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Abstract
We consider a class of optimistic bilevel problems. Specifically, we address bilevel 
problems in which at the lower level the objective function is fully convex and the 
feasible set does not depend on the upper level variables. We show that this non-
trivial class of mathematical programs is sufficiently broad to encompass significant 
real-world applications and proves to be numerically tractable. From this respect, 
we establish that the stationary points for a relaxation of the original problem can 
be obtained addressing a suitable generalized Nash equilibrium problem. The lat-
ter game is proven to be convex and with a nonempty solution set. Leveraging this 
correspondence, we provide a provably convergent, easily implementable scheme to 
calculate stationary points of the relaxed bilevel program. As witnessed by some 
numerical experiments on an application in economics, this algorithm turns out to 
be numerically viable also for big dimensional problems.

Keywords Bilevel programming · Generalized nash equilibrium problems (GNEP) · 
Leader-follower multi-agent games · Solution methods

1 Introduction

Bilevel programming is a powerful modeling tool that is widely used in many fields 
(see e.g. [6–8, 11, 40]). We focus on the general case in which the lower level prob-
lem may have multiple solutions. From that respect, we take the so-called optimistic 
point of view (for the pessimistic counterpart see, e.g. [24]) that leads us to consider 
the Standard optimistic Bilevel programming Problem (SBP), as commonly done 
in the literature (for further details, we refer the interested reader to [23, 42]). The 
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latter problem is structurally nonconvex and nonsmooth; furthermore, it is hard to 
define suitable Constraint Qualification (CQ) conditions for it, see, e.g. [41]. In fact, 
the study of provably convergent and practically implementable algorithms for its 
solution is still in its infancy (see, e.g. the references in [8, 23]), as also witnessed 
by the scarcity of results in the literature. To date, the most studied and promising 
approaches rely on either the KKT or the optimal value one-level reformulations. 
Replacing the lower level problem by its KKT conditions, thus obtaining a Math-
ematical Program with Complementarity Constraints (MPCC), can be done only 
when the lower level problem is convex and such that Slater’s constraint qualifica-
tion holds. However, even in this case, the set of local optima for the SBP is only 
a (often strict) subset of (the projection of) the set of local optima for the MPCC, 
which is what one actually craves to compute (since the MPCC is nonconvex) (see 
Sect. 2 and, in particular, Example 2). On the other hand, the optimal value refor-
mulation is obtained by replacing the lower level solution set by its description via 
the optimal value function; in this case, while the resulting mathematical program 
is still a nonconvex, nonsmooth, implicitly defined optimization problem for which 
standard CQs are not readily at hand, the resulting reformulation and the original 
SBP lead to the same global and local solutions. There exist few recent solution 
procedures (e.g. [10, 27]) that leverage the optimal value reformulation but they are 
viable only for small dimensional problems.

Motivated by common situations in real-world applications (see Sect.  5), we 
address the nontrivial and wide class of fully convex lower level SBPs whose feasi-
ble set does not depend on the upper level variables (see Definition 1 and Example 
1) by relying on the value function approach and suitably relaxing the optimal value 
function constraint.

In Sect. 3, we show that stationary points of the relaxed SBP can be obtained by 
computing equilibria of a suitably defined Generalized Nash Equilibrium Problem 
(GNEP). Such a GNEP is convex, explicitly defined and with a nonempty solution 
set. It should be remarked that the GNEP introduced in Sect. 3 is profoundly differ-
ent from the one presented in [23], see “Appendix C”. In fact, while [23] is intended 
to provide a theoretical analysis of the relations between optimistic bilevel problems 
and Nash games in terms of their optimal points, the distinctive properties of the 
GNEP proposed here, which is tailored to address stationary solutions of the bilevel 
problem, pave the way to algorithmic developments. In Sect. 4 we present a sim-
ple algorithmic scheme to compute equilibria of the GNEP and, hence, stationary 
points of the relaxed SBP. This procedure turns out to be provably convergent, easily 
implementable and numerically viable also for big dimensional problems. In Sect. 5 
we propose an application in economics involving a problem with two decision lev-
els; under suitable conditions, this mathematical program is proven to belong to the 
class of fully convex lower level SBPs. Our numerical results show that the points 
provided by our procedure are not only stationary for the relaxed SBP but, in most 
cases, good approximations of global optima for the original SBP.

For the sake of presentation, we first describe our method not in its full general-
ity. In fact, in order to better highlight the core simple idea underlying the approach, 
we defer to the appendix important theoretical results that widen the scope of appli-
cability of the procedure. Specifically, “Appendix A” is devoted to the study of the 
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behavior of the solutions for the relaxed SBP as the relaxation parameter vanishes, 
while “Appendix B” extends the convergence results of our algorithm whenever the 
upper level objective is nonconvex and the upper level feasible set is unbounded.

In the paper we employ standard notation. However, for the reader’s convenience, 
we remark that, considering h ∶ ℝ

n0 ×ℝ
n1 → ℝ , we denote by ∇1h(x, y) the gradient 

of h(∙, y) evaluated at x, while by ∇2h(x, y) the gradient of h(x, ∙) evaluated at y. Fur-
thermore, with C convex set and z ∈ C , NC(z) is the classical normal cone (to C at z) 
of convex analysis (see e.g. [32, Chapter 6]). As for the definitions of semicontinuity 
and other properties of single and set-valued mappings such as lower semicontinu-
ity, outer and inner semicontinuity, and local boundedness, we refer the reader to 
[32]: in particular, for outer and inner semicontinuity, see [32, Definition 5.4].

2  A class of standard optimistic bilevel problems

Let us consider the Standard optimistic Bilevel programming Problem (SBP)

where F ∶ ℝ
n0 ×ℝ

n1 → ℝ is continuously differentiable, X ⊆ ℝ
n0 is a compact non-

empty set, and the set-valued mapping S ∶ ℝ
n0 ⇉ ℝ

n1 is defined (implicitly) as the 
solution set of the following lower level parametric optimization problem:

where f ∶ ℝ
n0 ×ℝ

n1 → ℝ is continuously differentiable and U ⊆ ℝ
n1 is a compact 

nonempty set.
We address the case in which the lower level’s parameter dependence only stems 

from its parametric objective function: thus, problem (1) is a so-called Stackelberg 
game (see [23]). Moreover, in view of the continuity of function f and the compact-
ness of set U, S(x) turns out to be nonempty for every choice of x ∈ X and may con-
tain infinitely many points.

We make the following blanket assumptions:

• X and U are convex nonempty compact sets;
• F is convex on X × U;
• the lower level problem (2) is convex, e.g. when f (x, ∙) is convex for each x ∈ X.

We remark that, while the assumption on F, as long as the boundedness of X, can 
be removed at the price of a more convoluted analysis (see “Appendix B”), the 
other conditions are quite standard and often invoked when bilevel problems are 
investigated.

(1)
minimize

x,y
F(x, y)

s.t. x ∈ X

y ∈ S(x),

(2)
minimize

w
f (x,w)

s.t. w ∈ U,
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In this paper we focus on the class of the so-called fully convex lower level 
bilevel programming problems (see e.g. [10]).

Definition 1 An instance of (1) is called fully convex lower level SBP if f is fully 
convex, that is f (∙, ∙) is convex on O × U , where O is an open convex set containing 
X.

From now on, problem (1) is assumed to be a lower level fully convex SBP. We 
observe that the introduction of the open set O in Definition 1 is instrumental to 
obtain useful differentiability properties, see the developments in Proposition 1.

On the one hand, despite all the previous convexity conditions seem reassur-
ing, in general problem (1) is, anyway, nonconvex (see, e.g. [7, 23] and the ref-
erences therein) and implicitly defined. On the other hand, the requirement of 
a (fully) convex f may appear strong; nonetheless, in Example 1 we show that, 
under additional assumptions, one can always make the lower level objective 
fully convex. This can be done by adding a (sufficiently) strongly convex term 
that, depending only on x, does not influence the lower level solution set mapping 
S. Thus, as witnessed by the procedure in the following example and by the appli-
cation in Sect. 5, the class of fully convex lower level SBPs is sufficiently broad 
and encompasses many important real-world problems.

Example 1 Assume

where f1 ∶ ℝ
n0 ×ℝ

n1,1 → ℝ , f2 ∶ ℝ
n1,2 → ℝ are twice continuously differentiable 

and n1 = n1,1 + n1,2 , � ∈ ℝ . Note that the lower level solution set S(x) does not 
depend on the value of � . Thus, we can freely fix � in order to obtain a fully con-
vex f. In fact, supposing that f1(∙,w1) is convex for every w1 , f1(x, ∙) is uniformly 
strongly convex with constant 𝜏 > 0 (independent of x) for every x and f2 is convex, 
then, choosing

where ∇2
1,2
f1(x,w

1) is the transposed Jacobian of ∇2f1(∙,w
1) evaluated at x, we obtain 

a convex f and, in turn we have an instance of fully convex lower level SBP. We have

f (x,w) = f1(x,w
1) + f2(w

2) +
�

2
xTx, w =

(
w1

w2

)
∈ ℝ

n1,1+n1,2

(3)� ≥
1

�
‖∇2

1,2
f1(x,w

1)‖2
2
, ∀(x,w1,w2) ∈ X × U,

∇2f (x,w) =

⎛⎜⎜⎜⎝

∇2

1,1
f1(x,w

1) + �I ∇2

1,2
f1(x,w

1) 0

∇2

2,1
f1(x,w

1) ∇2

2,2
f1(x,w

1) 0

0 0 ∇2f2(w
2)

⎞⎟⎟⎟⎠
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where ∇2
1,1
f1(x,w

1) is the Hessian of f1(∙,w1) evaluated at x, ∇2
2,2
f1(x,w

1) is the Hes-
sian of f1(x, ∙) evaluated at w1 , ∇2f2(w

2) is the Hessian of f2(∙) evaluated at w2 , and 
∇2

2,1
f1(x, y) = [∇2

1,2
f1(x, y)]

T . For every z ∈ ℝ
n0,

where the first inequality holds by the convexity of f1(∙,w1) and since f1(x, ∙) 
is (uniformly) strongly convex, while the second relation is due to (3). In turn, 
∇2f (x,w) ⪰ 0 by the Schur-complement Theorem and thanks to the convexity of f2 , 
thus proving the claim.

It goes without saying that, if the original lower level objective does not incorpo-
rate the quadratic term �∕2 xTx , i.e. f (x,w) = f1(x,w

1) + f2(w
2) , one can simply add 

it in order to suitably convexify the function.
We remark that in this case, in view of the presence of the convex term f2 in f, 

S(x) does not necessarily reduce to a singleton.
Finally, we also observe that the requirement of a convex f1(∙,w1) can be relaxed 

at the price of sufficiently increasing the value of � in order to, roughly speaking, 
compensate for the degree of nonconvexity of f1 .   ◻

We recall that, to date, the most studied reformulations of the SBP are the opti-
mal value and the KKT ones (see [11] and the references therein). As for the KKT 
reformulation, it should be remarked that the SBP has often be considered as a spe-
cial case of Mathematical Program with Complementarity Constraints (MPCC) (see 
[28]). Actually, this is not the case, as shown in [9]. Indeed, in general, one can 
provably recast the SBP as an MPCC only when the lower level problem is convex 
and such that Slater’s constraint qualification holds for all x. More interestingly, even 
in this case, a local solution of the MPCC, which is what one can expect to compute 
(since the MPCC is nonconvex), may happen not to lead to a local optimal solu-
tion of the corresponding SBP. This problematic aspect occurs even when, as in our 
framework, one deals with fully convex lower level SBPs: the following very simple 
example makes this critical issue of the MPCC reformulation apparent.

Example 2 Consider the following standard optimistic bilevel problem:

where the set-valued mapping S ∶ ℝ ⇉ ℝ
2 is defined as the solution set of the fol-

lowing lower level parametric optimization problem:

zT[∇2
1,1
f1(x,w

1) + �I]z − zT[∇2
1,2
f1(x,w

1)][∇2
2,2
f1(x,w

1)]−1[∇2
2,1
f1(x,w

1)]z

≥ �‖z‖2 − 1

�
zT[∇2

1,2
f1(x,w

1)][∇2
2,1
f1(x,w

1)]z ≥ 0,

(4)
minimize

x,y
x

s.t. x ∈ [−1, 1]

y ∈ S(x),
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Problem (4) is an instance of fully convex lower level SBPs: the lower level objec-
tive is fully convex on ℝ ×ℝ

2 and U =
{
(y1, y2) ∈ ℝ

2 | y3
1
− y2 ≤ 0,−y2 ≤ 0

}
 is a 

convex set. The point (−1,−1, 0) is the unique local (and also global) solution of (4). 
Moreover, since the Mangasarian-Fromovitz constraint qualification is easily seen 
to hold for the lower level problem (5) at every feasible (y1, y2) , we also have [32, 
Theorem 6.12]

Taking into account the latter relation and recalling that, for any fixed x ∈ [−1, 1] , 
condition 0 ∈ ∇2f (x, y) + NU(y) is necessary and sufficient for the feasible solution 
y = (y1, y2) to be (global) optimal for (5), one can suitably introduce the following 
MPCC reformulation of (4):

We remark that the point (−1,−1, 0, 0, 2) is globally optimal for problem (6). How-
ever, the feasible solution (0, 0, 0, 1, 1) is a local optimum: in fact, considering an 
open neighborhood of the latter point, we have 𝜆1, 𝜆2 > 0 and, in turn, the corre-
sponding constraints are active, implying that y1 = y2 = 0 . By the first equality con-
straint, we also obtain x = 0 and, thus, a locally flat upper level objective function. 
But point (0, 0, 0), that is the projection of (0, 0, 0, 1, 1) on the (x, y1, y2)-space, is 
just a “non promising” feasible point for (4). To the best of our knowledge, it is 
still an open question whether the illustrated effect of additional local minima in the 
MPCC reformulation would persist under stronger assumptions such as requiring 
the lower level feasible to be described by smooth convex functions satisfying the 
Slater condition.   ◻

In view of the considerations above, in order to deal with problem (1), we refer 
to the optimal value reformulation (see [29]), that is

where

(5)
minimize

y1,y2
(y1 − x)2 + (y2 + 1)2

s.t. y3
1
− y2 ≤ 0

−y2 ≤ 0.

NU(y1, y2) =

{(
3�1y

2
1

−�1 − �2

) |||| (�1, �2) ∈ N
ℝ2

−
(y3

1
− y2,−y2)

}
.

(6)

minimize
x,y1,y2,�1,�2

x

s.t. x ∈ [−1, 1]

2(y1 − x) + 3�1y
2
1
= 0

2(y2 + 1) − �1 − �2 = 0

0 ≤ �1 ⟂ (y3
1
− y2) ≤ 0

0 ≤ �2 ⟂ −y2 ≤ 0.

(SBP)
minimize

x,y
F(x, y)

s.t. x ∈ X, y ∈ U

f (x, y) ≤ �(x),
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is the value function. Also, we denote by W ≜ {(x, y) ∈ X × U | f (x, y) ≤ �(x)} the 
feasible set of (SBP). Preliminarily, we observe that, under the initial assumptions, 
the value function enjoys the following nice properties.

Proposition 1 Function � is convex and continuously differentiable on the 
open convex set O from Definition1. Moreover, for any x ∈ O , the set {∇1f (x,w) | 
w ∈ S(x)} is a singleton and, for any w ∈ S(x),

Proof Problem (2) can be equivalently reformulated as an unconstrained program 
employing the so-called indicator function �U(w) , where �U(w) = 0 if w ∈ U and 
�U(w) = ∞ if w ∉ U . Since, by our assumptions, function �U turns out to be lower 
semicontinuous and convex, then the convexity of � follows from [32, Corollary 
3.32], being f fully convex (see Definition 1).

In order to show that � is continuously differentiable on O, leveraging [32, Corol-
lary 9.19], by the convexity of � , suffice it to prove that the set of subgradients ��(x) 
is single-valued for every x ∈ O . For this to be done, one can rely on, e.g. [39]. 
However, to maintain the paper self-contained, we show that, for every x ∈ O and 
any w ∈ S(x),

Let us consider a generic v ∈ ��(x) . By the convexity of � , we have for every u ∈ O

where the last equality holds since w ∈ S(x) . It follows that

This, due to the convexity of the problem, is equivalent to 0 = ∇1f (x,w) − v . The 
claim is a consequence of the arbitrariness of w ∈ S(x) and v ∈ ��(x) .   ◻

We remark again that (SBP) is a nonconvex and implicitly defined problem for 
which standard constraint qualifications are not readily at hand (see, e.g, [7, 11]). 
For this reason, following a well-established path in the literature (see, e.g. [26, 
27]), one is naturally led to consider the following perturbed version of (SBP):

where 𝜀 > 0 could be interpreted as a reasonable tolerance on the opti-
mal value of the follower’s problem. Furthermore, we indicate with 
W� ≜ {(x, y) ∈ X × U | f (x, y) ≤ �(x) + �} the feasible set of ( SBP�).

�(x) ≜ min
w

{f (x,w) ∶ w ∈ U}

(7)∇�(x) = ∇1f (x,w).

��(x) = {∇1f (x,w)}.

f (u,w) ≥ �(u) ≥ �(x) + vT(u − x) = f (x,w) + vT(u − x),

x ∈ argmin
u∈O

f (u,w) − vTu.

minimize
x,y

F(x, y)

s.t. x ∈ X, y ∈ U

f (x, y) ≤ �(x) + �,

(SBP�)
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Problem ( SBP� ) is still nonconvex and implicitly defined. However, while, as 
suggested above, the Mangasarian-Fromovitz Constraint Qualification (MFCQ) 
does not hold on W, on the contrary, it is verified on W� . Here, for the reader’s 
convenience, we recall the definition of the MFCQ.

Definition 2 (MFCQ) Let (x, y) ∈ W� . We say that the MFCQ holds at (x, y) if the 
relations

imply �1 = 0.

In order to show that the MFCQ is satisfied everywhere on W� , suffice it to 
observe that for �1 to be positive, we must have f (x, y) − �(x) − � = 0 , and thus 
f (x, y) = 𝜑(x) + 𝜀 > 𝜑(x) . In turn, by the convexity of the lower level problem, 
0 ∉ ∇2f (x, y) + NU(y) that contradicts the second inclusion in (8).

A further motivation to introduce the parameter � is given in Sect. 5, where a real-
world application is considered. Finally, in “Appendix A”, we analyze the “behav-
ior” of ( SBP� ) with vanishing values of the perturbation, i.e. for �↓0.

For the sake of clarity, we specify the definition of stationary points for ( SBP�).

Definition 3 (Stationary point) Let (x, y) be feasible for ( SBP� ). We say that (x, y) 
is a stationary point for ( SBP� ) if a multiplier �1 exists such that:

If (x, y) solves ( SBP� ), since it satisfies the MFCQ (8), then it is a stationary point 
for ( SBP� ). Hence, as standard in nonconvex optimization (see, just as a matter of 
example in this context, [27]), the aim of our method is to compute a stationary 
point of ( SBP� ). In particular, in Sect. 3 we show that calculating a stationary point 
of ( SBP� ) can be accomplished by finding an equilibrium of a suitable Nash equi-
librium problem and vice versa. In Sect. 4 we provide a simple scheme to compute 
such a point with global convergence guarantees.

We observe that, when more general assumptions are considered, e.g. whenever 
the lower level feasible set depends parametrically on x, some difficulties arise. In 
particular, the value function � can no more be expected to be smooth (as opposed 
to the picture analyzed in Proposition 1). However, even in this more general frame-
work, something can be said, but considering criticality conditions that are more 
general (usually less sharp) than (9).

(8)
0 ∈ �1∇1f (x, y) − �1∇�(x) + NX(x)

0 ∈ �1∇2f (x, y) + NU(y)

�1 ∈ N
ℝ−
(f (x, y) − �(x) − �)

(9)
0 ∈ ∇1F(x, y) + �1∇1f (x, y) − �1∇�(x) + NX(x)

0 ∈ ∇2F(x, y) + �1∇2f (x, y) + NU(y)

�1 ∈ N
ℝ−
(f (x, y) − �(x) − �).
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3  An equilibrium problem reformulation

We introduce the following Generalized Nash Equilibrium Problem (GNEP) with 
two players, namely player 1 and player 2:

where � is a positive parameter. Note that the quadratic term in the optimization 
problem of player 2 is introduced with the only purpose of constraining u to be equal 
to x; thus, 1∕2 ‖u − x‖2 is not a proximal term.

We call equilibrium of ( GNEP� ) a feasible solution (x, y, u, w) from which no 
player has incentives to deviate unilaterally (see [14], to which we refer for all the 
fundamental definitions and tools regarding GNEPs). Here, for the sake of clarity, 
we recall the Karush–Kuhn–Tucker (KKT) conditions for ( GNEP�).

Definition 4 (KKT point) Let (x,  y,  u,  w) be feasible for ( GNEP� ). We say that 
(x, y, u, w) is a KKT point for ( GNEP� ), if a multiplier �1 exists such that:

We propose to rely on ( GNEP� ) as an instrument to find stationary points of 
( SBP� ). In fact, ( GNEP� ), while being tightly related to ( SBP� ) (see the following 
developments), as opposed to ( SBP� ), is convex, that is each player solves a con-
vex (parametric) optimization problem, and, among the constraints, no implicitly 
defined functions (as � in ( SBP� )) appear.

Remark 1 Under our assumptions, ( GNEP� ) satisfies all the conditions in the Ichiishi 
Theorem (see, e.g. [14, Theorem 4.1]) and, thus, is such that an equilibrium always 
exists. In particular, 

 (i) any feasible point (x, y, u, w) is such that (x, y) ∈ X × U and (u,w) ∈ X × U , 
where X × U is a compact set;

 (ii) (GNEP� ) is convex, that is each player solves a convex (parametric) optimiza-
tion problem, given the strategy of the rival;

 (iii) since X × U is nonempty, then the feasible set of player 2 is nonempty for 
every choice (x, y) of player 1. At the same time, for any strategy (u, w) of 
player 2, the point (x, y) = (u,w) always belongs to the feasible set of player 1;

minimize
x,y

F(x, y) minimize
u,w

f (x,w) +
1

2
‖u − x‖2

s.t. x ∈ X, y ∈ U s.t. u ∈ X, w ∈ U,

f (x, y) ≤ f (u,w)

+∇1f (u,w)
T (x − u) + �

(GNEP�)

(10)
0 ∈ ∇1F(x, y) + �1∇1f (x, y) − �1∇1f (u,w) + NX(x)

0 ∈ ∇2F(x, y) + �1∇2f (x, y) + NU(y)

�1 ∈ N
ℝ−
(f (x, y) − f (u,w) − ∇1f (u,w)

T(x − u) − �),

(11)
0 = u − x

0 ∈ ∇2f (x,w) + NU(w).
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 (iv) since f (∙, ∙) is continuously differentiable and the Slater constraint qualifica-
tion holds on the feasible set of player 1 for any choice of (u,w) ∈ X × U , then 
the feasible set of player 1, considered as set-valued mapping, is continuous 
relative to X × U at every point in X × U (see [2, Theorems 3.1.1 and 3.1.6]).

We also observe that point (x, y, u, w) is an equilibrium of ( GNEP� ) if and only 
if it is a KKT point for ( GNEP� ): on the one hand, the necessity holds since the 
Slater constraint qualification is valid on the feasible set of player 1 for any choice 
(u,w) ∈ X × U ; on the other hand, the sufficiency is due to the convexity of the 
game.

In the light of the previous considerations, quite naturally one can recover a sta-
tionary point of ( SBP� ) by computing a KKT solution, i.e. an equilibrium (that cer-
tainly exists), of ( GNEP�).

Theorem 3.1 The following claims hold:

 (i) any KKT point (x, y, u, w) of ( GNEP� ) is such that (x, y) is stationary for ( SBP�
);

 (ii) any stationary point (x, y) for ( SBP� ) is such that (x, y, x, w) is a KKT point 
of ( GNEP� ) for any w ∈ S(x).

Proof The claims follow observing that (10) and (11) imply (9) with w ∈ S(x) , and 
vice versa. This is true thanks to Proposition 1 and observing that f (u,w) = �(x) .  
 ◻

The previous result proves that the link between ( GNEP� ) and ( SBP� ) is strong: 
any stationary point of ( SBP� ) can be recovered by computing equilibria of 
( GNEP� ). Thus, since one can obtain any stationary point of ( SBP� ) passing through 
the “well-behaved” ( GNEP� ), Theorem 3.1 paves the way to the algorithmic devel-
opments of the next section.

Example 3 Let us go back to Example 2, where we showed that the point 
(x, y1, y2) = (0, 0, 0) is nothing more than a “non promising” feasible solution for the 
SBP, while resulting from a futile local optimum for the MPCC reformulation. Now 
we illustrate how, for any � , no KKT points (x, y1, y2, u,w1,w2) of ( GNEP� ) exist 
such that x = 0 . It is easy to see that, if x = 0 , then (11) implies u = 0 , w1 = 0 and 
w2 = 0 . By (10), since N[−1,1](0) = 0 , we obtain

that is an inconsistent system of relations. Even more importantly, reasoning simi-
larly and after some calculations, one can prove that, for any � , no KKT points of 
( GNEP� ) exist such that x ≠ −1 . Thus, our reformulation, for any � , leads to the 
correct optimal value of the upper level objective of the SBP (4), that is −1 . Moreo-
ver, any KKT solution of ( GNEP� ) is of the type (−1, y1, y2,−1,−1, 0) with y3

1
≤ 0, 

−y2 ≤ 0 and (y1 + 1)2 + (y2 + 1)2 − 1 − � ≤ 0 ; in turn, the projection of any such 

0 = 1 − 2�1y1, 0 = 2�1y1 + 3�2y
2
1
, �2 ≥ 0,



287

1 3

Numerically tractable optimistic bilevel problems  

point on the (x, y1, y2)-space, for � sufficiently small, is an accurate approximation of 
the global solution for the original SBP (4).   ◻

Some connections between (optimistic) bilevel problems and a class of Nash 
games, different from the one proposed here, have been investigated in the recent 
paper [23]. As shown in “Appendix C”, ( GNEP� ) and the Nash game introduced in 
[23] are different models and, having peculiar relations with the bilevel problem, 
serve different purposes.

4  A simple convergent scheme for ( SBP
"
)

Leveraging the results in Sect.  3, one can find a stationary point of ( SBP� ) by 
computing an equilibrium of ( GNEP� ). Hence, in principle, under further condi-
tions, one can resort to many numerical methods for solving GNEPs (see, e.g. 
[1, 12–17, 20, 22, 25, 30, 31, 37]). Here, exploiting the peculiar structure of 
( GNEP� ), and without requiring any additional assumption, we propose a new 
simple Gauss–Seidel-like procedure to calculate one of its equilibria, which in 
turn is stationary for ( SBP� ). We remark that, as highlighted in e.g. [14], without 
such special structures, which consist in the sequential optimization of the single 
players’ problems, do not work properly for GNEPs.

Given the current iterate (xk, yk,wk) , the core steps of the scheme consist in com-
puting successively (xk+1, yk+1) by solving the strongly convex program

where � is a positive constant, and, then, in calculating wk+1 addressing the convex 
optimization problem

Of course, requiring wk+1 to be a solution of ( P2 (xk+1) ) is equivalent to say 
wk+1 ∈ S(xk+1) . The detailed description of the method is given in the scheme of 
Algorithm 1.

minimize
x,y

F(x, y) +
�

2
‖(x, y) − (xk, yk)‖2

s.t. x ∈ X, y ∈ U

f (x, y) ≤ f (xk,wk) + ∇1f (x
k,wk)T(x − xk) + �,

(P1�(x
k, yk,wk))

minimize
w

f (xk+1,w)

s.t. w ∈ U.
( P2 (xk+1))
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First, we observe that (xk+1, yk+1) = (xk, yk) is equivalent to say that (xk, yk) is 
the solution of ( P1 �(x

k, yk,wk)).

Proposition 2 A point (x̄, ȳ) solves (P1𝜀(x̄, ȳ, w̄)), with w̄ ∈ S(x̄) , if and only if 
(x̄, ȳ, x̄, w̄) is an equilibrium of ( GNEP� ). In turn, (x̄, ȳ) is stationary for ( SBP�).

Proof In view of the convexity of the game (see (ii) in Remark 1), (x̄, ȳ, x̄, w̄) is an 
equilibrium of ( GNEP� ) if and only if

for every (x, y,w) ∈ X × U × U such that f (x, y) ≤ f (x̄, w̄) + ∇1f (x̄, w̄)
T(x − x̄) + 𝜀 . 

In turn, thanks to the convexity of problems (P1𝜀(x̄, ȳ, w̄) ) and (P2(x̄) ), the previ-
ous relations are equivalent to requiring that (x̄, ȳ) is the unique solution of problem 
( P1𝜀(x̄, ȳ, w̄) ) and w̄ is a solution of ( P2(x̄) ), that is w̄ ∈ S(x̄) and the claim readily 
follows.

The last assertion follows by Theorem 3.1.   ◻

The convergence properties of the scheme are summarized in Theorem 4.1.

Theorem 4.1 Let (x̄, ȳ, w̄) be a cluster point of the sequence {(xk, yk,wk)} generated 
by Algorithm 1. Then, (x̄, ȳ, x̄, w̄) is an equilibrium for ( GNEP� ) and, in turn (x̄, ȳ) is 
stationary for ( SBP�).

Proof Preliminarily, we show that, for every k ≥ 1 , (xk, yk) is feasible for 
(P1�(xk, yk,wk) ). In view of step (S.1), (xk, yk) is a solution, and a fortiori feasible, 
for P1�(xk−1, yk−1,wk−1) , that is,

The convexity of � (see Proposition 1) entails �(xk−1) + ∇�(xk−1)T(xk − xk−1) ≤ �(xk) . 
Since wk−1 ∈ S(xk−1) , we get �(xk−1) = f (xk−1,wk−1) and ∇1f (x

k−1,wk−1) 
= ∇�(xk−1) , by (7). Moreover, since wk ∈ S(xk) , we have �(xk) = f (xk,wk) . In turn,

Combining the latter inequality with (12), we obtain

and thus (xk, yk) is feasible for (P1�(xk, yk,wk) ). This fact, since (xk+1, yk+1) is the 
optimal solution for problem (P1�(xk, yk,wk) ), implies

Observing that F is bounded from below on the compact set X × U , the sequence 
{F(xk, yk)} converges and, thus,

∇F(x̄, ȳ)T((x, y) − (x̄, ȳ)) ≥ 0, ∇2f (x̄, w̄)
T(w − w̄) ≥ 0

(12)f (xk, yk) ≤ f (xk−1,wk−1) + ∇1f (x
k−1,wk−1)T(xk − xk−1) + �.

f (xk−1,wk−1) + ∇1f (x
k−1,wk−1)T(xk − xk−1) ≤ f (xk,wk).

f (xk, yk) ≤ f (xk,wk) + � = f (xk,wk) + ∇1f (x
k,wk)T(xk − xk) + �,

(13)F(xk+1, yk+1) − F(xk, yk) ≤ −
�

2
‖(xk+1, yk+1) − (xk, yk)‖2.
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Consider the infinite set of indices K such that (xk, yk,wk) →
K

(x̄, ȳ, w̄) . By (14), we 
have

Relying on Proposition 2, we are left to show that (x̄, ȳ) solves (P1𝜀(x̄, ȳ, w̄) ) and 
w̄ ∈ S(x̄) . In order to do so, leveraging (15), we need to prove that the solution set-
valued mapping of (P1� ) and S are outer semicontinuous. In fact, in view of the con-
tinuity of the functions involved, the feasible set of (P1� ), considered as the set-val-
ued mapping (X × U) ∩ {(x, y) ∈ ℝ

n0 ×ℝ
n1 | f (x, y) ≤ f (∙, ∙) + ∇1f (∙, ∙)

T(x − ∙) + �} , 
is [2, Theorem 3.1.1] outer semicontinuous and, thanks to the convexity assumption 
and since the Slater’s constraint qualification always holds on X × U × U , [2, Theo-
rem 3.1.6] inner semicontinuous relative to X × U × U at any point in X × U × U : 
hence, it is continuous relative to X × U × U at any point in X × U × U (see the 
introduction for references about outer and inner semicontinuity). Then, in view of 
[2, Theorems 4.3.3 and 3.1.1] and [32, Corollary 5.20], the (single-valued) solution 
set mapping of (P1� ) is continuous relative to X × U × U at any point in X × U × U . 
Reasoning similarly, the set-valued mapping S is outer semicontinuous relative to X 
at any point in X.   ◻

The developments in the proof of Theorem 4.1, see in particular (14), and Proposi-
tion 2 suggest a possible stopping criterion for Algorithm 1: namely, the procedure can 
be stopped whenever the measure ‖(xk+1, yk+1) − (xk, yk)‖ is sufficiently small (see the 
numerical results in Sect. 5.1).

5  Applications in economics

Bilevel programs are widely and fruitfully used to model many real-world problems 
in economics (see, e.g. [7]). Here we propose an application in economics involving 
a problem with two decision levels. Under suitable conditions, this mathematical pro-
gram is proven to belong to the class of fully convex lower level SBPs.

Let us consider a market in which N firms produce the same n goods. Moreover, an 
independent regulator sets the selling prices of the first n1 goods, while the remaining 
n2 = n − n1 ones have a fixed price. Any firm � ∈ {1,… ,N} produces the quantities 
q� ∈ ℝ

n1 , q� ∈ ℝ
n2 of the goods, with (q� , q�) ∈ [l� , u�] , where l� and u� are suitable 

bounds. On the other hand, the regulator decides the prices p ∈ ℝ
n1 , while the fixed 

prices are denoted by p ∈ ℝ
n2 . Any firm � has quadratic production costs:

where c� ∈ ℝ
n1 and c� ∈ ℝ

n2 are positive parameters and M� is a n1 × n1 real sym-
metric positive definite matrix whose minimum (positive) eigenvalue is denoted by 

(14)‖(xk+1, yk+1) − (xk, yk)‖ → 0.

(15)lim
K∋k→∞

(xk+1, yk+1) = (x̄, ȳ).

Cost�(q
�) ≜ (q�)Tc� +

1

2
(q�)TM�q� + (q

�
)Tc

�
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�� . Assuming the presence of some shared constraints on the production levels, each 
firm, trying to minimize its own loss function, addresses the following optimization 
problem:

where g ∶ ℝ
nN → ℝ

m is a convex function that models the shared constraints.
We consider the case in which the firms do not cooperate and play simultane-

ously and rationally. In this case, given any prices p, we model the game played 
by the firms as a GNEP. In particular, the GNEP defined by (16) is a generalized 
potential game, see e.g. [21, 33]. It is well known that, given p, any solution of 
the following convex optimization problem

for any function v ∶ ℝ
n1 → ℝ that depends only on p, is an equilibrium of GNEP 

(16). Note that the additional term v(p) is introduced in (17) in order to have a fully 
convex objective function in the same spirit of Example 1; see the forthcoming dis-
cussion on how to explicitly choose v(p).

The aim of the regulator is to set the prices p ∈ [l̄, ū] to pursue two different 
targets: 

obj1  maintaining p as close as possible to its lower bounds l̄;
obj2  entailing the production quantities of the firms ( q1,… , qN ) that satisfy the 

most the customers’ demand d ∈ ℝ
n1 (obj2).

 By resorting to classical techniques for multi-objective programming, the regula-
tor minimizes the loss function

where � ∈ [0, 1] is a parameter that suitably weights the two objectives. Assuming 
an optimistic point of view, the regulator solves the following SBP:

(16)
minimize

q� ,q
�

(q�)T(c� − p) +
1

2
(q�)TM�q� + (q

�
)T(c

�
− p)

s.t. g(q1,… , qN , q
1
,… , q

N
) ≤ 0

l� ≤ (q� , q
�
) ≤ u� ,

(17)
minimize

q1,…,qN ,q
1
,…,q

N

N∑
�=1

(
(q�)T(c� − p) +

1

2
(q�)TM�q� + (q

�
)T(c

�
− p)

)
+ v(p)

s.t. g(q1,… , qN , q
1
,… , q

N
) ≤ 0

l� ≤ (q� , q
�
) ≤ u� , � = 1,… ,N,

𝜅‖‖p − l̄‖‖2 + (1 − 𝜅)

‖‖‖‖‖‖

N∑
𝜈=1

q𝜈 − d

‖‖‖‖‖‖

2

,
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where � is the value function of problem (17). We note that problem (18) is an 
instance of the general framework (SBP), where

• x = p , y = (q1,… , qN , q
1
,… , q

N
)

• F(p, q1,… , qN , q
1
,… , q

N
) = 𝜅��p − l̄��2 + (1 − 𝜅)

���
∑N

𝜈=1
q𝜈 − d

���
2

• X = [l̄, ū] , U =
{
(q1,… , qN , q

1
,… , q

N
) | g(q1,… , qN , q

1
,… , q

N
) ≤ 0,

  (q� , q
�
) ∈ [l� , u�], � = 1,… ,N}

• f (p, q1,… , qN , q
1
,… , q

N
) =

∑N

�=1

�
(q�)T(c� − p) +

1

2
(q�)TM�q�

�

  +(q
�
)T(c

�
− p) + v(p).

We observe that function v is most useful (see Example 1). On the one hand, its 
presence does not alter in any way the problem since v is not depending on the quan-
tities (q� , q�)N

�=1
 . On the other hand, it allows us to have a fully convex lower level 

objective. In fact, by choosing v(p) ≜ �

2
pTp , and setting � ≥ N

min�∈{1,…,N}{��}
 , we obtain 

(see (3) in Example 1) ∇2f (p, q1,… , qN , q
1
,… , q

N
) ⪰ 0 , that is, a fully convex f. 

Thus, problem (18) is a fully convex lower level SBP. Finally, we note that the lower 
level problem (17), for any fixed p, has in general a non unique optimal solution. 
From this respect, we recall that in this paper we take the so-called optimistic point 
of view, as a major departure from the pessimistic robust counterpart (see, e.g. [24]) 
where the leader wishes to hedge against the worst possible response of the 
follower.

5.1  Numerical experiments

The numerical results reported here show that the points provided by our method, 
when applied to problem (18), are not only stationary for its relaxed version but, in 
most cases, good approximations of its global optima.

All the experiments were carried out on an Intel Core i7-4702MQ CPU @ 
2.20GHz x 8 with Ubuntu 14.04 LTS 64-bit and by using AMPL. As optimization 
solver we used SNOPT 7.2-8 with default options.

At the lower level, as far as the potential game is concerned, we consider a market 
with N = 3 firms, each producing a total amount of n1 = 20 (10 of low quality (LQ) 

(18)

minimize
p,q1,…,qN ,q

1
,…,q

N
𝜅��p − l̄��2 + (1 − 𝜅)

������

N�
𝜈=1

q𝜈 − d

������

2

s.t. l̄ ≤ p ≤ ū

g(q1,… , qN , q
1
,… , q

N
) ≤ 0

l𝜈 ≤ (q𝜈 , q
𝜈
) ≤ u𝜈 , 𝜈 = 1,… ,N∑N

𝜈=1

�
(q𝜈)T(c𝜈 − p) +

1

2
(q𝜈)TM𝜈q𝜈 + (q

𝜈
)T(c

𝜈
− p)

�
+ v(p) ≤ 𝜑(p),
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and 10 of high quality (HQ)) and n2 = 10 goods (5 of low quality (LQ) and 5 of high 
quality (HQ)).

Data were randomly generated by using the uniform distribution according to 
Table 1: consistently, we considered three different instances A, B and C.

We remark that in our test problems M� is assumed to be diagonal.
The lower level affine constraints g ∶ ℝ

90 → ℝ
4 model the following require-

ments: on the one hand, the total amount of HQ goods (qHQ) must be, at least, 33% 
of the goods produced by the industry (qtot). On the other hand, the total amount of 
goods produced by each firm (q1, q2, q3) must not exceed a threshold of 40% of the 
quantity of goods produced by the industry (qtot).

We remark that, to take into account the different scale between the objectives, 
we multiply (obj1) ‖p − l̄‖2 by 1e+3. Also, we set � = 10 and � =

N

min�∈{1,…,N}{��}
 . We 

consider � = 1e-2: this amounts to having a tolerance (in the approximated problem 

Table 1  Problem data LQ HQ

di [900,2100] [600,1200]
l̄i [8,12] [32,36]
ūi [43,47] [63,67]
p
�

i
[8,12] [32,36]

l�
i

0 0
u�
i

[900,1100] [450,550]
c�
i

[4,6] [20,30]
c
�

i
[4,8] [28,32]

M�
ii

[0.04, 0.07] [0.05,0.08]

Table 2  Numerical results for 
instance A

� 1e–4 0.5 1−1e–4

iter 3348 5280 35
time 145 185 < 1

obj1 7.09e+3 3.87e+3 6.11e–4
obj2 2.57e–2 1.36e+6 2.06e+7
profit1 1.33e+5 9.64e+4 3.88e+4
profit2 1.40e+5 1.01e+5 3.83e+4
profit3 1.40e+5 1.01e+5 4.01e+4
qLQ 30555.42 27298.34 17393.35
qHQ 16428.67 15150.69 12365.09
q1 15271.62 13808.90 9741.82
q2 15860.18 14317.68 9965.12
q3 15852.30 14322.45 10051.50
qtot 46984.09 42449.03 29758.44
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( SBP� )) less than one cent with respect to total profits ranging from 1e+4 to 1e+5 of 
the currency (see profit1, profit2, profit3 in Tables 2, 3 and 4).

Taking in to account the theoretical results in Sect. 4, we stop the algorithm itera-
tions when the distance ‖(xk+1, yk+1) − (xk, yk)‖∞ is less than 1e-3. Finally, we adopt 
(x0, y0) = (l̄,w0) as starting point of our procedure; we make this choice in order to 
start from a point that achieves the first objective (obj1) of the regulator, that is set-
ting the prices as low as possible.

Concerning Tables 2, 3 and 4, we consider three different values for �:

• � = 1e–4, which corresponds to having the regulator mainly interested in satisfy-
ing the customers’ demand (obj2);

Table 3  Numerical results for 
instance B

� 1e–4 0.5 1−1e–4

iter 3691 5958 42
time 158 211 < 1

obj1 6.03e+3 3.11e+3 4.70e–4
obj2 2.50e–2 1.21e+6 1.62e+7
profit1 1.24e+5 9.07e+4 4.06e+4
profit2 1.24e+5 8.96e+4 3.68e+4
profit3 1.28e+5 9.29e+4 3.96e+4
qLQ 28665.95 26145.59 18118.37
qHQ 17303.53 15290.86 11505.77
q1 15346.15 13883.29 10086.61
q2 15220.57 13682.98 9665.55
q3 15402.76 13870.18 9871.97
qtot 45969.48 41436.45 29624.13

Table 4  Numerical results for 
instance C

� 1e–4 0.5 1−1e–4

iter 3970 5003 41
time 176 198 < 1

obj1 6.00e+3 3.37e+3 5.87e–4
obj2 2.05e–2 1.12e+6 1.85e+7
profit1 1.18e+5 8.80e+4 3.61e+4
profit2 1.22e+5 8.92e+4 3.33e+4
profit3 1.27e+5 9.35e+4 3.59e+4
qLQ 30674.66 27749.30 18048.44
qHQ 15647.35 14307.42 11540.32
q1 15221.78 13869.74 9963.31
q2 15508.30 14069.04 9860.09
q3 15591.94 14117.93 9765.36
qtot 46322.02 42056.72 29588.77



294 L. Lampariello, S. Sagratella 

1 3

• � = 1− 1e–4, which corresponds to having the regulator mainly interested in 
maintaining p as close as possible to l̄ (obj1);

• � = 0.5 , which corresponds to having equally-weighted preferences.

We report the total number of iterations (iter) and the CPU time in seconds (time) 
needed by Algorithm 1 in order to meet the stopping criterion. The numerical results 
show that, in each instance of the problem that we have considered and for � = 1e–4 
and 1 − 1e–4, the point provided by our procedure is not only stationary for ( SBP� ) but 
also a good approximation of a global optimum for problem (18), since the optimal 
value for obj1, when � = 1 − 1e–4, and for obj2, when � =1e–4, is clearly 0.

6  Conclusions

We identify a nontrivial and broad class of SBPs that turns out to be numerically 
tractable. As witnessed by Sect. 5, this class of problems is of practical interest since 
it can be employed to model complicated multi-agent hierarchical real-world situa-
tions. More specifically, we introduce a novel GNEP reformulation of the original 
bilevel problem. We remark that this reformulation is completely different from the 
model presented in [23], as shown in “Appendix C”. In fact, among other things, as 
a major departure from [23], here, leveraging the distinctive properties of the novel 
GNEP reformulation, we are able to devise one of the first (as far as we are aware) 
efficient algorithmic procedures for SBPs.

As further developments, we aim at extending our approach to multi-leader-fol-
lower games. In fact, when applied to these more complicated contexts, our one-
level GNEP reformulation technique allows one to put at the same level all the 
agents (leaders and followers) in order to practically tackle these problems.

Appendix A: What happens when " ↓ 0

Although the solution of the perturbed problem ( SBP� ) is significant and meaningful 
per se both in a theoretical and in a practical perspectives, the question arises quite 
naturally on what happens when the perturbation � goes to zero (see e.g. [26, 27]).

As previously recalled, the original (SBP) is a nonconvex problem for which 
standard constraint qualifications are not readily at hand. Thus, the computation 
of a Fritz-John (FJ) point (in the sense of the following definition (see [5, Theo-
rem 6.1.1])) for (SBP) may seem a reasonable goal.

Definition 5 (FJ point) Let (x, y) be feasible for (SBP). We say that (x, y) is a FJ 
point for (SBP), if multipliers (�0, �1) ∈ ℝ

2
+
 , not all zero, exist such that:
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Unfortunately, by leveraging Proposition 1 and the first order optimality condi-
tions for the lower level problem, one can easily show that any feasible point for 
(SBP) is also a FJ solution with �0 = 0.

The following proposition gives the theoretical guarantee that Algorithm 1, with 
� ↓ 0 , provides us with a FJ point for (SBP): hence, in the worst case, we find a point 
that at least is feasible for (SBP).

Proposition 3 Let {�k} be a sequence such that �k ↓ 0 , and {(xk, yk)} be a corre-
sponding sequence of stationary points for (SBP�k). Then, any accumulation point 
(x̄, ȳ) of {(xk, yk)} is a FJ point for (SBP).

Proof We assume, without loss of generality, that the whole sequence {(xk, yk)} con-
verges to (x̄, ȳ) . Let �k

1
∈ ℝ+ be such that

that is �k
1
 is a multiplier associated with the stationary point (xk, yk).

We recall that the normal cones NX(∙) , NU(∙) and N
ℝ−
(∙) , considered as set-valued 

mappings, are outer semicontinuous at x̄ , ȳ and f (x̄, ȳ) − 𝜑(x̄) , relative to X, U and 
ℝ− , respectively (see [32, Proposition 6.6]). In the subsequent developments, these 
fundamental properties will be freely invoked.

Preliminarily, we note that, by definition, we have xk ∈ X , yk ∈ U and 
f (xk, yk) − �(xk) − �k ≤ 0 for every k. We distinguish two cases. 

 (i) Consider a subsequence {�k
1
}K such that 𝜆k

1
→
K

�̄�1 . Passing to the limit (over K ) 
in (20), we have, by the continuity of the functions involved, 

 Hence, (x̄, ȳ) is a FJ point for problem (SBP) with corresponding multipliers 
(𝜆0, 𝜆1) = (1, �̄�1).

 (ii) As opposed to case (i), let, without loss of generality, �k
1
→ ∞ . Dividing both 

sides of relations (20) by �k
1
 and passing to the limit, we obtain 

(19)
0 ∈ �0∇1F(x, y) + �1∇1f (x, y) − �1∇�(x) + NX(x)

0 ∈ �0∇2F(x, y) + �1∇2f (x, y) + NU(y)

�1 ∈ N
ℝ−
(f (x, y) − �(x)).

(20)
−∇1F(x

k, yk) − �k
1
∇1f (x

k, yk) − �k
1
∇�(xk) ∈ NX(x

k)

−∇2F(x
k, yk) − �k

1
∇2f (x

k, yk) ∈ NU(y
k)

�k
1
∈ N

ℝ−
(f (xk, yk) − �(xk) − �k),

(21)
−∇1F(x̄, ȳ) − �̄�1∇1f (x̄, ȳ) − �̄�1∇𝜑(x̄) ∈ NX(x̄)

−∇2F(x̄, ȳ) − �̄�1∇2f (x̄, ȳ) ∈ NU(ȳ)

�̄�1 ∈ N
ℝ−
(f (x̄, ȳ) − 𝜑(x̄)).

(22)
−∇1f (x̄, ȳ) − ∇𝜑(x̄) ∈ NX(x̄)

−∇2f (x̄, ȳ) ∈ NU(ȳ)

1 ∈ N
ℝ−
(f (x̄, ȳ) − 𝜑(x̄)).
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 Thus, (x̄, ȳ) is a FJ point for problem (SBP) with corresponding multipliers 
(�0, �1) = (0, 1).

  ◻

Clearly, if the sequence of multipliers {�k
1
} associated with the stationary point 

(xk, yk) is bounded, then the corresponding cluster point satisfies condition (19) with 
�0 ≠ 0.

Corollary 1 Let {�k} be a sequence such that �k ↓ 0 , and {(xk, yk)} be a correspond-
ing sequence of stationary points for (SBP�k). If there exists a bounded sequence of 
multipliers �k

1
 satisfying (20), then, any accumulation point (x̄, ȳ) of {(xk, yk)} is a FJ 

point for (SBP) with �0 ≠ 0.

As observed in [27, Theorem 4.1], it can be proven that any accumulation point 
of a sequence {(xk, yk)} of (inexact) global solutions for (SBP�k ), as �k goes to zero, 
is globally optimal for (SBP). Of course, this is exactly what one would like to find, 
but (SBP�k ) is a nonconvex program and, thus, computing one of its (inexact) global 
solutions may be impractical. In this sense, the result in the following proposition 
(which is reminiscent of [10, Theorem 4.4]) fits our approach better.

Proposition 4 Let 𝛿 > 0 and {�k} be a sequence such that �k ↓ 0 and {(xk, yk)} be a 
corresponding sequence of points belonging to W�k such that

where 𝔹�(x
k, yk) ∈ ℝ

n0+n1 is the open ball centered in (xk, yk) with radius �.
Then, each accumulation point (x̄, ȳ) of {(xk, yk)} is local optimal for (SBP).

Proof First, we note that, by the continuity of the functions involved, W� is outer 
semicontinuous at any � ≥ 0 , relative to ℝ+ ; hence, we have (x̄, ȳ) ∈ W0 = W . Sup-
pose by contradiction and without loss of generality that (�x,�y) ∈ W ∩ � 𝛿

2

(x̄, ȳ) exists 
such that

Since, without loss of generality, the whole sequence {(xk, yk)} converges to (x̄, ȳ) , 
we can say that {(xk, yk)} ∈ � 𝛿

2

(x̄, ȳ) , for every k sufficiently large. This, in turn, 
entails (̃x, ỹ) ∈ ��(x

k, yk) ; observing that W = W0 ⊆ W𝜀k , we have also (̃x, ỹ) ∈ W�k 
and, thus,

The latter relation, passing to the limit, contradicts (24).   ◻

(23)F(xk, yk) ≤ F(x, y), ∀(x, y) ∈ W�k ∩ ��(x
k, yk),

(24)F(�x,�y) < F(x̄, ȳ).

F(xk, yk) ≤ F(̃x, ỹ).
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Appendix B: Generalizations

The numerical approach described in Sect. 4, as anticipated in Sect. 2, can be suit-
ably modified (see Algorithm 2) in order to cope also with a nonconvex objective 
function F and with a possibly unbounded set X. Also, we allow for the possible 
inexact (iterative) solution of subproblem ( P1�).

For this to be done, taking inspiration from [18, 34–36, 38], we introduce the fol-
lowing modified version of problem ( P1 �(x

k, yk,wk)):

where � is a positive constant and F̃ ∶ (ℝn0 ×ℝ
n1 ) × (ℝn0 ×ℝ

n1 ) → ℝ is a suit-
able convex approximation of F at the base point (xk, yk) satisfying the following 
properties: 

 (I) F̃(∙, ∙;xk, yk) is convex for every (xk, yk);
 (II) ∇12F̃(∙, ∙;∙, ∙) is continuous;
 (III) ∇12F̃(x

k, yk;xk, yk) = ∇F(xk, yk) for every (xk, yk);

where we denote by ∇12F̃ the gradient of F̃ with respect to the first and the second 
variables blocks. An easy example for the approximating function F̃ is the line-
arization of the continuously differentiable function F at the base point (xk, yk) , 
i.e. F̃(x, y;xk, yk) = F(xk, yk) + ∇F(xk, yk)T[(x, y) − (xk, yk)] . Clearly, one can employ 
any other possible convex approximant, like second order-type approximations, 
such that the mild conditions (II) and (III) hold, see [18, 34, 35].

Moreover, let (̂xk, ŷk) be the unique solution of problem ( ̃P1�(xk, yk,wk)).

Note that Algorithm  2 differs from Algorithm  1 just in step (S.1). Here, see 
step (S.1a), we consider the possibly inaccurate computation of the solution of 
problem ( ̃P1�(xk, yk,wk) ). The error � must obey rather standard rules (see the 
conditions in Theorem B.1 (i)). Condition ‖(vk, zk) − (̂xk, ŷk)‖ ≤ �k in (S.1a) would 
require us to estimate ‖(vk, zk) − (̂xk, ŷk)‖ . This is possible by resorting to appro-
priate error bounds (see [19]) which are available for the strongly convex problem 

minimize
x,y

F̃(x, y;xk, yk) +
�

2
‖(x, y) − (xk, yk)‖2

s.t. x ∈ X, y ∈ U

f (x, y) ≤ f (xk,wk) + ∇1f (x
k,wk)T(x − xk) + �,

P̃1�(x
k, yk,wk)
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( ̃P1�(xk, yk,wk) ). The convergence properties of Algorithm  2 are summarized in 
the following theorem.

Theorem B.1 Assume that ∇F is Lipschitz continuous with constant L and the 
level set L� ≜ {(x, y) ∈ X × U ∶ F(x, y) ≤ �} is bounded for every � ∈ ℝ . Let 
{(xk, yk,wk)} be the sequence generated by Algorithm 2. 

 (i) If the step-size � is bounded away from zero and smaller than min{1,
�

L
} 

and �k ≤ amin{bk∕‖∇F(xk, yk)‖, ck} for some non negative a, bk, ck with ∑
k b

k < +∞ and 
∑

k(c
k)2 < +∞ , then any cluster point (x̄, ȳ, w̄) of the bounded 

sequence {(xk, yk,wk)} is a KKT point for ( GNEP� ) and, in turn (x̄, ȳ) is station-
ary for ( SBP�);

 (ii) In the exact case, i.e. �k = 0 for every k, Algorithm 2 drives ‖(̂xk, ŷk) − (xk, yk)‖ 
below a prescribed tolerance 𝜌 > 0 after at most O(�−2) iterations.

Proof 

(i) We prove by induction that (xk, yk) is feasible for subproblem ( ̃P1�(xk, yk,wk) ), 
for every k. Observe that (x0, y0) is feasible for ( ̃P1�(x0, y0,w0) ) by construction. 
Then, suppose that (xk, yk) is feasible for ( ̃P1�(xk, yk,wk) ). We now show that 
(xk+1, yk+1) is feasible for ( ̃P1�(xk+1, yk+1,wk+1) ). In view of step (S.1b) with � ≤ 1 
and thanks to the convexity of problem ( ̃P1�(xk, yk,wk) ), (xk+1, yk+1) is feasible 
for ( ̃P1�(xk, yk,wk) ), that is 

The convexity of � (see Proposition 1) entails �(xk) + ∇�(xk)T(xk+1 − xk) ≤ �(xk+1) . 
Since wk ∈ S(xk) , we have �(xk) = f (xk,wk) and, by (7), ∇1f (x

k,wk) = ∇�(xk) . 
Moreover, since wk+1 ∈ S(xk+1) , we have �(xk+1) = f (xk+1,wk+1) . In turn,

Combining the latter inequality with (25), we obtain

and thus (xk+1, yk+1) is feasible for ( ̃P1�(xk+1, yk+1,wk+1)).
By the minimum principle, since (xk, yk) and (̂xk, ŷk) are feasible and optimal for 

problem ( ̃P1�(xk, yk,wk) ), respectively,

Hence,

(25)f (xk+1, yk+1) ≤ f (xk,wk) + ∇1f (x
k,wk)T(xk+1 − xk) + �.

f (xk,wk) + ∇1f (x
k,wk)T(xk+1 − xk) ≤ f (xk+1,wk+1).

f (xk+1, yk+1) ≤ f (xk+1,wk+1) + �

= f (xk+1,wk+1) + ∇1f (x
k+1,wk+1)T(xk+1 − xk+1) + �,

(
∇12F̃(̂x

k, ŷk;xk, yk) + � [(̂xk, ŷk) − (xk, yk)]
)T

[(xk, yk) − (̂xk, ŷk)] ≥ 0.
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and, in turn,

where the equality follows from condition (III), and the inequality is due to assump-
tion (I) and relation (26). As a consequence,

By the descent lemma [3, Proposition A.24] and step (S.1b) of the algorithm, we get

which, combined with (27), gives

Since ‖(vk, zk) − (xk, yk)‖2 ≤ 2‖(̂xk, ŷk) − (xk, yk)‖2 + 2‖(vk, zk) − (̂xk, ŷk)‖2 ≤ 2‖
(̂xk, ŷk) − (xk, yk)‖2 + 2(�k)2 , from (28) we obtain

where 𝜂 ≜ (𝜏 − 𝛾L) > 0 since the step-size is bounded away from zero and 
𝛾 < min{1,

𝜏

L
} , and Tk ≜ �‖∇F(xk, yk)‖�k + L(��k)2 . By the sufficient decrease con-

dition (29), in view of the assumption on any L� , and observing that 
∑∞

k=0
Tk < ∞ , 

we have ‖(̂xk, ŷk) − (xk, yk)‖ → 0 and {(xk, yk,wk)} turns out to be bounded by [4, 
Lemma 3.4]. Reasoning similarly to what done in the proof of Theorem  4.1, the 
assertion follows readily leveraging condition (III) in the limit. 

 (ii) Taking the sum of iterations up to N in both sides of (29) where Tk = 0 for 
every k, and considering the worst case, that is ‖(�xk,�yk) − (xk, yk)‖ > 𝜌 for 
every k ∈ {0,… ,N} , we have 

where F0 ≜ F(x0, y0) and Fm is the minimum value attained by the continu-
ous function F on the set X × U . Therefore, in order to maintain the measure 

(26)∇12F̃(̂x
k, ŷk;xk, yk)T[(̂xk, ŷk) − (xk, yk)] ≤ −� ‖(̂xk, ŷk) − (xk, yk)‖2,

∇F(xk, yk)T[(̂xk, ŷk) − (xk, yk)] =
�
∇12F̃(̂x

k, ŷk;xk, yk) − ∇12F̃(̂x
k, ŷk;xk, yk)

+∇12F̃(x
k, yk;xk, yk)

�T

[(̂xk, ŷk) − (xk, yk)]

≤ −� ‖(̂xk, ŷk) − (xk, yk)‖2,

(27)

∇F(xk, yk)T[(vk, zk) − (̂xk, ŷk) + (̂xk, ŷk) − (xk, yk)] ≤ −� ‖(̂xk, ŷk) − (xk, yk)‖2
+∇F(xk, yk)T[(vk, zk) − (̂xk, ŷk)].

F(xk+1, yk+1) ≤ F(xk, yk) + �∇F(xk, yk)T[(vk, zk) − (xk, yk)]

+
�2L

2
‖(vk, zk) − (xk, yk)‖2,

(28)
F(xk+1, yk+1) − F(xk, yk) ≤ +�‖∇F(xk, yk)‖�k − �� ‖(̂xk, ŷk) − (xk, yk)‖2

+
�2L

2
‖(vk, zk) − (xk, yk)‖2.

(29)F(xk+1, yk+1) − F(xk, yk) ≤ −�(� − �L)‖(̂xk, ŷk) − (xk, yk)‖2 + Tk

= −� �‖(̂xk, ŷk) − (xk, yk)‖2 + Tk,

𝜌2(N + 1) <

N�
k=0

‖(�xk,�yk) − (xk, yk)‖2 ≤ F(x0, y0) − F(xN+1, yN+1)

𝛾𝜂
≤

F0 − Fm

𝛾𝜂
,
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‖(̂xk, ŷk) − (xk, yk)‖ greater than � , the number of iterations cannot exceed the 
following bound:

In turn, the claim in (ii) is proven.   ◻

Differently from the convex case (see Algorithm 1), when dealing with a non-
convex objective function F, one cannot rely on a unit step-size, in general: for 
this reason, the presence of � in step (S.1b) in Algorithm 2 is required. We add 
that, apart from the constant one, other choices for the step-size are legitimate 
for our method to converge: in fact, one can prove that also diminishing or Arm-
ijo-like step-sizes (see [18]) can be employed in step (S.1b) of the algorithm. 
Finally, the result in (ii) provides one with a theoretical bound on the maximum 
number of iterations that are needed in order for the algorithm to satisfy a pos-
sible, practical stopping criterion up to an accuracy � (see also the comments in 
Sect. 5.1).

Appendix C: On the connections between bilevel problems and Nash 
games

Referring to the framework addressed in Sect.  2, here we summarize the distinc-
tive properties of ( GNEP� ) compared to those of the Nash model introduced in [23], 
pointing out their different relations with ( SBP�).

First, as for ( GNEP� ), we recall that:

– (GNEP� ) is a convex game that certainly has an equilibrium (see Remark 1);
– equilibria of ( GNEP� ) lead to stationary points of ( SBP� ) and vice versa (see 

Theorem 3.1);
– any optimal point of ( SBP� ) leads to an equilibrium of ( GNEP� ) (consequence of 

Theorem 3.1).

The Nash model as introduced in [23] and referred to ( SBP� ) reads as:

Even at first glance the differences between ( GNEP� ) and (30) are apparent. The 
problems of player 1 in ( GNEP� ) and (30) differ in the value function constraint. 
Furthermore, player 2 in ( GNEP� ) controls both u and w, while in (30) only w. 
Moreover,

– (30) is a non necessarily convex game with a possibly empty equilibrium set (see 
Example 4);

N + 1 <
F0 − Fm

𝛾𝜂𝜌2
.

(30)
minimize

x,y
F(x, y) minimize

w
f (x,w)

s.t. x ∈ X, y ∈ U s.t. w ∈ U.

f (x, y) ≤ f (x,w) + �
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– stationary points of ( SBP� ) may not lead to equilibria of (30) (see Example 4);
– any equilibrium of (30) leads to an optimal point of ( SBP� ) (see [23, Corollary 

3.1]).

In the light of the analysis above, the properties of ( GNEP� ) are completely differ-
ent from those of (30): in fact, [23] is intended to provide a theoretical analysis of 
the relations between (optimistic) bilevel problems and Nash games in terms of their 
optimal solutions, while the peculiar properties of ( GNEP� ), which is tailored to 
address stationary solutions, pave the way to algorithmic developments for ( SBP�).

The following example from [23] witnesses the validity of the claims above.

Example 4 Consider the following ( SBP� ) with 𝜀 > 0 such that 
√
𝜀 < 3 − 2

√
2:

where �(x) ≜ minw{(x + w − 1)2 ∶ w ∈ [−1, 1]} . The unique solution of (31) is 
(x̄, ȳ) =

�
1−

√
𝜀

2
,
1−

√
𝜀

2

�
 . In this case GNEP (30) reads as:

which, clearly is nonconvex due to the presence of the nonconvex value function 
constraint in player 1’s problem. The point (x̄, ȳ, w̄) =

�
1−

√
𝜀

2
,
1−

√
𝜀

2
,
1+

√
𝜀

2

�
 , where 

w̄ =
1+

√
𝜀

2
 is the unique solution of the player 2’s problem when x = x̄ , is not an 

equilibrium for (32). It is actually a matter of calculation to show that the feasible 
point (̂x, ŷ) =

�
0,

1+
√
�

2

�
 entails a lower value for the objective function of player 1’s 

problem when w = w̄ . Therefore, since the unique solution of problem ( SBP� ) 
(which is a fortiori a stationary point for ( SBP� )) does not lead to an equilibrium of 
(32), by [23, Corollary 3.1], the set of equilibria of (32) is empty.

On the contrary, ( GNEP� ), that is,

in view of the results in Sect. 3, is convex and the point (x̄, ȳ, x̄, w̄) is one of its equi-
libria.   ◻

Summing up, as for global solutions, we sketch the problems’ relations in the fol-
lowing scheme.

(31)
minimize

x,y
x2 + y2

s.t. x ∈ [−1, 1], y ∈ [−1, 1]

(x + y − 1)2 ≤ �(x) + �,

(32)
minimize

x,y
x2 + y2 minimize

w
(x + w − 1)2

s.t. x ∈ [−1, 1], y ∈ [−1, 1] s.t. w ∈ [−1, 1],

(x + y − 1)2 ≤ (x + w − 1)2 + �

minimize
x,y

x2 + y2 minimize
u,w

(x + w − 1)2 +
(u−x)2

2

s.t. x ∈ [−1, 1], y ∈ [−1, 1] s.t. w ∈ [−1, 1],

(x + y − 1)2 ≤ (u + w − 1)2

+2(u + w − 1)(x − u) + �
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Finally, as significant byproduct, also concerning the global solution sets, 
( GNEP� ) nicely completes the picture initiated in [23]. In fact, the (x, y)-part of the 
equilibrium set of GNEP (30) is a subset of the set of global solutions of ( SBP� ), 
while the (x, y)-part of the equilibrium set of ( GNEP� ) is a superset of the set of 
global solutions of ( SBP�).
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