1 = argmin
x∈ℝn

�
�F(x − x0) +

�

2
‖x −M�k − a − �−1�k‖2

2

�
,

�k+1 = argmin
�∈Ω

‖xk+1 −M� − a − �−1�k‖2
2
,

�k+1 = �k − �(xk+1 −M�k+1 − a).

(4.5)min �F(x − x0) subject to x = Mz + a, � = z, � ∈ Ω.

479

1 3

The distance between convex sets with Minkowski sum structure:…

ADMM is thus applicable to (4.5) with above specifications. More precisely, the
augmented Lagrangian function of (4.5) can be specified as

where � = (�1, �2) ∈ ℝ
n ×ℝ

l is the Lagrange multiplier. Accordingly, the resulting
subproblems when applying ADMM recursion (4.2) to (1.4) read

These resulting subproblems (correspondingly, the x-, � -, and z-subproblems) can
be further delineated as follows:

•	 The x-subproblem can be equivalently solved by the proximity operator

where rk ∶= Mzk + a + �k
1
∕� . Accordingly, the computational effort on solving

(4.7) is dominated by computing the Euclidean projection onto dynamic set F  .
In the upcoming numerical simulations, we shall consider the cases that F ⊂ ℝ

n
is the �1 -, �2 - and �∞-norm unit ball.

•	 The �-subproblem is equivalent to

which corresponds to the Euclidean projection onto Ω . Attributed to the Carte-
sian product Ω = Ω1 × Ω2 ×⋯ × Ωm , the �k+1 = (�k+1

1
,�k+1

2
,… ,�k+1

m
) can thus

be derived simultaneously by

A1 ∶=

(
I 0

0 I

)
, A2 ∶=

(
−Mi

)
and b ∶=

(
a

0

)
.

L𝛽(x1, x2, 𝜆) =𝜎F(x − x0) − 𝜆⊤
1
(x −Mz − a) +

𝛽

2
‖x −Mz − a‖2

2

− 𝜆⊤
2
(𝜔 − z) +

𝛽

2
‖𝜔 − z‖2

2
,

(4.6)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

xk+1 = argmin
x∈ℝn

�
�F(x − x0) +

�

2
‖x −Mzk − a − �−1�k

1
‖2
2

�
,

�k+1 = argmin
�∈Ω

‖� − zk − �−1�k
2
‖2
2
,

zk+1 = argmin
z∈ℝn

�‖xk+1 −Mz − a − �−1�k
1
‖2
2
+ ‖�k+1 − z − �−1�k

2
‖2
2

�
,

�k+1
1

= �k
1
− �(xk+1 −Mzk+1 − a),

�k+1
2

= �k
2
− �(wk+1 − zk+1).

(4.7)

xk+1 = argmin
x∈ℝn

�
�F(x − x0) +

�

2
‖x − rk‖2

2

�

[By (2.10)] = prox 1

�
�
F(⋅−x0)

(rk)

[Proposition 2.6 i)] = x0 + prox �F
�

(rk − x0)

[Proposition 2.6 iii)] = rk −
1

�
Π(�(rk − x0);F),

(4.8)�k+1 = argmin
�∈Ω

‖� − zk − �−1�k
2
‖2
2
= Π(zk + �−1�k

2
;Ω),

480	 X. Wang et al.

1 3

•	 The z-subproblem amounts to

 which is a positive definite linear system

 There are numerous algorithms catering for the above linear system in numeri-
cal computation, e.g., preconditioned conjugate gradient (PCG) method.

Summarily, the updates of x, � and z when implementing ADMM can be read-
ily conducted. The projections onto dynamic set F in (4.7) and those component
sets Ωi in (4.9) can be handled simultaneously. Moreover, a pleasing property of
ADMM is that there is only one user-dependent parameter � to be tuned through-
out numerical implementation.

4.2 � PDHG solver

As discussed in Sect. 4.1, ADMM can perform efficiently on solving (1.4) with
lower dimensions, e.g., the collision detection in robotics. However, its pitfalls
are becoming increasingly evident when the dimension of (1.4) is enlarged. The
computational effort on implementing ADMM in each iteration is possibly domi-
nated by solving the linear system (4.10). An alternative is the PDHG method
explored in [9, 10, 16, 24, 26], which can be viewed as the application of PPA
to the monotone inclusion problem (3.12). Recently, a novel viewpoint was
addressed that PDHG can also be interpreted as the application of DRS to a refor-
mulation of primal problem [38].

Given (�k, �k) ∈ ℝ
n ×ℝ

l , the recursion of PDHG [24] on solving the primal-
dual reformulation of (1.4) (i.e., the (3.11)), is specified as follows

where � is the saddle point function defined in (3.11), the 𝜏1 > 0 , 𝜏2 > 0 are param-
eters satisfying 𝜏1𝜏2‖M⊤M‖2 ≤ 1 , and � ∈ (0, 2) is a relaxation factor. By elaborat-
ing the subproblems in (4.11), we obtain the following concrete recursion for solv-
ing (1.4) by PDHG

(4.9)
�k+1
i

= argmin
�i∈Ωi

‖�i − zk
i
− �−1(�k

2
)i‖22

= Π(zk
i
+ �−1(�k

2
)i;Ωi), i = 1, 2,… ,m.

zk+1 = argmin
z∈ℝn

�‖xk+1 −Mz − a − �−1�k
1
‖2
2
+ ‖�k+1 − z − �−1�k

2
‖2
2

�
,

(4.10)(M⊤M + I)z = M⊤(xk+1 − a − 𝛽−1𝜆k
1
) + 𝜔k+1 − 𝛽−1𝜆k

2
.

(4.11)

⎧⎪⎪⎨⎪⎪⎩

𝜔̃k = argmin
𝜔∈ℝl

�
𝜓(𝜔, 𝜆k) +

1

2𝜏1
‖𝜔 − 𝜔k‖2

2

�
,

𝜆̃k = argmax
𝜆∈ℝn

�
𝜓(2𝜔̃k − 𝜔k, 𝜆) −

1

2𝜏2
‖𝜆 − 𝜆k‖2

2

�
,

𝜔k+1 = 𝜔k + 𝜌(𝜔̃k − 𝜔k),

𝜆k+1 = 𝜆k + 𝜌(𝜆̃k − 𝜆k),

481

1 3

The distance between convex sets with Minkowski sum structure:…

Intuitively, the recursion of PDHG for solving (1.4) is much easier than that of
ADMM. The computational effort of (4.12) is merely dominated by solving the pro-
jections onto dynamic set F and component sets Ωi’s. Compared to ADMM, PDHG
is fairly favourable for handling large-scale problems as the linear systems are not
involved throughout iteration. The only drawback of PDHG may be the challenge in
tuning parameters (�1, �2) to obtain compelling numerical performance.

Remark 4.1  In contrast, Gilbert’s method [19] aims to seek the optima of convex
quadratic function f on compact set C , i.e., minx∈C f (x) . The recursion reads

where �k ∈ (0, 1] is the stepsize computed by a prior criterion, and
sC(y) ∶= {x ∈ C ∣ x⊤y = supz∈C z

⊤y} denotes the contact mapping of C . The recur-
sion (4.13) amounts to minimizing f on a polyhedron approximation of C by projec-
tion gradient method, or can be deemed as a variant of Frank-Wolfe method (see
e.g., [40] for discussion). An improvement of (4.13) can be referred to, e.g. [21], for
solving problem (1.4) in 3D case. The worst-case convergence rate of (4.13) is
proven to be O(1

�
) . Alternatively, Qin and An [40] deployed Nesterov gradient-like

method [36, Chapter 2.2] to the dual reformulation of (1.4), which admits the worst-
case O(1√

�
ln(

1

�
)) convergence rate. Both methods are essentially the gradient-like

methods in either primal or dual variable. Numerically, as shown in [40], Gilbert’s
method may converge slowly near optima due to zigzagging phenomenon.

ADMM and PDHG are state-of-the-art splitting methods involving both primal
and dual variables in recursion, and admit the worst-case O(1

�
) convergence rate for

generic convex programming. PDHG is typically more popular for solving large-
scale practical problems as its recursion only involves matrix-vector operations.

5 � Numerical simulations

In this section, we conduct some numerical experiments involving the abstract
model (1.4) so as to demonstrate the performances of PDHG and ADMM. Essen-
tially, the model (1.4) captures numerous important real-world applications in
robotics [29] and mechanics [48]. We test a 2D path planning problem in robot-
ics and some high-dimensional synthetic problems involving (1.4). All codes are
written by matlab 7.9 and all experiments are conducted on a Lenovo personal
computer with Intel Core (TM) CPU 2.30GHZ and 8G memory.

(4.12)

⎧
⎪⎨⎪⎩

𝜔̃k
i
= Π(𝜔k

i
− 𝜏1M

⊤
i
𝜆k;Ωi), i = 1, 2,… ,m

𝜆̃k = Π(𝜆k + 𝜏2(M(2𝜔̃k − 𝜔k) + a − x0);F),

𝜔k+1 = 𝜔k + 𝜌(𝜔̃k − 𝜔k),

𝜆k+1 = 𝜆k + 𝜌(𝜆̃k − 𝜆k).

(4.13)xk+1 = xk + �k[sC(−∇f (x
k)) − xk],

482	 X. Wang et al.

1 3

5.1 � Path planning

Path planning plays a fundamental role in robotics and has been extensively stud-
ied in real-world applications. It aims to ensure the agents (e.g., manipulator, robot)
move freely in a (static or dynamic) workspace without hitting obstacles. We herein
consider the scenarios of an agent (more precisely, a manipulator) with a single link
and m degree-of-freedom (DoF) links in a static workspace.

Let Ω ⊂ ℝ
n denote an n-dimensional ( n = {2, 3} for practical applications in

robotics) workspace and Oi ⊂ Ω ( i = 1, 2,… , l ) are closed sets representing sta-
tionary obstacles. Without loss of generality, all Oi ’s are assumed to be convex.3 A
manipulator with m DoF can be described by a collection of rigid bodies Ai ⊂ ℝ

n
( i = 1, 2,… ,m ). Figure 2 shows the diagram representations of some manipulators
with variant shapes. The links (also called arms) of manipulator, which are concat-
enated by the joints (green points in Fig. 2), are typically mimicked by simple sets
such as line segment, polytope, and ellipsoid.

In path planning, a probabilistic roadmap is constructed as an undirected graph
[27], followed by a collision-free path by repetitively checking the distances between
obstacles and links. A mathematical model can be formulated by calculating the dis-
tance function

where �F is the generalized distance metric defined in (1.2). The O ∶=
⋃l

i=1
Oi and

A ∶=
⋃m

i=1
Ai denote the collection of stationary obstacles and rigid links, respec-

tively. Unfortunately, the problem (5.1) is prohibitively difficult to be tackled by
numerical optimization methods because the constraint O or A is typically noncon-
vex, even if all component set Oi ’s or Ai ’s are convex. An equivalent formulation of
(5.1) is to compute the distances between a series of component sets, i.e.,

(5.1)d(O,A) ∶= inf
{
�F(x, y) ∣ x ∈ O, y ∈ A

}
,

Fig. 2   Left: Diagram representations of manipulators with variant shapes of links. Right: A link A(P, �)
with Minkowski sum structure

3  If an obstacle O
i
 has nonconvex feature, it can be approximate by convex decomposition (see Defini-

tion 2.1). Some literature on deriving convex decomposition of a given set can be referred to, e.g., [5, 28,
41].

483

1 3

The distance between convex sets with Minkowski sum structure:…

Under the convexity assumption on Oi ’s and Ai’s, the nonconvex optimization prob-
lem (5.1) can be possibly handled by solving ml convex optimization problems.
There is abundant literature on solving (5.2) with Oi ’s and Ai ’s being ellipsoids or
polytopes. Those special shapes are typically resulted by approximating obstacles
or links via principal component analysis and linearization technique. The ability to
cope with only the ellipsoidal and polytonal obstacles may be not accurate enough.
Herein, we further assume that the component sets Oi ’s and Ai ’s can be described as
the Minkowski sum of convex sets. This assumption is admissible as the manipula-
tors typically admit special geometry shape, e.g., polyhedron and ellipsoid (which
can be easily described as Minkowski sum of simplex and ball). In order to formu-
late a generic shape (possibly non-convex) as the Minkowski sum of “simple” set,
a possible idea is first approximating the shape by a union of polyhedrons (e.g., [7,
41]) or ellipsoids (e.g., by using principle component analysis), and then deriving
the Minkowski sum description for those polyhedrons and ellipsoids.

Figure 3 shows an environment of 2D workspace Ω = [0, 75]2 with four sta-
tionary obstacles. The manipulators with single- and 4-DoF links are illustrated in
Fig. 3 (a) and (b), respectively. The base of 4-DoF manipulator is fixed at the point
(25, 20) and all links of manipulator admit the same shapes. Accordingly, the link
Ai can be described as a rigid transformation of stencil body, denoted by A(P, �)
(see Fig. 2b). The stencil body is hinged by the location of joint (denoted by P),
and the phase of dominant axis (denoted by � ). The data for reproducing obstacles
Oi ’s and the stencil body A(P, �) are reported in Table 1. All obstacles and links
are represented as the Minkowski sum of set Ti(Ωi) , where the sets Ωi ( i = 1, 2, 3 )
are defined by Ω1 = {x ∈ ℝ

2 ∣ ‖x‖1 ≤ 1, x2 ≥ 0} , Ω2 = {x ∈ ℝ
2 ∣ ‖x‖2 ≤ 1} and

Ω3 = {x ∈ ℝ
2 ∣ ‖x‖∞ ≤ 1} . In Table 1, the parameter w for M9 indicates the length

of link. We take w= 3 and w= 5 for sigle- and 4-DoF manipulators, respectively. The
aim of manipulator in Fig. 4 is to move freely from initial configuration (red loca-
tion) to goal configuration (green location) without hitting obstacles.

(5.2)d(O,A) = min{d(Oi,Aj) ∣ i = 1, 2,… , l; j = 1, 2,… ,m}.

Fig. 3   Examples of path planning in a 2D workspace with four obstacles. a Single-link manipulator; b
4-DoF manipulator

484	 X. Wang et al.

1 3

In numerical simulation, we first generate a probabilistic roadmap by the method
in [27], then collision-free paths for moving manipulators from initial to goal con-
figurations are probed by repetitively computing the distances d(Oi,Aj) in (5.2)
(more precisely, the d(Oi,A(P, �)) with data in Table 1). The dynamic set F is
taken as F = {x ∈ ℝ

2 ∣ ‖x‖2 ≤ 1} for this real-world application, which is equiva-
lent to choosing �F(x) = ‖x‖2 . Throughout, we choose the penalty parameter � ≡ 1
for ADMM, and (�1, �2) = (1, 1.1∕‖MTM‖2) for PDHG. The maximum number of
iteration is set as 100. The motion tracks of manipulators, which is indicated by the
colour changes from initial to goal configurations, are shown in Fig. 4. The com-
putational time to realize this path planning problem is less than 5 s for single-link

Fig. 4   The motion tracks of manipulators from initial to goal configurations. a Single-link manipulator; b
4-DoF manipulator

Table 1   Data of the obstacles O
i
 (i = 1, 2, 3, 4) and links for path planning problem

*The sets Ω
i
⊂ ℝ

2 ( i = 1, 2, 3 ) are defined by Ω1 = {x ∈ ℝ
2 ∣ ‖x‖1 ≤ 1, x2 ≥ 0} ,

Ω2 = {x ∈ ℝ
2 ∣ ‖x‖2 ≤ 1} and Ω3 = {x ∈ ℝ

2 ∣ ‖x‖∞ ≤ 1}.
**The G� ∈ ℝ

2×2 denotes the two-dimensional Givens transform, which represents an anti-clockwise
rotation with respect to an angle �.
***The P ∈ ℝ

2 indicates the joint of link which is closed to the base of manipulator

Formulation* a
i
 and M

i
 for affine mapping T

i
 in (1.5)

Obstacle O1 = T1(Ω2)⊕ T2(Ω2) a1=[21;23], M1=[4.8, 4.3;4.3,13.3]
a2=[23;35], M2=[1.5,-0.9;-0.9,2.5]

O2 = T3(Ω3)⊕ T4(Ω2) a3=[15;20], M3=[4.3,-1.3;-1.3,2.8]
a4=[45;15], M4=[1.5, 0.9; 0.9,2.5]

O3 = T5(Ω1)⊕ T6(Ω2) a5=[12;23], M5=[5.5,-2.6;-2.6,8.5]
a6=[12;18], M6=[3.0, 0.5; 0.5,2.0]

O4 = T7(Ω3)⊕ T8(Ω2) a7=[28;12], M7=[2.8, 1.3; 1.3,4.2]
a8=[15; 7], M8=[1.0, 0; 0,12]

Link A(P, 𝜃) = T9(Ω3)⊕ T10(Ω2) M9=[w,0;0,0.005]G
(∗∗)

�
 , a9 = P

(∗∗∗)

M10 = 1.25I2 , a10 = 0

485

1 3

The distance between convex sets with Minkowski sum structure:…

manipulator and 10 s for 4-DoF manipulator on our personal laptop computing
system.

5.2 � High‑dimensional problems

We now consider the problem (1.4)–(1.5) with synthetic data in high dimensions so
as to demonstrate the numerical performances of ADMM and PDHG. Numerical
comparisons with some benchmark methods in the literature are also tested, includ-
ing the Gilbert’s method [19], Qin and An’s method [40]. The datasets of (1.4)–(1.5)
are synthesized as follows:

•	 All Mi ’s in (1.5) are taken as square matrices, i.e., li ≡ n for all i = 1, 2,… ,m.
•	 The Mi and ai in (1.5) are randomly generated with entries being independent

and identically distributed (i.i.d) variables. Concretely, the entries of Mi obey the
standard normal distribution, and the entries of ai follow the uniform distribution
on [mn,mn + 10].

•	 The component sets {Ωi}
m
i=1

 in (1.4) are randomly taken among some abstract
sets, including the unit �p-norm balls with p = {1, 2,∞} , the nonnegative ort-
hant, and the second-order cone with � = 1 (see Example 2.5 iv) for definition).

We test the (1.4)–(1.5) on scenarios of �F(⋅) = ‖ ⋅ ‖p ( p = {1, 2,∞} ) with differ-
ent number of component sets (i.e., the m) and variant dimension of variables (i.e.,
the n). Both ADMM and PDHG methods are conducted with their implementation
details elucidated in Sect. 4. As Gilbert’s method [19], Qin and An’s method [40]
can also be applicable for solving (1.4) with �F(⋅) = ‖ ⋅ ‖2 , we test both methods on
(1.4)–(1.5) with Euclidean norm. For the involved parameters in test methods, we
choose � = 0.5 for Gilbert’s method; � = 0.001 for Qin and An’s method; � = 0.8 ,
and � = 1.6 for ADMM; �1 = 1 , 𝜏2 = 1.1∕‖M⊤M‖2 and � = 1.5 for PDHG. As for
the nm-by-nm linear system (4.10) in ADMM recursion, we first economize the
arithmetic operations on deriving the inverse of coefficient matrix I +M⊤M by aid
of the Sherman-Morrison formula, then cope with an n-by-n linear system by using
the build-in matlab package linsolve. All initial points required for test methods
are taken as zeros vectors. The stopping criterion is measured by the primal-dual
relative gap, which is defined as

where Pobj and Dobj represent the primal and dual objective function values
of (1.4), respectively. According to the discussion in Sect. 3, the values of Pobj
and Dobj can be respectively computed by �F(x − x0) and 𝜆⊤

1
(a − x0) − 𝜎Ω(𝜆2)

when implementing ADMM recursion, whilst the values of Pobj and Dobj can
be respectively computed by �F(Mw + a − x0) and 𝜆⊤(a − x0) − 𝜎Ω(−M

⊤𝜆) when
implementing PDHG recursion.

We report in Tables 2, 3 and 4 the number of iterations and computing time
in seconds (“No. Iteration(CPU)”) when the stopping criterion (5.3) reaches the

(5.3)relgap =
|���� − ����|

1 + |����| + |����| < Tol,

486	 X. Wang et al.

1 3

Table 2   Numerical results on solving (1.4)–(1.5) with distance merit �F(⋅) = ‖ ⋅ ‖2
n m Tol = 10

−6 Tol = 10
−8

Gilbert Qin&An ADMM PDHG Gilbert Qin&An ADMM PDHG

50 50 213 (0.5) 92 (0.2) 48 (0.1) 41 (0.1) 1594 (3.2) 1132 (2.1) 414 (0.9) 369 (0.48)
100 197 (1.0) 88 (0.4) 54 (0.3) 45 (0.2) 1528 (6.8) 986 (3.5) 354 (1.7) 292 (0.78)
500 188 (4.7) 86 (1.9) 52 (1.3) 45 (0.9) 1487 (36.8) 1048 (22.5) 759 (18.1) 604 (12.5)

100 50 192 (1.1) 92 (0.5) 54 (0.3) 37 (0.2) 1675 (8.7) 1123 (5.6) 365 (2.16) 301 (1.2)
100 211 (2.9) 89 (1.1) 44 (0.6) 35 (0.3) 1544 (21.4) 947 (11.2) 573 (6.7) 468 (4.51)
500 204 (8.9) 86 (3.3) 43 (1.8) 37 (1.2) 1640 (71.4) 1002 (38.5) 427 (17.8) 352 (10.8)

500 50 187 (11.3) 79 (4.6) 28 (2.5) 24 (1.3) 1496 (89.4) 958 (55.6) 262 (22.7) 217 (12.9)
100 192 (26.3) 83 (10.4) 29 (4.3) 24 (2.7) 1521 (207.9) 932 (115.8) 270 (40.0) 227 (25.7)
500 183 (125.4) 78 (44.3) 33 (23.8) 24 (13.1) 1431 (979.8) 965 (547.8) 285 (204.7) 235 (127.2)

Table 3   Numerical results on solving (1.4)–(1.5) with distance merit �F(⋅) = ‖ ⋅ ‖1
n m Tol = 10

−4
Tol = 10

−5
Tol = 10

−6

ADMM PDHG ADMM PDHG ADMM PDHG

50 50 59 (0.3) 45 (0.1) 208 (0.6) 191 (0.3) 671 (1.3) 612 (0.9)
100 48 (0.4) 41 (0.2) 156 (0.9) 145 (0.4) 622 (2.9) 589 (1.7)
500 69 (1.5) 36 (0.5) 160 (3.2) 125 (1.9) 462 (8.7) 434 (6.9)

100 50 80 (0.6) 50 (0.2) 300 (1.9) 192 (0.6) 672 (3.8) 588 (1.8)
100 61 (0.8) 45 (0.4) 188 (2.1) 166 (1.4) 695 (7.2) 684 (5.7)
500 70 (2.7) 41 (1.4) 176 (6.6) 132 (3.9) 528 (20.1) 459 (14.7)

500 50 86 (7.1) 44 (2.4) 309 (24.2) 170 (9.1) 887 (66.9) 739 (40.1)
100 64 (10.3) 42 (4.3) 187 (27.8) 144 (15.2) 647 (92.5) 593 (63.9)
500 83 (56.1) 38 (186) 192 (126.9) 121 (66.5) 522 (342.2) 418 (231.4)

Table 4   Numerical results on solving (1.4)–(1.5) with distance merit �F(⋅) = ‖ ⋅ ‖∞
n m Tol = 10

−8
Tol = 10

−9
Tol = 10

−10

ADMM PDHG ADMM PDHG ADMM PDHG

50 500 95 (2.1) 77 (1.4) 227 (4.7) 201 (3.6) 952 (18.7) 762 (13.7)
800 89 (2.9) 74 (2.1) 215 (6.7) 177 (4.8) 942 (28.3) 672 (18.3)

1000 81 (3.2) 69 (2.2) 211 (8.0) 176 (5.8) 812 (30.6) 613 (20.2)
100 500 54 (2.3) 33 (1.1) 160 (6.5) 106 (3.8) 544 (22.1) 415 (14.9)

800 47 (3.1) 34 (2.1) 139 (9.1) 101 (5.4) 528 (34.2) 447 (22.5)
1000 50 (4.2) 36 (2.3) 129 (10.6) 100 (6.5) 469 (37.4) 414 (27.2)

500 500 30 (20.4) 27 (13.1) 68 (47.4) 60 (28.6) 167 (135.1) 113 (57.5)
800 32 (36.2) 27 (20.8) 63 (71.4) 60 (51.3) 168 (197.5) 125 (100.6)

1000 37 (56.2) 27 (29.1) 68 (86.2) 61 (64.5) 160 (241.1) 118 (131.5)

487

1 3

The distance between convex sets with Minkowski sum structure:…

pre-determined tolerances. Note that the number of iterations and computing time
reported in Tables 2, 3 and 4 are averaged by running 50 i.i.d random datasets.
Table 2 shows that: (i) the performances of ADMM and PDHG outperform substan-
tially those of Gilbert’s method, Qin and An’s method; (ii) ADMM is competitive to
PDHG when the dimensionality (i.e., the n) and the number of component sets (i.e.,
the m) in problem (1.4) are relative small. The superiority of PDHG would be more
evident when the dimensionality or the number of component sets in (1.4) increases.
The number of iterations between ADMM and PDHG differs slightly, whilst the
computing time of both methods is quite disparate. The reason is that ADMM recur-
sion involves solving generic linear systems which are usually time-consuming in

101 102 103 104

Iteration No.

10-10

10-5

100
R

el
at

iv
e

 G
ap

Gilbert
Qin and An
ADMM
PDHG

300 400 500

1

2
3
×10-8

100 101 102

CPU time (s)

10-10

10-5

100

R
el

at
iv

e
 G

ap

Gilbert
Qin and An
ADMM
PDHG

10 15 20

1

2
3
×10-8

101 102 103

Iteration No.

10-6

10-4

10-2

100

R
el

at
iv

e
 G

ap

ADMM
PDHG

450 500 550

1

1.5

2
×10-6

10-1 100 101

CPU time (s)

10-6

10-4

10-2

100

R
el

at
iv

e
 G

ap

ADMM
PDHG

15 20 25

1

1.5

2
×10-6

101 102

Iteration No.

10-10

10-5

100

R
el

at
iv

e
 G

ap

ADMM
PDHG

100 150

2

4
×10-10

101 102

CPU time (s)

10-10

10-5

100

R
el

at
iv

e
 G

ap

ADMM
PDHG

60 80 100

2

4
×10-10

Fig. 5   Evolutions of primal-dual gap values w.r.t. iterations and computing time for solving (1.4).
Top row: the case of �F(x) = ‖x‖2 with (n,m) = (100, 500) . Center row: the case of �F(x) = ‖x‖1 with
(n,m) = (100, 500) . Bottom row: the case of �F(x) = ‖x‖∞ with (n,m) = (500, 500)

488	 X. Wang et al.

1 3

high-dimensional scenarios, whilst the recursion of PDHG merely involves matrix-
vector multiplications whose arithmetic operations are relatively low. Both ADMM
and PDHG are also tested for solving problem (1.4) with nonsmooth distance merits,
e.g., �F(x) = ‖x‖1 and ‖x‖∞ . The numerical results are reported in Tables 3 and 4,
which demonstrate the compelling performances of PDHG. In Fig. 5, we plot the
evolutions of primal-dual relative gap with respect to the number of iterations and
computing time in seconds for some test datasets with variant support function �F  .
The figures show that both ADMM and PDHG perform well for solving the problem
(1.4). PDHG is more numerically preferable for solving problem (1.4) in large-scale.

6 � Concluding remarks

In this paper, we explore the distance between convex sets with Minkowski sum
structure (or equivalently, the projection onto Minkowski sum of convex sets), which
is a fundamental nomenclature in computational geometry. By reformulating the
problem into a separable convex optimization with linear constraints, we cope with
the resulted model by some recent advanced optimization methods. Attributed to the
skilfully first-order optimization methods, the distance can be efficiently solved in
primal, dual, or primal-dual forms. Moreover, those methods are also favourable for
solving large-scale computational geometry problems by aid of parallel computing
techniques.

Acknowledgements  The authors would like to thank the anonymous referees for their valuable com-
ments, which helped improving the paper substantially. X. Wang was supported by NSFC 11871279 and
STCSM 19ZR1414200. W. Zhang was supported by NSFC 11971003.

References

	 1.	 Aliyu, M.D.: A vertex algorithm for collision detection. Eur. J. Oper. Res. 120, 174–180 (2000)
	 2.	 Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert

Spaces. Springer, New York (2011)
	 3.	 Bertsekas, D.P.: Convex Analysis and Optimization. Athena Scientific, Belmont (2003)
	 4.	 Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Pren-

tice-Hall, Upper Saddle River (1989)
	 5.	 Böröczky, K., Reitzner, M.: Approximation of smooth convex bodies by random circumscribed pol-

ytopes. Ann. Appl. Probab. 14, 239–273 (2004)
	 6.	 Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learn-

ing via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2011)
	 7.	 Bronstein, E.M.: Approximation of convex sets by polytopes. J. Math. Sci. 153, 727–762 (2008)
	 8.	 Cameron, S.: Enhancing GJK: computing minimum and penetration distances between convex poly-

hedra. In: IEEE International Conference on Robotics and Automation, pp. 3112–3117 (2002)
	 9.	 Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications

to imaging. J. Math. Imaging Vis. 40, 120–145 (2012)
	10.	 Chambolle, A., Ehrhardt, M.J., Richtárik, P., Schönlieb, C.: Stochastic primal-dual hybrid gradient

algorithm with arbitrary sampling and imaging applications. SIAM J. Optim. 28, 2783–2808 (2018)
	11.	 Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H.H.,

et al. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212.
Springer, Berlin (2011)

489

1 3

The distance between convex sets with Minkowski sum structure:…

	12.	 Condat, L.: Fast projection onto the simplex and the �1 ball. Math. Program. 158, 575–585 (2016)
	13.	 Dax, A.: The distance between two convex sets. Linear Algebra Appl. 416, 184–213 (2006)
	14.	 Eckstein, J.: Augmented Lagrangian and alternating direction methods for convex optimization: a

tutorial and some illustrative computational results. RUTCOR Research Report, (2012)
	15.	 Eckstein, J.: Splitting methods for monotone operators with applications to parallel optimization.

Ph.D. Thesis, MIT (1989)
	16.	 Esser, E., Zhang, X.Q., Chan, T.F.: A general framework for a class of first order primal-dual algo-

rithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3, 1015–1046 (2010)
	17.	 Fogel, E., Halperin, D., Wein, R.: CGAL Arrangements and Their Applications. Springer, Berlin

(2012)
	18.	 Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite

element approximations. Comput. Math. Appl. 2, 17–40 (1976)
	19.	 Gilbert, E.: An iterative procedure for computing the minimum of a quadratic form on a convex set.

SIAM J. Control 6, 61–80 (1966)
	20.	 Gilbert, E., Foo, C.: Computing the distance between general convex objects in three-dimensional

space. IEEE Trans. Robot. Autom. 6, 53–61 (1990)
	21.	 Gilbert, E., Johnson, D., Keerthi, S.: A fast procedure for computing the distance between complex

objects in three-dimensional space. IEEE Trans. Robot. Autom. 4, 193–203 (1988)
	22.	 Glowinski, R.: On alternating direction methods of multipliers: a historical perspective. Model.

Simul. Optim. Sci. Technol. Comput. Methods Appl. Sci. 34, 59–82 (2014)
	23.	 Glowinski, R., Marrocco, A.: Sur l’approximation paréléments finis d’ordre unet larésolution par-

pénalisation-dualité d’une classe deproblèmes de Dirichlet non linéaires. Revue Fr. Autom. Inform.
Rech. Opér., Anal. Numér 2, 41–76 (1975)

	24.	 He, B.S., Yuan, X.M.: Convergence analysis of primal-dual algorithms for a saddle-point problem:
from contraction perspective. SIAM J. Imaging Sci. 5, 119–149 (2012)

	25.	 He, B.S., Yuan, X.M.: On the O(1∕n) convergence rate of the Douglas–Rachford alternating direc-
tion method. SIAM J. Numer. Anal. 50, 700–709 (2012)

	26.	 He, B.S., You, Y.F., Yuan, X.M.: On the convergence of primal-dual hybrid gradient algorithm.
SIAM J. Imaging Sci. 7, 2526–2537 (2014)

	27.	 Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning
in high-dimensional configuration space. IEEE Trans. Robot. Autom. 12, 566–580 (1996)

	28.	 Keil, J.M.: Decomposing a polygon into simpler components. SIAM J. Comput. 14, 799–817 (1985)
	29.	 Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Boston (1991)
	30.	 Lewis, A.S., Malick, J.: Alternating projections on manifolds. Math. Oper. Res. 33, 216–234 (2008)
	31.	 Lin, M., Canny, J.: A fast algorithm for incremental distance calculation. In: IEEE International

Conference on Robotics and Automation, pp. 266–275 (1991)
	32.	 Liu, Z., Fathi, Y.: An active index algorithm for the nearest point problem in a polyhedral cone.

Comput. Optim. Appl. 49, 435–456 (2011)
	33.	 Mayer, A., Zelenyuk, V.: Aggregation of Malmquist productivity indexes allowing for realloction of

resources. Eur. J. Oper. Res. 238, 774–785 (2014)
	34.	 Mitchell, B.F., Dem’Yanov, V.F., Malozemov, V.N.: Finding the point of a polyhedron closest to the

origin. SIAM J. Control 12, 19–26 (1974)
	35.	 Németh, A., Németh, S.: How to project onto an isotone projection cone. Linear Algebra Appl. 433,

41–51 (2010)
	36.	 Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of conver-

gence O(1∕k2) . Dokl. Akad. Nauk SSSR 269, 543–547 (1983)
	37.	 Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103, 127–152 (2005)
	38.	 O’Connor, D., Vandenberghe, L.: On the equivalence of the primal-dual hybrid gradient method and

Douglas–Rachford splitting. Math. Program. 179, 85–108 (2020)
	39.	 Ong, C.J., Gilbert, E.: Fast versions of the Gilbert–Johnson–Keerthi distance algorithm: additional

results and comparisons. IEEE Trans. Robot. Autom. 17, 531–539 (2001)
	40.	 Qin, X.L., An, N.T.: Smoothing algorithms for computing the projection onto a Minkowski sum of

convex sets. Comput. Optim. Appl. 74, 821–850 (2019)
	41.	 Rosin, P.L.: Shape partitioning by convexity. IEEE Trans. Syst. Man, Cybern. A 30, 202–210 (2000)
	42.	 Ryu, E., Boyd, S.: A primer on monotone operator methods. Appl. Comput. Math. 15, 3–43 (2016)
	43.	 Sekitani, K., Yamamoto, Y.: Recursive algorithm for finding the minimum norm point in a polytope

and a pair of closest points in two polytopes. Math. Program. 61, 233–249 (1993)
	44.	 Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, Cambridge (1983)

490	 X. Wang et al.

1 3

	45.	 Smid, P.: CNC Programming Handbook. Industrial Press, New York (2008)
	46.	 Spingarn, J.E.: Applications of the method of partial inverses to convex programming: decomposi-

tion. Math. Program. 32, 199–223 (1985)
	47.	 Sra, S.: Fast projections onto �1,q-norm balls for grouped feature selection. In: Machine Learning

and Knowledge Discovery in Databases, pp. 305–317 (2011)
	48.	 Sussman, G.J., Wisdom, J.: Structure and Interpretation of Classical Mechanics. MIT Press, Cam-

bridge (2002)
	49.	 van den Berg, E., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. SIAM J.

Sci. Comput. 31, 890–912 (2008)
	50.	 Wolfe, P.: Finding the nearest point in a polytope. Math. Program. 11, 128–149 (1976)
	51.	 Zheng, Y., Yamane, K.: Generalized distance between compact convex sets: algorithms and applica-

tions. IEEE Trans. Robot. 31, 988–1003 (2015)
	52.	 Zhu, X.Y., Tso, S.K.: A peudodistance function and its applications. IEEE Trans. Robot. 20, 344–

352 (2004)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	The distance between convex sets with Minkowski sum structure: application to collision detection
	Abstract
	1 Introduction
	2 Preliminaries
	3 Reformulations of (1.4) into variant forms
	3.1 Primal reformulation
	3.2 Dual reformulation
	3.3 Primal-dual reformulation

	4 Solvers for projection onto Minkowski sum set
	4.1 ADMM based solver
	4.2 PDHG solver

	5 Numerical simulations
	5.1 Path planning
	5.2 High-dimensional problems

	6 Concluding remarks
	Acknowledgements
	References

