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Abstract
The exterior Bernoulli problem is rephrased into a shape optimization problem 
using a new type of objective function called the Dirichlet-data-gap cost function 
which measures the L2-distance between the Dirichlet data of two state functions. 
The first-order shape derivative of the cost function is explicitly determined via the 
chain rule approach. Using the same technique, the second-order shape derivative of 
the cost function at the solution of the free boundary problem is also computed. The 
gradient and Hessian informations are then used to formulate an efficient second-
order gradient-based descent algorithm to numerically solve the minimization prob-
lem. The feasibility of the proposed method is illustrated through various numerical 
examples.

Keywords Bernoulli problem · Domain perturbation · Free boundary · Shape 
optimization · Shape derivative

1 Introduction

In this note, we are interested in the so-called Bernoulli’s free boundary problem 
(FBP). The problem, which is considered as the prototype of a stationary FBP and 
is called in some literature as the Alt–Caffarelli problem (see [1]), find their origin 
in the description of free surfaces for ideal fluids [37]. There are, however, numer-
ous other applications leading to similar formulations, for instance, in the context 
of optimal design, electro chemistry and electro statics (see [36] and also [35] for 
further industrial applications).
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Bernoulli problem can be classified into two cases, namely, the exterior Ber-
noulli FBP and the interior Bernoulli FBP. Here, we focus our attention on the for-
mer case. In the exterior problem, a bounded and connected domain A ⊂ ℝ2 with 
a fixed boundary Γ ∶= �A and a constant 𝜆 < 0 are known or given. The task is to 
find a bounded connected domain B ⊂ ℝ2 with a free boundary Σ ∶= �B , B contains 
the closure of A, and an associated state function u ∶= u(Ω) , where Ω = B ⧵ Ā , such 
that the following overdetermined system of partial differential equations (PDEs) is 
satisfied:

Here, �
�
u ∶= ∇u ⋅ � denotes the normal derivative of u and � represents the outward 

unit normal vector to Σ.
The presence of two boundary conditions imposed on the exterior boundary Σ 

makes the problem difficult to solve. Nevertheless, it is known that (1) admits a 
classical solution for simply connected bounded domain Ω , for any given constant 
𝜆 < 0 . In addition, the shape solution Ω∗ is unique for bounded convex domains A 
[36] and the free boundary Σ∗ is C2,� regular (see [47, Theorem 1.1]).

Our main intent in this work is to numerically solve (1) by performing a novel 
iterative second-order gradient-based optimization procedure. Our approach relies on 
the method known as shape optimization (see, e.g., [22, 46, 71]) which is already an 
established tool to solve such a free boundary problem. The main idea of the said tech-
nique is to reformulate the original problem into an optimization problem of the form

where J0 denotes a suitable objective functional that depends on a domain Ω as 
well as on a function u(Ω) , which is the solution of a partial differential equation 
e(u(Ω)) = 0 posed on Ω.

There are different ways to write (1) in the form of (2). A typical approach is to 
choose one of the boundary conditions on the free boundary to obtain a well-posed 
state equation, and then track the remaining boundary data in a least-squares sense. 
Such formulation has been carried-out in several previous investigations; see, for 
instance, [31, 32, 41, 44, 50, 65, 66]. Alternatively, one can consider an energy-gap 
type cost function which consists of two auxilliary states; one that is a solution of 
pure Dirichlet problem and one that satisfies a mixed Dirichlet–Neumann problem 
(see, e.g., [9–12, 33]). The objective function used in such formulation is sometimes 
called the Kohn-Vogelius cost functional since Kohn and Vogelius [53] were among 
the first who used such a functional in the context of inverse problems. Mathemati-
cally, these aforementioned formulations are given as follows: 

Dirichlet-data-tracking approach  

(1)−Δu = 0 in Ω, u = 1 on Γ, u = 0 and �
�
u = � on Σ.

(2)min
Ω

J0(Ω, u(Ω)) subject to e(u(Ω)) = 0,

min
Ω

J1(Σ) ≡ min
Ω

1

2 �Σ

u2
N
d�
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 where the state function uN ∶= uN(Ω) is the solution to the mixed Dirichlet–Neu-
mann problem 

Neumann-data-tracking approach  
 where the state function uD ∶= uD(Ω) is the solution to the pure Dirichlet problem 

Energy-gap type cost functional approach  
 where the state functions uN and uD satisfy systems (3) and (4), respectively.

In this study, one of our main objectives is to introduce yet another shape optimi-
zation reformulation of (1) which, to the best of our knowledge, has not been studied 
in any previous investigation. Similar to the cost functional J3 , we make use of a cost 
function consisting of two auxiliary states uN and uR:

where the state function uN is the solution of (3) and uR ∶= uR(Ω) satisfies, for a 
given strictly positive (constant) � , the following equivalent form of (1) with a Robin 
boundary condition:

Clearly, if (u,Ω) is a solution of (1), then uN = uR = u ; therefore, J(Σ) = 0 . Con-
versely, if J(Σ) = 0 , then uN = uR on Σ . Hence, the equation �

�
(uN − uR) = �uR = 0 

on Σ and the assumption 𝛽 > 0 implies that uR = uN = 0 on Σ . Consequently, 
u = uN = uR is a solution of problem (1). We remark that, in the limiting case as 
� goes on infinity, the PDE system (6) transforms into the pure Dirichlet problem 
(4) (this means that uR = 0 on Σ ), leading us to recover from (5) the classical Dir-
ichlet-data-tracking formulation of the FBP (1).

We stress that the formulations presented above can also be applied to Poisson 
problems with overdetermined non-homogenous (sufficiently smooth) boundary 
conditions. Here, however, we only inspect the free boundary problem (1) in order 
to simplify the discussion.

(3)−ΔuN = 0 in Ω, uN = 1 on Γ, �
�
uN = � on Σ;

min
Ω

J2(Σ) ≡ min
Ω

1

2 �Σ

(
�uD

��
− �

)2

d�

(4)−ΔuD = 0 in Ω, uD = 1 on Γ, uD = 0 on Σ;

min
Ω

J3(Ω) ≡ min
Ω

1

2 �Ω

|||∇
(
uN − uD

)|||
2

dx

(5)min
Ω

J(Σ) ≡ min
Ω

1

2 �Σ

|uN − uR|2 d�,

(6)−ΔuR = 0 in Ω, uR = 1 on Γ, �
�
uR + �uR = � on Σ.
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Motivation Our reason for considering the new cost functional J(Σ) stems from 
several previous related works. In the study carried out in [67], we have considered 
the cost functional J2 with a different state constraint problem. More precisely, we 
replaced the state variable uD with uR which is the solution of the mixed Dir-
ichlet–Robin problem (6). We found that such modification of the problem setup 
actually yields more regularity in the solution of the associated adjoint state prob-
lem. In fact, the adjoint state associated to the shape optimization problem 
“ minΩ

1

2
‖�

�
uR − �‖2

L2(Σ)
 subject to (6)” enjoys the same degree of regularity 

(depending of course on the regularity of Ω ) with that of uR . Also, we observed, 
through various numerical examples, that this new state constraint yields faster and 
more stable convergence of the approximate solution to the exact solution (both in 
case of the exterior and interior Bernoulli FBP) than the classical setting 
“ minΩ

1

2
‖�

�
uD − �‖2

L2(Σ)
 subject to (4).” On the other hand, in [68], we proposed a 

modification of the energy-gap cost functional approach for the exterior Bernoulli 
FBP (1). The optimization problem we put forward in (1) utilizes a similar func-
tional to J3 , but, instead of (4), we took uR as one of the state constraints. More pre-
cisely, we considered the problem “ minΩ J4(Ω) ≡ minΩ

1

2
|uR − uN|2H1(Ω)

 , subject to 
(3) and (6)” (where | ⋅ |H1(Ω) denotes the H1(Ω)-seminorm; that is, 
� ⋅ �H1(Ω) ∶= ‖∇(⋅)‖L2(Ω) ) as a shape optimization reformulation of (1). We emphasize 
that under this formulation, and assuming appropriate conditions on the Robin coef-
ficient � as well as on the exterior boundary Σ , we were able to express the first-
order shape derivative of J4 at Ω along a given deformation field in terms of just the 
state constraint uN . This in turn allowed us to also reduce the number of PDE con-
straints to be solved when applying a second-order method to numerically resolve 
the free boundary problem (1) (see Proposition 1 and Corollary 2 in [68]). We stress 
that such reduction in the number of constraints in the optimization setup is cer-
tainly advantageous in terms of numerical aspects. Indeed, the numerical results 
presented in [68] show that the proposed modification requires less computing time 
per iteration to numerically solve (1) than the classical formulation 
“ minΩ

1

2
|uD − uN|2H1(Ω)

 subject to (3) and (4)” (as expected). Meanwhile, in a related 
problem, Laurain and Privat [55] examined a shape optimization formulation of a 
Bernoulli-type problem with geometric constraints. In their work, the domain Ω , 
which is simply connected, is constrained to lie in the half space determined by 
x1 ⩾ 0 . The boundary of the solution domain is also forced to contain a segment of 
the hyperplane {x1 = 0} where a non-homogeneous Dirichlet condition is imposed. 
Then, the authors seek to find the solution of a partial differential equation satisfying 
a Dirichlet and a Neumann boundary condition simultaneously on the free bound-
ary. The cost function examined by the authors in [55] has the form 
J5(Ω) ∶= ‖u2,� − u1‖2L2(Ω) , where u2,� satisfies a mixed Dirichlet–Robin boundary 
problem while u1 is a solution of a pure Dirichlet problem. Here, u2,� has the prop-
erty that “ u2,� → u2 as � → 0 ,” where u2 is the unique (weak) solution of a mixed 
Dirichlet–Neumann problem. We point out here that, as opposed to the formulation 
minimizing J4 whose first-order shape derivative only depends on uN (under appro-
priate conditions on � and the exterior boundary Σ ), the cost function J5 actually has 
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a first-order shape derivative that depends on the solutions of four PDEs (two state 
problems and two adjoint state problems).

Besides the above statements, we mention that minimizing J4(Ω) over the set of 
admissible domains Oad (see Sect. 4) of Ω is, to some extent, equivalent to finding 
the optimal shape solution to the optimization problem “ minΩ J(Σ) subject to (3) 
and (6),” and we explained it as follows. Firstly, for convenience, let us introduce the 
notation “ ≲ ”. This means that if P ≲ Q , then we can find some constant c > 0 such 
that P ⩽ cQ (obviously, Q ≳ P is defined as P ≲ Q ). Then, for an open bounded 
domain Ω ⊂ ℝ2 with Lipschitz boundary (in this study, we shall in fact assume that 
Ω is C2,1 regular), the inequality ‖v‖L2(𝜕Ω) ≲ ‖v‖H1(Ω) holds, for all v ∈ H1(Ω) . We 
note that this bound clearly exhibits the compact embedding of H1(Ω) in L2(�Ω) 
(see [56, p. 159]) and it actually follows from the well-known trace theorem (see, 
e.g., [57, Theorem 3.3.7, p. 102], [59, Theorem 5.5, p. 95]) coupled with the com-
pact embedding of H1∕2(�Ω) in L2(�Ω) (cf. [69, Theorem, 2.5.5, p. 61]). Moreover, 
it is not hard to see from this result that we also have the relation ‖v‖L2(Γ) ≲ ‖v‖H1(Ω). 
This inequality shows that the set H1

Γ,0
(Ω) = {v ∈ H1(Ω) ∶ v = 0 on Γ} is strongly 

closed in H1(Ω) and, in addition, a convex set. From [19, p. 54], for instance, we 
know that strongly closed convex sets are also weakly closed (see also [17, Lemma 
3.1.15, p. 119]). Hence, the weak convergence vnk ⇀ v implies that v is in fact in 
the same set H1

Γ,0
(Ω) . Furthermore, we note that we may actually prove (following 

the proof of [43, Lemma 2.19, p. 62]) that �v�H1(Ω) = ‖∇v‖L2(Ω) ≳ ‖v‖H1(Ω), for all 
v ∈ H1

Γ,0
(Ω) . We note that this bound in fact shows that the H1(Ω)-seminorm | ⋅ |H1(Ω) 

is actually equivalent to the H1(Ω)-norm on H1
Γ,0
(Ω) . Lastly, we mention that we can 

also verify, possibly by way of contradiction, that the norm

on the other hand, is equivalent to the usual Sobolev H1(Ω)-norm. Thus, by these 
results, taking v = uN − uR ∈ H1

Γ,0
(Ω) , we can deduce the sequence of inequalities

It should also be recognized that the above relation is a mere consequence of the 
inequality ‖uN − uR‖2L2(Σ) ≲ ‖uN − uR‖2H1∕2+𝜀(Ω)

 which holds true for any 𝜀 > 0 due to 
the trace theorem. This observation further gives us the motivation to consider mini-
mizing J(Σ) , subject to (3) and (6), over the set of admissible domains for Ω to 
numerically solve the free boundary problem (1).

The minimization problem (5) can be carried out numerically using different 
computational strategies [67]. Standard algorithms to minimize J utilizes some gra-
dient information when using a first-order method and also uses the Hessian when 
applying second-order methods. So, in order for us to accomplish our main objec-
tive, we first need to carry out the sensitivity analysis of the cost functional J(Ω) with 
respect to a local perturbation of the domain Ω . Accordingly, we derive the first- and 
the second-order shape derivative of J through chain rule approach. This requires, 
beforehand, the expressions for the shape derivatives of the states uN and uR . Of 

‖ ⋅ ‖H1
Γ,0

(Ω) ∶=
�
� ⋅ �2

H1(Ω)
+ ‖ ⋅ ‖2

L2(Σ)

�1∕2

,

‖uN − uR‖2L2(Σ) ≲ �uN − uR�2H1(Ω)
+ ‖uN − uR‖2L2(Ω) ≲ �uN − uR�2H1(Ω)

.
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course, there are other ways to obtain the shape derivative of J such as through a 
technique used in [33]. However, the method employed in [33] by the authors, which 
was inspired by [25, 26], restricts the results to starlike domains. Another method 
could be to use only the Eulerian derivatives [22] of the states and follow [12], or 
apply the so-called rearrangement method, first used in [51], to obtain the shape 
derivative of J. We emphasize that the former approach applies not only to star-
like domains but also to more general Ck,� domains. On the other hand, the rear-
rangement method provides a rigorous computation of the shape derivatives of cost 
functionals using only the Hölder continuity of the state variables, bypassing the 
computation of the material and shape derivatives of states (see, e.g., [10, 44, 50]). 
Further, this method requires less regularity of the domain than in the case when 
applying the classical chain rule approach. Here, we opted to apply the chain rule 
approach since the shape derivatives of uN and uR are already available in the litera-
ture (see, e.g., [11] and [72], respectively). In addition to these previously mentioned 
techniques, we remark that the shape gradient of J can also be computed using the 
well-known minimax formulation developed in [20]. Similar to the rearrangement 
method, this strategy in computing shape derivatives of cost functionals does not 
require the knowledge of the shape derivative of the states as it naturally introduces 
the use of adjoint states to derive the expression for the shape derivative of the cost; 
see, for instance, [65, 66].

The plan of the paper is as follows. In Sect. 2, we describe the weak formulations 
of the state equations and briefly discuss the existence, uniqueness and regularity 
of their solutions. In Sect.  3, we recall a few basic concepts from shape calculus 
and give the shape derivatives of the states. Then, we compute the first-order shape 
derivative of the cost J through chain rule approach followed by the computation of 
its corresponding second-order shape derivative at the solution of the free boundary 
problem (1). Also, we shortly discuss about the ill-posedness of the proposed shape 
optimization formulation by inspecting the shape Hessian form at a critical shape. 
Meanwhile, in Sect. 4, we examine the existence of optimal solution to the minimi-
zation problem under consideration. After that, in Sect. 5, we describe how the gra-
dient and Hessian informations can be utilized in formulating an efficient boundary 
variation algorithm to numerically solve the present optimization problem. Finally, 
we demonstrate the feasibility of the newly proposed shape optimization approach 
by solving some concrete problems. Also, to illustrate the efficiency of the proposed 
method, we compare our numerical results with the results obtained by the classical 
Dirichlet-data-tracking cost functional approach. We end the paper with a brief con-
clusion given in Sect. 6.

2  Preliminaries

We first review an essential quality of the state solutions which is vital in guarantee-
ing the existence of their shape derivatives.
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2.1  Weak formulation of the state equations

The respective variational formulations of the state problems (3) and (6) are stated 
as follows.

Find uN ∈ H1(Ω) , with uN = 1 on Γ , such that

Find uR ∈ H1(Ω) , with uR = 1 on Γ , such that

 where H1
Γ,0
(Ω) is the space of test functions in the introduction. It is well-known 

that the variational equation (7) admits a unique solution in H1(Ω) , while it can eas-
ily be verified (for instance, by means of Lax-Milgram theorem) that (8) also have a 
unique solution in H1(Ω) (see [39, 58]).

Remark 1 We emphasize that since 𝛽 > 0 , then uniqueness of weak solution 
uR ∈ H1(Ω) is guaranteed for the mixed Robin-Dirichlet problem (6). Moreover, we 
note that we may actually consider � to be a function on Σ instead of just being 
a positive constant. In this case, however, we require � ∶= �(x) to be at least an 
L∞ function on Σ (i.e., � ∈ L∞(Σ) ) and be positive almost everywhere in the free 
boundary to ensure uniqueness of weak solution to (6) (cf., e.g, [58, Lemma 7.36.3, 
p. 617]). In this regard, we mention here in advance that in Section 3, we will in 
fact consider the mean curvature of the free boundary Σ as the function � . Evi-
dently, � = � belongs to L∞(Σ) because of Rademacher’s theorem (recall that Ω , by 
assumption, is C2,1 regular). Hence, the first mentioned requirement for existence of 
unique weak solution to (6) is satisfied, however, the condition that �(x) ⩾ 0 on Σ 
only holds for convex domains. Nevertheless, this is not an issue when the domain 
A (whose boundary is represented by Γ ) is convex because, according to [48, Theo-
rem 2.1] (and the references therein), when A is convex, then so is the unique solu-
tion domain Ω∗ to the free boundary problem (1).

2.2  Higher regularity of the state solutions

The unique solution uN of the PDE system (3) actually possesses higher regular-
ity if Ω is assumed to be at least C1,1 regular. In fact, the solution is also in H2(Ω) 
in this case, and in general, if Ω is of class Ck+1,1 , where k is a non-negative inte-
ger, then uN is Hk+2 regular. This claim can easily be verified since the fixed bound-
ary Γ and the free boundary Σ are disjoint, (see, e.g., [10, Theorem  29]). Analo-
gously, the unique solution uR ∈ H1(Ω) of (6) also have higher regularity depending 
on the degree of smoothness of Ω . More precisely, if Ω is of class Ck+1,1 (again k 
is a non-negative integer), then uR is also an element of Hk+2(Ω) (see, e.g., [52, 
Remark 3.5]). For more details about existence and uniqueness of solutions to mixed 

(7)∫Ω

∇uN ⋅ ∇� dx = ∫Σ

�� d�, ∀� ∈ H1
Γ,0
(Ω);

(8)∫Ω

∇uR ⋅ ∇� dx + ∫Σ

�uR� d� = ∫Σ

�� d�, ∀� ∈ H1
Γ,0
(Ω),
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Robin-Dirichlet problems in Ws,2 for bounded domains in ℝd , we refer the readers to 
[58, Section 7.36].

3  Shape sensitivity analysis of the states and cost function

Let us consider a bounded and connected domain U ⊃ Ω and a family of deforma-
tion fields

Clearly, every � ∈ Θ forces Γ to remain invariant after a deformation since � van-
ishes on Γ . Hence, Γ is a component of the boundary of any perturbation of Ω . In 
this work, every admissible perturbation of the reference domain Ω is described as 
follows. Given an element of Θ , we perturb Ω by means of the so-called perturba-
tion of the identity operator (see, e.g., [22, Section 2.5.2, p. 147] or [10]):

For sufficiently small t and for each � ∈ Θ , the operator Tt can be shown to be a C2,1 
diffeomorphism from Ω onto its image (cf. [71]).

With the above definition of Ωt ∶= Tt(Ω) , the state solutions uNt and uRt satisfy

respectively, where �t is the unit outward normal to Σt . Here, we can actually drop 
t in Γt because Γt = Γ for all t. Note that for t = 0 , we recover the reference domain 
Ω ∶= Ω0 , with fixed boundary Γ ∶= Γ0 and free boundary Σ ∶= Σ0.

Next, let us recall some key definitions from shape calculus. We say that the func-
tion u(Ω) has a material derivative u̇ and a shape derivative u′ at zero in the direction 
� if the limits

exist, respectively, where (u(Ωt)◦Tt)(x) = u(Ωt)(Tt(x)) . These expressions are related 
by

provided that ∇u ⋅ � exists in some appropriate function space [22, 71]. In general, 
if u̇ and ∇u ⋅ � both exist in the Sobolev space Wm,p(Ω) , then u′ also exists in that 
space.

(9)Θ ∶= {� ∈ C2,1(U,ℝ2) ∶ � = 0 on �U ∪ Γ}.

Tt ∶ Ω ⟼ Ωt, x ⟼ Tt(x) = x + t�(x).

(10)− ΔuNt = 0 in Ωt, uNt = 1 on Γt,
duNt

d�t
= � on Σt;

(11)− ΔuRt = 0 in Ωt, uRt = 1 on Γt,
duRt

d�t
+ �uRt = � on Σt,

u̇ = lim
t↘0

u(Ωt)◦Tt − u(Ω)

t
, u� = lim

t↘0

u(Ωt) − u(Ω)

t
,

(12)u� = u̇ − (∇u ⋅ �)
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3.1  Shape derivative of the states

To establish the existence of the shape derivative of J, one needs to show that the 
material and shape derivatives of the states uN and uR exist and, consequently, apply 
the chain rule. Apparently, the shape derivatives of uN and uR were already obtained 
in [9, 72], respectively. Their existence can be guaranteed if Ω is assumed to be at 
least C2,1 regular.

Lemma 1 [9] Let Ω be a bounded C2,1 domain. Then, uN ∈ H3(Ω) is shape differenti-
able with respect to the domain, and its shape derivative u�

N
∈ H1(Ω) is the unique 

solution of the mixed Dirichlet–Neumann problem

where � denotes the mean curvature of Σ.

Lemma 2 [72] Let Ω be a bounded C2,1 domain. Then, uR ∈ H3(Ω) is shape differen-
tiable with respect to the domain, and its shape derivative u�

R
∈ H1(Ω) is the unique 

solution of the mixed Robin-Neumann problem

If � = � , then for the shape derivative u′
R
 of the solution of (6), it holds that u′

R
≡ 0 

when Σ is the free boundary.

3.2  First‑order shape derivative of the cost function

Our objective here is to derive the shape derivative of the cost function J in the 
direction of a deformation field � ∈ Θ . We recall that, for a given functional 
J ∶ Ω → ℝ , its directional Eulerian derivative at Ω in the direction � , if it exists, is 
defined as the limit

In addition, if the derivative dJ(Ω)[�] exists for all � and the map � ↦ dJ(Ω)[�] 
is linear and continuous, then J is shape differentiable at Ω , and this mapping will 
be referred to as the shape gradient of J at Ω . According to the well-known Had-
amard–Zolésio structure theorem (see, e.g., [21, Theorem  3.2 and Remark 3.1, 

(13)

⎧
⎪⎨⎪⎩

−Δu�
N

= 0 in Ω,

u�
N

= 0 on Γ,

�
�
u�
N

= divΣ(� ⋅ �∇ΣuN) + ��� ⋅ � on Σ,

(14)

⎧⎪⎨⎪⎩

−Δu�
R

= 0 in Ω,

u�
R

= 0 on Γ,

�
�
u�
R
+ �u�

R
= divΣ(� ⋅ �∇ΣuR) + ��� ⋅ � − �(�

�
uR + �uR)� ⋅ � on Σ.

lim
t↘0

J(Ωt) − J(Ω)

t
=∶ dJ(Ω)[�].
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Corollary 1]), the shape gradient of J depends only on the normal component of � 
on the boundary of Ω when the domain is regular enough.

For our proposed cost function J(Σ) given in (5), the shape derivative under the 
assumption that

is given in the following proposition.

Proposition 1 Let Ω be of class C2,1 and � ∈ Θ . Also, let us assume that condition 
(A) holds true. Then, the Dirichlet-data-gap cost functional J is shape differentiable 
with

where pN denotes the adjoint state which is the unique solution to the PDE system

� denotes the mean curvature of Σ and the tangential gradient ∇Σ is given by

Proof We use chain rule approach coupled with the adjoint method to obtain the 
shape derivative of J given by (15). Let Ω be of class C2,1 and � ∈ Θ . Since the state 
variables uN and uR are sufficiently regular, we can apply Hadamard’s boundary dif-
ferentiation formula (cf. [22, Theorem 4.3, p. 486] or [46, 71]):

where f ∈ C([0, �],W2,p(U)) , p > 1 , and d
dt
f (0) exists in W1,p(U) , to obtain

Here, of course, u′
N
 and u′

R
 satisfy (13) and (14), respectively. If u′

R
 is the shape 

derivative of the solution of (6) where Σ is the free boundary and � = � , then by 
Lemma 2, u′

R
≡ 0 in Ω . The expression for dJ(Σ)[�] given by (18) then simplifies to

(A)
“� = � and u�

R
is the shape derivative of the solution of (6)

where Σ is the free boundary”

(15)dJA(Σ)[�] = ∫Σ

[(
�pN +

1

2
u2
N

)
� − ∇ΣuN ⋅ ∇ΣpN

]
� ⋅ � d�,

(16)−ΔpN = 0 in Ω, pN = 0 on Γ, �
�
pN = uN on Σ,

∇Σ(⋅) = ∇(⋅)|Σ − �
�
(⋅)�.

(17)

d

dt ∫�Ωt

f (t, �) d�t

|||||t=0
= ∫

�Ω

�f (0, �)

�t
d�

+ ∫
�Ω

(
�f (0, �)

��
+ �f (0, �)

)
� ⋅ � d�,

(18)
dJ(Σ)[�] = ∫Σ

(uN − uR)(u
�
N
− u�

R
) d�

+ ∫Σ

[
�uR(uN − uR) +

1

2
�(uN − uR)

2
]
� ⋅ � d�.

(19)dJA(Σ)[�] = ∫Σ

uNu
�
N
d� +

1

2 ∫Σ

�u2
N
� ⋅ � d�,
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where we put the subscript “ ⋅A ” to emphasize that condition (A) was imposed in the 
computation of the shape gradient (see also comment on notation below).

We stress that the representation (19) of the shape derivative J in the direction of 
� at Ω is actually not useful for practical applications, especially in the numerical 
realization of the minimization problem (5) because it would require the solution of 
(13) for each velocity field � . This issue can be resolved using the adjoint method, 
particularly by introducing the adjoint system (16). Using (13) and (16), we observe, 
via Green’s second identity, that

At this point, it is useful to recall the so-called tangential Green’s formula (see, e.g., 
[22, Eq. 5.27, p. 498]): let U be a bounded domain of class C1,1 and Ω ⊂ U with 
boundary Γ . For � ∈ C1,1(U,ℝ2) and f ∈ W2,p(U) , p > 1 , we have

where � is the mean curvature of Γ . In addition, when � ⋅ � = 0 , we obviously have

Now, note that � ⋅ �∇ΣuN ⋅ � = 0 . Hence, by the above identity, we have that

Combining Eqs. (19), (20) and (22), we get the desired result.   ◻

Remark 2 We recall from [50, Theorem 4.1] (with g = const. = � and f ≡ 0 ) (see 
also [32, Lemma 2.1]) that the shape gradient of J1 is given by

It seems not obvious but the kernel G given in (15) only differs by �
��

(
1

2
u2
N

)
 from G1 . 

This can be made more clear if we apply the identity

(20)
∫Σ

u�
N
uN d� = ∫Σ

u�
N
�
�
pN d� = ∫Σ

pN��u
�
N
d�

= ∫Σ

pN
[
divΣ(� ⋅ �∇ΣuN) + ��� ⋅ �

]
d�.

(21)∫Γ

(fdivΓ� + ∇Γf ⋅ �) d� = ∫Γ

�f� ⋅ � d�,

∫Γ

fdivΓ� d� = −∫Γ

∇Γf ⋅ � d�.

(22)∫Σ

pNdivΣ(� ⋅ �∇ΣuN) d� = −∫Σ

∇ΣuN ⋅ ∇ΣpN� ⋅ � d�.

dJ1(Σ)[�] = ∫Σ

[
�

��

(
1

2
u2
N
+ �pN

)
+
(
1

2
u2
N
+ �pN

)
� − ∇uN ⋅ ∇pN

]
� ⋅ � d�

=∶ ∫Σ

G1� ⋅ � d�.

(23)−⟨∇ΣuN,∇ΣpN⟩ = −⟨∇uN,∇pN⟩ +
�uN

��

�pN

��
= −⟨∇uN,∇pN⟩ + �

�pN

��
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to (15). Thus, in addition, we can actually write the shape gradient of J equivalently 
as follows

Notation Throughout the rest of the discussion, we shall denote the shape gradient 
of J in the direction of � at Ω obtained under condition (A) as dJA and its corre-
sponding kernel by GA ; i.e.,

(cf. Proposition 1). Meanwhile, the expression dJ simply refers to the shape gradient 
of J obtained without imposing assumption (A). More precisely, the expression for 
dJ is given by equation (18):

where we use the notation w = uN − uR and w� = u�
N
− u�

R
 for simplicity.

Before going to the next subsection, let us also express dJ(Σ)[�] in another form 
through the adjoint method. For this purpose, let us consider two harmonic func-
tions ΞN and ΞR that both vanish on Γ , and such that �

�
ΞN = w and �

�
ΞR + �ΞR = w 

on Σ . Then, by Green’s second identity together with Eqs. (13) and (14), we have

Note that the integral ∫
Σ
v divΣ(� ⋅ �∇Σu) d� , for any u, v ∈ H3(Ω) , can be expressed as 

∫
Σ
v divΣ(� ⋅ �∇Σu) d� = − ∫

Σ
(∇Σu ⋅ ∇Σv)� ⋅ � d� = ∫

Σ
(�

�
u�

�
v − ∇u ⋅ ∇v)� ⋅ � d� 

via (21) and because � ⋅ �∇Σu = 0 . Hence, we have

Inserting the above expression to (26), we arrive at the following result.

(24)dJA(Σ)[�] = ∫Σ

��
�pN +

1

2
u2
N

�
� − ⟨∇uN,∇pN⟩ + �

�pN

��

�
� ⋅ � d�.

(25)GA ∶=
�
�pN +

1

2
u2
N

�
� − ⟨∇uN,∇pN⟩ + �

�pN

��

(26)dJ(Σ)[�] = ∫Σ

[
ww� +

(
�uRw +

1

2
�w2

)
� ⋅ �

]
d�,

∫Σ

ww� d� = ∫Σ

[
u�
N
w − u�

R
(�

�
ΞR + �ΞR)

]
d� = ∫Σ

[
u�
N
w − ΞR(��u

�
R
+ �u�

R
)
]
d�

= ∫Σ

ΞN divΣ(� ⋅ �∇ΣuN) d�

− ∫Σ

ΞR

{
divΣ(� ⋅ �∇ΣuR) − �(�

�
uR + �uR)� ⋅ �

}
d�

=∶ �1 − �2.

�1 − �2 = ∫Σ

{
∇ΣuR ⋅ ∇ΣΞR − ∇ΣuN ⋅ ∇ΣΞN + �ΞR[� + (� − �)uR]

}
� ⋅ � d�

= ∫Σ

[∇uR ⋅ ∇ΞR − ∇uN ⋅ ∇ΞN + �w − (� − �uR)(w − �ΞR)]� ⋅ � d�

+ ∫Σ

{�ΞR[� + (� − �)uR]}� ⋅ � d�.
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Proposition 2 Let Ω be of class C2,1 and � ∈ Θ . Then, J is shape differentiable with 
dJ(Σ)[�] = ∫

Σ
G� ⋅ � d� where

and the quantities ΞN and ΞN are the respective solutions to the following adjoint 
systems

Remark 3 Again, similar to what has been pointed out in the proof of Proposition 1, 
we remark that the main reason for rewriting the shape gradient dJ(Σ)[�] given in 
(26) into dJ(Σ)[�] = ∫

Σ
G� ⋅ � d� is to avoid the computations of solutions to the 

boundary value problems (13) and (14) for each velocity field � which are impracti-
cal to use in an iterative procedure.

As an immediate consequence of Proposition 2, we have the following opti-
mality result.

Corollary 1 Let the domain Ω∗ be such that u = u(Ω∗) satisfies the overdetermined 
boundary value problem (1); i.e., it holds that

Then, the domain Ω∗ fulfils the necessary optimality condition

In addition, of course, it also holds that dJA(Σ∗)[�] = 0 for all � ∈ Θ.

Proof At the shape solution Ω = Ω∗ of the Bernoulli problem (1), uN = 0 on Σ∗ . 
Hence, ∇uN = (�

�
uN)� on Σ and it follows that ∇uN ⋅ � = 0 on Σ∗ . Moreover, we see 

that ΞN ≡ 0 and ΞR ≡ 0 (and also pN ≡ 0 ) in Ω
∗
 . Thus, G given by (27) is zero (so is 

GA given by (25)), which implies the assertion.   ◻

In the next section, we shall compute the second-order shape derivative of J at 
Ω in the direction of two vector fields from Θ . We first treat the case when condi-
tion (A) is imposed during the calculation of the shape derivative followed by the 
case when it is disregarded (see Sect. 3.4).

(27)

G ∶= ∇uR ⋅ ∇ΞR − ∇uN ⋅ ∇ΞN + �(uN − uR) − (� − �uR)(uN − uR − �ΞR)

+ �ΞR[� + (� − �)uR] + �uR(uN − uR) +
1

2
�(uN − uR)

2,

(28)−ΔΞN = 0 in Ω, ΞN = 0 on Γ, �
�
ΞN = uN − uR on Σ;

(29)−ΔΞR = 0 in Ω, ΞR = 0 on Γ, �
�
ΞR + �ΞR = uN − uR on Σ.

u = uR = uN on Ω
∗
.

dJ(Σ∗)[�] = 0 for all � ∈ Θ.
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3.3  Second‑order shape derivative of the cost function

Let us now compute the shape Hessian of J at Ω in the direction of two vec-
tor fields �,� ∈ Θ . Due to standard regularity theory for elliptic equations, we 
know that the H3(Ω) regularity of uN provides the same regularity H3(Ω) to pN . 
Hence, for sufficiently small s, it is clear that the derivative dJA(Ωs(�))[�] of J 
(under assumption (A)) at Ωs(�) ⊂ U is well-defined. Our next goal is to find an 
expression for the limit

where

Here, Σs ∶= Σs(�) denotes the free boundary of the perturbed domain Ωs ∶= Ωs(�) 
obtained via the deformation field � ∈ Θ and uNs ∈ H3(Ωs) is the unique (weak) 
solution of the state system (3) on Ω̄ = Ω̄s . On the other hand, �s = divΣs

�s , and �s 
and �s respectively denote the unit outward normal and unit tangent vectors on Σs.

Accordingly, if, for all � and � in Θ , d2J(Σ)[�,�] exists and is bilinear and 
continuous with respect to � and � , then J is said to be twice shape differentia-
ble at Ω . In this case, the map (�,�) ↦ d2J(Σ)[�,�] is called the shape Hessian 
of J at Ω in the �,� direction. For an admissible domain Ω , it can be shown that 
the shape Hessian has its support on �Ω and it is independent on the tangential 
component of � on the boundary. However, the exact expression for the shape 
Hessian, in general, consists of the tangential component of � . This means, basi-
cally, that the shape Hessian is generally not symmetric (see, e.g., [22, Chapter 9, 
Section 6]). Even so, at the optimal shape solution Ω∗ of J, it can be proved that 
only the normal components of � and � contributes to the shape Hessian. Here, 
we focus our attention on this situation since we are only interested in the expres-
sion for the shape Hessian of J at the solution Ω∗ of the exterior Bernoulli free 
boundary problem (1).

Proposition 3 Let Ω be of class C2,1 and �,� ∈ Θ and � be the mean curvature of 
Σ . Then, the shape Hessian of J at Ω∗ is given by

where p′
NW

 denotes the shape derivative of the adjoint state pN in the direction of � 
satisfying the PDE system

lim
s↘0

dJA(Ωs(�))[�] − dJA(Ω)[�]

s
=∶ d2JA(Σ)[�,�],

(30)
dJA(Ωs(�))[�] = ∫Σs

GAs�s ⋅ � d�s,

GAs =
�
�pNs +

1

2
u2
Ns

�
�s − ⟨∇uNs,∇pNs⟩ + �

�pNs

��s
.

(31)d2JA(Σ
∗)[�,�] = ∫Σ∗

��p�
NW

� ⋅ � d�,
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where u′
NW

 denotes the shape derivative of uN in the direction of �.

Proof In the proof, we denote the shape derivative of � in the direction � by �′ (i.e., 
�� = ��

W
 ) for simplicity. Let �s = �s(�) be a smooth extension of �s (see, e.g, [22, 

Equation (4.37), p. 491]). Using (17) with f (s, �) = GAs�s ⋅ � = GAs�s ⋅ � ( GAs is 
given by (30)), and � replaced by � , we get

By Corollary 1, we know that GA = 0 on Σ∗ . Hence, noting that �|Σ = � , we obtain

Here, because pN ≡ 0 , and uN = 0 and �
�
uN = � on Σ∗ , G�|Σ∗ is given by

On the other hand, we note that, for �,� ∈ H3(Ω) , 
∇(∇� ⋅ ∇�) ⋅ � = (∇2�∇� + ∇2�∇�) ⋅ � . This identity holds true because the 
Hessian ∇2� of � is symmetric. Hence, the term �

�
GA vanishes on Σ∗ because

Thus, we have

where p′
NW

 satisfies the PDE system (32), proving the proposition.   ◻

In view of the previous proposition, we see that in order to evaluate the shape 
Hessian of J, we first need to compute the solution p′

NW
 of (32) (although the der-

ivation of this set of equations follows standard techniques issued, for example, in 
[71], we provide it in the appendix for the sake of completeness; see Proposition 

(32)−Δp�
NW

= 0 in Ω∗, p�
NW

= 0 on Γ, �
�
p�
NW

= u�
NW

+ �� ⋅ � on Σ∗,

(33)

d2JA(Σ)[�,�] = ∫Σ

(
G�

A
� + GA�

�
)
⋅ � d�

+ ∫Σ

{
�GA

��
(� ⋅ �) + GA

�(� ⋅ �)

��
+ �GA� ⋅ �

}
� ⋅� d�.

(34)d2JA(Σ
∗)[�,�] = ∫Σ∗

{
G�

A
� ⋅ � +

�GA

��
(� ⋅ �)� ⋅�

}
d�.

G�
A
�Σ∗ =

�
(�p�

N
+ uNu

�
N
)� +

�
�pN +

1

2
u2
N

�
��

− ⟨∇u�
N
,∇pN⟩ − ⟨∇uN,∇p�N⟩+�(∇p�N ⋅ � + ∇pN ⋅ �

�)
����Σ∗

= ��p�
N
.

�
�
GA|Σ∗ =

{
(��

�
pN + uN��uN)� +

(
�pN +

1

2
u2
N

)
�
�
�

− (∇2uN∇pN + ∇2pN∇uN) ⋅ �+�∇
2pN� ⋅ �

}|||Σ∗
= 0.

d2JA(Σ
∗)[�,�] = ∫Σ∗

��p�
NW

� ⋅ � d�,
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A.1) which depends on u′
NW

 and hence to the perturbation field � . In terms of 
numerical aspect, this step is quite problematic to implement in an iterative pro-
cedure because it would require the solution of (32) for each deformation field 
� at every iteration. To resolve the issue, we can again apply the adjoint method 
(see Remark 4 in Sect. 3.4) as done in the proof of Proposition 1. Before we do 
this, let us first examine the symmetry of the shape Hessian d2J(Σ∗) of J with 
respect to the velocity fields � and �.

3.4  Symmetricity of the shape Hessian at a critical shape

Here, let us derive the shape Hessian d2J(Σ∗)[�,�] , but in a slightly different fashion, 
of J without imposing assumption (A) in expressing its shape gradient (see expression 
(26)). We will show that, in this case, the corresponding expression for the shape Hes-
sian is symmetric with respect to � and � . Again, we denote w = uN − uR and let 
�s = �s(�) again be a smooth extension of �s . Then, J(Σ) = 1

2
∫
Σ
|w|2 d� and from 

(17), we obtain

where g = w∇w ⋅ � +
1

2
�w2 . Furthermore, we get

where w′′
VW

 denotes the shape derivative of w along the directions of � and � (applied 
consecutively) and g�

W
= w�

W
∇w ⋅ � + w∇w�

W
⋅ � + w∇w ⋅ �

�
W
+

1

2
��
W
w2 + �ww�

W
 . 

Now, according to Corollary 1, we have w ≡ 0 and g ≡ 0 at Σ = Σ∗ which also gives 
us g′

W
≡ 0 on Σ∗ . Therefore, d2J(Σ∗)[�,�] = ∫

Σ∗ w
�
V
w�
W
d� . Meanwhile, for � = � , 

we know that u′
R
≡ 0 on Ω̄∗ by Lemma 2. Thus, we obtain

which clearly shows the symmetry (with respect to the deformation fields � and � ) 
of the shape Hessian at a critical shape.

Let us now write (36) in its equivalent form using the adjoint method. For this pur-
pose, we will denote the corresponding adjoint of u′

NV
 and u′

NW
 by ΦW and ΦV , respec-

tively. (The choice of subscripts for these adjoints will be made clear below.)
Clearly, both ΦW and ΦV are harmonic functions and both vanishes on Γ . Mean-

while, on Σ∗ , we take �
�
ΦW = u�

NW
 and �

�
ΦV = u�

NV
 , so that (via Green’s second iden-

tity) we obtain the following equalities

dJ(Σ)[�] = ∫Σ

{ww�
V
+ g� ⋅ �} d�,

(35)

d2J(Σ)[�,�]

= ∫Σ

{w�
W
w�
V
+ ww��

VW
+ [�

�
ww�

V
+ w�

�
w�
V
+ �ww�

V
]� ⋅ �} d�

+ ∫Σ

{g�
W
� ⋅ � + g� ⋅ �

�
W
+ [�

�
g� ⋅ � + g�

�
(� ⋅ �) + �g� ⋅ �]� ⋅ �} d�,

(36)d2J(Σ∗)[�,�] = ∫Σ∗

u�
NV

u�
NW

d�,
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Consequently, the adjoint states ΦW and ΦV satisfy the PDE systems

respectively. Hence, we conclude that (36) can also be expressed as

where ΦW and ΦV satisfy (37) and (38), respectively. Evidently, this shows that, at 
the optimal shape solution Ω∗ of J, only the normal components of � and � contrib-
utes to the shape Hessian.

Remark 4 We emphasize that the shape Hessian 
d2JA(Σ

∗)[�,�] = ∫
Σ∗ ��p

�
NW

� ⋅ � d� given in Proposition  3 is also impracti-
cal to use in numerical calculation because an appropriate choice for the defor-
mation field � is difficult to determine directly from the given boundary integral 
(see Sect.  5). To circumvent this difficulty, we again apply the adjoint method. 
First, we let Ψ be harmonic on Ω such that it vanishes on Γ . Letting �

�
Ψ = ��� ⋅ � 

on Σ , we get (via Green’s second identity and Eq. (32)) the following equalities 
∫
Σ
��p�

NW
� ⋅ � d� = ∫

Σ
p�
NW

�
�
Ψ d� = ∫

Σ
Ψ�

�
p�
NW

d� = ∫
Σ
(Ψu�

NW
+ �Ψ)� ⋅� d�. 

Next, we let another function Π to be harmonic on Ω such that Π = 0 on 
Γ . Also, we let �

�
Π = Ψ , so that (via Green’s second identity) we have 

∫
Σ
Ψu�

NW
d� = ∫

Σ
�
�
Πu�

NW
d� = ∫

Σ
Π�

�
u�
NW

d� = ∫
Σ
��Π� ⋅� d�. Summarizing 

these results we can therefore write the shape Hessian d2JA(Σ∗)[�,�] as

where Ψ and Π satisfy the following PDE systems

respectively. Here, we notice that Ψ ≡ u�
NV

 on Ω̄∗.
Hence, looking back to Eq. (38), we find that ΦV is exactly equal to Π satisfying 

(42) which means that we may actually write the shape Hessian d2J(Σ∗)[�,�] given 
in (39) as

∫Σ∗

u�
NV

u�
NW

d� = ∫Σ∗

u�
NV

�
�
ΦW d� = ∫Σ∗

ΦW��u
�
NV

d� = ∫Σ∗

ΦW (��� ⋅ �) d�

= ∫Σ∗

u�
NW

�
�
ΦV d� = ∫Σ∗

ΦV��u
�
NW

d� = ∫Σ∗

ΦV (��� ⋅ �) d�.

(37)−ΔΦW = 0 in Ω∗, ΦW = 0 on Γ, �
�
ΦW = u�

NW
on Σ∗;

(38)−ΔΦV = 0 in Ω∗, ΦV = 0 on Γ, �
�
ΦV = u�

NV
on Σ∗,

(39)d2J(Σ∗)[�,�] = ∫Σ∗

��ΦW� ⋅ � d� = ∫Σ∗

��ΦV� ⋅ � d�,

(40)d2JA(Σ
∗)[�,�] = ∫Σ∗

��p�
NW

� ⋅ � d� = ∫Σ∗

�(Ψ + ��Π)� ⋅� d�,

(41)−ΔΨ = 0 in Ω∗, Ψ = 0 on Γ, �
�
Ψ = ��� ⋅ � on Σ∗;

(42)−ΔΠ = 0 in Ω∗, Π = 0 on Γ, �
�
Π = Ψ on Σ∗,
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Remark 5 In (35), we notice the dependence of the shape Hessian d2J(Σ)[�,�] (for 
Ω different from the optimal domain Ω∗ ) to the shape derivative �′

W
 of the mean cur-

vature � along � ∈ Θ appearing on g′
W

 . The explicit form of �′
W

 can be shown to be 
given by (see [22, 71])

Clearly, this expression consists of a second-order tangential derivative of the per-
turbation field � , and this derivative actually exists due to our assumption that Ω 
is of class C2,1 [22, 71]. From this observation, we deduce that the shape Hessian 
defines a continuous bilinear form

that is, �d2J(Σ)[�,�]� ≲ ‖�‖
�1(Σ)‖�‖

�1(Σ) . Here, the notation �1(⋅) denotes the 
Sobolev space �1(⋅) ∶= {� ∶= (u1, u2) ∶ u1, u2 ∈ H1(⋅)} and is equipped with the 
norm ‖�‖2

�1(⋅)
= ‖u1‖2H1(⋅)

+ ‖u2‖2H1(⋅)
 . Similar definition is also given to the �1

Γ,0
(⋅)

-space.

In view of the previous remark, it is natural to ask whether it is true that 
d2J(Σ∗)[�,�] ≳ ‖�‖2

�1(Σ∗)
 . This question actually refers to the stability of a local 

minimizer Ω∗ of J. In relation to this, we recall from [23, 24] (a result regarding 
sufficient second order conditions) that a local minimizer Ω∗ is stable if and only 
if the shape Hessian d2J(Σ∗) is strictly coercive in its corresponding energy space 
�1(Σ∗) . Unfortunately, this kind of strict coercivity cannot be established for the 
shape Hessian d2J(Σ∗) of J. Nevertheless, we shall show in the next subsection 
that sufficient condition can be derived to obtain strict coercivity in a weaker 
space. We note that the derived coercivity criterion is exactly the same as in the 
case of the shape Hessian d2Ji of the cost functional Ji , i = 1, 2, 3, 4 , as shown in 
[31–33, 68], respectively. It is worth remarking that, among these cost functions, 
only the shape Hessian d2J2(Σ∗) of J2 is �1(Σ∗)-coercive under the derived coer-
civity criterion (see [31, Proposition 2.12]). For the sake of comparison, let us 
also compute the shape Hessian of the cost functional J1(Σ) at Σ = Σ∗ . From 
Remark 2, we know that the gradient of J1(Σ) only differs by the addition of the 
integral ∫

Σ
(uN∇uN ⋅ �)� ⋅ � d� =∶ ∫

Σ
g1� ⋅ � d� from the shape gradient of J(Σ) . 

Computing the shape derivative of g1 at Ω = Ω∗ along the deformation field � , 
we get g�

1W
|Σ∗ = u�

NW
(∇uN ⋅ �) + uN(∇u

�
NW

⋅ � + ∇uN ⋅ �
�
W
)|Σ∗ = �u�

NW
. Mean-

while, we have ∇(uN∇uN ⋅ �) ⋅ � = (∇uN ⋅ �)2 + uN[(∇
2uN)�] ⋅ � = �2 on Σ∗ . 

Hence, from (34) with G replaced by g1 , together with Eq. (31) in Proposition 3, 
we get the final expression for the shape Hessian of J1 at Ω = Ω∗ (cf. [32, Equa-
tion (21)]):

(43)d2J(Σ∗)[�,�] = ∫Σ∗

��Π� ⋅� d�.

𝜅�
W
= trace

{
D
[
(D�� ⋅ �)� − (D�)⊤�

]
− D�D�

}
− ∇𝜅 ⋅�.

d2J(Σ) ∶ �
1(Σ) ×�

1(Σ) → ℝ;
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Proposition 4 Let Ω be of class C2,1 and �,� ∈ Θ . Then, the shape Hessian of J1 at 
Ω∗ is given by

Here, we mention that the above expression was also computed in [32] but 
through shape calculus for star shape domains, hence, we refer the readers to the 
aforementioned reference for comparison.

Meanwhile, following Remark 4, we can also write d2J1(Σ∗)[�,�] in terms of 
appropriate adjoint states. To do this, we let Υ be harmonic in Ω and be zero on Γ . 
Moreover, we let �

�
Υ = �� ⋅ � on Σ , so that by Green’s second identity we have, 

∫
Σ
u�
NW

(�� ⋅ �) d� = ∫
Σ
u�
NW

�
�
Υ d� = ∫

Σ
Υ�

�
u�
NW

d� = ∫
Σ
��Υ� ⋅� d� . Hence, 

using the results from Remark 4, we therefore have the following equivalent expres-
sion for d2J1(Σ∗)[�,�]:

where the adjoint states Ψ and Π satisfy the boundary value problems (41) and (42), 
respectively, while Υ is the unique solution to the PDE system

Here, it is worth to stress out that the shape Hessian d2J1(Σ∗)[�,�] depends on the 
solutions of three boundary value problems as opposed to the case of d2JA(Σ∗)[�,�] 
which depends only on the solutions of two PDE systems. In terms of numerical 
aspects, this means that we need to solve an additional variational problem in order 
to evaluate the descent direction for a gradient-based descent algorithm.

3.5  Coercivity of the shape Hessian at its optimal solution

Let us now determine which weaker space of �1(Σ∗) does the shape Hessian d2J(Σ∗) 
is strictly coercive. To do this, we use the method already used in [28] (see also 
[31–33, 68]). We start by introducing the following operators which are linear con-
tinuous as a multiplier by a smooth function (see [68, Section 3.4]):

Here, Vn ∶= � ⋅ � and � is, of course, the mean curvature of Σ∗ . The continuity of 
these operators follows from the following result.

Lemma 3 Let Ω ⊂ ℝ2 be a bounded Lipschitz domain with boundary Γ ∶= �Ω . 
Then, the map v ↦ �v is continuous in H1∕2(Γ) for any v ∈ H1∕2(Γ) and � ∈ C0,1(Γ).

d2J1(Σ
∗)[�,�] = ∫Σ∗

{
�(�p�

NW
+ u�

NW
)� ⋅ � + �2(� ⋅ �)� ⋅�

}
d�.

d2J1(Σ
∗)[�,�] = ∫Σ∗

{�2�Π + ��Υ + �Ψ + �2(� ⋅ �)}� ⋅� d�,

(44)−ΔΥ = 0 in Ω∗, Υ = 0 on Γ, �
�
Υ = �� ⋅ � on Σ∗.

L ∶ �
1∕2(Σ∗) → H1∕2(Σ∗), L� ∶= �Vn;

M ∶ H1∕2(Σ∗) → H1∕2(Σ∗), Mv ∶= �v.



270 J. F. T. Rabago, H. Azegami 

1 3

Proof Recall that the fractional Sobolev space H1∕2(Γ) (the trace space for H1(Ω) ) is 
equipped with the norm

Let � be a Lipschitz function. Then, we have the inequality

Hence, |�v|1∕2,2,Γ can be estimated as follows

Because ‖�v‖L2(Γ) ⩽ ‖�‖∞‖v‖L2(Γ) , then the assertion is proved.   ◻

In addition to the operators introduced above, let us also define the map S as the 
Steklov-Poincaré operator on Σ∗ which is defined by (see [72])

where Ψ ∈ H1(Ω∗) satisfies

The operator S , also called the Dirichlet-to-Neumann map, is H1∕2(Σ∗)-coercive (cf. 
[33, Lemma 2]). Its inverse R called the Neumann-to-Dirichlet map is defined by

where Φ ∈ H1(Ω∗) satisfies

Now, using the operators L , M , R , and denoting the L2(Σ∗)-inner product by 
(⋅, ⋅)L2(Σ∗) , we can write (31) as

By the continuity of the maps L and M , and the bijectivity of R , we deduce that the 
shape Hessian d2JA at Ω∗ is �2(Σ∗)-coercive (whenever � is non-negative) and we 
state this result formally as follows.

‖v‖1∕2,2 = ‖v‖L2(Γ) + �v�1∕2,2,Γ, �v�1∕2,2,Γ =

�
∫Γ ∫Γ

�v(x) − v(y)�2
�x − y�2 dx dy

�1∕2

.

�𝜙(x)v(x) − 𝜙(y)v(y)� ≲ ‖𝜙‖∞�v(x) − v(y)� + �v(y)��x − y�.

�𝜙v�1∕2,2,Γ =

�
∫Γ ∫Γ

�𝜙(x)v(x) − 𝜙(y)v(y)�2
�x − y�2 dx dy

�1∕2

≲ ‖𝜙‖∞�v�1∕2,2,Γ +
�
∫Γ ∫Γ

�v(y)�2 dx dy
�1∕2

≲ ‖𝜙‖∞�v�1∕2,2,Γ + �Γ�1∕2‖v‖L2(Γ).

(45)S ∶ H1∕2(Σ∗) → H−1∕2(Σ∗), S(Φ) ∶=
�Ψ

��

||||Σ∗

,

−ΔΨ = 0 in Ω∗, Ψ = 0 on Γ, Ψ = Φ on Σ∗.

R ∶ H−1∕2(Σ∗) → H1∕2(Σ∗), R

(
�Ψ

��

)
∶= Φ |Σ∗ ,

−ΔΦ = 0 in Ω∗, Φ = 0 on Γ, �
�
Φ = �

�
Ψ on Σ∗.

d2JA(Ω
∗)[�,�] = (ML�,R(L� +R(ML�)))L2(Σ∗).
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Proposition 5 For Σ∗ with non-negative mean curvature � , the shape Hessian d2JA 
at Ω∗ is �2(Σ∗)-coercive; i.e.,

The above result also means that the minimization problem “ minΩ J(Σ) subject to 
(3) and (6)” [with condition (A) imposed in computing the gradient] is (algebrai-
cally) ill-posed. We further discuss this notion of ill-posedness (in the case of the 
present shape optimization formulation) briefly as follows. As already mentioned in 
the previous subsection, the shape optimization problem is well-posed if its local 
minimum is stable; that is, if the shape Hessian d2JA(Σ∗) is strictly coercive in its 
energy space �1(Σ∗) (i.e., d2JA(Σ∗)[�,�] ≳ ‖�‖2

�1(Σ∗)
 ). If, on the other hand, the 

positivity of the shape Hessian at Σ∗ only holds on a weaker (Sobolev) space, then 
the shape optimization problem is said to be (algebraically) ill-posed (cf. [30, 32]). 
This means, in particular, that tracking the Dirichlet data in the L2-norm is not suffi-
cient, and as strongly assumed by the authors in [34], they have to be tracked relative 
to H1 . This aforementioned lack of coercivity is known from other PDE-constrained 
optimal control problems as the so-called two-norm discrepancy (see, e.g., [30] and 
the references therein) and this concept of norm discrepancy under shape optimiza-
tion framework was first observed in [23–25, 27], among others.

Remark 6 In case of the cost functional J4(Ω) =
1

2
|uN − uR|2H1(Ω)

 examined in [68], 
the shape Hessian is likewise a continuous bilinear form, i.e., 
d2J4(Ω) ∶ �1(Σ) ×�1(Σ) → ℝ . This result is primarily due to the fact that the com-
puted expression for d2J4(Ω) also consists of the shape derivative �′ of the mean 
curvature � . Also, using the operators introduced above, the shape Hessian d2J4 at 
Ω∗ was shown to be expressible as

which is �1∕2(Σ∗)-coercive provided that Σ∗ has non-negative mean curvature �.

Remark 7 Similarly, we have that d2J1(Ω) ∶ �1(Σ) ×�1(Σ) → ℝ and using the 
operators introduced above, we may write the shape Hessian of J1 at Ω = Ω∗ given 
in Proposition 4 as follows:

This expression is also �1∕2(Σ∗)-coercive (i.e., d2J1(Σ∗)[�,�] ≳ ‖�‖2
�1∕2(Σ∗)

 ) pro-
vided that Σ∗ has non-negative mean curvature �.

On the other hand, in case of the shape Hessian d2J(Σ∗)[�,�] , we deduce (via 
the continuity of the maps L and M , and the bijectivity of R ) that

d2JA(Σ
∗)[�,�] ≳ ‖�‖2

�2(Σ∗)
.

d2J4(Ω
∗)[�,�] = (ML�,R(M + S)L�)L2(Σ∗),

d2J1(Ω
∗)[�,�] = (R(M + S)L�,R(M + S)L�)L2(Σ∗),

d2J(Σ∗)[�,�] = ‖R(ML�)‖2
L2(Σ∗)

∼ ‖ML�‖2
H−1(Σ∗)

,
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whenever � is non-negative. Here, the notation “ P ∼ Q ” means that “ P ≲ Q and 
P ≳ Q .” Hence, the positivity of d2J(Σ∗) holds only in the weaker space �2(Σ∗).

4  Existence of optimal domains of the shape optimization problem

Before going to the numerical treatment of the proposed shape optimization 
reformulation “ minΩ J(Σ) subject to (3) and (6)” [or equivalently, “ minΩ J(Σ) sub-
ject to (7) and (8)”] of (1) and for completeness, let us first address the ques-
tion of existence of optimal solution to the said problem. On the other hand, as 
regards to the existence of solution to the exterior Bernoulli FBP (1), we refer the 
readers to [1].

To carry out our present task, we use the results established in [68] regarding 
the continuity of the state problems with respect to domain. We begin by rewrit-
ing the weak formulations (7) and (8) of (3) and (6), respectively, as follows:

Find zN = uN − uN0 ∈ H1
Γ,0
(Ω) such that

find zR = uR − uR0 ∈ H1
Γ,0
(Ω) such that

In above equations, uN0 and uR0 are two fixed functions in H1(U) such that 
uN0 = uR0 = 1 on Γ . Given the unique solvability of (46) and (47) in H1(Ω) , we 
define the map Ω ↦ (zN, zR) = (zN(Ω), zR(Ω)) and denote its graph by

Hence, the problem “ minΩ J(Σ) subject to (7) and (8)” is equivalent to the problem 
of finding a solution (Ω, zN(Ω), zR(Ω)) that minimizes J(Ω) = J(Ω, zN(Ω), zR(Ω)) 
on F  . Such minimization problem is usually solved by endowing the set F  with a 
topology for which F  is compact and J is lower semi-continuous. For this purpose, 
we follow the ideas developed in [43] and the ones furnished in [13, 42].

Let us now characterize the set of admissible domains Oad and then give an 
appropriate topology on it. In the previous section, we assume a C2,1 regularity for 
the domain Ω to guarantee the existence of the shape derivatives of the states and 
to establish the shape Hessian of J, for the existence proof of optimal solution to 
the problem

(46)∫Ω

∇zN ⋅ ∇� dx + ∫Ω

∇uN0 ⋅ ∇� dx − ∫Σ

�� d� = 0, ∀� ∈ H1
Γ,0
(Ω);

(47)
∫Ω

∇zR ⋅ ∇� dx + ∫Ω

∇uR0 ⋅ ∇� dx + ∫Σ

�zR� d� − ∫Σ

�� d� = 0, ∀� ∈ H1
Γ,0
(Ω).

F = {(Ω, zN(Ω), zR(Ω)) ∶ Ω ∈ Oad and zN(Ω), zR(Ω) satisfies (46) − −(47) on Ω}.

(48)
{

Find (Ω∗, zN(Ω
∗), zR(Ω

∗)) ∈ F such that

J(Ω∗, zN(Ω
∗), zR(Ω

∗)) ⩽ J(Ω, zN(Ω), zR(Ω)), ∀(Ω, zN(Ω), zR(Ω)) ∈ F,
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it is enough to assume that Ω has a C1,1 smooth free boundary Σ (cf. [68]). 
Hence, we let Σ be parametrized by a vector function � ∈ C1,1(ℝ,ℝ2) (i.e., 
Σ = Σ(�) = {� = (�1(t),�2(t)) ∶ t ∈ (0, 1]} ) where, in addition, � is assume to pos-
sess the following properties: 

(P1)  � is injective on (0, 1] and is 1-periodic;
(P2)  there exist positive constants c0, c1, c2 and c3 such that 

(P3)  Ω = Ω(𝜙) ⊂ U , U is a fixed, connected, bounded open subset of ℝ2;
(P4)  there is a positive constant � such that dist(Γ,Σ(�)) ⩾ �.

 If � satisfies the above conditions, then we say that � is in Uad . The set of admis-
sible domains Oad we consider here is now given as follows

The set U in assumption (P3) and the one introduced in Sect. 3 are not necessarily 
the same set. However, we point out that in (P3) , we are assuming that all admis-
sible domains Ω(�) are contained in the hold-all domain U in the same manner 
that the universal set U in Eq. (9) holds all the possible deformations of the refer-
ence domain Ω . Also, we assume that U is large enough that it contains the optimal 
domain Ω∗ that solves the exterior Bernoulli FBP (1). Here, we are in fact requiring 
that dist(Σ(𝜙), 𝜕U) > 0 for all � ∈ Uad and dist(Σ∗, 𝜕U) > 0 . In this way, we can say 
that the shape optimization problem “ minΩ J(Σ) subject to (7) and (8)” is indeed 
equivalent to the free boundary problem (1). Meanwhile, in view of (49), we see that 
every admissible domain Ω(�) is a uniformly open set in ℝ2 and therefore satisfy 
the well-known uniform cone property (cf. [46]). Moreover, as a consequence, these 
admissible domains satisfy a very important extension property. More precisely, for 
every k ⩾ 1 , p > 1 and domain Ω ∈ Oad , there exists an extension operator

such that ‖EΩu‖Wk,p(U) ⩽ C‖u‖Wk,p(Ω) , where C is a positive constant independent of 
the domain Ω (see [18]). Using these properties, we can ensure a uniform extension 
ũ ∈ H1(U) from Ω to U of every function u ∈ H1(Ω) . In the discussion that follows, 
we will use this result to finally define the topology we shall work with.

Let us first define the convergence of a sequence {𝜙n} ⊂ Uad by

i.e., if and only if �n → � in the C1-topology. We can then define the convergence of 
a sequence of domains {Ωn} ∶= {Ω(𝜙n)} ⊂ Oad by

Meanwhile, we define the convergence of a sequence {zNn} of solutions of (46) on 
Ωn to the solution of (46) on Ω as follows

|�(t)| ⩽ c0, c1 ⩽ |��(t)| ⩽ c2, |���(t)| ⩽ c3, a.e. in (0, 1);

(49)Oad = {Ω = Ω(𝜙) ⊂ U ∶ 𝜙 ∈ Uad}.

(50)EΩ ∶ Wk,p(Ω) → Wk,p(U)

(51)�n → � ⟺ �n → � and ��
n
→ �� uniformly on [0, 1],

(52)Ωn → Ω ⟺ �n → �.
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Similarly, the convergence of a sequence {zRn} of solutions of (47) on Ωn to the solu-
tion of (47) on Ω is define

In (53) and (54), the extensions z̃i, z̃in , i = N,R , are defined as EΩzi,EΩzin , i = N,R , 
respectively, where EΩ is of course the extension operator (50).

Finally, the topology we introduce on F  is the one induced by the convergence 
defined by

We now state the main result of this section.

Theorem 1 The minimization problem (48) admits a solution in F .

As stated before, the existence proof is reduced to proving the compactness 
of F  and the lower semi-continuity of J. Regarding the former problem, we note 
that the convergence �n → � follows immediately from the compactness of Uad 
and the Arzelà-Ascoli theorem, hence, the compactness of F  with respect to the 
convergence (55) is already guaranteed. This means that we only need to show 
the continuity of the state problems (3) and (6) with respect to the domain in 
order to complete the proof of compactness of F  . The proof of this continuity is 
not straightforward but has already been done in [68] using the tools established 
in [14, 15], so we simply state the result as follows.

Proposition 6 [68] With the convergence of a sequence of domains given in (52), we 
let {(�n, zNn, zRn)} be a sequence in F  where zNn ∶= zN(�n) and zRn ∶= zR(�n) are 
the weak solutions of (46) and (47) on Ωn ∶= Ω(�n) , respectively. Then, there exists 
a subsequence {(�k, zNk, zRk)} and elements � ∈ Uad and zN, zR ∈ H1(U) such that

where zN = zN(𝜙) = z̃N|Ω(𝜙) and zR = zR(𝜙) = z̃R|Ω(𝜙) are the unique solutions of 
equations (46) and (47) on Ω ∶= Ω(�) , respectively.

In the proof of the above proposition, three essential estimates were utilized. 
The first one is a result regarding the uniform Poincaré inequality proved in [15] 
(see, particularly, Corollary 3(ii)]). The second one concerns about the uniform 
continuity of the trace operator with respect to the domain (see [13, Theorem 4]), 
and the last auxiliary result is about a uniform extension of the state variables 
from Ωn to U such that their respective H1(U)-norms are bounded above by a 

(53)zNn → zN ⟺ z̃Nn → z̃N weakly in H1(U).

(54)zRn → zR ⟺ z̃Rn → z̃R weakly in H1(U).

(55)(Ωn, zNn, zRn) → (Ω, zN, zR) ⟺

⎧
⎪⎨⎪⎩

�n → �,

zNn → zN,

zRn → zR.

𝜙k → 𝜙, z̃Nk ⇀ zN in H1(U), z̃Rk ⇀ zR in H1(U),
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constant positive number (see first part of the proof of Proposition  6 given in 
[68]). For completeness, we recall them as follows:

Lemma 4 Let �n,� ∈ Uad and Ω(�n),Ω(�) ∈ Oad . Then, the following results hold.

 (i) For every u ∈ H1
Γ,0
(Ω) , we have the estimate ‖u‖L2(Ω) ≲ �u�H1(Ω).

 (ii) For all real number q such that 1
2
< q ⩽ 1 and functions u ∈ H1(U) , we have

where ‖ ⋅ ‖Hq(U) denotes the Hq(U)-norm.
 (iii) There exists a uniform extension z̃Rn (respectively z̃Nn ) of zRn (respectively zNn ) 

from Ωn to U and a constant CR > 0 independent of n such that ‖z̃Rn‖H1(U) ⩽ CR 
(respectively ‖z̃Nn‖H1(U) ⩽ CN , where CN > 0 is constant).

In relation to the second statement of the above lemma, we note that due to 
assumption (P3) and the uniform cone property of the domain Ω(�) ∈ Oad , the 
norm of the trace map tr ∶ H1

0
(U) → L2(Σ(�)) can actually be bounded uniformly 

with respect to Ω(�) ∈ Oad ; see [59]. On the other hand, we mention that the proof 
of Lemma 4(iii) given in [68] uses the first two estimates (i) and (ii). Note that the 
third part of the lemma already guarantees the existence of a subsequence of {z̃Rn} 
(respectively {z̃Nn} ) which weakly converges in H1(U) to a limit denoted by z̃R 
(respectively z̃N ). Hence, the proof of Proposition 6 is completed by showing that 
the restriction of {z̃R} (respectively {z̃N} ) in Ω(�) coincides with the unique solu-
tion of (47) (respectively (46)). Because of the basic role Lemma 4(iii) plays in 
the proof of the lower-semicontinuity of J, we provide its proof below.

Proof of Lemma 4(iii) Throughout the proof we use the notation (⋅)n ∶= (⋅)(�n) . From 
a famous paper of Chenais [18], we know that the solution zRn of (47) on Ωn admits 
an extension z̃Rn in H1(U) such that

So, to establish our desired result, we need to prove that ‖zRn‖H1(Ωn)
 is bounded with 

respect to n. In view of (8), taking � = zRn ∈ H1
Γ,0
(Ωn) , we have

This yields the estimate

Next, we show that ‖zRn‖L2(Σn)
 can be bounded by |zRn|H1(Ωn)

 . This is where we apply 
the first two parts of the lemma (i.e., Lemma 4(i) and (ii)) to obtain

‖u‖L2(Σ(𝜙)) ≲ ‖u‖Hq(U),

‖z̃Rn‖H1(U) ≲ ‖zRn‖H1(Ωn)
.

∫Ωn

|∇zRn|2 dx + ∫Σn

�|zRn|2 d� = −∫Ωn

∇uR0 ⋅ ∇zRn dx + ∫Σn

�zRn d�.

(56)�zRn�2H1(Ωn)
⩽ �uR0�H1(U)�zRn�H1(Ωn)

+ ����U�1∕2‖zRn‖L2(Σn)
.
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Going back to (56), we get

Applying Lemma 4(i) once more, we obtain

which establishes the boundedness of {‖z̃Rn‖H1(U)} . The same line of argument can 
be used to prove that there exists a uniform extension z̃Nn of zNn from Ωn to U and a 
constant CN > 0 independent of n such that ‖z̃Nn‖H1(U) ⩽ CN . (In fact, taking � = 0 
in above proof easily verifies this statement.)   ◻

Having recalled the above results, we now proceed on the second part of the 
proof of Theorem 1 by proving the next result.

Proposition 7 The cost functional

is lower semi-continuous on F  in the topology induced by (55).

To prove the above proposition, we will exploit the parametrization � of Σ . 
Also, its properties stated in assumption (P3) will be used implicitly many times 
in the proof. The following result, which is a consequence of Lemma 4(ii) (see 
[13, Corollary 2], and also [14, Corollary 1]), will also be central to the proof 
Proposition 7 given below.

Lemma 5 [13, 14] Let �n,� ∈ Uad be a sequence such that �n → � in the 
C1([0, 1],ℝ2)-norm. Then, for any u ∈ H1(U) , we have limn→∞ u◦�n = u◦� in 
L2([0, 1])

Proof of Proposition 7 Let {(Ωn, uNn, uRn)} be a sequence in F  , Ωn ∶= Ω(�n) , and 
assume that

(Ωn, uNn, uRn) → (Ω, uN, uR) as n → ∞,
where Ω ∶= Ω(�) and the triple (Ω, uN, uR) is in F  . For convenience, we let 

wn = uNn − uRn (recalling that w = uN − uR ) and their extensions in H1(U) by w̃n and 
w̃ , respectively. Here, we emphasize that w = w̃|Ω is in H1

Γ,0
(Ω) which is essentially 

due to the boundedness of the trace operator. Moreover, for any u ∈ H1
Γ,0
(U) , the 

restriction u|Ωn
 is in H1

Γ,0
(Ωn) . We have

‖zRn‖L2(Σn)
≲ ‖z̃Rn‖H1(U) ≲ ‖zRn‖H1(Ωn)

≲ �zRn�H1(Ωn)
.

�zRn�H1(Ωn)
≲ ‖uR0‖H1(U) + �𝜆��U�1∕2.

‖zRn‖H1(Ωn)
≲ ‖uR0‖H1(U) + �𝜆��U�1∕2,

J(Σ) = J(Ω, uN(Ω), uR(Ω)) =
1

2 ∫Σ

|uN(Ω) − uR(Ω)|2 d�
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We first look for an estimate for the second integral �2 . For this purpose, we apply 
the estimates in Lemma 4 and the compactness of the injection of H1(U) into Hq(U) 
for 1

2
< q < 1 , to obtain

Clearly, using the convergence �′
n
→ �′ in the C1([0, 1],ℝ2)-norm (see (51)), we get 

the limit limn→∞ �2 = 0.
On the other hand, to get an estimate for the first integral �1 , we first apply the 

identity a2 − b2 = (a − b)2 + 2b(a − b) to obtain

For �12 , we have the estimate

On the other hand, for �11 , we have

2|J(Σ(�n) − J(Σ(�))|
=
|||||∫Σ(�n)

|wn|2 d� − ∫Σ(�)

|w|2 d�
|||||

⩽

|||||∫
1

0

[|(wn◦�n)(t)|2|��
n
(t)| − |(w◦�)(t)|2|��(t)|]dt

|||||
⩽

|||||∫
1

0

[
(wn◦�n)

2 − (w◦�)2
]|��

n
| dt

|||||
+
|||||∫

1

0

(w◦�)2(|��
n
| − |��|) dt

|||||
=∶ 𝕀1 + 𝕀2.

�2 ≲ sup
[0,1]

�𝜙�
n
− 𝜙��‖w‖2

L2(Σ(𝜙))
≲ sup

[0,1]

�𝜙�
n
− 𝜙��‖w̃‖2

H1(U)
≲ sup

[0,1]

�𝜙�
n
− 𝜙��.

𝕀1 ⩽

|||||∫
1

0

(
wn◦�n − w◦�

)2|��
n
| dt

|||||
+ 2

|||||∫
1

0

(w◦�)(wn◦�n − w◦�)|��
n
| dt

|||||
=∶ 𝕀11 + 2𝕀12.

𝕀12 ⩽

�����∫
1

0

(w◦𝜙)(wn◦𝜙n − w◦𝜙n)�𝜙�
n
� dt

�����
+
�����∫

1

0

(w◦𝜙)(w◦𝜙n − w◦𝜙)�𝜙�
n
� dt

�����
≲ ‖w‖L2(Σ)

�‖wn − w‖L2(Σn)
+ ‖w◦𝜙n − w◦𝜙‖L2([0,1])

�

≲ ‖w̃n − w̃‖Hq(U) + ‖w◦𝜙n − w◦𝜙‖L2([0,1]).
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The above estimates were obtained using the inequalities in Lemma 4. Combining 
them, we arrive at

Applying Lemma  5, and again using the compactness of the injection 
of H1(U) into Hq(U) for 1

2
< q < 1 , the convergences w̃n ⇀ w̃ in H1(U)-

weak and �′
n
→ �′ in the C1([0, 1],ℝ2)-norm (see Proposition 6), we obtain 

limn→∞ �1 = 0 . Thus, limn→∞ |J(Σ(�n) − J(Σ(�))| = 0 . Consequently, we find that 
limn→∞ J(Ωn, uNn, uRn) = J(Ω, uN, uR) ; that is, J is continuous, and in particular, 
lower semi-continuous.   ◻

To conclude this section, let us formally provide the proof of Theorem 1 using 
Proposition 6 and Proposition 7.

Proof of Theorem 1 Let (Ωn, zNn, zRn) , Ωn = Ω(�n) , be a minimizing sequence for the 
cost function J; that is, (Ωn, zNn, zRn) is such that

From Proposition  6, there exists a subsequence (Ωk, zNk, zRk) and an element 
Ω = Ω(�) ∈ Oad such that Ωk → Ω (i.e., �k → � uniformly in the C1 topology), 
z̃Nk ⇀ z̃N , z̃Rk ⇀ z̃R in H1(U) , and the functions z̃N|Ω and z̃R|Ω are the unique weak 
solutions to (46) and (47) in Ω , respectively. Using these, together with the continu-
ity of J proved in Proposition 7, we conclude that (by virtue of [43, Theorem 2.10])

  ◻

Remark 8 It is worth remarking that in [32], the authors did not tackle the question 
of existence of optimal solution of the shape optimization problem examined in their 
paper which is the Poisson case of (1) with a regular Dirichlet and Neumann data on 
the fixed boundary and free boundary, respectively. Nevertheless, the authors tacitly 

𝕀11 ⩽

�����∫
1

0

(wn◦𝜙n − w◦𝜙n)
2�𝜙�

n
� dt

�����
+ 2

�����∫
1

0

(wn◦𝜙n − w◦𝜙n)(w◦𝜙n − w◦𝜙)�𝜙�
n
� dt

�����
+
�����∫

1

0

(w◦𝜙n − w◦𝜙)2�𝜙�
n
� dt

�����
≲ ‖wn − w‖2

L2(Σn)
+ ‖wn − w‖2

L2(Σn)
(‖w‖L2(Σn)

+ ‖w‖L2(Σ)) + ‖w◦𝜙n − w◦𝜙‖L2([0,1])
≲ ‖w̃n − w̃‖Hq(U) + ‖w◦𝜙n − w◦𝜙‖L2([0,1]).

�1 ≲ ‖w̃n − w̃‖Hq(U) + ‖w◦𝜙n − w◦𝜙‖L2([0,1]).

lim
n→∞

J(Ωn, zNn, zRn) = inf{J(Ω, zN, zR) ∶ (Ω, zN, zR) ∈ F}.

J(Ω, z̃N|Ω, z̃R|Ω) = lim
k→∞

J(Ωk, zNk, zRk) = inf{J(Ω, zN, zR) ∶ (Ω, zN, zR) ∈ F}.
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supposed the existence of optimal domains and assumed that it is sufficiently regular 
to accomplish their objectives. We mention that, with the appropriate modification 
on the proof of Theorem 1, the existence analysis for the shape optimization prob-
lem studied in [32] can be carried out in a similar fashion (see [13]).

5  Numerical algorithm and examples

Here, using the gradient and Hessian informations, we will formulate a boundary 
variation algorithm to numerically solve the minimization problem (5). We shall use 
a Lagrangian-like method to carry out the numerical realization of the problem in 
contrast to the one applied in [12, 44, 50] which is an Eulerian-like type method 
known as level-set method (see [64]). Of course, our approach is also different from 
[31–33] which employs the concept of boundary integral equations and were then 
solved by boundary element methods. Furthermore, there is another numerical 
method which was recently proposed in [40] that employs the notion of conformal 
mapping method to solve the FBP (1). This solution method was recently devel-
oped by Haddar and Kress in [40] and relates the Bernoulli problem in the context 
of inverse problems. Much more recently, another method was also introduced by 
Kress in [54] in an attempt to improve the use of boundary integral equations for 
numerically solving the Bernoulli problem. In terms of numerical performance, he 
demosntrated that his recently proposed method inspired by Trefftz’ integral equa-
tion method [73] is more robust and wider applicable than that of [40]. We men-
tion here that Trefftz’ approach, in principle, can be considered as a so-called trial 
method (see, e.g., [72]) which is also a prominent numerical method for solving free 
boundary value problems such as the Bernoulli problem.

5.1  Numerical algorithm

In the following discussion, we give the details of the numerical algorithm we use to 
solve some concrete numerical examples of (5).

5.1.1  The Sobolev gradient method

Let us denote by Ωk the shape of the domain at the kth iteration. Then, at the (k + 1)th 
iteration, the shape Ω can be updated as Ωk+1 ∶= Ωtk+1

= (�2 + tk�)Ω , where tk ⩾ 0 
is some small step size parameter and � represents the descent deformation field 
�k at the kth iterate. In perturbing the domain Ω , we may take �|Σ = −G� as the 
descent direction. However, this choice of the descent direction may cause undesir-
able oscillations on the free boundary of the shape solution Ω∗ . To avoid such phe-
nomena, we compute the descent direction via the so-called H1  gradient method [6]; 
that is, we take � as the unique solution in �1

Γ,0
(Ω) of the variational problem
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In this sense, the deformation field � , also called in some literature as a Sobolev 
gradient (see, e.g., [60]), provides a smooth extension of G� over the entire domain 
Ω , which not only smoothes the boundary [5] but also provides a preconditioning of 
the descent direction. The method of regularizing the descent direction using (57) is 
similar to the idea behind the so-called traction method introduced and popularized 
in [2–5].

On the other hand, we note that the kernel G given in (15) depends on the mean 
curvature of Σ . This means that we first need to calculate � in order to determine � . In 
this investigation, we evaluate this expression by first creating a smooth extension of � 
using the idea of the H1 gradient method and then calculate � as the divergence of that 
smooth extension. This technique is possible because, by Proposition 5.4.8 of [46, p. 
218] (see also [38, Lemma 16.1, p. 390]), we know that, for a domain Ω of class C2 , 
there exists a unitary C1 extension �̃ of � such that the mean curvature may be defined 
as

Hence, based on this idea, we may numerically compute � via the equation 
� = div� , where � is the smoothed extension of � satisfying the equation

5.1.2  Step size

Let us now turn our attention to the computation of the step size to be used in our 
algorithm. It is worth mentioning that the choice for tk can be decided in many ways. 
Here, we shall update tk ∈ (0, �] (where 𝜀 > 0 is some sufficiently small real number) 
by following a heuristic approach inspired by the Armijo–Goldstein line search strategy 
similar to the one offered in [50], but for level-set methods. Given the choice of descent 
direction �|Σ = −G� (this means, basically, that a(⋅, ⋅) in equation (60) below is the 
usual inner product in L2(Σ) ) and the definition of the domain Ω� , we know that

The requirement J(Σ�) = (1 − �)J(Σ0) for some � ∈ (0, 1) then suggests the choice 
� = �J(Σ0)∕‖G‖2L2(Σ0)

 . However, since we are regularizing � via (57), we need to 
replace the L2-norm of G appearing in the denominator of the previous formula with 
the �1(Ω)-norm of � , and then finally define the step size tk as

(57)∫Ω

(∇� ∶ ∇� + � ⋅ �) dx = −∫Σ

G� ⋅ � d�, ∀� ∈ �
1
Γ,0
(Ω).

𝜅 = divΣ� = div �̃.

(58)∫Ω

∇� ∶ ∇� dx + ∫Σ

� ⋅ � d� = ∫Σ

� ⋅ � d�, ∀� ∈ �
1(Ω).

J(Σ𝜀) ≃ J(Σ0) + 𝜀dJ(Σ0)[�] = J(Σ0) − 𝜀‖G‖2
L2(Σ0)

(< J(Σ0)).

(59)tk = �J(Σk)∕‖�‖2�1(Ω)
.
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We further explain the above formula as follows. In general, we may in fact consider 
the variational equation

where a(⋅, ⋅) is some bounded coercive bilinear form on an appropri-
ate space X  , to obtain a regularization of the descent direction −G� (see, 
e.g., [5, Section  6.3]). Then, using (60) and the requirement that the relation 
J(Σ�) = (1 − �)J(Σ0) = J(Σ0) + �⟨G�,�⟩L2(Σ) holds for some � ∈ (0, 1) , we end up 
with the equation

for any � ∈ �
1
Γ,0
(Ω) . Hence, at each iteration, we may choose, for a fixed � , the step 

size parameter tk as tk = �J(Σk)∕a(�,�). This formula for tk clearly provides a natu-
ral choice for the magnitude of the step size when the descent direction � is regular-
ized using equation (60). Nevertheless, as investigated in [67] through various 
numerical experiments, it is possible to change the denominator a(�,�) in the for-
mula for tk to get a better step size. In fact, by changing the �1(Ω)-norm in (59) by 
either the �1

Γ,0
(Ω) - or the �2(Σ)-norm, for instance, we can speed up the conver-

gence of the algorithm given below, as exhibited in [67]. Indeed, this claim can eas-
ily be supported by the fact that the sequence of inequalities 
‖�‖−2

�1(Ω)
≲ ‖�‖−2

�
1
Γ,0

(Ω)
≲ ‖�‖−2

�2(Ω)
 obviously holds.

Now, with � ∈ (0, 1) fixed, the step size will be decided according to the follow-
ing rule: we take tk as in (59) whenever there is a decrease in the computed cost 
value from the previous to the next iteration loop (i.e., if J(Σk+1) ⩽ J(Σk) ). Other-
wise, if the cost value increases, we reduce the step size and go backward: the next 
iteration is initialized with the previous shape Ωk . We also reduce the step size tk if 
reversed triangles are detected within the mesh update.

5.1.3  The boundary variation algorithm (first‑order method)

The main steps required for the computation of the kth domain is summarized as 
follows: 

Step 1  Fix the step size parameter and choose an initial shape Ω0.
Step 2  Solve the state equations and their corresponding adjoint state systems on 

Ωk . Also, solve the variational problem (58) on Ωk.
Step 3  Using the shape gradient, compute the descent direction �k via (57) and the 

step size tk by (59).
Step 4  Using �k and tk , perturb the current domain by Ωk+1 = (�2 + tk�k)Ωk.

 Finally, to complete the above steps, we need to specify the stopping condition. 
Here, we terminate the algorithm as soon as the inequality condition

(60)a(�,�) = −⟨G�,�⟩L2(Σ), ∀� ∈ X,

� = −�
J(Σ0)

⟨G�,�⟩L2(Σ) = �
J(Σ0)

a(�,�)
,
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is satisfied for some sufficiently small real number 𝜂 > 0 or if the algorithm already 
completed a specified (maximum) computing time. It worth mentioning that a typi-
cal stopping criterion is to find that whether the shape gradients in some suitable 
norm are small enough. However, since we use the continuous shape gradients, it is 
hopeless for us to expect very small gradient norm because of numerical discretiza-
tion errors. In addition, because we will be comparing our proposed method with 
that of the classical Dirichlet-data-tracking approach and since this method uses 
a different cost function, a normalization of the cost histories with the initial cost 
value that corresponds to each method seems more appropriate to our case.

We shall refer to the above sequence of procedures with dJA given by (15) as the 
gradient as Algorithm A.1. On the other hand, when using the full shape gradient dJ 
given in Proposition 2 in Step 3, the above steps will be referred to as Algorithm B.1.

5.1.4  Incorporating the shape Hessian information in the numerical procedure

We remark that, with the help of the shape Hessian information, we can obviously 
improve the convergence of the numerical method given in the previous section in 
terms of the number of iterations required to complete the iteration scheme (see, e.g., 
[28, 68, 72]). However, the drawback of a second-order method is that, in most cases, 
it demands additional computational burden and time to carry out the task. In this sec-
tion, we will formulate a second-order optimization algorithm to solve the minimiza-
tion problem (5) following an idea first proposed by the second-author in [7] (see also 
[8, Problem 4.2, Eq. (29)]). Particularly, we use a variant of the so-called H1 Newton 
(or Sobolev Newton) method which utilizes the Hessian information to compute the 
descent direction. The basic idea of this method is that it incorporates the shape Hes-
sian in obtaining a regularized descent direction for the algorithm similar to equation 
(60) (see Remark 9 below). In our case, however, we propose to use only the shape 
Hessian information at the solution of the FBP (1) (i.e., we use (40)).

To do the task, we define the descent direction � ∈ �
1
Γ,0
(Ω) as the unique solution 

of the variational equation

where G, as before, is the kernel of the shape gradient while H∗[�] , in this case, 
denotes only the kernel of the shape Hessian at the solution of the FBP (1), i.e., 
∫
Σ∗ H

∗[�]� ⋅� d� ∶= d2J(Σ∗)[�,�] (cf. (43)). In case of the shape gradient com-
puted with assumption (�) , the corresponding notation is H∗

A
[�] . In terms of the 

adjoint states, these kernels of the shape Hessians are exactly given by

(61)J(Σk+1)∕J(Σ0) < 𝜂,

(62)
∫Ω

(∇� ∶ ∇� +� ⋅ �) dx = −∫Σ

(G + H∗[�])� ⋅ � d�, ∀� ∈ �
1
Γ,0
(Ω),

(63)H∗[�] = ��Π[�] and H∗
A
[�] = �(Ψ[�] + ��Π[�]),
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respectively. Here, of course, Ψ and Π satisfy Eqs. (41) and (42), respectively. In 
above expressions, we added the notation (⋅)[�] to emphasize that the expression it 
is attached to is dependent to the deformation field �.

Now, the main steps to compute the kth domain Ωk are essentially the same as 
that given in Sect. 5.1.3. However, in order to take into account the procedure in 
computing � , we divide the third step of the original algorithm as follows: 

Step 3.1  Using the shape gradient, compute the descent direction �k via (57).
Step 3.2  Compute Ψ and Π by solving the PDE systems (41) and (42) at Ω = Ωk.
Step 3.3  Using the shape gradient and the shape Hessian, compute the descent 

direction �k using (62).

 Moreover, in Step 4 of the original algorithm, we replace �k with the new defor-
mation field �k ; that is, we perturb the kth domain by Ωk+1 = (�2 + tk�k)Ωk . 
Here, the step size tk can still chosen on the basis of the formula given in (59). 
However, in our experience, this formula for the step size does not give much 
improvement in terms of convergence speed for the second-order shape optimiza-
tion algorithm. To exploit the advantage of utilizing the shape Hessian informa-
tion, an appropriate step size formula has to be used to achieve at least a superlin-
ear (or even quadratic) convergence rate for the algorithm (see Remark 10 below).

Remark 9 We also remark that the computed boundary integral expression (33) with 
GA replaced by G in the proof of Proposition 3, in general, can be further written 
into the following form

where K = �Σ ⋅ (DΣ�)�Σ + � ⋅ (DΣ�)�Σ + � ⋅ (DΣ�)�Σ , Vn ∶= � ⋅ � for � ∈ Θ , 
� = �|Σ , � = �Σ + vn� ∶= (� ⋅ �)� + (� ⋅ �)� and DΣ denotes the tangential differen-
tial operator called the tangential Jacobian matrix given as DΣ� = D�|Σ − (D��)�⊤ 
(see, e.g., [22, Eq. (5.2), p. 495]). Evidently, the above expression for the shape Hes-
sian is composed of symmetric and non-symmetric terms with respect to the defor-
mation fields � and � (cf. [63]). This lack of symmetry and complexity in form of 
the shape Hessian provides much difficulty for its utilization and numerical imple-
mentation [62, 70]. Nevertheless, as proposed by Simon in [70], one can still utilize 
the shape Hessian in an optimization procedure in a much simpler way by dropping 
the non-symmetrical part of the Hessian (see, e.g., [49]), allowing one to obtain a 
second order expansion of the form J(Σ) + dJ(Σ)[�] + d2J(Σ)[�,�] of J(Σ) with 
respect to the descent direction � . Note that, at the optimal shape solution Ω = Ω∗ , 
the necessary optimality condition give rise to the variational formulation of the 
Newton equation

d2J(Σ)[�,�] = ∫Σ

[
G�

W
Vn +

(
�
�
G + �G

)
VnWn − GK + G(D�)Wn

]
d�,

d2J(Σ)[�,�] = −dJ(Σ)[�], ∀� ∈ �
1
Γ,0
(Ω),
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whose solution � may be used as a descent direction in a gradient-based descent 
algorithm (cf. equation in Step 3 of [43, Section 4.1.1, Algorithm 4.1, p. 131]). Fol-
lowing this idea, and employing a smoothing technique such as (60), we arrive at 
Eq. (62) which gives us a new regularized descent direction �.

Remark 10 In addition to the previous remark, and as also noted by Simon 
in [70] (see his remark in Section  2.1), we mention that the velocity of gradient 
methods (such as Algorithm A.1) can be improved by choosing the step size as 
the negative ratio between the shape gradient over the shape Hessian. For exam-
ple, the kth approximation of Ω0 can be computed as Ωk+1 = (�2 + t

f

k
�k)Ωk where 

t
f

k
= −dJ(Σk)[�k]∕d

2J(Σk)[�k,�k] . Here, the step generated by the formula for tf  is 
commonly called as the (full) Newton step (see, e.g., [61, Section 3.3]).

In our case, since we are using regularized descent directions, the above idea is, 
in a sense, equivalent to taking tk as a scalar multiple of the ratio of the square of the 
�1(Ω)-norm of � over the squared �1(Ω)-norm of � . Indeed, from a similar propo-
sition issued in Sect. 5.1.2, we can naturally take

for a fixed �̃� ∈ (0, 1] , as the kth step size of the second-order optimization algorithm 
proposed in Sect. 5.1.4.

In (64), we introduced the step size parameter �̃� simply to control the magnitude 
of the descent step during each iteration. We recall that, in most optimization prob-
lems, the introduction of a step size parameter to Newton’s method is primarily due 
to the fact that the method is quite sensitive if the initial guess is too bad. Com-
mon strategies to globalize the method is to introduce a line search strategy or to 
work with the so-called trust region methods (see, e.g., Section 3.4 and Chapter 4 
of [61]). In practice, the former strategy is accomplished by scaling the Newton’s 
step by some coefficient 0 < �̃� ⩽ 1 in every iteration [as we have done in (64)]. Tak-
ing �̃� = 1 obviously amounts to a full Newton step and choosing �̃� < 1 yields the 
so-called damped Newton method (see, e.g., [16, Section 9.5.2, p. 487]) which has 
an increased convergence radius (this, however, does not work well in general), and 
also has a reduced convergence order (not quadratically anymore). Nevertheless, 
when the approximant is judged to be near to a solution, �̃� = 1 is taken and the con-
vergence would be as good as for the standard (or pure) Newton’s method.

Here, we opted to apply a line search method in our proposed second-order (shape 
optimization) algorithm to address two main issues when taking the full Newton step. 
Firstly, we notice that, in some situations, choosing a full Newton step is not necessar-
ily the best strategy to start the approximation procedure, especially if the initial guess 
is far from the (optimal shape) solution. Secondly, we observe that the full Newton 
step is sometimes too large that the cost functions become insensitive with respect to 
geometric perturbations, occasionally causing the algorithm to overshoot or converge 
prematurely to a less optimal solution (see Example 5.2.4). On the other hand, although 
the step size parameter �̃� can be made at most equal to the unit value when the approxi-
mant is estimated to be close to the optimal solution, we only fixed �̃� to be of constant 

(64)tk = �̃�‖�‖2
�1(Ωk)

∕‖�‖2
�1(Ωk)

,
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value ( ⩽ 1 ) throughout the iteration process. Nevertheless, a backtracking procedure as 
in Sect. 5.1.2 will still be employed in the algorithm, meaning that the maximum step 
size at each iteration of the algorithm is only bounded above by a fraction (determined 
by the value of �̃� ) of the full Newton step.

Despite the fact that the idea is already known in the literature, we emphasize that 
the formula for the step size given by (64) is, to the best of our knowledge, novel to 
this work. We shall refer to the modifications of Algorithm A.1 and Algorithm B.1, 
exploiting the shape Hessian informations given in (63) and the new step size formula 
for tk , as Algorithm A.2 and Algorithm B.2, respectively. Also, for the sake of compari-
son, we will also run our propose iterative procedures using the classical Dirichlet-data-
tracking approach in solving the numerical examples in the next section. We will refer 
to these procedures as Algorithm C.1 for the first-order method (with shape gradient 
dJ1 in Remark 2) and Algorithm C.2 for the second-order method (with shape Hessian 
d2J1 given in Proposition 4). Regarding the latter method, it is worth to mention that a 
second-order shape optimization method that utilizes the Dirichlet-data-tracking cost 
functional J1 in Lagrangian-like method has not been done yet in previous numerical 
investigations. Hence, this paper is the first to investigate the feasibility and efficiency 
of employing the said formulation in a second-order shape optimization (finite element 
based solution) procedure for solving the exterior Bernoulli FBP (1).

5.2  Numerical examples

The test cases we give below are all performed in two-dimension using the pro-
gramming software FreeFeM++ (see [45]). All weak formulations described in 
previous sections are solved using P2 finite element discretization where the num-
ber of discretization points on the free and fixed boundaries are initially set to 
Next × Nint = 120 × 100 discretization points. Meanwhile, we use the built-in function 
movemesh of FreeFeM++ in perturbing the reference domain Ω during the optimiza-
tion process. In addition, we use the function adaptmesh with minimum edge size hmin 
and maximum edge size hmax during mesh adaption to refine and avoid the degeneracy 
of the triangles in the meshes. In all examples, we set hmin = 1∕80 and hmax = 1∕40 
except for the third problem where we take hmin = 1∕10 and hmax = 1∕5 . Moreover, 
we terminate the iterations as soon as J(Σk+1)∕J(Σ0) < 10−8 or if the algorithm already 
runs for 60 seconds of computing time. Furthermore, in all examples we give below, 
the Robin coefficient � is, of course, chosen to be equal to � (the mean curvature of 
the free boundary) in Algorithm A.1 and Algorithm A.2, while for Algorithm B.1 and 
Algorithm B.2 we take � = 100 . All computations are carried out on a 1.6 GHz Intel 
Core i5 Macintosh computer with 4GB RAM processors.

5.2.1  Example 1: axisymmetric case

We first consider a simple axisymmetric case. Given that C(0, r) and C(0,R) are the 
circles centered at the origin with radius r > 0 and R > r , respectively, the pure Dir-
ichlet problem (problem (4))
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has the exact solution u(�) = log (�∕R)∕ log (r∕R) . In this case, 
�
�
u(R) = 1∕[R log (r∕R)] . Hence, the exterior Bernoulli FBP (1) with

has the unique exact free boundary solution Σ∗ = C(0,R) . Moreover, the explicit 
expression uD satisfying (4) on Ω� (the annular domain with inner radius r and outer 
radius � centered at the origin) is given by

Similarly, for the mixed Dirichlet–Neumann problem (3) with assumptions given by 
(65), the explicit expression for its solution uN is given by

Meanwhile, for the mixed Dirichlet–Robin problem (6) with fixed 𝛽 > 0 and � in 
(65), the PDE system

has the solution u = uR(Ω�) explicitly given by

Thus, when the free boundary is given by Σ� = {x ∶ |x| = �} , the exact values of the 
functionals J1 , J2 , J3 , J4 and J are given by the following expressions:

−
𝜕2u

𝜕𝜌2
−

1

𝜌

𝜕u

𝜕𝜌
= 0 for r < 𝜌 < R, u(r) = 1, and u(R) = 0,

(65)Γ = {x ∈ ℝ
2 ∶ |x| = r} and 𝜆 =

1

R log
(

r

R

) , 0 < r < R,

uD(Ω�) =
log |x| − log �

log r − log �
.

uN(Ω�) = �� log

(|x|
r

)
+ 1.

−
𝜕2u

𝜕𝜌2
−

1

𝜌

𝜕u

𝜕𝜌
= 0 for r < 𝜌 < R, u(r) = 1, and 𝜕

�
u(R) + 𝛽u(R) = 𝜆,

uR(Ω�) =
1 + �� log

(|x|
r

)
− �� log

(|x|
�

)

1 − �� log
(

r

�

) .
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Figure 1 shows that the algorithms using J1 , J2 , J3 , J4 and J are not equivalent.
Next, we evaluate the efficiency of the first-order shape optimization meth-

ods presented in the previous sections (i.e., Algorithm A.1, Algorithm B.1 and 
Algorithm C.1) in solving a concrete example of the present test problem. For 
this purpose, we let r = 0.3 and R = 0.5 (hence, R∗ = 0.5 ), giving us � = −3.9152 . 
We choose the circle centered at the origin with radius 0.6 as our initial guess 
(i.e., we take Σ0 = C(0, 0.6) ). The results of the convergence tests using Algo-
rithm A.1, Algorithm B.1 and Algorithm C.1 for values of � = 0.1, 0.3, 0.5 are 
depicted in Figure 2. This includes the histories of mean radii shown in Fig. 2a, 

J1(Σ�) =
1

2 ∫Σ�

u2
N
d� = ��

�
1 − �� log

�
r

�

��2

,

J2(Σ�) =
1

2 ∫Σ�

�
�uD

��
− �

�2

d� =
�

�

�
log

�
r

�

��2

�
1 − �� log

�
r

�

��2

,

J3(Ω�) =
1

2 ∫Ω�

���∇
�
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����
2
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�
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�

r
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��2
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the histories of relative errors 𝜖k = |R̄k − R∗| shown in Fig. 2b, and the histories 
of cost values (normalized with its initial value) plotted on logarithmic scale in 
Fig.  2c. In these figures, the ‘kth mean radii,’ denoted by R̄k , means the aver-
age distance from the origin of the nodes on the exterior boundary of the kth 
domain Ωk , and Σk denotes the kth approximation of the optimal free bound-
ary Σ∗ . In all cases, the computed values of the cost functions at ΣK that cor-
respond to each algorithm, where K denotes the optimal termination index (i.e., 
K ∶= min{k ∈ ℕ0 ∶ stopping condition is satisfied} ), are all found to be of magni-
tude less than 10−6 . Furthermore, the computed relative errors �k in all cases are 
of magnitude of order 10−4 . Meanwhile, we notice from Fig. 2a that our proposed 
formulation coupled with our present numerical scheme with � = 0.3 solves the 
solution of the test problem as fast as the Kohn–Vogelius formulation (com-
bined with the level-set method) used in [12] in terms of the number of itera-
tions required to complete its corresponding iteration process. In fact, our pro-
posed method with the step size parameter � set to 0.5 is even faster than the 
said approach used by Ben Abda et  al. in [12]. On the other hand, it is evident 
from the shown figures that Algorithm B.1 posseses faster convergence rate than 
Algorithm C.1. Hence, our proposed method (without, of course, imposing condi-
tion (A)) is more efficient than the classical Dirichlet-data-tracking approach, at 

(a) Histories of Mean Radii

(b) Histories of Error Values

(c) Histories of Cost Values

Fig. 2  Histories of a mean radii, b error values and c cost values of Example  5.2.1 for values of 
� = 0.1, 0.3, 0.5 (left, middle and right plots, respectively) using the gradient based algorithms A.1, B.1 
and C.1
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least in solving the present case problem. In contrary, however, Algorithm A.1 
(in which condition (A) is assumed) converges to the solution of the test problem 
slower than Algorithm C.1.

Now, we resolve the test problem using Algorithm A.2, Algorithm B.2 and Algo-
rithm C.2. The computational results obtained from these second-order shape optimi-
zation methods are shown in Figure 3. Looking at the graphs depicted in the said figure, 
it seems that our proposed method, with or without condition (A) (respectively, Algo-
rithm A.2, and Algorithm B.2) is faster than the second-order Dirichlet-data-tracking 
approach (i.e., Algorithm C.2). In this case, however, Algorithm B.2 and Algorithm 
C.2 were ran with �̃� = 0.3 while we used the full Newton step (i.e., �̃� = 1 ) for Algo-
rithm A.2. Again, the computed final cost values, in all cases, are of magnitude less 
than 10−6 and the absolute errors at the final iterate �K are all found to be of magnitude 
of order 10−4 . Notice from the left most plot in Fig. 3 that the first iterate of Algorithm 
A.2 already overshoots the solution. Even so, the second iterate is already close enough 
to the optimal solution as evident in the said plot.

In the next two examples, we further examine the effect of imposing condition (A) in 
the shape optimization process. This time we consider two concrete problems that have 
non-trivial fixed boundaries. Also, due to the limitation of the proposed shape opti-
mization method coupled with condition (A) (see Remark 1), we only consider cases 
wherein the optimal shape solution are nearly convex. More precisely, for the first prob-
lem, we consider the case when the fixed boundary has a shape like an inverted letter T. 
On the other hand, for the second case problem, we consider a fixed boundary that has 
two disjoint components similar to the one examined in [54]. In these cases, since the 
exact optimal free boundaries are difficult to solve analytically, we simply assume Σ∗ 
as the final free boundary computed using finer meshes and at longer computing times.

5.2.2  Example 2: an inverted T‑shaped fixed boundary

Next, we consider Γ = �S as the boundary of the T-shape

and let � = − 10 . We solve the present problem using algorithms A.1, B.1, A.2, and 
B.2. For the first-order methods, we take � = 0.1 while for the second-order algo-
rithms, we choose �̃� = 0.9 . The results of the computations are shown in Fig.  4. 
Here, the evolution of the free boundaries with initial profile Σ0 = C(�, 0.6) are illus-
trated in Fig. 4a. Observe from these figures that the evolution of the free boundaries 

S ∶= ((−3∕8, 3∕8) × (−1∕4, 0)) ∪ ((−1∕8, 1∕8) × [0, 1∕4)),

Fig. 3  Histories of mean radii (left plot), error values (mid plot) and cost values (right plot) for Exam-
ple 5.2.1 using the second-order shape optimization algorithms A.2, B.2 and C.2
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are clearly different from each other (as expected), especially when the approximant 
is closing to the optimal free boundary. Meanwhile, a comparison between the histo-
ries of cost values and histories of Hausdorff distances between the kth approxima-
tion and the (approximate) optimal free boundaries (here, we denote by dH(Σk,Σ

∗) ) 
obtained from the four algorithms are shown in Fig. 4b, c, respectively. Looking at 

(a)

(c)

(b)

Fig. 4  Computational results of Example 5.2.2 using algorithms A.1, B.1, A.2 and B.2
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these figures, it seems that Algorithm B.1 is converging faster than Algorithm A.1 at 
first few iterations, but then the condition is reversed after 12 iterations. Meanwhile, 
comparing their corresponding second-order methods, it appears that Algorithm 
A.2 and Algorithm B.2 are comparable in terms of convergence speed. On the other 
hand, the second-order methods are obviously much faster than the first-order meth-
ods as expected. In these numerical tests, the computed cost values are all found 
to be of magnitude of order 10−4 . Furthermore, the calculated Hausdorff distances 
between the final free boundaries obtained from the four algorithms (including the 
approximate optimal free boundary) are found to be of order 10−3 . This means that 
the computed final free boundaries are almost identical.

5.2.3  Example 3: a domain with fixed boundary having two disjoint components

For the third example, we look at one of the test problems studied in [54]. Particu-
larly, we let � = − 1.5 and define the fixed boundary Γ as the union of two disjoint 
kite-shaped figures which are parametrically defined as follows:

Here, the initial guess Σ0 for the free boundary is taken to be the circle C(�, 5.0) . In 
addition, we again choose � = 0.1 and �̃� = 0.9 in the first- and second-order meth-
ods. The results of the computations using algorithms A.1, B.1, A.2, and B.2 are 
shown in Fig. 5. In particular, Fig. 5a shows the evolutions of the free boundaries 
obtained using the four algorithms while the remaining plots, Fig. 5b, c, illustrate 
the histories of cost values and Hausdorff distances dH(Σk,Σ

∗) , respectively. In this 
problem, it appears that Algorithm B.1 is completely much faster than Algorithm 
A.1 as oppose to the previous problem. However, we notice a similar convergence 
behavior on the second-order methods as in the previous example. More precisely, 
it seems that Algorithm B.2 converges faster that Algorithm A.2 as the approximant 
gets closer to the optimal free boundary. Meanwhile, as in the previous example, the 
computed cost values are all found to be of magnitude of order 10−4 , and the com-
puted final free boundaries are almost identical with each other (i.e., their Hausdorff 
distances are computed to be of order 10−3).

In the last two examples presented above, the computed final free boundaries are 
found to be nearly convex. To complete our numerical investigation, we need to con-
sider another example wherein the optimal free boundary is clearly non-convex. For 
this purpose, however, we focus on comparing our proposed method with that of 
the classical Dirichlet-tracking approach (noting, of course, that condition (A) is not 
appropriate to take into account in solving this new last and final case problem).

5.2.4  Example 4: a dumb‑bell like shape fixed boundary

We consider Γ = �D as the boundary of a dumbbell-like domain D similar to the one 
examined by Eppler and Harbrecht in [29] which has the following parametrization

Γ1 = {(1 + 0.7 cos 𝜃 − 0.4 cos 2𝜃, sin 𝜃)⊤, 0 ⩽ 𝜃 ⩽ 2𝜋},

Γ2 = {(−2 + cos 𝜃 + 0.4 cos 2𝜃, 0.5 + 0.7 sin 𝜃)⊤, 0 ⩽ 𝜃 ⩽ 2𝜋}.
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For this problem, we again choose the circle C(�, 0.6) as the geometric profile of the 
initial free boundary Σ0 . Moreover, we let � = 0.3 as the step-size parameter for the 

D ∶= {(0.45 cos 𝜃, 0.3 sin 𝜃(1.25 + cos 2𝜃))⊤, 0 ⩽ 𝜃 ⩽ 2𝜋}.

(a)

(b)

(c)

Fig. 5  Computational results of Example 5.2.3 using algorithms A.1, B.1, A.2 and B.2
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first-order methods and take �̃� = 0.8 for the second-order algorithms. The compu-
tational results using algorithms B.1, C.1, B.2, and C.2 are summarized in Fig. 6. 
Looking at Fig. 6a, it is evident that the free boundaries evolve differently from each 
algorithm. In particular, referring to the results of the first-order methods shown in 
the other plots (Fig. 6b, c), it seems that our proposed method is somewhat faster 
than the classical Dirichlet-data-tracking approach. Regarding second-order meth-
ods, however, it looks like that the classical approach is converging faster than the 
Dirichlet-data-gap tracking formulation. In fact, as early as the second iterate, the 
classical Dirichlet-data-tracking approach was already able to detect the non-con-
vexity of the optimal free boundary. Nevertheless, as the approximants get closer 
to the optimal free boundary, we observe that the proposed method then converge 
faster than the classical approach (at least based on the right plot depicted in Fig. 6c). 
Even so, the computed optimal free boundary obtained from the two formulations 
are almost identical as evident in Fig. 6d (in fact, the computed Hausdorff distance 
between the computed final free boundaries obtained from the two formulations has 
magnitude of order 10−3 ). Lastly, in all cases, the computed cost values are all found 
to be of magnitude of order 10−5 or lower. However, as we see in the right plot in 
Fig. 6b, it seems that the cost functional J is less sensitive than the Dirichlet-data-
tracking cost functional J1 in this example. We further explain this property of the 
cost function below, giving emphasis on the notion of ill-posedness of the proposed 
formulation “ minΩ J(Σ) subject to (7) and (8)” discussed in Sect. 3.5.

Sensitivity of the cost functionals  J  and J1 . We conclude our numerical example 
by discussing the effect of the step size parameter �̃� in the ‘sensitivity property’ of 
the cost functionals J and J1 . As pointed out at the end of Sect. 5.1.4, the main pur-
pose of introducing a step size parameter in our second-order methods is to control 
the magnitude of the step size (i.e., to limit the maximum step) at every iteration. 
Recall that, at the kth iterate, we only accept the step size tk only if it provides a 
decrease in the cost value (i.e., if J(Σk+1) ⩽ J(Σk) ); otherwise, we do a backtracking 
procedure. In our numerical experiments, we observe that taking a full Newton step 
at every iterate is not a good strategy at all because the cost functional J (as well as 
J1 ) seems to be insensitive with respect to large geometric perturbations. For illus-
tration, we refer to Fig. 7a where we logarithmically plot the histories of cost values 
obtained from resolving the present case problem using Algorithm B.2 and Algo-
rithm C.2 with the full Newton step tk = ‖�‖2

�1(Ωk)
∕‖�‖2

�1(Ωk)
 (i.e., �̃� = 1.0 ). 

Noticeably, several adjacent iterations differ only with very small values (and almost 
insignificant). Hence, the non-uniform sensitivity of the cost with respect to the 
descent directions. This observation can actually be viewed as a validation to our 
findings that the present formulation is algebraically ill-posed (see Proposition 5 and 
Remark 7). That is, in this case, the ill-posedness of the present optimization formu-
lation could also mean that larger deformations in the domains may have little effect 
on the cost functional. On the other hand, the evolution of the free boundaries with 
the full Newton step are shown in Fig. 7b while a comparison between the computed 
free boundaries using the two second-order algorithms is depicted in Fig. 7c. In the 
latter figure, the difference between the two computed geometries is clearly discern-
ible and, in this case, the final free boundary computed through the classical 
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(a)

(b)

(c)

(d)

Fig. 6  Computational results of Example 5.2.4 using algorithms B.1, C.1, B.2 and C.2
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(b)

(a)

(c)

Fig. 7  Computational results of Example 5.2.4 using Algorithms B.2 and C.2 with the full Newton step 
(i.e., �̃� = 1.)
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approach (i.e., Algorithm C.2) is more accurate than the one obtained via the pro-
posed method (i.e., Algorithm B.2). Meanwhile, scaling the (full) Newton steps by a 
factor of �̃� = 0.2 at every iteration (in both Algorithms B.2 and C.2) lead to the 
computational results shown in Fig. 8. The figure shows, in particular, the histories 
of cost values and Hausdorff distances both plotted in Fig. 8a (left and right plot, 
respectively). Referring, in particular, to the left plot shown in Fig. 8a, it is clear that 
the costs J and J1 are decreasing almost uniformly from the initial to their respective 
final values. However, it is apparent from the figure that the cost J is more sensitive 
(and therefore has higher convergence behavior) than J1 . In fact, because the number 
of iterations required by Algorithm B.2 to reach the optimal free boundary is less 
than that of Algorithm C.2 (as evident in the right graph plotted in Fig. 8a), we can 
conclude that the proposed method is indeed much faster than the classical Dir-
ichlet-data-tracking approach. This observation is, of course, also evident from the 
evolution of the free boundaries shown in Fig. 8b wherein we recognized a big dif-
ference on how the two algorithms actually develop the initial free boundary into an 

(a)

(b)

Fig. 8  Computational results of Example 5.2.4 using Algorithms B.2 and C.2 with the scaled full New-
ton step (i.e., �̃� = 0.2)



297

1 3

A second-order shape optimization algorithm for solving the…

optimal one. We mention here that we also ran the two algorithms using several 
other values for �̃� between zero and the unit value (to solve the present case prob-
lem), and, as in the previous cases, we found that the proposed method is, in general, 
faster that the classical approach of minimizing the Dirichlet-data-tracking cost 
functional. Nevertheless, the cost function J becomes more insensitive than J1 as the 
step size parameter �̃� increases in value.

6  Conclusion

We presented a second-order shape optimization algorithm for solving the exterior 
Bernoulli free boundary problem using a new boundary cost functional which meas-
ures the L2-gap at the free boundary of two auxiliary states, one of which is a solu-
tion of a mixed Dirichlet–Neumann problem and the other of which satisfies a mixed 
Dirichlet–Robin problem. The novelty of the present investigation is the utilization 
of the shape Hessian information at the solution of the free boundary problem in the 
iterative scheme formulated to numerically solve the minimization problem. Numer-
ical results revealed that the first- and second-order shape optimization methods put 
forward in this study is, in general, faster than the classical approach of tracking the 
Dirichlet data in L2 sense. Thus, in this investigation, the robustness of the proposed 
method was shown not only theoretically but also numerically.
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Appendix 1: Shape derivative of the adjoint state p
N

Let us first introduce some notations and present some properties of the operator 
Tt (see Sect. 3) that will be useful to our analysis. For t ∈ (0, �) ( 𝜀 > 0 sufficiently 
small), the transformation Tt is invertible and Tt, T−1

t
∈ D

1(ℝ2,ℝ2) (see, e.g., [10, 
Lemma 11]). In addition, the Jacobian matrix of the transformation Tt = Tt(�) asso-
ciated with the velocity field � denoted by det DTt(X) is strictly positive. Here, we 
shall use the notations (DTt)−1 and (DTt)−⊤ to denote the inverse and inverse trans-
pose of the Jacobian matrix DTt , respectively. Also, for convenience, we write 
At = det DTt(X)(DT

−1
t
)(DTt)

−⊤ and wt = det DTt(X)|(DTt)−⊤�| which represent the 
Jacobian matrix of Tt with respect to the boundary �Ω.

The following lemma, whose proof can be found in [22, 71], will also be essential 
to our analysis.

Lemma A.1 Let � be a fixed vector field in Θ (see (9)) and I = (−t0, t0) , with t0 > 0 
sufficiently small. Then, the following regularity properties of Tt hold
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 (i) t ↦ det DTt(X) ∈ C1(I,C(Ω̄))

 (ii) t ↦ At ∈ C1(I,C1(Ω̄))

 (iii) t ↦ wt ∈ C1(I,C(Σ))

 (iv) limt↘0 wt = 1

 (v) d

dt
wt|t=0 = w�(0) = divΣ�

 (vi) d

dt
At|t=0 = A�(0),

where A�(0) = (div�)�2 − (D� + (D�)⊤) and the limits defining the derivatives at 
t = 0 exist uniformly in x ∈ Ω̄.

Before we derive the shape derivative of pN , and for completeness, let us first 
prove the unique solvability of the adjoint problem on the perturbed domain Ωt.

Lemma A.2 For any t > 0 sufficiently small, the variational problem: find 
pt
N
∈ H1(Ω) such that pt

N
= 0 on Γ and

admits a unique solution pt
N
 in H1(Ω).

Proof We first note that the variational problem being examined is obtained from 
the problem: find pNt ∈ H1(Ωt) such that pNt = 0 on Γ and

via the application of domain and boundary transformation formulas (see, e.g., 
[71, Proposition 2.46–2.47]). In fact, the functions �t ∶ Ωt → ℝ and �t ∶ Ω → ℝ 
are related through the equation �t = �t◦Tt . Hence, if pNt solves the variational 
equation (67), then pt

N
= pNt◦Tt satisfies (66). In addition, the boundary condition 

pt
N
= pNt◦Tt = 0 on Γ implies that pt

N
 is actually in H1

Γ,0
(Ω).

Now, consider the bilinear form bt(⋅, ⋅) ∶ �
1
Γ,0
(Ω) → ℝ defined by

Note that, as a consequence of Lemma A.1, At is bounded. Hence, it is clear that bt(⋅, ⋅) 
is continuous because �bt(𝜙t,𝜑)� = ��∫Ω At∇𝜙

t
⋅ ∇𝜑 dx�� ≲ ‖At‖L∞(Ω)‖𝜙t‖H1(Ω)�𝜑�H1(Ω). 

Moreover, bt(⋅, ⋅) is coercive. Indeed, from the fact that At → � uniformly on 
Ω̄ as t → 0 , we know that there exist sufficiently small values for t > 0 such that 
‖At − �‖L∞(Ω) < 1 . So, we have

(66)∫Ω

At∇p
t
N
⋅ ∇� dx − ∫Σ

wtu
t
N
� d� = 0, ∀� ∈ H1

Γ,0
(Ω).

(67)∫Ωt

∇pNt ⋅ ∇� dxt − ∫Σt

uNt� d�t = 0, ∀� ∈ H1
Γ,0
(Ωt),

(68)bt(�
t,�) = ∫Ω

At∇�
t
⋅ ∇� dx, ∀�t,� ∈ H1

Γ,0
(Ω).
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Next, we consider the functional � ∶ H1
Γ,0
(Ω) → ℝ defined by ⟨�,�⟩ = ∫

Σ
wtu

t
N
� d� . 

Evidently, this functional is continuous because of the boundedness of |wt|∞ and due 
to the sequence of inequalities

Thus, by Lax–Milgram theorem, the function pt
N
 , vanishing on Γ , is the unique solu-

tion to the variational equation (66) in H1(Ω) . This proves the lemma.   ◻

Proposition A.1 Let Ω be a bounded C2,1 domain. The shape derivative of the adjoint 
state variable pN ∈ H3(Ω) at Ω = Ω∗ satisfying the mixed Dirichlet–Neumann prob-
lem (16) is a solution to the following mixed boundary value problem:

Proof The proof mainly contains two parts; we first prove the existence of the 
material derivative of pN , then we formally proceed on the derivation of its shape 
derivative.

Step 1. Existence of the material derivative of pN . The variational formulation of 
(16) on the reference domain Ω is given as follows: find pN ∈ H1

Γ,0
(Ω) such that

Subtracting (66) with t = 0 from the case where t > 0 , for all � ∈ H1
Γ,0
(Ω) , we obtain

Hence, we have a unique solution pt
N
− pN ∈ H1

Γ,0
(Ω) to the variational equation

for all � ∈ H1
Γ,0
(Ω) . We note that ∇pt

N
 is uniformly bounded in L2(Ω;ℝ2) and we 

have the convergence ∇pt
N
→ ∇pN also in that space. Indeed, using the boundedness 

of ‖At‖L∞(Ω) from below, we get the estimate

bt(𝜙
t,𝜙t) = ∫Ω

At∇𝜙
t
⋅ ∇𝜙t dx =

����∫Ω

(At − �)∇𝜙t
⋅ ∇𝜙t + �∇𝜙t�2 dx����

⩾ ‖∇𝜙t‖2
L2(Ω)

− ‖At − �‖L∞(Ω)‖∇𝜙t‖2
L2(Ω)

≳ �∇𝜙t�2
H1(Ω)

.

����∫Σ

wtu
t
N
𝜑 d𝜎

���� ≲ �wt�∞‖utN‖L2(Σ)‖𝜑‖L2(Σ) ≲ �wt�∞‖utN‖H1(Ω)�𝜑�H1(Ω).

−Δp�
NW

= 0 in Ω∗, p�
NW

= 0 on Γ, �
�
p�
NW

= u�
NW

+ �� ⋅ � on Σ∗.

(69)∫Ω

∇pN ⋅ ∇� dx − ∫Σ

uN� d� = 0, ∀� ∈ H1
Γ,0
(Ω).

∫Ω

{At∇p
t
N
− ∇pt

N
+ ∇pt

N
− ∇pN} ⋅ ∇� dx − ∫Σ

{wtu
t
N
− ut

N
+ ut

N
− uN}� d� = 0.

(70)
∫Ω

∇(pt
N
− pN) ⋅ ∇� dx = −∫Ω

(At − �)∇pt
N
⋅ ∇� dx

+ ∫Σ

(wt − 1)ut
N
� d� + ∫Σ

(ut
N
− uN)� d�,
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Because ut
N
 is uniformly bounded in H1(Ω) (cf. [10, Theorem  23], see also [50, 

Proposition 3.1]), the uniform boundedness of ∇pt
N
 in L2(Ω;ℝ2) immediately fol-

lows, and so the convergence ∇pt
N
→ ∇pN in L2(Ω;ℝ2) . Next, we divide both sides 

of (70) by t and denote �t ∶=
1

t
(pt

N
− pN) to obtain

for all � ∈ H1
Γ,0
(Ω) . We choose a sequence {tn} such that tn → 0 as n → ∞ . Our goal 

is to show that the limit limn→∞ �t exists. Using the boundedness of 1
tn

(
At − �

)
 and 

1

tn

(
wt − 1

)
 in L∞ , we deduce that ∇ptn

N
 is bounded in L2(Ω;ℝ2) , and thus the bound-

edness of �tn in H1
Γ,0
(Ω) . Hence, we can extract a subsequence, which we still denote 

by {tn} , such that limn→∞ tn = 0 . Moreover, there exists an element � of H1
Γ,0
(Ω) 

such that �tn ⇀ � weakly in H1
Γ,0
(Ω) . From the convergences ∇ptn

N
→ ∇pN in 

L2(Ω;ℝ2) and utn
N
→ uN in L2(Σ) , together with Lemma A.1(v)–(vi), we get

for all � ∈ H1
Γ,0
(Ω) , where u̇N = limt↘0

1

t
(ut

N
− uN) which is exactly the material 

derivative of uN at t = 0 in the direction � . This function exists and is actually an 
element of H1

Γ,0
(Ω) as shown, for example, in [9]. Hence, the above equation admits 

a unique solution in H1(Ω) and we deduce that �tn ⇀ � for any sequence {tn} . This 
implies the strong convergence of �tn to � in L2(Σ) . Now, taking � = �tn ∈ H1

Γ,0
(Ω) , 

we obtain

The norm convergence and the weak convergence of �tn in H1
Γ,0
(Ω) implies the 

strong convergence of �tn to � ∈ H1
Γ,0
(Ω) . This guarantees the existence of the mate-

rial derivative of pN.
Step 2. Computing the shape derivative of  pN  at Ω = Ω∗ along the deformation 

field  � . From the previous step, we showed the existence of the material derivative 

‖∇pt
N
‖2
L2(Ω)

≲ ∫Ω

At∇p
t
N
⋅ ∇pt

N
dx = ∫Σ

wtu
t
N
pt
N
d𝜎 ≲ �wt�∞‖utN‖H1(Ω)‖ptN‖L2(Ω).

∫Ω

∇�t
⋅ ∇� dx = −∫Ω

(
At − �

t

)
∇pt

N
⋅ ∇� dx + ∫Σ

(
wt − 1

t

)
ut
N
� d�

+ ∫Σ

(
ut
N
− uN

t

)
� d�,

∫Ω

∇𝜙 ⋅ ∇𝜑 dx = −∫Ω

A∇pN ⋅ ∇𝜑 dx + ∫Σ

uN𝜑divΣ� d𝜎 + ∫Σ

u̇N𝜑 d𝜎,

lim
tn→0

|𝜙tn |2
H1(Ω)

= − lim
tn→0

{
∫Ω

(
A(tn) − �

tn

)
∇p

tn
N
⋅ ∇𝜙tn dx

}

+ lim
tn→0

{
∫Σ

(
w(tn) − 1

tn

)
u
tn
N
𝜙tn d𝜎

}

+ lim
tn→0

{
∫Σ

(
u
tn
N
− uN

tn

)
𝜙tn d𝜎

}

= −∫Ω

A∇pN ⋅ ∇𝜙 dx + ∫Σ

uN𝜙divΣ� d𝜎 + ∫Σ

u̇N𝜙 d𝜎 = |𝜙|H1(Ω).
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of pN in H1
Γ,0
(Ω) . Denoting this derivative by ṗN , we know that it satisfies the vari-

ational equation

In addition, it is clear that ṗN = 0 on Γ . Applying Green’s formula to the above vari-
ational form, we get

First, let us choose � ∈ H1
0
(Ω) . Then, we have − ∫

Ω
𝜑ΔṗN dx = ∫

Ω
𝜑div(A∇pN) dx . 

Since, H1
0
(Ω) is dense in L2(Ω) , we obtain −ΔṗN = div(A∇pN) in Ω . Next, we 

choose � ∈ H1
Γ,0
(Ω) such that � is arbitrary in Σ . This gives us

Because the traces of functions in H1
Γ,0
(Ω) are dense in L2(Σ) , we arrive at 

𝜕
�
ṗN = −A𝜕

�
pN + uNdivΣ� + u̇N on Σ . Summarizing these results, we see that ṗN 

satisfies the following boundary value problem:

From above equations, and due to the fact that � vanishes on Γ , we immediately 
obtain [in view of the identity (12)] p�

N
= ṗN −� ⋅ ∇pN = 0 on Γ . Now, we con-

sider � ∈ H2(Ω) . Note that for C1,1 domain, we have that uN ∈ H2(Ω) (see [10, 
Theorem  29] and also [50]). Hence, uN ∈ H3∕2(Σ) which, in turn, means that 
pN ∈ H2(Ω) by standard elliptic regularity theory. Given this regularity of pN and 
since −ΔpN = 0 in Ω , we can therefore write − ∫

Ω
A∇pN ⋅ ∇� dx as follows (see [50, 

Lemma 4.1])

for all � ∈ H2(Ω) . Hence, using the identity (12), we have the equation

Combining this equation with (71) and (72) yields

(71)
∫Ω

∇ṗN ⋅ ∇𝜑 dx = −∫Ω

A∇pN ⋅ ∇𝜑 dx + ∫Σ

uN𝜑divΣ� d𝜎

+ ∫Σ

u̇N𝜑 d𝜎, ∀𝜑 ∈ H1
Γ,0
(Ω).

− ∫Ω

𝜑ΔṗN dx + ∫Σ

𝜑𝜕
�
ṗN d𝜎 = ∫Ω

𝜑div(A∇pN) dx − ∫Σ

𝜑A𝜕
�
pN d𝜎

+ ∫Σ

uN𝜑divΣ� d𝜎 + ∫Σ

u̇N𝜑 d𝜎, ∀𝜑 ∈ H1
Γ,0
(Ω).

∫Σ

𝜑𝜕
�
ṗN d𝜎 = −∫Σ

𝜑A𝜕
�
pN d𝜎 + ∫Σ

uN𝜑divΣ� d𝜎 + ∫Σ

u̇N𝜑 d𝜎.

−ΔṗN = div(A∇pN) in Ω, ṗN = 0 on Γ, 𝜕
�
ṗN = −A𝜕

�
pN + uNdivΣ� + u̇N on Σ.

(72)
− ∫Ω

A∇pN ⋅ ∇� dx = ∫Ω

∇(� ⋅ ∇pN) ⋅ ∇� dx + ∫Σ

�
�
pN(� ⋅ ∇�) d�

− ∫Σ

(∇pN ⋅ ∇�)� ⋅ � d�,

∫Ω

∇ṗN ⋅ ∇𝜑 dx = ∫Ω

∇p�
N
⋅ ∇𝜑 dx + ∫Ω

∇(� ⋅ ∇pN) ⋅ ∇𝜑 dx, ∀𝜑 ∈ H1
Γ,0
(Ω).
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Applying Green’s formula on the right side of the above equation we arrive at

Now, we choose � ∈ C∞
0
(Ω) . This leads us to −Δp�

N
= 0 in Ω . Moreover, we get

Observe that (uN� − ∇pN� ⋅ �) ⋅ � = 0 . Hence, we can replace ∇�|Σ by the tan-
gential gradient ∇Σ� . Using the tangential Green’s formula (see equation 21) thrice, 
noting that � ⋅ �∇ΣpN ⋅ � = 0 , and then using the relation u̇N = u�

N
+� ⋅ ∇uN , we 

obtain

for all � ∈ H2 ∩ H1
Γ,0
(Ω) . Since the trace of functions from H2(Ω) is 

dense in L2(Σ) , we deduce the boundary condition on for p′
N
 given by 

�
�
p�
N
= divΣ(∇ΣpN� ⋅ �) + �uN� ⋅ � + u�

N
+� ⋅ ∇uN. Summarizing these results, 

and letting Ω = Ω∗ , we get

as desired.   ◻

It is worth remarking that the existence of the shape derivative p′
N
 of pN can only 

be justified if uN is H3-regular. Hence, we require that Ω be at least of class C2,1 so 
that uN (as well as uR ) is in H3(Ω) (see, e.g., [10, Theorem 29]).

∫Ω

∇(� ⋅ ∇pN) ⋅ ∇𝜑 dx + ∫Σ

𝜕
�
pN(� ⋅ ∇𝜑) d𝜎 − ∫Σ

(∇pN ⋅ ∇𝜑)� ⋅ � d𝜎

+ ∫Σ

uN𝜑divΣ� d𝜎 + ∫Σ

u̇N𝜑 d𝜎

= ∫Ω

∇p�
N
⋅ ∇𝜑 dx + ∫Ω

∇(� ⋅ ∇pN) ⋅ ∇𝜑 dx, ∀𝜑 ∈ H2 ∩ H1
Γ,0
(Ω).

− ∫Ω

𝜑Δp�
N
dx + ∫Σ

𝜑𝜕
�
p�
N
d𝜎 = ∫Σ

𝜕
�
pN(� ⋅ ∇𝜑) d𝜎 − ∫Σ

(∇pN ⋅ ∇𝜑)� ⋅ � d𝜎

+ ∫Σ

uN𝜑divΣ� d𝜎 + ∫Σ

u̇N𝜑 d𝜎, ∀𝜑 ∈ H2 ∩ H1
Γ,0
(Ω).

∫Σ

𝜑𝜕
�
p�
N
d𝜎 = ∫Σ

(uN� − ∇pN� ⋅ �) ⋅ ∇𝜑 d𝜎 + ∫Σ

uN𝜑divΣ� d𝜎 + ∫Σ

u̇N𝜑 d𝜎.

∫Σ

𝜑𝜕
�
p�
N
d𝜎 = ∫Σ

𝜑divΣ(∇pN� ⋅ �) d𝜎 + ∫Σ

u̇N𝜑 d𝜎

= ∫Σ

𝜑𝜅(∇pN� ⋅ �) ⋅ � d𝜎 − ∫Σ

(∇Σ𝜑 ⋅ ∇pN)� ⋅ � d𝜎 + ∫Σ

u̇N𝜑 d𝜎

= ∫Σ

𝜑𝜅uN� ⋅ � d𝜎 − ∫Σ

(∇Σ𝜑 ⋅ ∇ΣpN)� ⋅ � d𝜎 + ∫Σ

u̇N𝜑 d𝜎

= ∫Σ

𝜑𝜅uN� ⋅ � d𝜎 + ∫Σ

𝜑divΣ(∇ΣpN� ⋅ �) d𝜎 + ∫Σ

(u�
N
+� ⋅ ∇uN)𝜑 d𝜎,

−Δp�
N
= 0 in Ω∗, p�

N
= 0 on Γ, �

�
p�
N
= u�

N
+ �� ⋅ � on Σ∗,
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