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Abstract
The distance between sets is a long-standing computational geometry problem. In 
robotics, the distance between convex sets with Minkowski sum structure plays 
a fundamental role in collision detection. However, it is typically nontrivial to be 
computed, even if the projection onto each component set admits explicit formula. 
In this paper, we explore the problem of calculating the distance between convex 
sets arising from robotics. Upon the recent progress in convex optimization com-
munity, the proposed model can be efficiently solved by the recent hot-investigated 
first-order methods, e.g., alternating direction method of multipliers or primal-dual 
hybrid gradient method. Preliminary numerical results demonstrate that those first-
order methods are fairly efficient in solving distance problems in robotics.

Keywords  Distance · Minkowski sum of sets · Projection · Alternating direction 
method of multipliers · Primal-dual hybrid gradient method · Collision detection

1  Introduction

The Minkowski sum of sets (also known as dilation, sumset) is a long-standing and 
fundamental nomenclature in computational geometry. It plays an important role 
in the fields, such as mathematical morphology in image processing [44], colli-
sion detection in robotics [29], configuration space computation in mechanics [48], 
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numerical control machining in computer-aided manufacturing [45], and aggrega-
tion theory in economics [33]. Given two sets A ⊂ ℝ

n and B ⊂ ℝ
n (henceforth, we 

symbolize set by capital calligraphic), the Minkowski sum of A and B , denoted by 
A⊕ B , is defined as

Specially, if one of the sets consists of a unique element, e.g., A = {a} , we briefly 
adopt the notation a⊕ B to indicate the translation of set B toward a. It follows 
immediately from (1.1) that the zero set {0} plays the role of identity element under 
the additive operation ⊕ . Figure 1 displays the diagrams of Minkowski sum of ball, 
box and convex polytope in two- and three-dimensions.

Let F ⊂ ℝ
n be a nonempty set. The support function of F  , denoted by 

�F ∶ ℝ
n
→ (−∞,+∞] , is defined as

where ⟨x, y⟩ ∶= x⊤y is the inner product endowed on ℝn . Because of the closedness 
and sublinearity of �F  (see Proposition 2.3 in Sect. 2), it essentially indicates a norm 
on ℝn whenever F  fulfils some prerequisites (e.g., compactness, convexity, and 
symmetry). Accordingly, the generalized distance from an x0 ∈ ℝ

n to a set C ⊂ ℝ
n , 

denoted by dF ∶ ℝ
n
→ [0,+∞] , can be quantified by the metric �F  as follows

Note that the optima of (1.3) (if exist) are coined as the generalized projection of 
x0 onto C , denoted by ΠF(x

0;C) . Particularly, if F = {x ∈ ℝ
n ∣ ‖x‖2 ≤ 1} is an ori-

gin-centered unit ball under the �2-norm, the �F  , dF  and ΠF  reduce to the canoni-
cal Euclidean norm, Euclidean distance and Euclidean projection (also known as 
orthogonal projection), respectively. The (generalized) projection onto set, espe-
cially onto the convex set, is crucial for both theoretical and practical purposes in 
numerical optimization and computational geometry. For some “simple” sets such 
as the �2-norm ball, hyperplane, second-order cone and spectral set, the Euclidean 
projections onto those sets can be trivially derived by closed-form formulae (see e.g, 

(1.1)A⊕ B ∶= {a + b ∣ a ∈ A, b ∈ B}.

(1.2)�F(x) ∶= sup {⟨x, y⟩ ∣ y ∈ F},

(1.3)dF(x
0;C) ∶= inf

{
�F(x − x0) ∣ x ∈ C

}
.

Fig. 1   Diagram representations of the Minkowski sum of Ω1 = {x ∈ ℝ
n ∣ ‖x‖1 ≤ 1, x

n
≥ 0} , 

Ω2 = {x ∈ ℝ
n ∣ ‖x‖2 ≤ 1} and Ω3 = {x ∈ ℝ

n ∣ ‖x‖∞ ≤ 1} . Top row: the case of n = 2 . Bottom row: the 
case of n = 3
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[2, Chapter 28] and the references therein). There is also abundant literature on solv-
ing projections onto, e.g., the �1-norm ball [12, 49], manifolds [30], �1,q-norm ball 
[47], and isotone projection cone [35]. In other words, the distance (1.3) can be effi-
ciently computed for the above “simple” sets. However, the effort on computing the 
distance (1.3) may be significantly intensive if F  and C are generic convex sets.

In this paper, our particular interest is to compute the generalized distance from 
an x0 ∈ ℝ

n to a convex set with Minkowski sum structure, i.e.,

where Ωi ⊂ ℝ
li (i = 1, 2,… ,m) are nonempty closed convex sets with 

∑m

i=1
li = l , 

and Ti(Ωi) ⊂ ℝ
n denotes the image of Ωi under affine mapping Ti , i.e.,

with Mi ∈ ℝ
n×li and ai ∈ ℝ

n . For brevity, the −Ωi denotes the opposite set of Ωi , i.e., 
the case of Mi = −In and ai = � in (1.5). Due to the closedness and convexity of Ωi , 
it follows from Lemma 2.2 (see Sect. 2) that those Ti(Ωi) in (1.5) and C in (1.4) are 
closed convex sets. Problem (1.4) has plenty of applications in robotics. For exam-
ple, to guarantee a robot operate freely in workspace with obstacles, collision detec-
tion is conducted to inspect whether the robot and obstacles are overlapped [17]. 
Concretely, let Ωi ⊂ ℝ

n ( i = 1, 2 ) be convex sets. The collision detection, which is 
measured by the distance between Ω1 and Ω2 , can be formalized as (see e.g., [8, 51] 
for details)

which is a special case of (1.4) with specifications m = 2 , x0 = 0 , M1 = −M2 = −In 
and a1 = a2 = 0.

However, the (1.4) is nontrivial to be tackled, even if all Ti ’s are identity map-
pings. Take the sets in Fig. 1 as examples, although those Ωi ’s are simple enough in 
the sense that the projection onto individual set admits closed-form solutions or can 
be easily solved up to high precisions, the projection onto their Minkowski sum set 
(i.e., the Ω1 ⊕Ω2 ⊕Ω3 in Fig. 1) is challenging to acquire. Typically, the projec-
tion onto a set with Minkowski sum structure does not possess explicit formula and 
should be approximated numerically. A large number of methods have been devised 
for solving (1.6) (a special case of (1.4)) with compact convex sets (especially for 
polytopes) over the past decades. The existing methods for solving (1.6) can be 
roughly classified into two categories: optimization-based methods [1, 13, 32, 34, 
43, 50, 52] and geometry-based methods [8, 19–21, 31, 39, 51]. Empirically, the 
optimization-based methods can be adaptive for (1.6) with generic convex sets in 
high dimension but may be computational intensive, whilst the geometry-based ones 
usually perform efficiently but are confined to (1.6) with low-dimensional structured 
sets (e.g., 2D/3D polytopes).

Gilbert et al. [21] proposed a recursion (named as GJK method) for solving (1.6) 
by approximating C as simplices. It can also be extended to solve (1.4) with n = 3 
and �F(⋅) = ‖ ⋅ ‖2 . Some improvements of GJK method were explored in, e.g., [8, 

(1.4)
dF(x

0;C) = inf
{
𝜎F(x − x0) ∣ x ∈ C ∶= T1(Ω1)⊕ T2(Ω2)⊕⋯⊕ Tm(Ωm)

}
,

(1.5)Ti(Ωi) = {Mi� + ai ∣ � ∈ Ωi}, i = 1, 2,… ,m

(1.6)dF(0;C) = inf
{
𝜎F(x) ∣ x ∈ C ∶= Ω1 ⊕ (−Ω2)

}
,
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20, 39]. Recently, Qin and An [40] proposed a fast recursion for solving the dual of 
(1.4) by using Nesterov’s gradient-like method [36] and smoothing technique [37]. 
Herein, our paper is devoted to tackling (1.4) with generic component sets by refor-
mulating it as a separable convex optimization, and solving it by the recent state-of-
the-art first-order optimization methods with O(1/k) convergence rate. Moreover, the 
proposed methods favour the parallel computing system [4, 6] when the number of 
component sets Ωi ’s in (1.4) is huge-size.

The rest of the paper is organized as follows. In Sect. 2, some basic definitions 
and propositions are stated for the sequel discussion. In Sect. 3, the reformulations 
of (1.4) in primal, dual, and primal-dual fashions are presented, followed by the 
implementation details on handling (1.4) in Sect. 4. In Sect. 5, numerical simula-
tions are conducted to illustrate the performances of alternating direction method 
of multipliers (ADMM) and primal-dual hybrid gradient method (PDHG). Finally, 
some concluding remarks are drawn in Sect. 6.

2 � Preliminaries

In this section, we summarize some basic concepts and their properties that will be 
useful for the sequel discussions.

For any vector x = (x1, x2,… , xn) ∈ ℝ
n , let ‖x‖p ∶= (

∑n

i=1
�xi�p)1∕p ( 1 ≤ p < ∞ ) 

denote the �p-norm and ‖x‖∞ ∶= maxi=1,…,n �xi� denote the �∞-norm. Given a sym-
metric matrix Q ∈ ℝ

n×n , the Q ≻ 0 (resp. Q ⪰ 0 ) denotes the positive definite (resp. 
positive semi-definite) matrix. For any Q ≻ 0 , we denote by ‖x‖Q ∶= (x⊤Qx)1∕2 the 
Q-norm of x. We use diag(x) to represent a diagonal matrix whose diagonal elements 
are xi’s. Let � and I denote the all-one and identity matrix (whose dimensions will be 
clear from the context), respectively.

We now review some basic definitions and properties from convex analysis (see 
e.g., the monograph [2]).

Definition 2.1  Let C ⊂ ℝ
n be a set. Then 

i)	 C is closed if the limit of any convergent sequence in C belongs to C.
ii)	 C is compact if any sequence of C has a cluster point in C (or equivalently, C is 

closed and bounded).
iii)	 The convex hull of C , denoted by conv(C) , is the intersection of all convex sets 

containing C (or equivalently, the smallest convex set containing C ). Particularly, 
the conv(C) is a polytope if C comprises a finite number of elements.

iv)	 The decomposition of C , denoted by �(C) , is defined as

Furthermore, the convex decomposition of C , denoted by �̂(C) , is a decomposition 
of C with only convex component sets, i.e.,

�(C) ∶=
�
Ci ⊂ ℝ

n ∣
⋃m

i=1
Ci = C, and Ci

⋂
Cj = � for any i ≠ j

�
.
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Besides the commutative and associative properties, the Minkowski sum oper-
ation “ ⊕ ” admits the following important propositions.

Lemma 2.2  Let Ci ⊂ ℝ
li (i = 1, 2) be nonempty sets (possibly nonconvex). 

i)	 conv(C1 ⊕ C2) = conv(C1)⊕ conv(C2).
ii)	 If Ci (i = 1, 2) are convex (resp. compact) sets and Ti ∶ ℝ

li → ℝ
n ( i = 1, 2 ) are 

affine mappings, then T1(C1)⊕ T2(C2) is a convex (resp. compact) set.

More generally, the above lemma remains true on the occasion of a finite num-
ber of sets or affine mappings.

Let f ∶ ℝ
n
→ (−∞,+∞] . The domain and epigraph of f are defined by 

dom(f ) ∶= {x ∈ ℝ
n ∣ f (x) < +∞} and epi(f ) ∶= {(x, y) ∈ ℝ

n ×ℝ ∣ f (x) ≤ y} , 
respectively. If the dom(f ) is nonempty, then f is said to be proper. If the epi(f ) is 
closed, then f is said to be closed. The indicator function of a set C ⊂ ℝ

n , denoted 
by �C , is defined as

The following properties and examples of support function �F  can be referred to, 
e.g., [2].

Proposition 2.3  Let F ⊂ ℝ
n be a nonempty set. Then, 

i)	 �F  is closed and convex.
ii)	 �F  is finite everywhere if and only if F  is a bounded set.
iii)	�F is Lipschitz continuous with supx∈F ‖x‖ as Lipschitz constant if F  is a compact 

convex set.
iv)	 �F is sublinear, i.e., �F(�1x1 + �2x2) ≤ �1�F(x1) + �2�F(x2) for any scalars �i ≥ 0 

and vectorsxi ∈ ℝ
n ( i = 1, 2).

v)	 �F  is a norm on ℝn if F  is compact, convex, symmetric (i.e., F = −F  ) and con-
tains the origin as an interior point.

Example 2.1  Let F ⊂ ℝ
n be a nonempty set. 

i)	 If F = {x ∈ ℝ
n ∣ ‖x‖† ≤ 1} is a unit ball associated with a norm ‖ ⋅ ‖† , then the 

support function �F(x) = ‖x‖‡ , where ‖ ⋅ ‖‡ is the dual norm of ‖ ⋅ ‖† . For instance, 
i f  F = {x ∈ ℝ

n ∣ ‖x‖Q ≤ 1} w i t h  Q ≻ 0  ,  t h e n  �F(x) = ‖x‖Q−1  ;  i f 
F = {x ∈ ℝ

n ∣ ‖x‖p ≤ 1} with p ∈ [1,∞] , then �F(x) = ‖x‖ p

p−1
 . Herein, the p

p−1
 

takes value ∞ (resp. 1) when p = 1 (resp. p = ∞).

��(C) ∶= {Ci ⊂ ℝ
n ∣ Ci ∈ �(C), and all Ci’s are convex sets}.

(2.1)�C(x) ∶=

{
0, if x ∈ C,

+∞, otherwise.
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ii)	 If F  is a closed convex cone, then the support function �F(x) = �Fo(x) , where 
F

◦ ∶= {x ∈ ℝ
n ∣ x⊤y ≤ 0, ∀y ∈ F} denotes the polar cone of F .

iii)	 If F = {x ∈ ℝ
n ∣ Ax = b} is an affine set with A ∈ ℝ

m×n , then the support function

As aforementioned, the generalized projection ΠF(⋅;C) in (1.3) reduces to the 
canonical Euclidean projection when F = {x ∈ ℝ

n ∣ ‖x‖2 ≤ 1} . For notational brev-
ity, we use Π(⋅;C) for the Euclidean projection operator. The followings are some 
examples of Euclidean projections possessing closed-form formulae. The interested 
reader is referred to, e.g., [2, Chapter 28], for more examples.

Example 2.2  Let C ⊂ ℝ
n be a nonempty closed convex set. 

i)	 If C = {x ∈ ℝ
n ∣ a ≤ x ≤ b} is a box with a ∈ ℝ

n and b ∈ ℝ
n ,  then 

[Π(x;C)]i = median{ai, xi, bi} for i = 1, 2,… , n.
ii)	 If C =

�
x ∈ ℝ

n ∣ ‖x‖2 ≤ �
�
 is a ball with 𝛼 > 0 , then Π(x;C) = min

�
1,

�

‖x‖2

�
x.

iii)	 If C = {x ∈ ℝ
n ∣ Ax = b} is an affine set with A ∈ ℝ

m×n and b ∈ ℝ
m , then 

Π(x;C) = x − A†(Ax − b) , where A† is the Moore–Penrose pseudo-inverse1 of A. 
Particularly, if C = {x ∈ ℝ

n ∣ a⊤x = b, a ≠ 0 ∈ ℝ
n} is a nonvertical hypeplane, 

then Π(x;C) = x −
a⊤x−b

‖a‖2
2

a.
iv)	 If C = {(x, t) ∈ ℝ

n ×ℝ ∣ ‖x‖2 ≤ �t} is a second-order cone with 𝛼 > 0 , then 

The followings are some propositions of Euclidean projection onto convex set 
with Minkowski sum structures.

Proposition 2.4  Let 𝛼 > 0 be a scalar, A and C be nonempty closed convex sets in 
ℝ

n , and x, x0 be vectors in ℝn . 

i)	 If A = x0 ⊕ C , then Π(x;A) = x0 + Π(x − x0;C).
ii)	 I f  A ⟂ C  ( i . e . ,  a⊤c = 0  fo r  a ny  a ∈ A  a n d  c ∈ C  ) ,  t h e n 

Π(x;A⊕ C) = Π(x;A) + Π(x;C).

(2.2)𝜎F(x) =

{
b⊤z, if x = A⊤z,

+∞, otherwise.

Π(x;C) =

⎧⎪⎨⎪⎩

(x, t), if ‖x‖2 ≤ �t;

(0, 0), if ‖x‖2 ≤ −t∕�;
�‖x‖2+t

(�2+1)‖x‖2 (�x, ‖x‖2), otherwise.

1  The Moore–Penrose pseudo-inverse exists and is unique for any A ∈ ℂ
m×n . Let rank(A) = r and 

A = UΣV∗ be the singular value decomposition with U ∈ ℂ
m×r , Σ ∈ ℝ

r×r and V ∈ ℂ
m×r . Then 

A
† = VΣ−1

U
∗ . Particularly, A† = (A∗

A)−1A∗ when A is of full column rank, and A† = A
∗(AA∗)−1 when A 

is of full row rank.
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iii)	 I f  A = B⊕ C  w i t h  B = {x ∈ ℝ
n ∣ ‖x‖2 ≤ �}   ,  t h e n 

Π(x;A) = Π(x;C) +min
�
1,

�

‖x−Π(x;C)‖2

�
(x − Π(x;C)).

Proof  The proofs of i) and ii) can be referred to [2, Propositions 28.1 and 28.6], 
respectively. The assertion iii) can be proved as follows.

By combining the definition of Euclidean projection with the Minkowski sum 
structure of A , we have Π(x;A) = argmin

y∈A
‖y − x‖2 = w∗

1
+ w∗

2
 , where (w∗

1
,w∗

2
) is an 

optimum of

By invoking the first-order optimality conditions, we have

Without loss of generality, by setting �1 = 1 in (2.3), it follows from Example 2.5 ii) 
that

In the case of ‖x − w∗
2
‖2 > 𝛼 , by substituting w∗

1
=

�(x−w∗
2
)

‖x−w∗
2
‖2 into (2.4) and setting 

�2 = (1 −
�

‖x−w∗
2
‖2 )

−1 , we obtain w∗
2
= Π(x;C) , and thus w∗

1
=

�(x−Π(x;C))

‖x−Π(x;C)‖2 . Finally, we 
get

which completes the proof. 	�  ◻

The set A in Proposition 2.6 iii) is widely known as the offsetting of C by a 
radius � . As a special case of Proposition 2.6 i), if C = {x ∈ ℝ ∣ ‖x‖2 ≤ �} , it fol-
lows that A is an x0-centred �2-norm ball with radius � . Accordingly, the follow-
ing corollary holds.

Corollary 2.5  If A = {x ∈ ℝ
n ∣ ‖x − x0‖2 ≤ �} with 𝛼 > 0 , then 

Π(x;A) = x0 +min
�
1,

�

‖x−x0‖2

�
(x − x0).

min
w1∈B,w2∈C

‖w1 + w2 − x‖2
2
.

(2.3)w∗
1
= Π

(
w∗
1
− 𝛽1(w

∗
1
+ w∗

2
− x);B

)
, ∀ 𝛽1 > 0,

(2.4)w∗
2
= Π

(
w∗
2
− 𝛽2(w

∗
1
+ w∗

2
− x);C

)
, ∀ 𝛽2 > 0.

(2.5)w∗
1
= Π

�
x − w∗

2
;B
�
=

�
𝛼(x−w∗

2
)

‖x−w∗
2
‖2 , if ‖x − w∗

2
‖2 > 𝛼,

x − w∗
2
, otherwise.

(2.6)w∗
1
+ w∗

2
=

�
Π(x;C) +

𝛼(x−Π(x;C))

‖x−Π(x;C)‖2 , if ‖x − Π(x;C)‖2 > 𝛼,

x, otherwise,
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We now present some preliminaries involving functions and operators, which will 
be useful in the sequel discussion.

The subdifferential of f, denoted by �f ∶ ℝ
n
→ 2ℝ

n, is defined as

If  f ∶ ℝ
n
→ (−∞,+∞] is a convex function, then the subdifferential �f (x) is a non-

empty compact convex set for all x ∈ ℝ
n (see e.g., [2] for details). We state below 

some examples of subdifferential.

Example 2.3  Let C ⊂ ℝ
n be a nonempty closed convex set. Then,

where NC and FC are the so-called normal cone and exposed face of C.

Example 2.4  Let ‖ ⋅ ‖† be a norm of ℝn and ‖ ⋅ ‖‡ be its dual norm. Then

In particular, the subdifferential of �p-norm ( p ∈ [1,+∞] ) at origin is the unit 
ball associated with its dual norm, i.e., �‖0‖p = {� ∈ ℝ

n ∣ ‖�‖ p

p−1
≤ 1} , whilst the 

subdifferetial of �p-norm at x ≠ 0 can be stated as

where I(x) ∶= {i ∣ �xi� = ‖x‖∞} and ei ∈ ℝ
n accounts for the canonical basis vector 

(i.e., the vector whose only nonzero element is 1 in the ith coordinate). The conju-
gate of f, denoted by f ∗ , is defined as

Note that f ∗ is always a closed convex function (even if f is not closed convex). Fur-
thermore, if f is a closed convex proper function, then f ∗∗ = f  . It follows by (2.9) 
that the indicator function �C and support function �C are conjugate with each other. 
Let f ∶ ℝ

n
→ (−∞,+∞] be a closed convex proper function. The proximity of f, 

denoted by proxf  , is defined as

(2.7)𝜕f (x) ∶=
{
𝜉 ∈ ℝ

n ∣ f (y) ≥ f (x) + 𝜉⊤(y − x), ∀y ∈ ℝ
n
}
, ∀x ∈ dom(f ).

𝜕𝜄C(x) =

{
NC(x) ∶= {𝜉 ∈ ℝ

n ∣ 𝜉⊤(y − x) ≤ 0, ∀y ∈ C}, if x ∈ C,

�, otherwise,

𝜕𝜎C(x) =

{
C, if x = 0,

FC(x) ∶= {𝜉 ∈ C ∣ 𝜉⊤x = 𝜎C(x)}, otherwise,

(2.8)𝜕‖x‖† =
�

{𝜉 ∈ ℝ
n ∣ ‖𝜉‖‡ ≤ 1}, if x = 0,

{𝜉 ∈ ℝ
n ∣ ‖𝜉‖‡ ≤ 1, 𝜉⊤x = ‖x‖†}, otherwise.

�‖x‖1 =
�
� ∈ ℝ

n ∣ �i =
xi

�xi� for xi ≠ 0, and �i ∈ [−1, 1] for xi = 0
�
,

�‖x‖p =
�
� ∈ ℝ

n ∣ �i =
xi�xi�p−2
‖x‖p−1p

for xi ≠ 0, and �i = 0 for xi = 0
�
,

�‖x‖∞ = conv
�xiei
�xi� ∣ i ∈ I(x)

�
,

(2.9)f ∗(𝜆) ∶= sup
{
x⊤𝜆 − f (x) ∣ x ∈ dom(f )

}
, ∀𝜆 ∈ ℝ

n.
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The followings are some properties of proximity which will be useful for the sequel 
analysis. The interested reader is referred to [11, Table 10.2] for more instances and 
properties of proximity operators in Hilbert space.

Proposition 2.6  Let 𝛼 > 0 and � ∈ ℝ be scalars, b ∈ ℝ
n be a vector, A ∈ ℝ

n×m be 
a matrix, C ⊂ ℝ

n be a nonempty closed convex set, and � ∶ ℝ
n
→ (−∞,+∞] be a 

closed convex proper function. 

i)	 If f (x) = �(Ax + b) with A satisfying AA⊤ = 𝛼In , then

ii)	 If f (x) = 𝜑(x) +
𝛼

2
‖x‖2

2
+ b⊤x + 𝛾 , then proxf (x) = prox �

�+1

(
x−b

�+1

)
.

iii)	 Recall that �∗ is the conjugate of � , then x = prox��(x) + �prox �∗

�

(
x

�
) for any 

x ∈ ℝ
n.

iv)	 If f (x) = �C(x) is indicator function, then proxf (x) = Π(x;C) ; and if f (x) = �C(x) is 
support function, then proxf (x) = x − Π(x;C).

Note that Proposition 2.10 iii) is the celebrated Moreau’s identity, which indicates 
the relationship of proximities between � and its conjugate.

3 � Reformulations of (1.4) into variant forms

In this section, we first reformulate (1.4) into variant forms, and then deduce the 
equivalent monotone inclusion problems by employing the first-order optimality 
conditions. It will be demonstrated that the problem (1.4) can be tractably solved by 
a large family of splitting methods.

We start the discussion by restating (1.4) as follows 

 The existence of optima of (3.1) follows immediately by the Weierstrass’ theorem 
(see e.g., [2, Chapter 11]).

Proposition 3.1  Problem (3.1) admits at least one optimum if one of the following 
conditions is satisfied: (i) Ti(Ωi) ( i = 1, 2,… ,m ) are compact sets; (ii) 0 ∈ int(F).

(2.10)proxf (x) ∶= argmin
y∈ℝn

�
f (y) +

1

2
‖y − x‖2

2

�
, ∀x ∈ ℝ

n.

(2.11)proxf (x) = x − 𝛼−1A⊤
(
Ax + b − prox𝛼𝜑(Ax + b)

)
.

(3.1a)min �F(x − x0)

(3.1b)subject to x ∈ T1(Ω1)⊕ T2(Ω2)⊕⋯⊕ Tm(Ωm).
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Proof 

i)	 By the compactness of Ti(Ωi) and Lemma 2.2 ii), we have that the Minkowski 
sum of Ti(Ωi) is a compact set. Moreover, as �F  is closed (see Proposition 2.3), 
the assertion holds by the Weierstrass’ theorem.

ii)	 If 0 ∈ int(F) , there exists a neighbourhood of 0, denoted by N�(0) , satisfying 
N𝛿(0) ⊂ F  . For any x ∈ ℝ

n , we have y0 ∶= �(x−x0)

2‖x−x0‖2 ∈ N�(0) . Accordingly,

which indicates that �F(⋅ − x0) is coercive (i.e., lim‖x‖2→∞
�F(x − x0) = +∞ ). Again, the 

assertion (ii) follows from the Weierstrass’ theorem. 	�  ◻

Because of the affine property of Ti , it is obvious that Proposition 3.1 (i) holds if 
all Ωi ’s are compact sets. Under some stringent premise, the uniqueness of optimum 
of (3.1) can be guaranteed. For instance, if Ω and F  in (3.1) are convex, normally 
smooth and round,2 then (3.1) admits a unique optimum [40].

By recalling the affine mappings Ti in (1.5), the constraint (3.1b) can be described 
as

Hereafter, for notational convenience, we denote � ∈ ℝ
l , a ∈ ℝ

n , M ∈ ℝ
n×l and 

Ω ⊂ ℝ
l as follows

3.1 � Primal reformulation

With notations in (3.3), the constraint (3.2) can be narrowed down to x = M� + a 
with � ∈ Ω . Accordingly, problem (3.1) can be cast as

or concisely,

𝜎F(x − x0) = sup
y∈F

y⊤(x − x0) ≥ sup
y∈N𝛿(0)

y⊤(x − x0) ≥ (y0)⊤(x − x0) =
𝛿

2
‖x − x0‖2,

(3.2)x =
m∑
i=1

(Mi�i + ai), �i ∈ Ωi, i = 1, 2,… ,m.

(3.3)

� ∶=

⎛⎜⎜⎜⎝

�1

�2

⋮

�m

⎞⎟⎟⎟⎠
, a ∶=

m∑
i=1

ai, M ∶=
�
M1,M2,… ,Mm

�
and Ω ∶= Ω1 ×⋯ × Ωm.

(3.4)min �F(x − x0) subject to x = M� + a, � ∈ Ω,

2  Let bd(C) and NC(x) denote the topological boundary and normal cone (see also Example 2.8 for defini-
tion) of a set C ⊂ ℝ

n , respectively. The C is called normally smooth if, for any x ∈ bd(C) , there exists an 
a
x
∈ ℝ

n such that NC(x) = cone{a
x
} . The C is said to be round if NC(x) ≠ NC(y) for any x, y ∈ bd(C) and 

x ≠ y.
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where �Ω is the indicator function defined in (2.1). For simplicity, the (3.5) is termed 
as the primal reformulation of (1.4). The first-order optimality conditions of (3.5) 
read

where ��Ω and ��F  are subdifferential operators (see Example 2.8) of �Ω and �F  , 
respectively. Particularly, if the dynamic set F = {x ∈ ℝ

n ∣ ‖x‖Q−1 ≤ 1} with Q ≻ 0 
(or equivalently, �F(x) = ‖x‖Q ), the (3.5) can be equivalently cast as

which implies that the projection onto Minkowski sum set (1.4) is substantially 
a constrained least squares problem. Obviously, the objective function of (3.7) is 
strongly convex if M is of full column rank, which implies that the (3.7) admits 
unique optimum. Moreover, a corollary can be immediately deduced for particular 
M.

Corollary 3.2  If F = {x ∈ ℝ
n ∣ ‖x‖Q−1 ≤ 1} with Q ≻ 0 , i.e., �F(x) = ‖x‖Q , and 

M ∈ ℝ
n×l satisfies M⊤QM = diag{

1

𝜈1
Il1 ,

1

𝜈2
Il2 ,… ,

1

𝜈m
Ilm} with 𝜈i > 0 for all 

i = 1, 2,… ,m (i.e., the columns of M are Q-conjugate vectors), then the optimum of 
(3.5), denoted by �∗ = (�∗

1
,�∗

2
,… ,�∗

m
) , admits the explicit formula

Proof  By the first-order optimality conditions of (3.7) , we derive

Furthermore, it follows from the assumption M⊤
i
QMi =

1

𝜈i
Ili and the fact 

Ω = Ω1 ×⋯ × Ωm that

which indicates that w∗
i
= (Ili + 𝜈i𝜕𝜄Ωi

)−1(𝜈iM
⊤
i
Q(x0 − a)) = Π(𝜈iM

⊤
i
Q(x0 − a);Ω) . 	

� ◻

The corollary above indicates that if the column vectors of Mi are Q-conjugate, then 
the projection onto a convex set with Minkowski sum structure admits closed-form 
solution.

(3.5)min
�∈ℝl

�F(M� + a − x0) + �Ω(�),

(3.6)0 ∈ M⊤𝜕𝜎F(M𝜔 + a − x0) + 𝜕𝜄Ω(𝜔),

(3.7)min
�∈ℝl

1

2
‖M� + a − x0‖2

Q
+ �Ω(�),

(3.8)w∗
i
= Π

(
𝜈iM

⊤
i
Q(x0 − a);Ωi

)
, i = 1, 2,… ,m.

0 ∈ M⊤Q(M𝜔∗ + a − x0) + 𝜕𝜄Ω(𝜔
∗).

𝜈iM
⊤
i
Q(x0 − a) ∈ w∗

i
+ 𝜈i𝜕𝜄Ωi

(𝜔∗
i
), i = 1, 2,… ,m,
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3.2 � Dual reformulation

On the other hand, by deploying Fenchel–Rockafellar duality (see e.g., [2, Chap-
ter 15]), the dual of (3.5) can be formulated as

Accordingly, the first-order optimality conditions of (3.9) read

The explicit formula of �Ω can be available if Ω is special set, e.g, ball, closed con-
vex cone, and affine set (see Example 2.4). For example, if Ω is a convex cone, the 
(3.9) can be cast as max𝜆∈ℝn{𝜆⊤(a − x0) − 𝜄F(𝜆) − 𝜄Ω◦(−M⊤𝜆)} . Furthermore, if 
F = {x ∈ ℝ

n ∣ ‖x‖∞ ≤ �} and Ω = {x ∈ ℝ
n ∣ Ax ≤ 0} be a polyhedral cone, the 

Ω◦ = {x ∈ ℝ
n ∣ x = A⊤z, z ≥ 0} is exactly the finite generated cone by columns of A. 

Thus, the (3.9) can be reduced to

which is essentially a linear programming in variables (�, z).

3.3 � Primal‑dual reformulation

Moreover, by applying the conjugate (see (2.9) for definition) of �F  to (3.5), we 
derive a saddle point problem

Again, by the first-order optimality conditions, the saddle point problem (3.11) 
amounts to

or equivalently,

As the (3.11) is linearly coupled in � and � , there always exists a saddle point 
(�∗, �∗) satisfying (3.12), where �∗ and �∗ are solutions of primal and dual problem, 
respectively (see e.g., [3, Chapter 3]).

Remark 3.3  In a word, the (1.4) can be equivalently reformulated as variant optimi-
zation forms, whose optimality conditions correspond to finding zeros of a series of 

(3.9)max
𝜆∈ℝn

𝜆⊤(a − x0) − 𝜄F(𝜆) − 𝜎Ω(−M
⊤𝜆).

(3.10)0 ∈ a − x0 − 𝜕𝜄F(𝜆) +M𝜕𝜎Ω(−M
⊤𝜆).

max
𝜆∈ℝn

𝜆⊤(a − x0) subject to ‖𝜆‖∞ ≤ 𝛼, M⊤𝜆 + A⊤z = 0, z ≥ 0,

(3.11)min
𝜔∈ℝl

max
𝜆∈ℝn

𝜓(w, 𝜆) ∶= 𝜆⊤(M𝜔 + a − x0) − 𝜄F(𝜆) + 𝜄Ω(𝜔).

{
0 ∈ 𝜕𝜄Ω(𝜔) +M⊤𝜆,

0 ∈ 𝜕𝜄F(𝜆) −M𝜔 − a + x0,

(3.12)
(

0

a − x0

)
∈

(
𝜕𝜄Ω M⊤

−M 𝜕𝜄F

)(
𝜔

𝜆

)
.
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monotone inclusion problems, e.g., (3.6), (3.10) and (3.12). To solve those mono-
tone inclusion problems, numerous splitting schemes can be employed, e.g., proxi-
mal point method (PPA), forward-backward splitting (FBS), forward-backward-for-
ward splitting (FBFS), Douglas-Rachford splitting (DRS) and Peaceman-Rachford 
splitting (PRS), to name a few. The interested reader is referred to, e.g., [15, 38, 
42], for overviews and recent advances in splitting schemes. Among those splitting 
schemes for tackling monotone inclusion problems, the most popular ones include 
the application of PPA to (3.12) which results in the well-known PDHG method [9, 
24], the application DRS to (3.10) which results in ADMM [18, 23], the application 
DRS to (3.6) which results in the Spingarn’s method [46], etc. In a nutshell, the (1.4) 
can be tractably solved by a large family of first-order optimization methods except 
for the computational geometry based algorithms.

4 � Solvers for projection onto Minkowski sum set

As discussed in Sect.  3, the (1.4) can be reformulated into variant manners, then 
solved by numerous state-of-the-art methods. The analysis and numerical compari-
sons on all those methods are beyond the scope of this paper. Herein, we focus on 
ADMM [23] and PDHG [24] for solving (1.4).

4.1 � ADMM based solver

We first consider a generic linearly constrained convex optimization problem with 
separable structure 

 where �i ∶ ℝ
ni → (−∞,+∞] are all closed convex proper functions (possibly non-

smooth); Xi ⊆ ℝ
ni ( i = 1, 2 ) are nonempty closed convex sets; Ai ∈ ℝ

l×ni ( i = 1, 2 ) 
are full column rank matrices; b ∈ ℝ

l ; and n1 + n2 = n . A large family of instances 
arising from the area such as compressive sensing, image processing, computer 
vision and machine learning can be boiled down to the abstract model (4.1). A 
state-of-the-art algorithm for solving (4.1) is ADMM originated in [18, 23]. Given 
(xk

2
, �k) ∈ ℝ

n2 ×ℝ
l , the recursion of ADMM for solving the abstract model (4.1) can 

be stated as follows:

(4.1a)min �1(x1) + �2(x2)

(4.1b)subject to A1x1 + A2x2 = b, x1 ∈ X1, x2 ∈ X2,

(4.2)

⎧⎪⎪⎨⎪⎪⎩

xk+1
1

= argmin
x1∈X1

L�(x1, x
k
2
, �k),

xk+1
2

= argmin
x2∈X2

L�(x
k+1
1

, x2, �
k),

�k+1 = �k − ��(A1x
k+1
1

+ A2x
k+1
2

− b),
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where 𝛽 > 0 is a penalty parameter and � ∈ (0,
√
5+1

2
) is a relaxation factor. Herein, 

the L� ∶ ℝ
n1 ×ℝ

n2 ×ℝ
l
→ ℝ denotes the augmented Lagrangian function of (4.1), 

which is defined as

where � ∈ ℝ
l is the Lagrange multiplier. As ADMM allows us to independently 

cope with individual sub-function �i by the aid of augmented Lagrangian function, it 
has gained much popularity in diverse applications (see, e.g., the overviews [6, 22] 
and references therein). The convergence of ADMM has been restated in the tutorial 
[14], and its O(1/k) convergence rate was established in [25].

Now, we present the implementation details of ADMM on solving (1.4). Essen-
tially, the primal reformulation of (3.1) falls into the framework of (4.1) with the 
following specifications:

•	 the variables x1 ∶= x , x2 ∶= � , and the abstract sets X1 = ℝ
n and X2 = Ω;

•	 the objective functions �1(x1) ∶= �F(x − x0) and �2(x2) ∶= 0;
•	 the matrices and vector in linear constraint (4.1b) are A1 ∶= I , A2 ∶= −M and 

b ∶= a.

Therefore, the resulting subproblems when applying ADMM (or rather, the iterative 
scheme (4.2)) to (3.4) read

Unfortunately, the �-subproblem in (4.4) is a least squares problem with constraint 
Ω = Ω1 ×⋯ × Ωm , which probably requires internally nested iteration to derive an 
approximate solution (albeit the projection onto individual Ωi admits closed-form 
solution). Note that the compelling numerical performance of ADMM is established 
in the sense that all resulting subproblems have close-form solutions or can be effi-
ciently approximated by some subroutines. Accordingly, it is sensible to reformulate 
(3.4) by an alternative fashion. Concretely, by further introducing an auxiliary vari-
able z ∈ ℝ

l , the (3.4) is equivalent to

Likewise, the problem (4.5) falls into the abstract model (4.1) with the following 
specifications:

•	 the variables x1 ∶= (x,w) , x2 ∶= z , and the abstract sets X1 ∶= ℝ
n × Ω , 

X2 ∶= ℝ
n;

•	 the objective functions �(x1) ∶= �F(x − x0) and �2(x2) ∶= 0;
•	 The matrices and vector with respect to the linear constraint (4.1b) are 

(4.3)
L𝛽(x1, x2, 𝜆) ∶= 𝜃1(x1) + 𝜃2(x2) − 𝜆⊤(A1x1 + A2x2 − b) +

𝛽

2
‖A1x1 + A2x2 − b‖2

2
,

(4.4)

⎧⎪⎨⎪⎩

xk+1 = argmin
x∈ℝn

�
�F(x − x0) +

�

2
‖x −M�k − a − �−1�k‖2

2

�
,

�k+1 = argmin
�∈Ω

‖xk+1 −M� − a − �−1�k‖2
2
,

�k+1 = �k − �(xk+1 −M�k+1 − a).

(4.5)min �F(x − x0) subject to x = Mz + a, � = z, � ∈ Ω.
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ADMM is thus applicable to (4.5) with above specifications. More precisely, the 
augmented Lagrangian function of (4.5) can be specified as

where � = (�1, �2) ∈ ℝ
n ×ℝ

l is the Lagrange multiplier. Accordingly, the resulting 
subproblems when applying ADMM recursion (4.2) to (1.4) read

These resulting subproblems (correspondingly, the x-, � -, and z-subproblems) can 
be further delineated as follows:

•	 The x-subproblem can be equivalently solved by the proximity operator 

where rk ∶= Mzk + a + �k
1
∕� . Accordingly, the computational effort on solving 

(4.7) is dominated by computing the Euclidean projection onto dynamic set F  . 
In the upcoming numerical simulations, we shall consider the cases that F ⊂ ℝ

n 
is the �1 -, �2 - and �∞-norm unit ball.

•	 The �-subproblem is equivalent to 

which corresponds to the Euclidean projection onto Ω . Attributed to the Carte-
sian product Ω = Ω1 × Ω2 ×⋯ × Ωm , the �k+1 = (�k+1

1
,�k+1

2
,… ,�k+1

m
) can thus 

be derived simultaneously by 

A1 ∶=

(
I 0

0 I

)
, A2 ∶=

(
−Mi

)
and b ∶=

(
a

0

)
.

L𝛽(x1, x2, 𝜆) =𝜎F(x − x0) − 𝜆⊤
1
(x −Mz − a) +

𝛽

2
‖x −Mz − a‖2

2

− 𝜆⊤
2
(𝜔 − z) +

𝛽

2
‖𝜔 − z‖2

2
,

(4.6)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

xk+1 = argmin
x∈ℝn

�
�F(x − x0) +

�

2
‖x −Mzk − a − �−1�k

1
‖2
2

�
,

�k+1 = argmin
�∈Ω

‖� − zk − �−1�k
2
‖2
2
,

zk+1 = argmin
z∈ℝn

�‖xk+1 −Mz − a − �−1�k
1
‖2
2
+ ‖�k+1 − z − �−1�k

2
‖2
2

�
,

�k+1
1

= �k
1
− �(xk+1 −Mzk+1 − a),

�k+1
2

= �k
2
− �(wk+1 − zk+1).

(4.7)

xk+1 = argmin
x∈ℝn

�
�F(x − x0) +

�

2
‖x − rk‖2

2

�

[By (2.10)] = prox 1

�
�
F(⋅−x0)

(rk)

[Proposition 2.6 i)] = x0 + prox �F
�

(rk − x0)

[Proposition 2.6 iii)] = rk −
1

�
Π(�(rk − x0);F),

(4.8)�k+1 = argmin
�∈Ω

‖� − zk − �−1�k
2
‖2
2
= Π(zk + �−1�k

2
;Ω),
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•	 The z-subproblem amounts to 

 which is a positive definite linear system 

 There are numerous algorithms catering for the above linear system in numeri-
cal computation, e.g., preconditioned conjugate gradient (PCG) method.

Summarily, the updates of x, � and z when implementing ADMM can be read-
ily conducted. The projections onto dynamic set F  in (4.7) and those component 
sets Ωi in (4.9) can be handled simultaneously. Moreover, a pleasing property of 
ADMM is that there is only one user-dependent parameter � to be tuned through-
out numerical implementation.

4.2 � PDHG solver

As discussed in Sect. 4.1, ADMM can perform efficiently on solving (1.4) with 
lower dimensions, e.g., the collision detection in robotics. However, its pitfalls 
are becoming increasingly evident when the dimension of (1.4) is enlarged. The 
computational effort on implementing ADMM in each iteration is possibly domi-
nated by solving the linear system (4.10). An alternative is the PDHG method 
explored in [9, 10, 16, 24, 26], which can be viewed as the application of PPA 
to the monotone inclusion problem (3.12). Recently, a novel viewpoint was 
addressed that PDHG can also be interpreted as the application of DRS to a refor-
mulation of primal problem [38].

Given (�k, �k) ∈ ℝ
n ×ℝ

l , the recursion of PDHG [24] on solving the primal-
dual reformulation of (1.4) (i.e., the (3.11)), is specified as follows

where � is the saddle point function defined in (3.11), the 𝜏1 > 0 , 𝜏2 > 0 are param-
eters satisfying 𝜏1𝜏2‖M⊤M‖2 ≤ 1 , and � ∈ (0, 2) is a relaxation factor. By elaborat-
ing the subproblems in (4.11), we obtain the following concrete recursion for solv-
ing (1.4) by PDHG

(4.9)
�k+1
i

= argmin
�i∈Ωi

‖�i − zk
i
− �−1(�k

2
)i‖22

= Π(zk
i
+ �−1(�k

2
)i;Ωi), i = 1, 2,… ,m.

zk+1 = argmin
z∈ℝn

�‖xk+1 −Mz − a − �−1�k
1
‖2
2
+ ‖�k+1 − z − �−1�k

2
‖2
2

�
,

(4.10)(M⊤M + I)z = M⊤(xk+1 − a − 𝛽−1𝜆k
1
) + 𝜔k+1 − 𝛽−1𝜆k

2
.

(4.11)

⎧⎪⎪⎨⎪⎪⎩

𝜔̃k = argmin
𝜔∈ℝl

�
𝜓(𝜔, 𝜆k) +

1

2𝜏1
‖𝜔 − 𝜔k‖2

2

�
,

𝜆̃k = argmax
𝜆∈ℝn

�
𝜓(2𝜔̃k − 𝜔k, 𝜆) −

1

2𝜏2
‖𝜆 − 𝜆k‖2

2

�
,

𝜔k+1 = 𝜔k + 𝜌(𝜔̃k − 𝜔k),

𝜆k+1 = 𝜆k + 𝜌(𝜆̃k − 𝜆k),
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Intuitively, the recursion of PDHG for solving (1.4) is much easier than that of 
ADMM. The computational effort of (4.12) is merely dominated by solving the pro-
jections onto dynamic set F  and component sets Ωi’s. Compared to ADMM, PDHG 
is fairly favourable for handling large-scale problems as the linear systems are not 
involved throughout iteration. The only drawback of PDHG may be the challenge in 
tuning parameters (�1, �2) to obtain compelling numerical performance.

Remark 4.1  In contrast, Gilbert’s method [19] aims to seek the optima of convex 
quadratic function f on compact set C , i.e., minx∈C f (x) . The recursion reads

where �k ∈ (0, 1] is the stepsize computed by a prior criterion, and 
sC(y) ∶= {x ∈ C ∣ x⊤y = supz∈C z

⊤y} denotes the contact mapping of C . The recur-
sion (4.13) amounts to minimizing f on a polyhedron approximation of C by projec-
tion gradient method, or can be deemed as a variant of Frank-Wolfe method (see 
e.g., [40] for discussion). An improvement of (4.13) can be referred to, e.g. [21], for 
solving problem (1.4) in 3D case. The worst-case convergence rate of (4.13) is 
proven to be O( 1

�
) . Alternatively, Qin and An [40] deployed Nesterov gradient-like 

method [36, Chapter 2.2] to the dual reformulation of (1.4), which admits the worst-
case O( 1√

�
ln(

1

�
)) convergence rate. Both methods are essentially the gradient-like 

methods in either primal or dual variable. Numerically, as shown in [40], Gilbert’s 
method may converge slowly near optima due to zigzagging phenomenon.

ADMM and PDHG are state-of-the-art splitting methods involving both primal 
and dual variables in recursion, and admit the worst-case O( 1

�
) convergence rate for 

generic convex programming. PDHG is typically more popular for solving large-
scale practical problems as its recursion only involves matrix-vector operations.

5 � Numerical simulations

In this section, we conduct some numerical experiments involving the abstract 
model (1.4) so as to demonstrate the performances of PDHG and ADMM. Essen-
tially, the model (1.4) captures numerous important real-world applications in 
robotics [29] and mechanics [48]. We test a 2D path planning problem in robot-
ics and some high-dimensional synthetic problems involving (1.4). All codes are 
written by matlab 7.9 and all experiments are conducted on a Lenovo personal 
computer with Intel Core (TM) CPU 2.30GHZ and 8G memory.

(4.12)

⎧
⎪⎨⎪⎩

𝜔̃k
i
= Π(𝜔k

i
− 𝜏1M

⊤
i
𝜆k;Ωi), i = 1, 2,… ,m

𝜆̃k = Π(𝜆k + 𝜏2(M(2𝜔̃k − 𝜔k) + a − x0);F),

𝜔k+1 = 𝜔k + 𝜌(𝜔̃k − 𝜔k),

𝜆k+1 = 𝜆k + 𝜌(𝜆̃k − 𝜆k).

(4.13)xk+1 = xk + �k[sC(−∇f (x
k)) − xk],
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5.1 � Path planning

Path planning plays a fundamental role in robotics and has been extensively stud-
ied in real-world applications. It aims to ensure the agents (e.g., manipulator, robot) 
move freely in a (static or dynamic) workspace without hitting obstacles. We herein 
consider the scenarios of an agent (more precisely, a manipulator) with a single link 
and m degree-of-freedom (DoF) links in a static workspace.

Let Ω ⊂ ℝ
n denote an n-dimensional ( n = {2, 3} for practical applications in 

robotics) workspace and Oi ⊂ Ω ( i = 1, 2,… , l ) are closed sets representing sta-
tionary obstacles. Without loss of generality, all Oi ’s are assumed to be convex.3 A 
manipulator with m DoF can be described by a collection of rigid bodies Ai ⊂ ℝ

n 
( i = 1, 2,… ,m ). Figure 2 shows the diagram representations of some manipulators 
with variant shapes. The links (also called arms) of manipulator, which are concat-
enated by the joints (green points in Fig. 2), are typically mimicked by simple sets 
such as line segment, polytope, and ellipsoid.

In path planning, a probabilistic roadmap is constructed as an undirected graph 
[27], followed by a collision-free path by repetitively checking the distances between 
obstacles and links. A mathematical model can be formulated by calculating the dis-
tance function

where �F  is the generalized distance metric defined in (1.2). The O ∶=
⋃l

i=1
Oi and 

A ∶=
⋃m

i=1
Ai denote the collection of stationary obstacles and rigid links, respec-

tively. Unfortunately, the problem (5.1) is prohibitively difficult to be tackled by 
numerical optimization methods because the constraint O or A is typically noncon-
vex, even if all component set Oi ’s or Ai ’s are convex. An equivalent formulation of 
(5.1) is to compute the distances between a series of component sets, i.e.,

(5.1)d(O,A) ∶= inf
{
�F(x, y) ∣ x ∈ O, y ∈ A

}
,

Fig. 2   Left: Diagram representations of manipulators with variant shapes of links. Right: A link A(P, �) 
with Minkowski sum structure

3  If an obstacle O
i
 has nonconvex feature, it can be approximate by convex decomposition (see Defini-

tion 2.1). Some literature on deriving convex decomposition of a given set can be referred to, e.g., [5, 28, 
41].
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Under the convexity assumption on Oi ’s and Ai’s, the nonconvex optimization prob-
lem (5.1) can be possibly handled by solving ml convex optimization problems. 
There is abundant literature on solving (5.2) with Oi ’s and Ai ’s being ellipsoids or 
polytopes. Those special shapes are typically resulted by approximating obstacles 
or links via principal component analysis and linearization technique. The ability to 
cope with only the ellipsoidal and polytonal obstacles may be not accurate enough. 
Herein, we further assume that the component sets Oi ’s and Ai ’s can be described as 
the Minkowski sum of convex sets. This assumption is admissible as the manipula-
tors typically admit special geometry shape, e.g., polyhedron and ellipsoid (which 
can be easily described as Minkowski sum of simplex and ball). In order to formu-
late a generic shape (possibly non-convex) as the Minkowski sum of “simple” set, 
a possible idea is first approximating the shape by a union of polyhedrons (e.g., [7, 
41]) or ellipsoids (e.g., by using principle component analysis), and then deriving 
the Minkowski sum description for those polyhedrons and ellipsoids.

Figure  3 shows an environment of 2D workspace Ω = [0, 75]2 with four sta-
tionary obstacles. The manipulators with single- and 4-DoF links are illustrated in 
Fig. 3 (a) and (b), respectively. The base of 4-DoF manipulator is fixed at the point 
(25, 20) and all links of manipulator admit the same shapes. Accordingly, the link 
Ai can be described as a rigid transformation of stencil body, denoted by A(P, �) 
(see Fig.  2b). The stencil body is hinged by the location of joint (denoted by P), 
and the phase of dominant axis (denoted by � ). The data for reproducing obstacles 
Oi ’s and the stencil body A(P, �) are reported in Table 1. All obstacles and links 
are represented as the Minkowski sum of set Ti(Ωi) , where the sets Ωi ( i = 1, 2, 3 ) 
are defined by Ω1 = {x ∈ ℝ

2 ∣ ‖x‖1 ≤ 1, x2 ≥ 0} , Ω2 = {x ∈ ℝ
2 ∣ ‖x‖2 ≤ 1} and 

Ω3 = {x ∈ ℝ
2 ∣ ‖x‖∞ ≤ 1} . In Table 1, the parameter w for M9 indicates the length 

of link. We take w= 3 and w= 5 for sigle- and 4-DoF manipulators, respectively. The 
aim of manipulator in Fig. 4 is to move freely from initial configuration (red loca-
tion) to goal configuration (green location) without hitting obstacles.

(5.2)d(O,A) = min{d(Oi,Aj) ∣ i = 1, 2,… , l; j = 1, 2,… ,m}.

Fig. 3   Examples of path planning in a 2D workspace with four obstacles. a Single-link manipulator; b 
4-DoF manipulator
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In numerical simulation, we first generate a probabilistic roadmap by the method 
in [27], then collision-free paths for moving manipulators from initial to goal con-
figurations are probed by repetitively computing the distances d(Oi,Aj) in (5.2) 
(more precisely, the d(Oi,A(P, �)) with data in Table  1). The dynamic set F  is 
taken as F = {x ∈ ℝ

2 ∣ ‖x‖2 ≤ 1} for this real-world application, which is equiva-
lent to choosing �F(x) = ‖x‖2 . Throughout, we choose the penalty parameter � ≡ 1 
for ADMM, and (�1, �2) = (1, 1.1∕‖MTM‖2) for PDHG. The maximum number of 
iteration is set as 100. The motion tracks of manipulators, which is indicated by the 
colour changes from initial to goal configurations, are shown in Fig. 4. The com-
putational time to realize this path planning problem is less than 5 s for single-link 

Fig. 4   The motion tracks of manipulators from initial to goal configurations. a Single-link manipulator; b 
4-DoF manipulator

Table 1   Data of the obstacles O
i
 (i = 1, 2, 3, 4) and links for path planning problem

*The sets Ω
i
⊂ ℝ

2 ( i = 1, 2, 3 ) are defined by Ω1 = {x ∈ ℝ
2 ∣ ‖x‖1 ≤ 1, x2 ≥ 0} , 

Ω2 = {x ∈ ℝ
2 ∣ ‖x‖2 ≤ 1} and Ω3 = {x ∈ ℝ

2 ∣ ‖x‖∞ ≤ 1}.
**The G� ∈ ℝ

2×2 denotes the two-dimensional Givens transform, which represents an anti-clockwise 
rotation with respect to an angle �.
***The P ∈ ℝ

2 indicates the joint of link which is closed to the base of manipulator

Formulation* a
i
 and M

i
 for affine mapping T

i
 in (1.5)

Obstacle O1 = T1(Ω2)⊕ T2(Ω2) a1=[21;23], M1=[4.8, 4.3;4.3,13.3]
a2=[23;35], M2=[1.5,-0.9;-0.9,2.5]

O2 = T3(Ω3)⊕ T4(Ω2) a3=[15;20], M3=[4.3,-1.3;-1.3,2.8]
a4=[45;15], M4=[1.5, 0.9; 0.9,2.5]

O3 = T5(Ω1)⊕ T6(Ω2) a5=[12;23], M5=[5.5,-2.6;-2.6,8.5]
a6=[12;18], M6=[3.0, 0.5; 0.5,2.0]

O4 = T7(Ω3)⊕ T8(Ω2) a7=[28;12], M7=[2.8, 1.3; 1.3,4.2]
a8=[15; 7], M8=[1.0, 0; 0,12]

Link A(P, 𝜃) = T9(Ω3)⊕ T10(Ω2) M9=[w,0;0,0.005]G
(∗∗)

�
 , a9 = P

(∗∗∗)

M10 = 1.25I2 , a10 = 0
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manipulator and 10 s for 4-DoF manipulator on our personal laptop computing 
system.

5.2 � High‑dimensional problems

We now consider the problem (1.4)–(1.5) with synthetic data in high dimensions so 
as to demonstrate the numerical performances of ADMM and PDHG. Numerical 
comparisons with some benchmark methods in the literature are also tested, includ-
ing the Gilbert’s method [19], Qin and An’s method [40]. The datasets of (1.4)–(1.5) 
are synthesized as follows:

•	 All Mi ’s in (1.5) are taken as square matrices, i.e., li ≡ n for all i = 1, 2,… ,m.
•	 The Mi and ai in (1.5) are randomly generated with entries being independent 

and identically distributed (i.i.d) variables. Concretely, the entries of Mi obey the 
standard normal distribution, and the entries of ai follow the uniform distribution 
on [mn,mn + 10].

•	 The component sets {Ωi}
m
i=1

 in (1.4) are randomly taken among some abstract 
sets, including the unit �p-norm balls with p = {1, 2,∞} , the nonnegative ort-
hant, and the second-order cone with � = 1 (see Example 2.5 iv) for definition).

We test the (1.4)–(1.5) on scenarios of �F(⋅) = ‖ ⋅ ‖p ( p = {1, 2,∞} ) with differ-
ent number of component sets (i.e., the m) and variant dimension of variables (i.e., 
the n). Both ADMM and PDHG methods are conducted with their implementation 
details elucidated in Sect. 4. As Gilbert’s method [19], Qin and An’s method [40] 
can also be applicable for solving (1.4) with �F(⋅) = ‖ ⋅ ‖2 , we test both methods on 
(1.4)–(1.5) with Euclidean norm. For the involved parameters in test methods, we 
choose � = 0.5 for Gilbert’s method; � = 0.001 for Qin and An’s method; � = 0.8 , 
and � = 1.6 for ADMM; �1 = 1 , 𝜏2 = 1.1∕‖M⊤M‖2 and � = 1.5 for PDHG. As for 
the nm-by-nm linear system (4.10) in ADMM recursion, we first economize the 
arithmetic operations on deriving the inverse of coefficient matrix I +M⊤M by aid 
of the Sherman-Morrison formula, then cope with an n-by-n linear system by using 
the build-in matlab package linsolve. All initial points required for test methods 
are taken as zeros vectors. The stopping criterion is measured by the primal-dual 
relative gap, which is defined as

where Pobj and Dobj represent the primal and dual objective function values 
of (1.4), respectively. According to the discussion in Sect.  3, the values of Pobj 
and Dobj can be respectively computed by �F(x − x0) and 𝜆⊤

1
(a − x0) − 𝜎Ω(𝜆2) 

when implementing ADMM recursion, whilst the values of Pobj and Dobj can 
be respectively computed by �F(Mw + a − x0) and 𝜆⊤(a − x0) − 𝜎Ω(−M

⊤𝜆) when 
implementing PDHG recursion.

We report in Tables  2, 3 and 4 the number of iterations and computing time 
in seconds (“No. Iteration(CPU)”) when the stopping criterion (5.3) reaches the 

(5.3)relgap =
|���� − ����|

1 + |����| + |����| < Tol,
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Table 2   Numerical results on solving (1.4)–(1.5) with distance merit �F(⋅) = ‖ ⋅ ‖2
n m Tol = 10

−6 Tol = 10
−8

Gilbert Qin&An ADMM PDHG Gilbert Qin&An ADMM PDHG

50 50 213 (0.5) 92 (0.2) 48 (0.1) 41 (0.1) 1594 (3.2) 1132 (2.1) 414 (0.9) 369 (0.48)
100 197 (1.0) 88 (0.4) 54 (0.3) 45 (0.2) 1528 (6.8) 986 (3.5) 354 (1.7) 292 (0.78)
500 188 (4.7) 86 (1.9) 52 (1.3) 45 (0.9) 1487 (36.8) 1048 (22.5) 759 (18.1) 604 (12.5)

100 50 192 (1.1) 92 (0.5) 54 (0.3) 37 (0.2) 1675 (8.7) 1123 (5.6) 365 (2.16) 301 (1.2)
100 211 (2.9) 89 (1.1) 44 (0.6) 35 (0.3) 1544 (21.4) 947 (11.2) 573 (6.7) 468 (4.51)
500 204 (8.9) 86 (3.3) 43 (1.8) 37 (1.2) 1640 (71.4) 1002 (38.5) 427 (17.8) 352 (10.8)

500 50 187 (11.3) 79 (4.6) 28 (2.5) 24 (1.3) 1496 (89.4) 958 (55.6) 262 (22.7) 217 (12.9)
100 192 (26.3) 83 (10.4) 29 (4.3) 24 (2.7) 1521 (207.9) 932 (115.8) 270 (40.0) 227 (25.7)
500 183 (125.4) 78 (44.3) 33 (23.8) 24 (13.1) 1431 (979.8) 965 (547.8) 285 (204.7) 235 (127.2)

Table 3   Numerical results on solving (1.4)–(1.5) with distance merit �F(⋅) = ‖ ⋅ ‖1
n m Tol = 10

−4
Tol = 10

−5
Tol = 10

−6

ADMM PDHG ADMM PDHG ADMM PDHG

50 50 59 (0.3) 45 (0.1) 208 (0.6) 191 (0.3) 671 (1.3) 612 (0.9)
100 48 (0.4) 41 (0.2) 156 (0.9) 145 (0.4) 622 (2.9) 589 (1.7)
500 69 (1.5) 36 (0.5) 160 (3.2) 125 (1.9) 462 (8.7) 434 (6.9)

100 50 80 (0.6) 50 (0.2) 300 (1.9) 192 (0.6) 672 (3.8) 588 (1.8)
100 61 (0.8) 45 (0.4) 188 (2.1) 166 (1.4) 695 (7.2) 684 (5.7)
500 70 (2.7) 41 (1.4) 176 (6.6) 132 (3.9) 528 (20.1) 459 (14.7)

500 50 86 (7.1) 44 (2.4) 309 (24.2) 170 (9.1) 887 (66.9) 739 (40.1)
100 64 (10.3) 42 (4.3) 187 (27.8) 144 (15.2) 647 (92.5) 593 (63.9)
500 83 (56.1) 38 (186) 192 (126.9) 121 (66.5) 522 (342.2) 418 (231.4)

Table 4   Numerical results on solving (1.4)–(1.5) with distance merit �F(⋅) = ‖ ⋅ ‖∞
n m Tol = 10

−8
Tol = 10

−9
Tol = 10

−10

ADMM PDHG ADMM PDHG ADMM PDHG

50 500 95 (2.1) 77 (1.4) 227 (4.7) 201 (3.6) 952 (18.7) 762 (13.7)
800 89 (2.9) 74 (2.1) 215 (6.7) 177 (4.8) 942 (28.3) 672 (18.3)

1000 81 (3.2) 69 (2.2) 211 (8.0) 176 (5.8) 812 (30.6) 613 (20.2)
100 500 54 (2.3) 33 (1.1) 160 (6.5) 106 (3.8) 544 (22.1) 415 (14.9)

800 47 (3.1) 34 (2.1) 139 (9.1) 101 (5.4) 528 (34.2) 447 (22.5)
1000 50 (4.2) 36 (2.3) 129 (10.6) 100 (6.5) 469 (37.4) 414 (27.2)

500 500 30 (20.4) 27 (13.1) 68 (47.4) 60 (28.6) 167 (135.1) 113 (57.5)
800 32 (36.2) 27 (20.8) 63 (71.4) 60 (51.3) 168 (197.5) 125 (100.6)

1000 37 (56.2) 27 (29.1) 68 (86.2) 61 (64.5) 160 (241.1) 118 (131.5)
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pre-determined tolerances. Note that the number of iterations and computing time 
reported in Tables   2, 3 and 4 are averaged by running 50 i.i.d random datasets. 
Table 2 shows that: (i) the performances of ADMM and PDHG outperform substan-
tially those of Gilbert’s method, Qin and An’s method; (ii) ADMM is competitive to 
PDHG when the dimensionality (i.e., the n) and the number of component sets (i.e., 
the m) in problem (1.4) are relative small. The superiority of PDHG would be more 
evident when the dimensionality or the number of component sets in (1.4) increases. 
The number of iterations between ADMM and PDHG differs slightly, whilst the 
computing time of both methods is quite disparate. The reason is that ADMM recur-
sion involves solving generic linear systems which are usually time-consuming in 
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Fig. 5   Evolutions of primal-dual gap values w.r.t. iterations and computing time for solving (1.4). 
Top row: the case of �F(x) = ‖x‖2 with (n,m) = (100, 500) . Center row: the case of �F(x) = ‖x‖1 with 
(n,m) = (100, 500) . Bottom row: the case of �F(x) = ‖x‖∞ with (n,m) = (500, 500)
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high-dimensional scenarios, whilst the recursion of PDHG merely involves matrix-
vector multiplications whose arithmetic operations are relatively low. Both ADMM 
and PDHG are also tested for solving problem (1.4) with nonsmooth distance merits, 
e.g., �F(x) = ‖x‖1 and ‖x‖∞ . The numerical results are reported in Tables  3 and 4, 
which demonstrate the compelling performances of PDHG. In Fig. 5, we plot the 
evolutions of primal-dual relative gap with respect to the number of iterations and 
computing time in seconds for some test datasets with variant support function �F  . 
The figures show that both ADMM and PDHG perform well for solving the problem 
(1.4). PDHG is more numerically preferable for solving problem (1.4) in large-scale.

6 � Concluding remarks

In this paper, we explore the distance between convex sets with Minkowski sum 
structure (or equivalently, the projection onto Minkowski sum of convex sets), which 
is a fundamental nomenclature in computational geometry. By reformulating the 
problem into a separable convex optimization with linear constraints, we cope with 
the resulted model by some recent advanced optimization methods. Attributed to the 
skilfully first-order optimization methods, the distance can be efficiently solved in 
primal, dual, or primal-dual forms. Moreover, those methods are also favourable for 
solving large-scale computational geometry problems by aid of parallel computing 
techniques.
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