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Abstract
We consider nested variational inequalities consisting in a (upper-level) variational 
inequality whose feasible set is given by the solution set of another (lower-level) 
variational inequality. Purely hierarchical convex bilevel optimization problems and 
certain multi-follower games are particular instances of nested variational inequali-
ties. We present an explicit and ready-to-implement Tikhonov-type solution method 
for such problems. We give conditions that guarantee the convergence of the pro-
posed method. Moreover, inspired by recent works in the literature, we provide a 
convergence rate analysis. In particular, for the simple bilevel instance, we are able 
to obtain enhanced convergence results.

Keywords  Nested variational inequality · Purely hierarchical problem · Tikhonov 
method · Convergence rate
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1  Introduction

This paper presents and analyzes an explicit and ready-to-implement Tikhonov-type 
solution method for nested Variational Inequalities (VIs), where the feasible set of a 
(upper-level) VI is given by the solution set of another (lower-level) VI. Under mild 
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monotonicity and continuity assumptions, this setting does not only model certain 
convex bilevel optimization problems but also multi-follower games. Note that, dif-
ferently from the more general bilevel structures [5, 16–18], we focus only on lower-
level problems that are non-parametric with respect to the upper level variables, but 
have multiple solutions.

For nested VIs, two main solution approaches have been proposed in the liter-
ature: hybrid-like schemes (see, e.g., [19, 20, 28]), and Tikhonov-type techniques 
(see, e.g., [14] for some early developments, and [12] and the references therein). 
For the sake of completeness, here we also cite the recent penalty method [4] where 
an approximated version of the problem is addressed. Since hybrid-like methods 
need rather strong assumptions to work properly (see Sect. 2), we rely instead on 
the Tikhonov paradigm, along the lines of the general scheme put forward in [12]. 
However, as a major departure from [12], our algorithm is explicit and easy-to-
implement: no nontrivial problems are requested to be addressed while the method 
progresses, and it essentially consists of iterative computations of simple projection 
steps. We provide a convergence analysis, showing that the method is globally (sub-
sequential) convergent to a solution of the problem under mild conditions. Further-
more, we give some convergence rate bounds. Concerning the latter topic, we wish 
to emphasize that, to date, [2, 21] present the only convergence rate results for prob-
lems with a hierarchical structure. However, they exclusively consider the instance 
of simple bilevel problems, that is, the easier case in which G and F are gradients of 
convex functions. In Sect. 2, see Example 1, we show that the projected-gradient-
like schemes of [2, 21] cannot be readily generalized to the framework of nested 
VIs, and there we also formulate the motivation of our approach in more detail. Sec-
tion 3 presents our Tikhonov-like algorithm, in Sect. 4 we describe the main con-
vergence properties of our method, while in Sect. 5 we address the specific instance 
of simple bilevel problems from the point of view of our approach. For the latter 
simpler case, we are able to show enhanced convergence rate results.

We remark that in [15] our algorithm is applied to a multi-follower game that 
arises as a model for equilibrium selection in multi-portfolio optimization. There, 
detailed numerical results illustrate the applicability of our approach.

2 � Problem definition and motivation

We address the hierarchical problem

where G ∶ ℝ
n → ℝ

n is the upper-level map, and SOL(F, Y) is the solution set of the 
lower-level VI(F, Y), with F ∶ ℝ

n → ℝ
n and Y ⊆ ℝ

n . We recall that the variational 
inequality (see [8–11, 26]) VI(F, Y) is the problem of finding x ∈ Y  with

Hence, the solution set SOL(F, Y) of the lower-level VI consists of the points x ∈ Y  
such that (2) holds. The upper-level VI and its solution set are defined analogously:

(1)VI
(
G, SOL(F, Y)

)
,

(2)F(x)T(y − x) ≥ 0 ∀ y ∈ Y .
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We impose the following general assumptions: 

	(A1)	 G is Lipschitz continuous with constant LG and monotone plus on Y, i.e. G 
is monotone on Y and, for every x, y ∈ Y  , (G(y) − G(x))T(y − x) = 0 implies 
G(y) = G(x);

	(A2)	 F is Lipschitz continuous with constant LF and monotone on Y;
	(A3)	 Y is nonempty, convex and compact.

Assumptions (A2) and (A3) yield a nonempty, convex, compact and not necessarily 
single-valued set SOL(F, Y) (cf. [11, Section 2.3]) and, thus, make the “selection” 
problem (1) meaningful. Note also that, under the above conditions, problem (1) 
might turn out to have multiple solutions. The monotone plus condition in (A1) is 
satisfied, for example (see the results in [11, Section 2.3.1]), if G is symmetric and 
monotone: a case worth to be considered is the one of G being the gradient of a 
convex function. We underline that monotonicity plus is also valid whenever G is 
strongly monotone: hence, our framework covers also certain problems in which the 
upper-level consists in a uniquely solvable Nash equilibrium problem.

The assumptions on the lower-level problem, on the other hand, do not only allow 
F to be the gradient of a convex function, but the lower-level VI may also model 
more general structures, like e.g. Nash games with nonunique equilibria (see [1, 7, 
13, 22–25]).

We remark that for the hybrid-like schemes from [19, 20, 28] to work properly 
for the solution of (1), one has to call for conditions that are stronger than (A2). 
Basically, in [19, 20, 28], F is required to be co-coercive, a condition that substan-
tially holds in two cases: when the lower-level VI reduces to a convex optimization 
problem, or when it has a unique solution. On the contrary, here we only require F to 
be monotone and Lipschitz continuous, allowing for the treatment of more general 
problems with respect to the approach in [19, 20, 28]. For details we refer the inter-
ested reader to [12, Section 2].

Here, we rely on the Tikhonov paradigm, along the lines of the general scheme 
put forward in [12], whose core iteration k is defined as

where 1

�k
 is the so-called Tikhonov parameter, with 1

�k
↓ 0 and 

∑∞

k=0

1

�k
= ∞ , and 

𝜆 > 0 is the proximal constant. Observe that the VI-subproblem 
VI

(
F +

1

�k
G + �(∙ − wk), Y

)
 , to be solved in (3), has a unique solution, in view of 

the strong monotonicity of its operator. For further aspects regarding Tikhonov-like 
methods, see [12].

As a major departure from [12], the present article provides an explicit, ready-to-
implement algorithm for problem (1), in the sense that it essentially consists of itera-
tive computations of simple projection steps, and then no nontrivial subproblems are 
requested to be solved. Furthermore, we also give some convergence rate analysis. 

G(x)T(y − x) ≥ 0 ∀ y ∈ SOL(F, Y).

(3)wk+1 ∈ SOL
(
F +

1

�k
G + �(∙ − wk), Y

)
,
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To date, [2, 21] present the only converge rate results for problems with a hierarchi-
cal structure. However, [2, 21] exclusively consider the simple bilevel instance of 
problem (1), that is, the case in which G and F are gradients of convex functions. As 
the following example shows, the projected-gradient-like schemes presented in [2, 
21] cannot be readily generalized to the framework of problem (1).

Example 1  For the sake simplicity, we refer to the more recent BiG-SAM in [21]. 
Consider the selection problem (1) where

with the unit ball �(0, 1) . The unique feasible point and, thus, the unique solution of 
the problem is y∗ = (0, 0)T . The map G is symmetric, strongly monotone with con-
stant 1, and Lipschitz continuous with constant LG = 1 ; F is Lipschitz continuous 
with constant LF = 1 . Therefore, the assumptions (A1)–(A3) are satisfied. Moreo-
ver, aside from the fact that F is nonsymmetric, since all the convergence condi-
tions in [21] are satisfied, one could be tempted to apply right away BiG-SAM to the 
problem at hand. The generic kth iteration of BiG-SAM, in this case, should read as 
reported below:

where we take, for example, but without loss of generality, �k =
√
2−1√
2k

 . Note that all 
these choices comply with the requirements given in [21]. Taking yk such that 
‖yk‖ ≥

1√
2
 , we obtain

hence ‖wk‖ = min{1,
√
2‖yk‖} = 1,

Finally ‖yk+1‖ = �1 − �k�‖wk‖ ≥
1√
2
 . Therefore, considering e.g. (1, 0)T as starting 

point, the sequence produced by BiG-SAM does not lead to the unique solution y∗ of 
the problem.

We now show that the Tikhonov approach (3) works well when applied to the 
same problem as above. In this case, the generic iteration (3), setting for simplicity 
but without loss of generality �k = k , and � = 1 , reads as:

g(y) =
1

2
(y2

1
+ y2

2
), G(y) = ∇g(y) =

(
y1
y2

)
, F(y) =

(
0 1

−1 0

)(
y1
y2

)
, Y = �(0, 1)

wk = PY (y
k − F(yk));

zk = yk − G(yk);

yk+1 = �kz
k + (1 − �k)w

k;

wk = PY

((
1 − 1

1 1

)(
yk
1

yk
2

))
,

zk = 0;

yk+1 = (1 − �k)w
k.

(
wk+1
2

+
1

k
wk+1
1

+ wk+1
1

− wk
1

−wk+1
1

+
1

k
wk+1
2

+ wk+1
2

− wk
2

)
=

(
0

0

)
.
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Letting b = 1 +
1

k
 , we have

and, being b2 + 1 > 0 , we obtain

In turn,

where 1√
b2+1

< 1 , and hence, ‖wk‖ → 0 , i.e. wk → y∗ . 	� ◻

With the above considerations in mind, summarizing, the main goals of this work 
are:

–	 to provide an explicit, practical version of the general Tikhonov-like scheme pro-
posed in [12] whose generic iteration is given in (3);

–	 to give, as far as we are aware, the first convergence rate results in the context of 
general nested VIs. Note that this is much in the spirit of the analysis provided in 
[2, 21] where, however, only the particular instance of simple bilevel problems is 
considered.

More specifically, concerning the second point, we believe that our analysis closes 
a gap in the literature, since, as observed in [21], the major missing part about 
papers dealing with, inter alia, Tikhonov approaches “is that, while convergence was 
proven, the convergence rates of these algorithms are unknown”.

3 � An explicit projected Tikhonov‑prox approach

We introduce an explicit version for the general Tikhonov scheme (3). For a fixed 
given outer iterate wk and for a fixed value of the (outer) Tikhonov parameter 1∕�k , 
the following Algorithm 1 essentially consists in the iterative computation of some 
(inner) projection steps until the VI-subproblem VI

(
F +

1

�k
G + �(∙ − wk), Y

)
 is 

solved (up to a prescribed outer accuracy). Then, Tikhonov parameter, current outer 
iterate and accuracy required in the solution of the VI-subproblem are modified 
(externally), and so on. Note that, as it will be detailed next, thanks to error bound 
results, we know how far the current iterate is from the exact solution of the VI-sub-
problem, even without calculating it. As a result, Algorithm 1 is explicit, contrary to 
the implicit nature of the procedure defined by (3): the generic iteration (3) requires 
in fact a nontrivial VI to be solved (possibly inexactly), whereas in Algorithm 1 no 

(
b 1

−1 b

)
wk+1 = wk,

wk+1 =
1

b2 + 1

(
b − 1

1 b

)
wk.

‖wk+1‖ ≤
1

b2 + 1

����
b −1

1 b

���� ‖w
k‖ =

1√
b2 + 1

‖wk‖,
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nontrivial problems are requested to be addressed while the method progresses. 
Algorithm  1 can be implemented right away and has a very low cost per iterate, 
especially when projection onto Y can be computed in closed form. In summary, one 
can say that the definition of Algorithm 1 for nested VIs parallels the introduction of 
the descent method in [27] for simple bilevel problems. We also underline that Algo-
rithm 1, on the one hand, is not a mere generalization of the one presented in [27], 
on the other hand, its convergence properties are not straightforward consequences 
of the ones for the general scheme in [12] (see Theorem 1 below).

Some further comments are in order. We remark that a strictly positive lower 
bound � for the step size �k is mandatory in our general VI framework, in contrast 
to the standard optimization case where � can be zero, see [11, Theorem 12.1.8] and 
the developments below (specifically, convergence Theorems 1 and 2).

Let now K be the set of iteration indices such that the condition in step (S.3) is 
satisfied; taking 𝜀̄i = 0 for every i (exact case), the sequence {wk}K generated by 
Algorithm 1 is nothing else but the one defined by the general Tikhonov iteration 
(3): considering any k ∈ K , being 𝛾k > 0 , it is standard to show that

see [11, Proposition 1.5.8]. However, we observe that solving exactly (i.e. for 𝜀̄i = 0 ) 
the VI-subproblem VI

(
F +

1

�k
G + �(∙ − wk), Y

)
 is impractical. For this reason, the 

possibly inaccurate solution of the VI-subproblem must be taken into account, as 
done in [12]. But there, the condition on the inexactness is only theoretical. In par-
ticular, the inaccurate version of the generic kth iteration (3) requires one to compute 
wk+1 “sufficiently near” to the set SOL

(
F +

1

�k
G + �(∙ − wk), Y

)
 , i.e. such that

wk+1 = PY (w
k+1 − �k[F(wk+1) +

1

�k
G(wk+1) + �(wk+1 − wk)])

⇕

wk+1 ∈ SOL
(
F +

1

�k
G + �(∙ − wk), Y

)
,

(4)‖y�k (wk) − wk+1‖ ≤ � k,
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where y�k (wk) is the unique solution of VI
(
F +

1

�k
G + �(∙ − wk), Y

)
 and � k is a suit-

able tolerance. Actually, no practical guidelines to calculate wk+1 (that avoid the 
computation of y�k (wk) ) are given in [12]. On the contrary, considering strictly posi-
tive values for 𝜀̄i in Algorithm 1, we propose some practically implementable rules 
to find wk+1 such that (4) is satisfied: specifically, leveraging the (inner) projection 
step (S.2), for fixed outer iterate wk , Tikhonov parameter 1∕�k and accuracy �k , the 
condition in step (S.3) is shown to be verified in a finite number of (inner) iterations. 
Thanks to error bound results, this makes relation (4), where � k is proportional to �k , 
automatically satisfied without the computation of y�k (wk) , see the proof of 
Theorem 1.

4 � Main convergence properties

For the sake of notation, let us introduce the following operator:

For any 𝜆 > 0, 𝜏 ∈ ℝ++ and w ∈ ℝ
n , ��(∙;w) is easily shown to be strongly mono-

tone with constant � and Lipschitz continuous with constant L� ≜ LF + LG + � , 
without loss of generality. We also consider, again without loss of generality, 
2� ≤ L2

�
 . We recall that y�(w) denotes the unique solution of VI(��(∙;w),Y) . The 

main convergence result for Algorithm 1 is detailed below.

Theorem 1  Assuming conditions (A1)–(A3) to hold, and setting

with 2�
L2
�

≤ 1 and c > 0 , each limit point of the sequence {wk} generated by Algorithm 
1 is a solution of problem (1).

Proof  We take the cue from [12, Theorem 2]. Observing that G is monotone plus on 
Y thanks to (A1), and in view of (A2) and (A3), we only need to prove that: 

	 (i)	
{

1

�k

}
↓ 0 and 

∑
k∈K

1

�k
= ∞,

	 (ii)	 for every k ∈ K , we have ‖y�k (wk) − wk+1‖ ≤ � k for some � k ∈ ℝ+ such that 
{

� k

1∕�k
} → 0,

where K denotes the set of iteration indices such that the condition in step (S.3) is 
satisfied.

(i) Preliminarily, observe that a necessary condition for the assertion to hold is 
that K is an infinite set of indices. Suppose by contradiction that K is finite, i.e. there 

��(y;w) ≜ F(y) +
1

�
G(y) + �(y − w).

𝜆 > 0, 𝜂 ∈

(
0,

2𝜆

L2
𝛷

)
,
1

𝜏 i
↓ 0 and

∞∑
i=0

1

𝜏 i
= ∞, 𝜀̄i =

c

(𝜏 i)2
,
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exists an index k̄ such that the condition in step (S.3) is violated for every k ≥ k̄ . 
Since � ∈

(
0,

2�

L2
�

)
 , and in view of �k ↓ � , there exists k̂ such that

Hence, by [11, Theorem  12.1.8], the sequence {yk} converges to the unique solu-
tion y𝜏 k̄ (wk̄) of VI(Y ,𝛷𝜏 k̄ (∙;w

k̄)) , in contradiction to ‖yk+1 − yk‖ > 𝜀k = 𝜀k̄ for every 
k ≥ k̄ . As a consequence, we have 1

�k
↓ 0 , 

∑
k∈K

1

�k
= ∞ and �k ↓ 0.

(ii) We recall that 1
�
‖PY (y

k − ���k (y
k;wk)) − yk‖ is monotonically non-increasing 

with respect to � , for any � ∈ ℝ++ and yk ∈ Y  (see [3, Lemma 2.3.1]). As a conse-
quence, we obtain

because �k ∈ (0, 1] . For every k ∈ K we obtain the following chain of inequalities:

where (a) follows from the classical error bound result [11, Proposition 6.3.1], (b) is 
due to (5), and (c) holds in view of the condition in step (S.3). Finally, the choice of 
𝜀̄i and the updating rules for � and � yield �k�k → 0 and, thus, � k

1∕�k
→ 0.	�  ◻

Clearly, if problem (1) turns out to be uniquely solvable, such as when e.g. 
G is strictly monotone, the sequence {wk} generated by the algorithm converges 
strongly to the unique solution of (1).

When it comes to the convergence rate analysis of our method, in the same 
spirit of [2, 21], we focus on the lower-level problem in (1). But, as opposed to 
the study in [2, 21] where only the particular instance of simple bilevel prob-
lems is considered, we cannot simply rely on some lower-level objective func-
tion values, but we must employ a different lower-level merit-function. In par-
ticular, we give convergence rate estimates in terms of the following lower-level 
merit-function:

Note that V is the so-called natural residual map for the lower-level VI(F, Y), see 
[11]. We observe that V is a continuous nonnegative measure such that V(y) = 0 if 
and only if y ∈ SOL(F, Y) . Furthermore, we recall that there exist classes of prob-
lems for which the value V(y) also gives an actual upper-bound for the distance 

0 < 𝜂 = inf
k≥k̂

𝛾k ≤ sup
k≥k̂

𝛾k <
2𝜆

L2
𝛷

.

(5)‖PY (y
k −��k (y

k;wk)) − yk‖ ≤
1

�k
‖PY (y

k − �k ��k (y
k;wk)) − yk‖,

‖y�k (wk) − wk+1‖ = ‖y�k (wk) − yk‖
(a)

≤
1+L�

�
‖PY (y

k −��k (y
k;wk)) − yk‖

(b)

≤
1+L�

�

1

�k
‖PY (y

k − �k��k (y
k;wk)) − yk‖

=
1+L�

�

1

�k
‖yk+1 − yk‖

(c)

≤
1+L�

�

1

�k
�k ≜ � k,

(6)V(y) ≜ ‖PY (y − F(y)) − y‖.
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between y and SOL(F, Y) . A noteworthy case is the one of affine VIs where Y is 
polyhedral and F is affine (see [11, Chapter 6 and, in particular, Proposition 6.3.3]).

The preliminary Lemma 1 is key for the forthcoming developments.

Lemma 1  Let {yk} , {wk} be the sequences generated by Algorithm 1. The following 
upper bound holds for the lower-level merit function V (see the definition (6)) at yk 
for every k:

Proof  The claim is a consequence of the following chain of relations:

where (a) is due to [3, Lemma 2.3.1] recalling that �k ∈ (0, 1] , and (b) follows from 
the nonexpansive property of the projection mapping. 	�  ◻

Concerning the upper bound for V in (7), we observe that the last adden-
dum in the right hand side of (7) accounts for the solution of the inner prob-
lem VI(F +

1

�k
G + �(∙ − wk), Y) (consistently, it appears in the condition at step 

(S.3)). The second term is related to the upper-level operator G weighted by the 
Tikhonov parameter: as typical in Tikhonov approaches, being G bounded, this 
addendum eventually vanishes. Finally, if k ∈ K , being wk+1 = yk , the first term 
measures the distance between two successive outer iterations and, thus roughly 
speaking, a small such measure means that the outer iterates are barely changing. 
It is worth noticing that the upper bound in (7) is also useful to establish practi-
cal rules to properly set the algorithm parameters, see the following proposition. 
In this context, we underline that the convergence rate we establish is intended to 
give an upper bound on the number of iterations needed to drive the lower-level 
measure V under a prescribed tolerance �.

Proposition 1  Assume conditions (A1)–(A3) to hold. Given a precision � ∈ (0, 1) , 
set �k = � for every k, � =

�

3D
 , where D ≜ maxv,y∈Y ‖v − y‖ is the diameter of Y, 

� =
�

L2
�

 , 𝜏 i = max{1, i} , and 𝜀̄i = 𝛿𝜂

(𝜏 i)2
 . Then, the lower-level merit function V (see the 

definition (6)) is driven under � and the condition in step (S.3) is satisfied in at most

(7)V(yk) ≤ �‖yk − wk‖ + 1

�k
‖G(yk)‖ + 1

�k
‖yk+1 − yk‖.

V(yk) = ‖PY (y
k − F(yk)) − yk‖

(a)

≤
1

�k
‖PY (y

k − �kF(yk)) − yk‖
=

1

�k
‖PY (y

k − �kF(yk)) − yk+1 + yk+1 − yk‖
≤

1

�k

�‖yk+1 − yk‖ + ‖PY (y
k − �kF(yk))

− PY (y
k − �k[F(yk) +

1

�k
G(yk) + �(yk − wk)])‖

�
(b)

≤
1

�k
‖yk+1 − yk‖ + 1

�k
‖G(yk)‖ + �‖yk − wk‖,
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iterations, where H ≜ maxy∈Y ‖G(y)‖.

Proof  Our goal is to show that, in at most � iterations, each addendum in the right-
hand side of (7) is smaller than 1

3
�.

We observe that the first addendum �‖yk − wk‖ is smaller than 1
3
� in view of the 

value of � and the definition of D.
In order to have the second term in (7) 1

�k
‖G(yk)‖ smaller than 1

3
� , we need 

�k ≥
3H

�
 , and hence at most

outer iterations.
We now focus on the remaining addendum in (7), 1

�
‖yk+1 − yk‖ . Preliminarily, we 

observe that the following chain of relations hold for every j:

where (a) follows from the nonexpansive property of the projection mapping, while 
(b) is due to the strong monotonicity and Lipschitz continuity of ��k (∙;w

k) , and (c) 
holds since � ≤

�

L2
�

 . In view of (8), we consider only the case i ≤ 𝚤 . Starting from any 
iterate k, we count the maximum number of iterations j that are required in order to 
obtain ‖yk+j+1 − yk+j‖ ≤ 𝜀̄𝚤 ≤ 𝜀k . Suppose that ‖yk+j+1 − yk+j‖ > 𝜀̄𝚤 , for every 
j = 1,… , 𝚥.

We obtain

where the second inequality is due to the above chain of relations. In turn,

� ≜

⎡⎢⎢⎢⎢

2 ln
3(DL�)

2
�
3H

�

�2

�2

ln
9(DL�)

2

9(DL�)
2−�2

⎤
⎥⎥⎥⎥

�
3H

�

�

(8)𝚤 ≜
⌈
3H

𝛿

⌉

‖yk+j+1 − yk+j‖2 = ‖PY (y
k+j − ���k (y

k+j;wk))

− PY (y
k+j−1 − ���k (y

k+j−1;wk))‖2
(a)

≤ ‖yk+j − ���k (y
k+j;wk) − yk+j−1 + ���k (y

k+j−1;wk))‖2
= ‖yk+j − yk+j−1‖2

+ �2‖(��k (y
k+j;wk) −��k (y

k+j−1;wk))‖2
− 2�(yk+j − yk+j−1)T(��k (y

k+j;wk) −��k (y
k+j−1;wk))

(b)

≤ (1 + �2L2
�
− 2��)‖yk+j − yk+j−1‖2

(c)

≤ (1 − ��)‖yk+j − yk+j−1‖2,

D(1 − 𝜂𝜆)𝚥∕2 ≥ ‖yk+1 − yk‖(1 − 𝜂𝜆)𝚥∕2 ≥ ‖yk+𝚥+1 − yk+𝚥‖ > 𝜀̄𝚤,

(9)𝚥 < 2 log( 1

1−𝜂𝜆

) D

𝜀̄𝚤
=

2 ln
D

𝜀̄𝚤

ln
(

1

1−𝜂𝜆

) .
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Noting that

we have

Therefore, in at most � iterations, the condition in step (S.3) is satisfied and an 
“outer” iteration is performed, i.e. i is increased. Finally, the claim follows observ-
ing that each of the three addenda in the right-hand side of (7) is less or equal than 
�∕3 in at most 𝜎 = 𝜌 𝚤 iterations. 	�  ◻

We remark that all the constants appearing in the expression of � are problem-
related and do not depend on � : thus, no possibly unknown constants and no hid-
den dependencies on � are present. Also, reasoning asymptotically, thus considering 
� ↓ 0 , we obtain the following rate.

Corollary 1  Under the same assumptions as in Proposition 1, the maximum num-
ber of iterations � to make the lower-level merit function V less than � and the condi-
tion in step (S.3) satisfied is O

(
�−3 ln �−1

)
.

Proof  Recalling that 𝜎 = 𝜌𝚤 , 𝚤 is easily seen to be of order O(�−1) . We observe that 
the numerator in the expression of � is O(ln �−1) , while as for the reciprocal of the 
denominator, noticing that ln

(
9(DL�)

2

9(DL�)
2−�2

)/
�2

9(DL�)
2
→
�→0

1 , we get O(�−2) . 	�  ◻

5 � The simple bilevel instance

A simpler instance of problem (1) worth considering is the case in which G and F 
are the gradients of convex functions g and f, respectively (see [6] for some recent 
results concerning simple bilevel optimization). Therefore, problem (1) reduces to 
the simple bilevel problem

In this particular framework, assumptions (A1) and (A2) read as 

(A1’)	� g is a convex function on Y, whose gradient is Lipschitz continuous with 
constant LG;

𝜀̄𝚤 =
𝛿𝜂

(𝜏𝚤)2
=

𝛿
𝜆

L2
𝛷

𝚤2
=

𝛿2

3DL2
𝛷

⌈
3H

𝛿

⌉2 ,
1

1 − 𝜂𝜆
=

1

1 −
𝛿2

9(DL𝛷)
2

=
9(DL𝛷)

2

9(DL𝛷)
2 − 𝛿2

,

𝜌 ≜

⎡⎢⎢⎢⎢

2 ln
3(DL𝛷)

2
�
3H

𝛿

�2

𝛿2

ln
9(DL𝛷)

2

9(DL𝛷)
2−𝛿2

⎤
⎥⎥⎥⎥
> 𝚥.

(10)minimize y g(y) s.t. y ∈ argmin
w

{f (w) |w ∈ Y}.
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(A2’)	� f is a convex function on Y, whose gradient is Lipschitz continuous with 
constant LF.

 Differently from the general nested VI framework where convergence can be 
exclusively obtained with a strictly positive lower bound for the step size � and 
a strictly positive proximal parameter � , in the simple bilevel context we have 
more room to maneuver. Specifically, in the latter case, even setting � and � equal 
to zero, convergence and enhanced complexity bounds are achieved. Moreo-
ver, as for the accuracy parameter � , one can take it sufficiently large so that the 
condition in step (S.3) is always fulfilled: in particular we set 𝜀̄i ≥ D for every 
i. We observe that with the choices � = 0 , � = 0 and 𝜀̄i ≥ D , Algorithm 1 boils 
down to a modified version of Solodov’s method whose convergence is proved 
in [27] under assumptions (A1’), (A2’) and (A3), and resorting to a line search 
strategy for the step size �k updating rule. Here, we propose two different step 
size approaches to tailor properly the value of �k : fixed and diminishing step size 
rules.

Theorem 2  Assuming conditions (A1’), (A2’) and (A3) to hold, set

and choose a step size �k such that one the following rules hold: 

	 (i)	 𝛾k = 𝛾̄ ∈
(
0,

2

L𝛷

)
 , for all k, where L� is defined at the beginning of Sect. 4;

	 (ii)	 �k ↓ 0 with 
∑∞

k=0
�k = ∞.

Then, each limit point of the sequence {wk} generated by Algorithm 1 is a solution 
of problem (10).
Proof  In order to prove convergence, one can rely on [27, Theorem 3.2]: it suffices 
to show that the line search condition (8) in Solodov’s algorithm [27] with some 
� ∈ (0, 1) is eventually satisfied. For this to be proven, recall that the characteristic 
property of the projection

implies

In turn, by the descent lemma, we have

𝜆 = 0, 𝜂 = 0,
1

𝜏 i
↓ 0 and

∞�
i=0

1

𝜏 i
= ∞, 𝜀̄i ≥ D ≜ max

v,y∈Y
‖v − y‖,

(
yk − 𝛾k

[
F(yk) +

1

𝜏k
G(yk)

]
− yk+1

)⊤

(yk − yk+1) ≤ 0

‖yk − yk+1‖2 ≤ 𝛾k
�
F(yk) +

1

𝜏k
G(yk)

�⊤
(yk − yk+1).
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In case (i), having a fixed step size 𝛾k = 𝛾̄ , we obtain 0 < (1 − 𝛾̄L𝛷∕2) < 1 . Therefore, 
observing that (F(yk) + 1

𝜏k
G(yk))⊤(yk+1 − yk) < 0 , by setting 𝜃 ∈

(
0, 1 − 𝛾̄L𝛷∕2

)
 , the 

line search condition (8) in Solodov’s algorithm [27] is satisfied for every k.
In case (ii), having a diminishing step size �k , there exists k̄ such that 

𝜃 < (1 − 𝛾 k̄L𝛷∕2) , and, recalling that (F(yk) + 1

𝜏k
G(yk))⊤(yk+1 − yk) < 0 , the line 

search condition (8) in Solodov’s algorithm [27] is satisfied for every k ≥ k̄.
The (subsequential) convergence of the sequence generated by Algorithm 1 to a 

solution of problem (10) follows then by [27, Theorem 3.2]. 	�  ◻

Also in this simpler case, if problem (10) is uniquely solvable, such as when e.g. g is 
strictly convex, the sequence {wk} generated by the algorithm converges strongly to the 
unique solution of (10).

In the simple bilevel case one can obtain an improved complexity bound, passing 
from O

(
�−3 ln �−1

)
 of the general case to O

(
�−2

)
.

Proposition 2  Assume conditions (A1’), (A2’) and (A3) to hold. Given a precision 
� ∈ (0, 1) , set � = 0 , � = 0 , �k =

1

L�
 for every k, 𝜏 i = max{1, i} and 

𝜀̄i = D ≜ maxv,y∈Y ‖v − y‖ for every i. Then, the lower-level merit function V (see the 
definition (6)) is driven under � in at most

iterations, where �0 ≜ f (y0) −miny∈Y f (y) + g(y0) −miny∈Y g(y) and 
H ≜ maxy∈Y ‖G(y)‖.

Proof  Our goal is to show that, in at most 𝜎̄ iterations, both the second and the third 
terms in the right-hand side of (7) are smaller than 1

2
� . Notice that the first adden-

dum in the right-hand side of (7) is null because of � = 0.
First of all, reasoning as in the proof of Proposition 1, we know that if

then the second addendum in the right-hand side of (7) is smaller than 1
2
� . Now, we 

count how many iterations are required in order to obtain 1
�k
‖yk+1 − yk‖ ≤

�

2
 . So sup-

pose that ‖yk+1 − yk‖ >
𝛿

2L𝛷
 . Thanks to the descent lemma and the characteristic 

property of the projection, we have

f (yk+1) +
1

𝜏k
g(yk+1) − f (yk) −

1

𝜏k
g(yk) ≤ (F(yk) +

1

𝜏k
G(yk))⊤(yk+1 − yk)

+
L𝛷

2
‖yk+1 − yk‖2 ≤

�
1 −

𝛾kL𝛷

2

�
(F(yk) +

1

𝜏k
G(yk))⊤(yk+1 − yk).

(11)𝜎̄ ≜ max

{⌈
8L𝛷𝛥0

𝛿2

⌉
,
⌈
2H

𝛿

⌉}

k ≥
⌈
2H

�

⌉
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and, in turn,

Therefore, whenever

the third addendum in the right-hand side of (7) is smaller than 1
2
�.

Finally, k ≥ 𝜎̄ gives the desired result: V(yk) ≤ � . 	�  ◻

The convergence rate in (11) complements the results in [2, 21]. Observing that 
no possibly unknown constants and no hidden dependencies on � are present in (11), 
and also in view of the following straightforward Corollary 2, we remark that our 
convergence rate is in line with the one established in [2].

Corollary 2  Under the same assumptions as in Proposition 2, the maximum num-
ber of iterations 𝜎̄ to make the lower-level merit function V less than � is O

(
�−2

)
.

6 � Conclusions

In this work, we provide an explicit, practical version of general Tikhonov-like 
schemes for the solution of nested variational inequalities, that is the problem of a 
variational inequality whose feasible set is given by the solution set of another vari-
ational inequality. Apart from global convergence guarantees, we establish, as far as 
we are aware, the first convergence rate results in the context of general nested VIs. 
Moreover, our enhanced results for the simple bilevel instance, which are in line 
with the relevant literature, evidentiate the relevance of our analysis.

Numerical results illustrating the practical applicability of our approach are given 
in [15], where we formulate a multi-portfolio selection model involving several 
accounts, whose actions are coupled due to market impact via transaction costs, as a 
Nash game. The different merit functions that are considered yield a selection over 
the set of equilibria arising from that Nash game. The resulting hierarchical program 
with a lower-level Nash equilibrium problem is a special instance of problem (1) 
satisfying assumptions (A1)–(A3).

f (yk+1) +
1

�k
[g(yk+1) −min

y∈Y
g(y)] − f (yk) −

1

�k
[g(yk) −min

y∈Y
g(y)] = f (yk+1)

+
1

�k
g(yk+1) − f (yk) −

1

�k
g(yk) ≤ −

�
1

�k
−

L�

2

�
‖yk+1 − yk‖2

≤ −
L�

2
‖yk+1 − yk‖2,

k̄
𝛿2

4L2
𝛷

<
∑k̄−1

k=0
‖yk+1 − yk‖2

≤
2

L𝛷

�
f (y0) +

1

𝜏0
(g(y0) −min

y∈Y
g(y)) − f (yk̄) −

1

𝜏 k̄
(g(yk̄) −min

y∈Y
g(y))

�

≤
2

L𝛷

�
f (y0) − f (yk̄) +

1

𝜏0
(g(y0) −min

y∈Y
g(y))

�
≤

2

L𝛷
𝛥0.

k ≥

⌈
8L��0

�2

⌉
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Finally, to complete the picture, we observe that a more general structure can be 
obtained when the lower-level VI depends parametrically on some upper-level vari-
ables. As this structure is no longer purely hierarchical, the analysis of the present 
paper does not apply. We leave the investigation of such more general models to 
future research.
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