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Abstract
Mathematical programs with or-constraints form a new class of disjunctive optimi-
zation problems with inherent practical relevance. In this paper, we provide a com-
parison of three different solution methods for the numerical treatment of this prob-
lem class which are inspired by classical approaches from disjunctive programming. 
First, we study the replacement of the or-constraints as nonlinear inequality con-
straints using suitable NCP-functions. Second, we transfer the or-constrained pro-
gram into a mathematical program with switching or complementarity constraints 
which can be treated with the aid of well-known relaxation methods. Third, a direct 
Scholtes-type relaxation of the or-constraints is investigated. A numerical compari-
son of all these approaches which is based on three essentially different model pro-
grams from or-constrained optimization closes the paper.
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1 Introduction

This paper is dedicated to the comparison of solution methods for the numerical 
treatment of the or-constrained optimization problem
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Here, the functions f , gi, hj,Gl,Hl ∶ ℝ
n → ℝ are assumed to be continuously differ-

entiable for all i ∈ M ∶= {1,… ,m} , j ∈ P ∶= {1,… , p} , and l ∈ Q ∶= {1,… , q} . 
For brevity, g ∶ ℝ

n → ℝ
m , h ∶ ℝ

n → ℝ
p , G ∶ ℝ

n → ℝ
q , and H ∶ ℝ

n → ℝ
q are 

the mappings which possess the component functions gi ( i ∈ M ), hj ( j ∈ P ), Gl 
( l ∈ Q ), and Hl ( l ∈ Q ), respectively. Forthwith, the feasible set of (MPOC) will 
be denoted by X ⊂ ℝ

n . Emphasizing that ∨ denotes the logical ‘or’, the last q con-
straints in (MPOC) force Gl(x) or Hl(x) to be less or equal to zero for all l ∈ Q when-
ever x ∈ ℝ

n is feasible to (MPOC). Thus, we will refer to (MPOC) as a mathemati-
cal program with or-constraints.

Clearly, (MPOC) is an instance of logical mathematical programming, see e.g. 
[22] for an overview, and covers several interesting applications e.g. from process 
engineering and scheduling, see [19] and references therein. Particularly, or-con-
straints can be used to avoid the formulation of so-called Big-M-constraints of type

which would induce a mixed-integer-regime and the need for an a priori calculation 
of the constant M > 0 , see [30]. Let us note that or-constrained programming with 
affine data functions is closely related to disjunctive programming in the sense of 
Balas, see [1], which means that a linear function is minimized over the union of 
convex polyhedral sets. The situation where an arbitrary convex function is min-
imized over the union of sets which are characterized via convex inequality con-
straints, respectively, is discussed in [20]. Using

which can be written as a union of two convex polyhedral sets, (MPOC) can be rep-
resented equivalently by

which is a disjunctive program in the sense of [3, 14, 29] where ℝ0
−
 denotes the 

set of all nonpositive real numbers. As we will see later in Sect.  4, the model 
(MPOC) is closely related to so-called mathematical programs with switching con-
straints (MPSCs), see [24, 30], and mathematical programs with complementarity 

(MPOC)

f (x) → min

gi(x) ≤ 0 i ∈ M

hj(x) = 0 j ∈ P

Gl(x) ≤ 0 ∨ Hl(x) ≤ 0 l ∈ Q.

Gl(x) ≤ Myl l ∈ Q

Hl(x) ≤ M(1 − yl) l ∈ Q

yl ∈ {0, 1} l ∈ Q

(1)O ∶= {(a, b) ∈ ℝ
2 | a ≤ 0 ∨ b ≤ 0},

f (x) → min

gi(x) ∈ ℝ
0
−

i ∈ M

hj(x) ∈ {0} j ∈ P

(Gl(x),Hl(x)) ∈ O l ∈ Q.
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constraints (MPCCs), see e.g. [21, 28, 32, 40]. First theoretical investigations which 
address the model (MPOC) from the viewpoint of stationarity conditions and con-
straint qualifications can be found in [30, Section 7].

This paper is devoted to the numerical treatment of (MPOC). Here, we want 
to exploit three different ideas from disjunctive programming in order to develop 
numerical strategies for the computational solution of or-constrained programs. 
We will focus our attention on the subsequently stated approaches:

– reformulation of the or-constraints as nonlinear standard inequality constraints 
using so-called NCP-functions,

– reformulation of (MPOC) as an MPSC or MPCC which can be tackled with 
the aid of relaxation methods from the literature, see e.g. [21, 24], and

– direct relaxation of the or-constraints using a Scholtes-type method.

Here, we first study the individual qualitative properties of these methods before 
we provide a quantitative numerical comparison based on different model prob-
lems from or-constrained optimization.

Originally, NCP-functions, where NCP abbreviates nonlinear complementarity 
program, were introduced in order to replace systems of complementarity con-
straints by nonlinear and possibly nonsmooth systems of equalities which can be 
solved e.g. by suitable Newton-type methods, see e.g. [7, 8, 11, 12]. A satisfy-
ing overview of NCP-functions and their properties can be found in [17, 26, 36]. 
Here, we exploit the fact that some NCP-functions can be used to replace or-con-
straints by nonlinear and possibly nonsmooth systems of inequalities.

As it turns out, one can transfer (MPOC) into an MPSC or MPCC for the 
respective price of 2q slack variables. It has been reported in [30] that this trans-
formation generally comes along with additional local minimizers of the surro-
gate MPSC and a similar behavior is at hand when the transformation into an 
MPCC is considered. Here, we additionally study the relationship of the station-
ary points associated with (MPOC) and the stationary points of the surrogate 
problem. As we will show, both transformations may induce additional stationary 
points which has to be taken into account when this solution approach is exploited 
since first-order methods for the numerical solution of MPSCs or MPCCs gener-
ally compute points satisfying certain problem-tailored stationarity conditions.

Noting that the variational geometry of X is directly related to the variational 
geometry of the set O from (1), the irregularity of the kink in O causes some 
irregularities in X which may cause essential trouble when (MPOC) is solved 
numerically (e.g. via a direct treatment using suitable NCP-functions suggested 
above). In order to overcome this potential issue, one could try to regularize this 
kink using a suitable relaxation approach. In the past, Scholtes’ relaxation method 
has turned out to be a robust approach for the numerical solution of MPCCs, 
MPSCs, and other models from disjunctive programming, see e.g. [21, 24, 34]. 
That is why we want to adapt it to the setting at hand. For this purpose, we sug-
gest two different approaches based on the smoothing of the popular Fischer–Bur-
meister function, see [12, 23], and a shifted version of the Kanzow–Schwartz 
function, see [25].



236 P. Mehlitz 

1 3

The remaining parts of the paper are organized as follows: In Sect. 2, we com-
ment on the notation used in the manuscript. Furthermore, we recall some basics 
from nonlinear programming as well as essential stationarity notions and constraint 
qualifications for or-, switching-, and complementarity-constrained programming. 
We study the reformulation of or-constraints with the aid of NCP-functions in 
Sect. 3. Additionally, we investigate how the stationary points of (MPOC) and its 
reformulation are related. As we will see, this heavily depends on the choice of the 
underlying NCP-function. In Sect. 4, we present two reasonable reformulations of 
(MPOC) as an MPSC as well as an MPCC and study the relationship of the original 
problem and its surrogate w.r.t. minimizers and stationary points, respectively. Direct 
Scholtes-type relaxation techniques associated with (MPOC) which are based on the 
smoothed Fischer–Burmeister function as well as the Kanzow–Schwartz function 
are the topic of Sect. 5. For both approaches, we study the underlying convergence 
properties as well as the regularity of the appearing subproblems. In Sect. 6, we pre-
sent a quantitative comparison of all these methods based on three different models 
from or-constrained programming, namely a nonlinear disjunctive program in the 
sense of Balas, see [1], an optimization problem whose variables possess so-called 
gap domains, and an optimal control problem whose controls have to satisfy a point-
wise or-constraint. Some concluding remarks close the paper in Sect. 7.

2  Notation and preliminaries

2.1  Basic notation

The subsequently stated tools from variational analysis can be found in [4, 31, 33].
For a vector x ∈ ℝ

n , ‖x‖2 ∶=
√
x ⋅ x is used to denote its Euclidean norm where ⋅ 

represents the Euclidean product. Choosing x̄ ∈ ℝ
n and 𝜀 > 0 arbitrarily, �𝜀(x̄) and 

�
𝜀(x̄) denote the closed �-ball and the �-sphere around x̄ , respectively, w.r.t. the Euclid-

ean norm. Let �n ∈ ℝ
n be the all-ones-vector, while for each i ∈ {1,… , n} , �n

i
∈ ℝ

n 
represents the i-th unit vector in ℝn . Whenever A ⊂ ℝ

n is a nonempty set and x̄ ∈ A is 
chosen arbitrarily, then the closed cone

is called tangent or Bouligand cone to A at x̄ where ℝ+ denotes the set of all positive 
real numbers. Furthermore, the nonempty, closed, convex cone

is referred to as the polar cone of A. It is well known that for any two sets 
B1,B2 ⊂ ℝ

n , the polarization rule (B1 ∪ B2)
◦ = B◦

1
∩ B◦

2
 is valid.

Let {vi}r
i=1

, {wj}s
j=1

⊂ ℝ
n be two families of vectors. Then, {vi}r

i=1
∪ {wj}s

j=1
 is 

said to be positive-linearly dependent if there exist scalars �i ≥ 0 ( i = 1,… , r ) and �j 
( j = 1,… , s ) which satisfy

TA(x̄) ∶=

{
d ∈ ℝ

n
||||
∃{xk}k∈ℕ ⊂ A∃{𝜏k}k∈ℕ ⊂ ℝ+ ∶

xk → x̄, 𝜏k ↓ 0, (xk − x̄)∕𝜏k → d

}

A◦ ∶= {y ∈ ℝ
n |∀x ∈ A ∶ x ⋅ y ≤ 0}
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and do not vanish at the same time. Whenever such scalars do not exist, we call 
{vi}r

i=1
∪ {wj}s

j=1
 positive-linearly independent. Note that positive-linear independ-

ence is stable under small perturbations, see [24, Lemma 2.2].
For a locally Lipschitz continuous functional � ∶ ℝ

n → ℝ and some point 
x̄ ∈ ℝ

n , the (possibly empty) set

is called Fréchet (or regular) subdifferential of � at x̄ . Based on that, one can define 
the Mordukhovich (or basic) subdifferential of � at x̄ by

Finally, the Clarke (or convexified) subdifferential of � at x̄ is given by

where convA denotes the closed, convex hull of A ⊂ ℝ
n . By construction, we have 

𝜕F𝜓(x̄) ⊂ 𝜕M𝜓(x̄) ⊂ 𝜕C𝜓(x̄) and all these sets coincide with the singleton compris-
ing only the gradient of � at x̄ whenever � is continuously differentiable at x̄.

2.2  Preliminaries from nonlinear programming

Here, we briefly recall basic constraint qualifications from nonlinear programming 
which can be found in [2]. Therefore, let us consider the nonlinear program

i.e. we leave the or-constraints in (MPOC) out of our consideration for a moment. 
Let X̃ ⊂ ℝ

n be the feasible set of (NLP) and fix some point x̄ ∈ X̃ . Frequently, we 
will use the index set of active inequality constraints given by

The linearization cone to X̃ at x̄ is given by

0 =
∑r

i=1
�iv

i +
∑s

j=1
�jw

j

𝜕F𝜓(x̄) ∶=

�
y ∈ ℝ

n
���� lim inf

x→x̄

𝜓(x) − 𝜓(x̄) − y ⋅ (x − x̄)

‖x − x̄‖2 ≥ 0

�

𝜕M𝜓(x̄) ∶=

{
y ∈ ℝ

n
||||
∃{xk}k∈ℕ ⊂ ℝ

n ∃{yk}k∈ℕ ⊂ ℝ
n ∶

xk → x̄, yk → y, yk ∈ 𝜕F𝜓(xk) ∀k ∈ ℕ

}
.

𝜕C𝜓(x̄) ∶= conv𝜕M𝜓(x̄)

(NLP)

f (x) → min

gi(x) ≤ 0 i ∈ M

hj(x) = 0 j ∈ P,

Ig(x̄) ∶= {i ∈ M | gi(x̄) = 0}.

LX̃(x̄) ∶=

{
d ∈ ℝ

n
||||
∇gi(x̄) ⋅ d ≤ 0 i ∈ Ig(x̄)

∇hj(x̄) ⋅ d = 0 j ∈ P

}
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and it is well known that TX̃(x̄) ⊂ LX̃(x̄) is valid while the converse inclusion only 
holds true under validity of a constraint qualification in general. Let us note that the 
polar cone of LX̃(x̄) is given by

Now, recall that LICQ (MFCQ), the linear independence constraint qualification 
(the Mangasarian–Fromovitz constraint qualification), holds true for (NLP) at x̄ 
whenever the vectors from

are linearly independent (positive-linearly independent). Furthermore, GCQ, the 
Guignard constraint qualification, is valid at x̄ whenever TX̃(x̄)◦ = LX̃(x̄)

◦ holds true. 
Clearly, we have

and the validity of any of these constraint qualifications at a local minimizer x̄ of 
(NLP) implies that the latter is a Karush–Kuhn–Tucker (KKT) point of (NLP), i.e. 
there are multipliers �i ≥ 0 ( i ∈ Ig(x̄) ) and �j ( j ∈ P ) which satisfy

Let us briefly mention that nonsmooth multiplier rules of KKT-type for the problem 
(NLP) with locally Lipschitz continuous but not necessarily differentiable data func-
tions which are stated in terms of Mordukhovich’s or Clarke’s subdifferential can be 
found in [31] and [38], respectively.

2.3  Preliminaries from disjunctive programming

In this section, we briefly recall some stationarity conditions and constraint quali-
fications for three classes of disjunctive programs namely MPOCs, MPSCs, and 
MPCCs.

2.3.1  Mathematical programs with or‑constraints

Problems of type (MPOC) were considered from the viewpoint of disjunctive pro-
gramming in [30, Section  7] first. In the latter paper, the author introduced rea-
sonable stationarity notions and constraint qualifications for (MPOC) which were 
motivated by the close relationship of switching- and or-constrained optimization 
problems. This relationship has been used in [24, Section 6.2.1] in order to solve a 
problem of type (MPOC) with the aid of relaxation schemes from switching-con-
strained programming. This approach will be discussed in Sect. 4.1, intensively.

Let us fix a feasible point x̄ ∈ X of (MPOC). Frequently, we will make use of the 
index sets defined below:

LX̃(x̄)
◦ =

{∑
i∈Ig(x̄)

𝜆i∇gi(x̄) +
∑

j∈P
𝜌j∇hj(x̄)

||||∀i ∈ Ig(x̄) ∶ 𝜆i ≥ 0

}
.

{∇gi(x̄) | i ∈ Ig(x̄)} ∪ {∇hj(x̄) | j ∈ P}

LICQ ⟹ MFCQ ⟹ GCQ

0 = ∇f (x̄) +
∑

i∈Ig(x̄)

𝜆i∇gi(x̄) +
∑
j∈P

𝜌j∇hj(x̄).
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Clearly, these index sets provide a disjoint partition of Q . Furthermore, we set

for brevity. This set can be considered as the set of all active or-constraints. Now, we 
are in position to state definitions of MPOC-tailored stationarity concepts, see [30, 
Definition 7.1].

Definition 2.1 Let x̄ ∈ X be a feasible point of (MPOC). Then, x̄ is said to be 

1. weakly stationary (W-stationary) for (MPOC) whenever there exist multi-
pliers �i ≥ 0 ( i ∈ Ig(x̄) ), �j ( j ∈ P  ), �l ≥ 0 ( l ∈ I0+(x̄) ∪ I00(x̄) ), and �l ≥ 0 
( l ∈ I+0(x̄) ∪ I00(x̄) ) which satisfy 

2. Mordukhovich-stationary (M-stationary) for (MPOC) whenever it is W-stationary 
while the associated multipliers additionally satisfy 

3. strongly stationary (S-stationary) for (MPOC) whenever it is W-stationary while 
the associated multipliers additionally satisfy 

By definition, we obtain the relations

between these stationarity notions which are visualized in Fig. 1. In this paper, we 
will make use of the MPOC-tailored constraint qualifications definied below.

I−0(x̄) ∶= {l ∈ Q |Gl(x̄) < 0 ∧ Hl(x̄) = 0},

I0−(x̄) ∶= {l ∈ Q |Gl(x̄) = 0 ∧ Hl(x̄) < 0},

I−+(x̄) ∶= {l ∈ Q |Gl(x̄) < 0 ∧ Hl(x̄) > 0},

I+−(x̄) ∶= {l ∈ Q |Gl(x̄) > 0 ∧ Hl(x̄) < 0},

I0+(x̄) ∶= {l ∈ Q |Gl(x̄) = 0 ∧ Hl(x̄) > 0},

I+0(x̄) ∶= {l ∈ Q |Gl(x̄) > 0 ∧ Hl(x̄) = 0},

I−−(x̄) ∶= {l ∈ Q |Gl(x̄) < 0 ∧ Hl(x̄) < 0},

I00(x̄) ∶= {l ∈ Q |Gl(x̄) = 0 ∧ Hl(x̄) = 0}.

(2)I(x̄) ∶= I0+(x̄) ∪ I+0(x̄) ∪ I00(x̄)

(3)

0 = ∇f (x̄) +
∑

i∈Ig(x̄)

𝜆i∇gi(x̄) +
∑
j∈P

𝜌j∇hj(x̄)

+
∑

l∈I0+(x̄)∪I00(x̄)

𝜇l∇Gl(x̄) +
∑

l∈I+0(x̄)∪I00(x̄)

𝜈l∇Hl(x̄),

∀l ∈ I00(x̄) ∶ 𝜇l𝜈l = 0,

∀l ∈ I00(x̄) ∶ 𝜇l = 0 ∧ 𝜈l = 0.

S-stationarity ⟹ M-stationarity ⟹ W-stationarity
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Definition 2.2 We say that MPOC-LICQ (MPOC-MFCQ) is valid at a feasible point 
x̄ ∈ X of (MPOC) whenever the gradients from

are linearly independent (positive-linearly independent).

Let x̄ ∈ X be a feasible point of (MPOC) and consider the associated tightened 
nonlinear problem

where we used

Clearly, the feasible set of (TNLP) is a subset of X. It is easy to check that validity of 
MPOC-LICQ (MPOC-MFCQ) for (MPOC) at x̄ is equivalent to validity of standard 
LICQ (MFCQ) for (TNLP) at x̄ . Furthermore, we note that the W-stationarity condi-
tions for (MPOC) at x̄ coincide with the KKT conditions of (TNLP) at x̄.

Below, we present necessary optimality conditions for (MPOC). These results 
can be easily distilled from [30, Theorems 7.1, 7.3].

Proposition 2.1 Let x̄ ∈ X be a local minimizer of (MPOC). Then, the following 
statements hold. 

[
{∇gi(x̄) | i ∈ Ig(x̄)} ∪ {∇Gl(x̄) | l ∈ I0+(x̄) ∪ I00(x̄)}

∪ {∇Hl(x̄) | l ∈ I+0(x̄) ∪ I00(x̄)}
]
∪ {∇hj(x̄) | j ∈ P}

(TNLP)

f (x) → min

gi(x) ≤ 0 i ∈ M

hj(x) = 0 j ∈ P

Gl(x) ≤ 0 l ∈ I−
G
(x̄) ∪ I0+(x̄) ∪ I00(x̄)

Hl(x) ≤ 0 l ∈ I−
H
(x̄) ∪ I+0(x̄) ∪ I00(x̄)

(4)
I−
G
(x̄) ∶= I−0(x̄) ∪ I−+(x̄) ∪ I−−(x̄),

I−
H
(x̄) ∶= I0−(x̄) ∪ I+−(x̄) ∪ I−−(x̄).

Fig. 1  Geometric visualizations of W-, M-, and S-stationarity for the program (MPOC) w.r.t. an index 
l ∈ I00(x̄)
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1. If MPOC-LICQ holds at x̄ , then it is an S-stationary point of (MPOC).
2. If MPOC-MFCQ holds at x̄ , then it is an M-stationary point of (MPOC).

In light of the available theory for other classes of disjunctive programs, it is 
reasonable that there exist numerous other MPOC-tailored constraint qualifica-
tions weaker than MPOC-MFCQ whose validity guarantees M-stationarity of local 
minimizers. Exemplary, let us note that whenever the data functions g, h, G, and 
H are affine, then a local minimizer of the associated problem (MPOC) is always 
M-stationary, see [30, Theorem  7.2]. Second-order necessary and sufficient opti-
mality conditions for (MPOC) can be easily obtained by applying the more general 
theory from [18, 29] for disjunctive programs to the problem at hand. In this paper, 
however, we are not reliant on these results which is why we abstain from a detailed 
presentation.

2.3.2  Mathematical programs with switching constraints

Let us consider the mathematical program

where G̃l, H̃l ∶ ℝ
n → ℝ ( l ∈ Q ) are continuously differentiable functions. For later 

use, let G̃, H̃ ∶ ℝ
n → ℝ

q be the maps possessing the component functions G̃l ( l ∈ Q ) 
and H̃l ( l ∈ Q ), respectively. Note that (MPSC) results from (MPOC) by replacing 
the q or-constraints by q so-called switching constraints. That is why we refer to 
(MPSC) as a mathematical program with switching constraints. Theoretical and 
numerical investigations which address this problem class as well as an overview of 
underlying applications can be found in the recent papers [24, 30].

Let XSC ⊂ ℝ
n be the feasible set of (MPSC) and fix some point x̄ ∈ XSC . We 

define

Clearly, these sets provide a disjoint partition of Q and allow us to state suitable 
problem-tailored stationarity notions for (MPSC).

Definition 2.3 Let x̄ ∈ XSC be a feasible point of (MPSC). Then, x̄ is said to be 

1. weakly stationary ( WSC-stationary) for (MPSC) whenever there exist multipliers 
�i ≥ 0 ( i ∈ Ig(x̄) ), �j ( j ∈ P ), �̃�l ( l ∈ IG̃(x̄) ∪ IG̃H̃(x̄) ), and �̃�l ( l ∈ IH̃(x̄) ∪ IG̃H̃(x̄) ) 
which satisfy 

(MPSC)

f (x) → min

gi(x) ≤ 0 i ∈ M

hj(x) = 0 j ∈ P

G̃l(x)H̃l(x) = 0 l ∈ Q

IG̃(x̄) ∶= {l ∈ Q | G̃l(x̄) = 0 ∧ H̃l(x̄) ≠ 0},

IH̃(x̄) ∶= {l ∈ Q | G̃l(x̄) ≠ 0 ∧ H̃l(x̄) = 0},

IG̃H̃(x̄) ∶= {l ∈ Q | G̃l(x̄) = 0 ∧ H̃l(x̄) = 0}.
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2. Mordukhovich-stationary ( MSC-stationary) for (MPSC) whenever it is WSC-sta-
tionary while the associated multipliers additionally satisfy 

3. strongly stationary ( SSC-stationary) for (MPSC) whenever it is WSC-stationary 
while the associated multipliers additionally satisfy 

Again, we obtain the relations

by definition of these stationarity concepts. In order to avoid confusion, we used the 
index SC to emphasize that the above stationarity notions address (MPSC) although 
this is also quite clear from the context. It should be noted that SSC-stationarity is 
equivalent to the KKT conditions of (MPSC) where the switching constraints are 
interpreted as simple equality constraints. A visualization of these stationarity con-
cepts is provided in Fig. 2.

2.3.3  Mathematical programs with complementarity constraints

Finally, we would like to mention so-called mathematical programs with comple-
mentarity constraints which are optimization problems of the following type:

0 = ∇f (x̄) +
∑

i∈Ig(x̄)

𝜆i∇gi(x̄) +
∑
j∈P

𝜌j∇hj(x̄)

+
∑

l∈IG̃(x̄)∪IG̃H̃ (x̄)

�̃�l∇G̃l(x̄) +
∑

l∈IH̃ (x̄)∪IG̃H̃ (x̄)

�̃�l∇H̃l(x̄),

∀l ∈ IG̃H̃(x̄) ∶ �̃�l�̃�l = 0,

∀l ∈ IG̃H̃(x̄) ∶ �̃�l = 0 ∧ �̃�l = 0.

SSC-stationary ⟹ MSC-stationary ⟹ WSC-stationary

Fig. 2  Geometric visualizations of W
SC

 -, M
SC

 -, and S
SC

-stationarity for the program (MPSC) w.r.t. an 
index l ∈ IG̃H̃(x̄)
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Therein, the last q constraints, which are stated w.r.t. continuously differen-
tiable functions Ḡ, H̄ ∶ ℝ

n → ℝ
q whose components will be addressed by 

Ḡ1,… , Ḡq ∶ ℝ
n → ℝ and H̄1,… , H̄q ∶ ℝ

n → ℝ , respectively, induce a complemen-
tarity regime since they demand that for each l ∈ Q , Gl(x) and Hl(x) are nonnegative 
while at least one of those numbers needs to vanish for each feasible point x ∈ ℝ

n 
of (MPCC). During the last decades, complementarity-constrained optimization 
has been considered eagerly from a theoretical and numerical point of view due to 
numerous underlying applications, see e.g. [28, 32].

We exploit XCC ⊂ ℝ
n in order to denote the feasible set of (MPCC). Let us fix a 

feasible point x̄ ∈ XCC . Then, the index sets

provide a disjoint partition of Q . Note that we used the index CC in order to dis-
tinguish the above index sets from their respective counterparts which are related 
to (MPOC). Next, we recall some stationarity notions from complementarity-con-
strained programming, see e.g. [40]. Again, we use the index CC in order to empha-
size that the stationarity notions of interest are related to (MPCC).

Definition 2.4 Let x̄ ∈ XCC be a feasible point of (MPCC). Then, x̄ is said to be 

1. weakly stationary ( WCC-stationary) for (MPCC) whenever there exist multipliers 
�i ≥ 0 ( i ∈ Ig(x̄) ), �j ( j ∈ P ), �̄�l ( l ∈ I0+

CC
(x̄) ∪ I00

CC
(x̄) ), and �̄�l ( l ∈ I+0

CC
(x̄) ∪ I00

CC
(x̄) ) 

which satisfy 

2. Clarke-stationary ( CCC-stationary) for (MPCC) whenever it is WCC-stationary 
while the associated multipliers additionally satisfy 

3. Mordukhovich-stationary ( MCC-stationary) for (MPCC) whenever it is WCC-sta-
tionary while the associated multipliers additionally satisfy 

(MPCC)

f (x) → min

gi(x) ≤ 0 i ∈ M

hj(x) = 0 j ∈ P

0 ≤ Ḡl(x) ⟂ H̄l(x) ≥ 0 l ∈ Q.

I0+
CC
(x̄) ∶= {l ∈ Q | Ḡl(x̄) = 0 ∧ H̄l(x̄) > 0},

I+0
CC
(x̄) ∶= {l ∈ Q | Ḡl(x̄) > 0 ∧ H̄l(x̄) = 0},

I00
CC
(x̄) ∶= {l ∈ Q | Ḡl(x̄) = 0 ∧ H̄l(x̄) = 0}

0 = ∇f (x̄) +
∑

i∈Ig(x̄)

𝜆i∇gi(x̄) +
∑
j∈P

𝜌j∇hj(x̄)

−
∑

l∈I0+
CC

(x̄)∪I00
CC

(x̄)

�̄�l∇Ḡl(x̄) −
∑

l∈I+0
CC

(x̄)∪I00
CC

(x̄)

�̄�l∇H̄l(x̄),

∀l ∈ I00
CC
(x̄) ∶ �̄�l�̄�l ≥ 0,
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4. strongly stationary ( SCC-stationary) for (MPCC) whenever it is WCC-stationary 
while the associated multipliers additionally satisfy 

By definition, we have

Furthermore, one can check that the SCC-stationarity conditions of (MPCC) are 
equivalent to the KKT conditions of the equivalent NLP-model associated with 
(MPCC) where the complementarity constraints are restated as

All introduced stationarity notions are visualized in Fig. 3.

3  Reformulation of or‑constraints using NCP‑functions

A continuous function � ∶ ℝ
2 → ℝ which satisfies

is referred to as NCP-function. By definition, NCP-functions can be used to refor-
mulate complementarity systems as (possibly nonsmooth) equalities which is bene-
ficial since the transformed system can be tackled numerically with the aid of (semi-
smooth) Newton or SQP methods, see e.g. [7, 8, 11, 12].

Clearly, the zero level set of an NCP-function precisely equals the complemen-
tarity set

∀l ∈ I00
CC
(x̄) ∶ �̄�l�̄�l = 0 ∨ (�̄�l > 0 ∧ �̄�l > 0),

∀l ∈ I00
CC
(x̄) ∶ �̄�l ≥ 0 ∧ �̄�l ≥ 0.

SCC-stationary ⟹ MCC-stationary

⟹ CCC-stationary ⟹ WCC-stationary.

Ḡl(x) ≥ 0 l ∈ Q

H̄l(x) ≥ 0 l ∈ Q

Ḡ(x) ⋅ H̄(x) = 0.

∀(a, b) ∈ ℝ
2 ∶ �(a, b) = 0 ⟺ a, b ≥ 0 ∧ ab = 0

Fig. 3  Geometric visualizations of W
CC

 -, C
CC

 -, M
CC

 -, and S
CC

-stationarity for the program (MPCC) 
w.r.t. an index l ∈ I

00

CC
(x̄)
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Defining the sets

Bolzano’s theorem yields that each NCP-function � ∶ ℝ
2 → ℝ has precisely one of 

the following properties: 

NCP1:  ∀(a, b) ∈ A ∪ B ∶ 𝜑(a, b) > 0,
NCP2:  ∀(a, b) ∈ A ∪ B ∶ 𝜑(a, b) < 0,
NCP3:  ∀(a, b) ∈ A ∶ 𝜑(a, b) < 0 ∧ ∀(a, b) ∈ B ∶ 𝜑(a, b) > 0,
NCP4:  ∀(a, b) ∈ A ∶ 𝜑(a, b) > 0 ∧ ∀(a, b) ∈ B ∶ 𝜑(a, b) < 0.

 This already has been mentioned in [17, Corollary 1]. Noting that B ∪ C = O holds 
for the set O defined in (1), any NCP-function of type NCP4 possesses the zero 
sublevel set O. Particularly, for any such NCP-function � ∶ ℝ

2 → ℝ , we have the 
relation

This observation yields the following definition.

Definition 3.1 An NCP-function � ∶ ℝ
2 → ℝ is said to be or-compatible if it pos-

sesses property NCP4.

Clearly, if � ∶ ℝ
2 → ℝ is an NCP-function possessing property NCP3, then 

−� is an or-compatible NCP-function. Below, we list three popular NCP-functions 
which are or-compatible while noting that there exist many more examples:

– the minimum function �min ∶ ℝ
2 → ℝ given by 

– the Fischer–Burmeister-type function �FB ∶ ℝ
2 → ℝ defined via 

 which dates back to [12], and
– the Kanzow–Schwartz function �KS ∶ ℝ

2 → ℝ from [25] which is defined by 

Obviously, �min is nonsmooth at all points from {(a, a) ∈ ℝ
2 | a ∈ ℝ} while �FB is 

nonsmooth only at the origin. By construction, the function �KS is continuously dif-
ferentiable, see [25, Lemma 3.1], which makes it rather attractive in comparison to 
other NCP-functions.

(5)C ∶= {(a, b) ∈ ℝ
2 | a, b ≥ 0 ∧ ab = 0}.

A ∶= {(a, b) ∈ ℝ
2 | a > 0 ∧ b > 0}, B ∶= {(a, b) ∈ ℝ

2 | a < 0 ∨ b < 0},

∀(a, b) ∈ ℝ
2 ∶ �(a, b) ≤ 0 ⟺ a ≤ 0 ∨ b ≤ 0 ⟺ (a, b) ∈ O.

∀(a, b) ∈ ℝ
2 ∶ �min(a, b) ∶= min{a;b},

∀(a, b) ∈ ℝ
2 ∶ �FB(a, b) ∶= a + b −

√
a2 + b2

∀(a, b) ∈ ℝ
2 ∶ 𝜑KS(a, b) ∶=

{
ab if a + b ≥ 0,

−
1

2
(a2 + b2) if a + b < 0.
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For an arbitrary or-compatible NCP-function � ∶ ℝ
2 → ℝ , we now consider the 

surrogate

which is equivalent to (MPOC). Let x̄ ∈ ℝ
n be an arbitrary feasible point of (MPOC) 

and, thus, of ( MPOC(�) ). We set

Since � is or-compatible, we have I𝜑(x̄) = I(x̄) for the set I(x̄) defined in (2). We 
now study the relationship between programs (MPOC) and ( MPOC(�) ) w.r.t. sta-
tionary points.

Noting that ( MPOC(�KS) ) is a smooth program, we first investigate this particu-
lar model.

Proposition 3.1 A feasible point x̄ ∈ X of (MPOC) is S-stationary if and only if it is 
a KKT point of ( MPOC(�KS)).

Proof [⟹] Let x̄ be an S-stationary point of (MPOC). Then, we find multipliers 
�i ≥ 0 ( i ∈ Ig(x̄) ), �j ( j ∈ P ), �l ≥ 0 ( l ∈ I0+(x̄) ), and �l ≥ 0 ( l ∈ I+0(x̄) ) such that

holds. Next, we set

which allows us to rewrite the above equation as

By definition of �KS and �l ≥ 0 for all l ∈ I𝜑KS (x̄) , x̄ is a KKT point of ( MPOC(�KS)).

f (x) → min

gi(x) ≤ 0 i ∈ M

hj(x) = 0 j ∈ P

�(Gl(x),Hl(x)) ≤ 0 l ∈ Q

MPOC(�)

I𝜑(x̄) ∶= {l ∈ Q |𝜑(Gl(x̄),Hl(x̄)) = 0}.

0 = ∇f (x̄) +
∑

i∈Ig(x̄)

𝜆i∇gi(x̄) +
∑
j∈P

𝜌j∇hj(x̄)

+
∑

l∈I0+(x̄)

𝜇l∇Gl(x̄) +
∑

l∈I+0(x̄)

𝜈l∇Hl(x̄)

∀l ∈ I𝜑KS(x̄) ∶ 𝜉l ∶=

⎧⎪⎨⎪⎩

𝜇l∕Hl(x̄) if l ∈ I0+(x̄),

𝜈l∕Gl(x̄) if l ∈ I+0(x̄),

0 if l ∈ I00(x̄),

0 = ∇f (x̄) +
∑

i∈Ig(x̄)

𝜆i∇gi(x̄) +
∑
j∈P

𝜌j∇hj(x̄)

+
∑

l∈I𝜑KS (x̄)

𝜉l
(
Hl(x̄)∇Gl(x̄) + Gl(x̄)∇Hl(x̄)

)
.
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[⟸] If x̄ is a KKT point of ( MPOC(�KS) ), we find multipliers �̄�i ≥ 0 ( i ∈ Ig(x̄) ), 
�̄�j ( j ∈ P ), and 𝜉l ≥ 0 ( l ∈ I𝜑KS (x̄) ) such that

is valid. Now, we define �̄�l ∶= 𝜉lHl(x̄) ( l ∈ I0+(x̄) ∪ I00(x̄) ) as well as �̄�l ∶= 𝜉lGl(x̄) 
( l ∈ I+0(x̄) ∪ I00(x̄) ) in order to see that x̄ is S-stationary for (MPOC).   ◻

The above result justifies to solve the smooth standard nonlinear problem 
( MPOC(�KS) ) instead of the disjunctive program (MPOC) in order to find S-sta-
tionary points of the latter. However, it needs to be noted that ( MPOC(�KS) ) is still a 
challenging problem due to the combinatorial structure of its feasible set. Addition-
ally, if I00(x̄) ≠ ∅ holds true for some feasible point x̄ ∈ ℝ

n of (MPOC), then for 
each l ∈ I00(x̄) , the gradient of the map x ↦ �KS(Gl(x),Hl(x)) vanishes at x̄ . This 
particularly means that popular constraint qualifications like MFCQ or LICQ do not 
hold at x̄ for ( MPOC(�KS) ). However, it is possible to obtain the following result.

Lemma 3.1 Let x̄ ∈ ℝ
n be a feasible point of (MPOC) where MPOC-LICQ is valid. 

Then, GCQ holds for ( MPOC(�KS) ) at x̄.

Proof Let LKS
X
(x̄) be the linearization cone associated with program ( MPOC(�KS) ) 

at x̄ . By standard arguments, TX(x̄) ⊂ LKS
X
(x̄) holds true, and this yields the inclusion 

LKS
X
(x̄)◦ ⊂ TX(x̄)

◦ . In order to verify that GCQ holds for ( MPOC(�KS) ) at x̄ , we only 
need to show the opposite inclusion.

Let I ⊂ I00(x̄) be arbitrarily chosen. We consider the program

whose feasible set will be denoted by X(x̄, I) in the subsequent considerations. The 
index sets I−

G
(x̄) and I−

H
(x̄) have been defined in (4). Locally around x̄ , the family 

{X(x̄, I)}I⊂I00(x̄) provides a decomposition of X which is why the relation

holds, cf. [13, Lemma 3.1] or [30, Lemma 5.1] for related results associated with 
MPCCs or MPSCs, respectively. Noting that the validity of MPOC-LICQ implies 
that LICQ holds for ( MPOC(x̄, I) ) at x̄ for each I ⊂ I00(x̄) , we can infer

0 = ∇f (x̄) +
∑

i∈Ig(x̄)

�̄�i∇gi(x̄) +
∑
j∈P

�̄�j∇hj(x̄)

+
∑

l∈I𝜑KS (x̄)

𝜉l
(
Hl(x̄)∇Gl(x̄) + Gl(x̄)∇Hl(x̄)

)

f (x) → min

gi(x) ≤ 0 i ∈ M

hj(x) = 0 j ∈ P

Gl(x) ≤ 0 l ∈ I−
G
(x̄) ∪ I0+(x̄) ∪ I

Hl(x) ≤ 0 l ∈ I−
H
(x̄) ∪ I+0(x̄) ∪ (I00(x̄) ⧵ I)

(MPOC(x̄, I))

TX(x̄) =
⋃

I⊂I00(x̄)

TX(x̄,I)(x̄)
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and polarizing this formula shows

where LX(x̄,I)(x̄) denotes the linearization cone of ( MPOC(x̄, I) ) at x̄.
Pick 𝜂 ∈ TX(x̄)

◦ arbitrarily. The above considerations show

Hence, we find multipliers �s
i
≥ 0 ( s = 1, 2 and i ∈ Ig(x̄) ), �s

j
 ( s = 1, 2 and j ∈ P ), 

�s
l
≥ 0 ( s = 1, 2 and l ∈ I0+(x̄) ), �s

l
≥ 0 ( s = 1, 2 and l ∈ I+0(x̄) ), �2

l
≥ 0 ( l ∈ I00(x̄) ), 

and �1
l
≥ 0 ( l ∈ I00(x̄) ) such that � possesses the following representations

This particularly shows

Exploiting the validity of MPOC-LICQ, this leads to �2
l
= �1

l
= 0 for all l ∈ I00(x̄) , 

i.e.

holds true. A simple calculation shows that this means 𝜂 ∈ LKS
X
(x̄)◦ .   ◻

In contrast to ( MPOC(�KS) ), the programs ( MPOC(�min) ) and ( MPOC(�FB) ) are 
nonsmooth. However, using suitable subdifferential constructions, it is possible to 

TX(x̄) =
⋃

I⊂I00(x̄)

LX(x̄,I)(x̄),

TX(x̄)
◦ =

⋂
I⊂I00(x̄)

LX(x̄,I)(x̄)
◦

𝜂 ∈ LX(x̄,∅)(x̄)
◦ ∩ LX(x̄,I00(x̄))(x̄)

◦.

𝜂 =
∑

i∈Ig(x̄)

𝜆1
i
∇gi(x̄) +

∑
j∈P

𝜌1
j
∇hj(x̄)

+
∑

l∈I0+(x̄)

𝜇1
l
∇Gl(x̄) +

∑
l∈I+0(x̄)∪I00(x̄)

𝜈1
l
∇Hl(x̄)

=
∑

i∈Ig(x̄)

𝜆2
i
∇gi(x̄) +

∑
j∈P

𝜌2
j
∇hj(x̄)

+
∑

l∈I0+(x̄)∪I00(x̄)

𝜇2
l
∇Gl(x̄) +

∑
l∈I+0(x̄)

𝜈2
l
∇Hl(x̄).

0 =
∑

i∈Ig(x̄)

(𝜆1
i
− 𝜆2

i
)∇gi(x̄) +

∑
j∈P

(𝜌1
j
− 𝜌2

j
)∇hj(x̄)

+
∑

l∈I0+(x̄)

(𝜇1
l
− 𝜇2

l
)∇Gl(x̄) +

∑
l∈I+0(x̄)

(𝜈1
l
− 𝜈2

l
)∇Hl(x̄)

−
∑

l∈I00(x̄)

𝜇2
l
∇Gl(x̄) +

∑
l∈I00(x̄)

𝜈1
l
∇Hl(x̄).

𝜂 =
∑

i∈Ig(x̄)

𝜆1
i
∇gi(x̄) +

∑
j∈P

𝜌1
j
∇hj(x̄)

+
∑

l∈I0+(x̄)

𝜇1
l
∇Gl(x̄) +

∑
l∈I+0(x̄)

𝜈1
l
∇Hl(x̄)
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state KKT-type systems associated with these optimization problems as well. Noting 
that the active set I𝜑(x̄) is directly related to the complementarity set C defined in 
(5), only subdifferential information of � on C is relevant for the characterization of 
the associated KKT systems. Using Clarke’s constructions, see [4], we obtain

for all (a, b) ∈ C . Sharper results can be obtained with Mordukhovich’s subdifferen-
tial, see [31], which computes as

Using these formulas and suitable chain rules for the underlying subdifferentials, 
respective KKT-type systems associated with ( MPOC(�min) ) and ( MPOC(�FB) ) can 
be derived, see [38, Theorem 5.6.2] and [31, Theorem 5.21], respectively. For sim-
plicity, we refer to these first-order systems as KKT systems again and specify the 
underlying subdifferential construction.

The upcoming result which addresses ( MPOC(�min) ) can be validated exploit-
ing a similar strategy as used for the derivation of Proposition  3.1 doing some 
nearby changes. That is why its proof is omitted here.

Proposition 3.2 

1. A feasible point x̄ ∈ ℝ
n of (MPOC) is W-stationary if and only if it is a KKT point 

of ( MPOC(�min) ) w.r.t. Clarke’s subdifferential.
2. A feasible point x̄ ∈ ℝ

n of (MPOC) is M-stationary if and only if it is a KKT point 
of ( MPOC(�min) ) w.r.t. Mordukhovich’s subdifferential.

Finally, we consider the KKT system of ( MPOC(�FB)).

𝜕C𝜑min(a, b) =

⎧
⎪⎨⎪⎩

{�2
1
} if a = 0 ∧ b > 0,

{�2
2
} if a > 0 ∧ b = 0,

conv
�
�
2
1
, �2

2

�
if a = b = 0,

𝜕C𝜑FB(a, b) =

⎧
⎪⎨⎪⎩

{�2
1
} if a = 0 ∧ b > 0,

{�2
2
} if a > 0 ∧ b = 0,

�
1(�2) if a = b = 0

𝜕M𝜑min(a, b) =

⎧
⎪⎨⎪⎩

{�2
1
} if a = 0 ∧ b > 0,

{�2
2
} if a > 0 ∧ b = 0,�

�
2
1
, �2

2

�
if a = b = 0,

𝜕M𝜑FB(a, b) =

⎧
⎪⎨⎪⎩

{�2
1
} if a = 0 ∧ b > 0,

{�2
2
} if a > 0 ∧ b = 0,

�
1(�2) if a = b = 0.
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Proposition 3.3 For a feasible point x̄ ∈ ℝ
n of (MPOC), the following statements 

are equivalent:

(a) x̄ is W-stationary,
(b) x̄ is a KKT point of ( MPOC(�FB) ) w.r.t. Clarke’s subdifferential, and
(c) x̄ is a KKT point of ( MPOC(�FB) ) w.r.t. Mordukhovich’s subdifferential.

Proof The implication (c)⟹(b) is trivial due to 𝜕M𝜑FB(a, b) ⊂ 𝜕C𝜑FB(a, b) for 
all (a, b) ∈ ℝ

2 . Furthermore, (b)⟹(a) follows easily by the fact 𝔹1(�2) ⊂ ℝ
2
+
 . It 

remains to show (a)⟹(c).
Thus, let x̄ be a W-stationary point of (MPOC). Then, we find multipliers �i ≥ 0 

( i ∈ Ig(x̄) ), �j ( j ∈ P ), �l ≥ 0 ( l ∈ I0+(x̄) ∪ I00(x̄) ), and �l ≥ 0 ( l ∈ I+0(x̄) ∪ I00(x̄) ) 
such that (3) holds. Let us assume I00(x̄) ≠ ∅ (otherwise, the proof is straightfor-
ward). Pick an index l ∈ I00(x̄) and define �l ∶= �l + �l +

√
2�l�l ≥ 0 . In case 

�l = 0 , we set �l = �l ∶= 1 −
√
2

2
 . Otherwise, we define �l ∶= �l∕�l and �l ∶= �l∕�l . 

By construction, the relation (𝛼l, 𝛽l) ∈ �
1(�2) = 𝜕M𝜑FB(Gl(x̄),Hl(x̄)) follows. Set-

ting �l ∶= �l , �l ∶= 1 , and �l ∶= 0 for all l ∈ I0+(x̄) as well as �l ∶= �l , �l ∶= 0 , and 
�l ∶= 1 for all l ∈ I+0(x̄) , we have

i.e. x̄ is a KKT point of ( MPOC(�FB) ) w.r.t. Mordukhovich’s subdifferential.   ◻

Let us briefly point the reader’s attention to the fact that the use of Mordukhovich’s 
subdifferential construction w.r.t. the function � in the KKT system associated with 
( MPOC(�) ) does not automatically lead to the identification of M-stationary points of 
(MPOC) as Proposition 3.3 demonstrates.

The above Propositions 3.1 to 3.3 suggest to solve ( MPOC(�) ) instead of (MPOC) 
in order to identify stationary points of the latter. Noting that at least ( MPOC(�KS) ) 
is a smooth problem, this can be done exploiting standard solvers from nonlinear 
programming. Suitable methods from nonsmooth optimization can be used to tackle 
( MPOC(�min) ) and ( MPOC(�FB) ) numerically.

4  Tranformation into other disjunctive programs

4.1  Relations to switching‑constrained programming

Let us consider the switching-constrained optimization problem

0 = ∇f (x̄) +
∑

i∈Ig(x̄)

𝜆i∇gi(x̄) +
∑
j∈P

𝜌j∇hj(x̄)

+
∑

l∈I
𝜑
FB

(x̄)

𝜉l
(
𝛼l∇Gl(x̄) + 𝛽l∇Hl(x̄)

)

∀l ∈ I𝜑FB(x̄) ∶ 𝜉l ≥ 0,

∀l ∈ I𝜑FB(x̄) ∶ (𝛼l, 𝛽l) ∈ 𝜕M𝜑FB(Gl(x̄),Hl(x̄)),
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associated with (MPOC). One can easily check that for each feasible point x̄ ∈ X of 
(MPOC), we find ȳ, z̄ ∈ ℝ

q such that (x̄, ȳ, z̄) is feasible to (SC-MPOC). On the other 
hand, if (x̃, ỹ, z̃) ∈ ℝ

n ×ℝ
q ×ℝ

q is feasible to (SC-MPOC), then x̃ is feasible to 
(MPOC). This observation has been used in [30, Section 7.1] in order to show that 
(MPOC) and (SC-MPOC) are somehow equivalent w.r.t. global minimizers while 
the local minimizers of (MPOC) can be found among the local minimizers of (SC-
MPOC). Moreover, it has been shown that whenever (x̃, ỹ, z̃) is a local minimizer of 
(SC-MPOC) where I0−(x̃) ∪ I−0(x̃) ∪ I00(x̃) = ∅ holds, then x̃ is a local minimizer of 
(MPOC). These results justify to consider the switching model (SC-MPOC) instead 
of (MPOC). However, one has to notice that this transformation comes for the price 
of 2q additional slack variables and potential artificial local minimizers.

Let us compare (MPOC) and (SC-MPOC) w.r.t. stationary points since local mini-
mizers of (MPOC) correspond to local minimizers of (SC-MPOC) which satisfy cer-
tain stationarity conditions under validity of constraint qualifications. It follows from 
[30, Section 7.2] that the W-, M-, and S-stationary points of (MPOC) can be found 
among the WSC -, MSC -, and SSC - stationary points of (SC-MPOC). As we will see 
below, the converse statement is also true in certain situations.

Proposition 4.1 Let (x̄, ȳ, z̄) ∈ ℝ
n ×ℝ

q ×ℝ
q be feasible to (SC-MPOC) and assume 

that the index sets I0−(x̄) and I−0(x̄) are empty. If (x̄, ȳ, z̄) is WSC-stationary ( MSC

-stationary, SSC-stationary) for (SC-MPOC), then it is W-stationary (M-stationary, 
S-stationary) for (MPOC).

Proof First, we set

Let (x̄, ȳ, z̄) be WSC-stationary for (SC-MPOC). Then, after elimination of the mul-
tipliers corresponding to the inequality constraints on the variables ȳ and z̄ , there 
are multipliers �i ≥ 0 ( i ∈ Ig(x̄) ), �j ( j ∈ P ), �l ≥ 0 ( l ∈ IG(x̄, ȳ, z̄) ∪ IGH(x̄, ȳ, z̄) ), and 
�l ≥ 0 ( l ∈ IH(x̄, ȳ, z̄) ∪ IGH(x̄, ȳ, z̄) ) which satisfy

(SC-MPOC)

f (x) → min
x,y,z

gi(x) ≤ 0 i ∈ M

hj(x) = 0 j ∈ P

yl, zl ≤ 0 l ∈ Q

(Gl(x) − yl)(Hl(x) − zl) = 0 l ∈ Q

IG(x̄, ȳ, z̄) ∶= {l ∈ Q |Gl(x̄) = ȳl ∧ Hl(x̄) ≠ z̄l},

IH(x̄, ȳ, z̄) ∶= {l ∈ Q |Gl(x̄) ≠ ȳl ∧ Hl(x̄) = z̄l},

IGH(x̄, ȳ, z̄) ∶= {l ∈ Q |Gl(x̄) = ȳl ∧ Hl(x̄) = z̄l}.
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Obviously, we have

and

from I0−(x̄) = I−0(x̄) = ∅ . Thus, the multiplier �l can be positive only for indices 
l ∈ I0+(x̄) ∪ I00(x̄) while �l can be positive only for l ∈ I+0(x̄) ∪ I00(x̄) . Consequently, 
(6) shows that x̄ is W-stationary for (MPOC).

Next, we suppose that (x̄, ȳ, z̄) is MSC-stationary for (SC-MPOC). Then, the above 
multipliers additionally need to satisfy

Clearly, the assumption I0−(x̄) = I−0(x̄) = ∅ as well as the above considerations 
show

Thus, �l�l = 0 holds for all l ∈ I00(x̄) , i.e. x̄ is M-stationary for (MPOC).
Finally, suppose that (x̄, ȳ, z̄) is SSC-stationary for (SC-MPOC). In this case, the 

above multipliers additionally satisfy the condition

Then, (7) yields that �l = 0 and �l = 0 hold for all l ∈ I00(x̄) which means that x̄ is 
already S-stationary for (MPOC).   ◻

Let us visualize the assertion of Proposition 4.1 by means of the following toy 
program taken from [30].

Example 4.1 Consider the simple or-constrained program

(6)

0 = ∇f (x̄) +
∑

i∈Ig(x̄)

𝜆i∇gi(x̄) +
∑
j∈P

𝜌j∇hj(x̄)

+
∑

l∈IG(x̄,ȳ,z̄)∪IGH (x̄,ȳ,z̄)

𝜇l∇Gl(x̄) +
∑

l∈IH (x̄,ȳ,z̄)∪IGH (x̄,ȳ,z̄)

𝜈l∇Hl(x̄)

∀l ∈ IG(x̄, ȳ, z̄) ∪ IGH(x̄, ȳ, z̄) ∶ 𝜇lȳl = 0,

∀l ∈ IH(x̄, ȳ, z̄) ∪ IGH(x̄, ȳ, z̄) ∶ 𝜈lz̄l = 0.

{l ∈ IG(x̄, ȳ, z̄) ∪ IGH(x̄, ȳ, z̄) | ȳl = 0} = {l ∈ Q |Gl(x̄) = ȳl = 0} = I0+(x̄) ∪ I00(x̄)

{l ∈ IH(x̄, ȳ, z̄) ∪ IGH(x̄, ȳ, z̄) | z̄l = 0} = {l ∈ Q |Hl(x̄) = z̄l = 0} = I+0(x̄) ∪ I00(x̄)

∀l ∈ IGH(x̄, ȳ, z̄) ∶ 𝜇l𝜈l = 0.

(7)I00(x̄) ⊂ {l ∈ IGH(x̄, ȳ, z̄) | ȳl = z̄l = 0}.

∀l ∈ IGH(x̄, ȳ, z̄) ∶ 𝜇l = 0 ∧ 𝜈l = 0.
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The set of its global minimizers is given by G ∶= {(1, x2) | x2 ≤ 0} while there are 
additional local minimizers at all points from L ∶= {(0, x2) | x2 > 0} . One can easily 
check that all points from G and L are S-stationary for (8). Note that there is an addi-
tional M-stationary point at (0, 0) which is not a local minimizer of (8).

Now, we consider the switching-constrained surrogate problem

associated with (8). By construction, all local minimizers and stationary points of 
(8) can be found among the local minimizers and stationary points of (9). It has 
been mentioned in [30, Example  7.1] that (9) possesses local minimizers whose 
x-components do not correspond to local minimizers of (8) e.g. at the points 
(x̄, ȳ, z̄) ∶= (0, 0, 0,−2) and (x̃, ỹ, z̃) ∶= (0,−1, 0,−2) . Due to [30, Theorem  7.2], 
these points are MSC-stationary for (9) since the latter is a switching-constrained 
program whose feasible region is defined via affine data functions only. As men-
tioned above, x̄ is an M-stationary point of (8) while x̃ is not. Finally, observe that 
I00(x̄) = {1} and I0−(x̃) = {1} hold.

Due to the facts discussed above, it is reasonable to focus on the computation of 
stationary points of (SC-MPOC) in order to solve (MPOC). However, one has to 
keep in mind that there are stationary solutions of (SC-MPOC) that are not station-
ary for (MPOC), see Proposition 4.1 and Example 4.1.

In [24], the authors suggest to modify relaxation techniques for the numerical 
handling of MPCCs in order to tackle switching-constrained optimization problems. 
The presented computational results depict that adapted global relaxation schemes 
due to Scholtes, see [34], as well as Kanzow and Schwartz, see [25], are suitable for 
that purpose. The adapted method due to Scholtes turned out to be the more robust 
one which is why we briefly comment on this approach below. For details, we refer 
the interested reader to [24].

For some parameter t ≥ 0 , let us investigate the relaxed nonlinear program

(8)
(x1 − 1)2 → min

x1 ≤ 0 ∨ x2 ≤ 0.

(9)

(x1 − 1)2 → min
x,y,z

y, z ≤ 0

(x1 − y)(x2 − z) = 0

f (x) → min
x,y,z

gi(x) ≤ 0 i ∈ M

hj(x) = 0 j ∈ P

yl, zl ≤ 0 l ∈ Q

−t ≤ (Gl(x) − yl)(Hl(x) − zl) ≤ t l ∈ Q.

(SC-MPOCS(t))
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It possesses m + 4q inequality and p equality constraints. Clearly, for positive t, the 
feasible set of ( SC-MPOCS(t) ) is a superset of the feasible set associated with (SC-
MPOC). Moreover, the family of feasible sets associated with ( SC-MPOCS(t) ) is 
nested w.r.t. t in such a way that for t = 0 , the feasible set of (SC-MPOC) is restored. 
Thus, for the numerical solution of (SC-MPOC), one can choose a sequence {tk}k∈ℕ 
of positive relaxation parameters converging to zero and solve the associated relaxed 
nonlinear problems ( SC-MPOCS(tk) ) using standard solvers from nonlinear pro-
gramming. Supposing that the computed sequence converges, its limit point is feasi-
ble to (SC-MPOC). Furthermore, suitable assumptions can be imposed to guarantee 
that this limit point is at least WSC-stationary, i.e. this approach is likely to produce 
W-stationary points of (MPOC), see [24, Theorem 3.2].

4.2  Relations to complementarity‑constrained programming

Let as consider the complementarity-constrained optimization problem

associated with (MPOC). Fix an arbitrary feasible point x̄ ∈ X of (MPOC) and 
define ȳ, z̄ ∈ ℝ

q as stated below:

(CC-MPOC)

f (x) → min
x,y,z

gi(x) ≤ 0 i ∈ M

hj(x) = 0 j ∈ P

Gl(x) − yl ≤ 0 l ∈ Q

Hl(x) − zl ≤ 0 l ∈ Q

0 ≤ yl ⟂ zl ≥ 0 l ∈ Q

(10)

∀l ∈ Q ∶ ȳl ∶=

⎧
⎪⎨⎪⎩

0 l ∈ I−0(x̄) ∪ I−+(x̄) ∪ I0+(x̄) ∪ I−−(x̄) ∪ I00(x̄),

1 l ∈ I0−(x̄),

2Gl(x̄) l ∈ I+−(x̄) ∪ I+0(x̄),

z̄l ∶=

⎧
⎪⎨⎪⎩

0 l ∈ I0−(x̄) ∪ I+−(x̄) ∪ I+0(x̄) ∪ I−−(x̄) ∪ I00(x̄),

1 l ∈ I−0(x̄),

2Hl(x̄) l ∈ I−+(x̄) ∪ I0+(x̄).
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Clearly, (x̄, ȳ, z̄) is feasible to (CC-MPOC). On the other hand, one can easily check 
that for each feasible point (x̃, ỹ, z̃) ∈ ℝ

n ×ℝ
q ×ℝ

q of (CC-MPOC), x̃ is feasible to 
(MPOC).

Based on this observation, we obtain the following result by standard arguments.

Proposition 4.2 

1. Let x̄ ∈ X be a locally (globally) optimal solution of (MPOC). Furthermore, let 
ȳ, z̄ ∈ ℝ

q be the vectors defined in (10). Then, (x̄, ȳ, z̄) is a locally (globally) opti-
mal solution of (CC-MPOC).

2. Let (x̃, ỹ, z̃) ∈ ℝ
n ×ℝ

q ×ℝ
q be a globally optimal solution of (CC-MPOC). Then, 

x̃ is a globally optimal solution of (MPOC).

The upcoming example shows that the second statement of Proposition 4.2 can-
not be extended to local minimizers. This observation parallels the one for the 
switching-constrained reformulation of (MPOC) discussed in Sect. 4.1.

Example 4.2 Let us consider (8) as well as its complementarity-constrained 
reformulation

Using similar arguments as in [30, Example  7.1], one can check that the points 
(0,−1, 0, 1) and (0, 0, 0, 1) are local minimizers of (11) which do not correspond to 
the minimizers of (8) characterized in Example 4.1.

Similar to [30, Lemma 7.2], we obtain the following result which is not sur-
prising in light of Example 4.2.

Proposition 4.3 Let (x̄, ȳ, z̄) ∈ ℝ
n ×ℝ

q ×ℝ
q be a locally optimal solution of (CC-

MPOC) and assume that the index sets I−0(x̄) , I0−(x̄) , and I00(x̄) are empty. Then, x̄ 
is a local minimizer of (MPOC).

Summarizing the above facts, the transformation (CC-MPOC) comes for the 
price of 2q slack variables and potential additional local minimizers. These are 
precisely those disadvantages we had to face when using the switching-con-
strained surrogate (SC-MPOC).

Finally, we want to compare (MPOC) and (CC-MPOC) w.r.t. stationary points. 
The upcoming result shows that we can find the W-, M-, and S-stationary points 
of (MPOC) among the CCC -, MCC -, and SCC-stationary points of (CC-MPOC).

(11)

(x1 − 1)2 → min
x,y,z

x1 − y ≤ 0

x2 − z ≤ 0

0 ≤ y ⟂ z ≥ 0.
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Proposition 4.4 Let x̄ ∈ X be a W-stationary (M-stationary, S-stationary) point of 
(MPOC). Furthermore, let ȳ, z̄ ∈ ℝ

q be the vectors defined in (10). Then, (x̄, ȳ, z̄) is 
CCC-stationary ( MCC-stationary, SCC-stationary) for (CC-MPOC).

Proof By definition of ȳ and z̄ , we obtain

Since x̄ is W-stationary for (MPOC), we find multipliers �i ≥ 0 ( i ∈ Ig(x̄) ), �j 
( j ∈ P ), �l ≥ 0 ( l ∈ I0+(x̄) ∪ I00(x̄) ), and �l ≥ 0 ( l ∈ I+0(x̄) ∪ I00(x̄) ) which sat-
isfy (3). Now set �l ∶= 0 for all l ∈ Q ⧵ (I0+(x̄) ∪ I00(x̄)) as well as �l ∶= 0 for all 
l ∈ Q ⧵ (I+0(x̄) ∪ I00(x̄))) . Furthermore, fix �̄� ∶= −𝜇 and �̄� ∶= −𝜈 . Then, these mul-
tipliers solve

which is the CCC-stationarity system of (CC-MPOC) at (x̄, ȳ, z̄) , i.e. the latter point is 
CCC-stationary for (CC-MPOC).

If x̄ is M-stationary (S-stationary) for (MPOC), then the multipliers � and � from 
above additionally satisfy �l�l = 0 ( �l = 0 and �l = 0 ) for all l ∈ I00(x̄) . This means 
that the new multipliers �̄� and �̄� particularly satisfy �̄�l�̄�l = 0 ( �̄�l = 0 and �̄�l = 0 ) for 
all l ∈ I00

CC
(x̄, ȳ, z̄) which implies that (x̄, ȳ, z̄) is MCC-stationary ( SCC-stationary) for 

(CC-MPOC).   ◻

Proceeding in a similar way as used for the proof of Proposition 4.1, we can 
validate the following result.

Proposition 4.5 Let (x̄, ȳ, z̄) ∈ ℝ
n ×ℝ

q ×ℝ
q be feasible to (CC-MPOC) and assume 

that the index sets I0−(x̄) and I−0(x̄) are empty. If (x̄, ȳ, z̄) is CCC-stationary ( MCC

-stationary, SCC-stationary) for (CC-MPOC), then it is W-stationary (M-stationary, 
S-stationary) for (MPOC).

I0+
CC
(x̄, ȳ, z̄) = I−0(x̄) ∪ I−+(x̄) ∪ I0+(x̄),

I+0
CC
(x̄, ȳ, z̄) = I0−(x̄) ∪ I+−(x̄) ∪ I+0(x̄),

I00
CC
(x̄, ȳ, z̄) = I−−(x̄) ∪ I00(x̄).

0 = ∇f (x̄) +
∑

i∈Ig(x̄)

𝜆i∇gi(x̄) +
∑
j∈P

𝜌j∇hj(x̄)

+
∑
l∈Q

𝜇l∇Gl(x̄) +
∑
l∈Q

𝜈l∇Hl(x̄),

0 = −𝜇 − �̄�, 0 = −𝜈 − �̄�,

∀i ∈ Ig(x̄) ∶ 𝜆i ≥ 0,

0 = 𝜇 ⋅ (G(x̄) − ȳ), 0 = 𝜈 ⋅ (H(x̄) − z̄),

∀l ∈ I+0
CC
(x̄, ȳ, z̄) ∶ �̄�l = 0,

∀l ∈ I0+
CC
(x̄, ȳ, z̄) ∶ �̄�l = 0,

∀l ∈ I00
CC
(x̄, ȳ, z̄) ∶ �̄�l�̄�l ≥ 0
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In terms of Propositions  4.4 and 4.5, it seems to be promising to focus on 
the computation of stationary points associated with the complementarity-con-
strained program (CC-MPOC) in order to find stationary points of (MPOC). Sim-
ilarly to the switching-constrained approach described in Sect.  4.1, we face the 
difficulty that the stationary points of the surrogate program (CC-MPOC) do not 
always correspond to stationary points of (MPOC). Thus, both approaches share 
the same qualitative properties.

In order to solve (CC-MPOC) computationally, it is possible to exploit e.g. 
problem-tailored SQP-methods, cf. [15, 27], or relaxation schemes, see [21] 
for an overview. Here, we focus on the well-known global relaxation approach 
of Scholtes, see [34], which turned out to be numerically efficient and robust in 
comparison with other relaxation methods, see [21]. For some parameter t ≥ 0 , 
we consider the nonlinear surrogate problem

which possesses m + 5q inequality and p equality constraints. Noting that the feasi-
ble sets of ( CC-MPOCS(t) ) form a nested family whose limit as t ↓ 0 is the feasible 
set of (CC-MPOC), we can exploit the following strategy for the numerical solution 
of (MPOC). First, we choose a sequence {tk}k∈ℕ of positive relaxation parameters 
converging to 0. Afterwards, we use standard solvers from nonlinear programming 
to compute solutions associated with ( CC-MPOCS(tk) ). The potential limit of this 
sequence is feasible to (CC-MPOC) and, under some reasonable assumptions, a CCC

-stationary point of this program, see [21, Section 3.1]. Due to Proposition 4.5, this 
strategy is likely to produce W-stationary points of (MPOC).

At this point, we want to remark that the Scholtes-type relaxation approach from 
Sect. 4.1 seems to be numerically cheaper since the resulting relaxed surrogate pro-
gram ( SC-MPOCS(t) ) generally possesses less constraints than ( CC-MPOCS(t) ). On 
the other hand, due to the different role of the slack variables, the non-linearities in 
( CC-MPOCS(t) ) seem to be more balanced than in ( SC-MPOCS(t) ). A quantitative 
comparison of both methods is provided in Sect. 6.

f (x) → min
x,y,z

gi(x) ≤ 0 i ∈ M

hj(x) = 0 j ∈ P

Gl(x) − yl ≤ 0 l ∈ Q

Hl(x) − zl ≤ 0 l ∈ Q

yl, zl ≥ 0 l ∈ Q

ylzl ≤ t l ∈ Q

(CC-MPOCS(t))
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5  Relaxation of or‑constraints

In contrast to complementarity-, vanishing-, switching-, or cardinality-constrained 
programming where essential difficulties arise from the fact that the feasible set is 
almost disconnected, or-constrained programs may behave geometrically well in this 
regard (apart from pathological cases comprising e.g. optimization problems with 
gap domains, see Sect. 6.2.2). However, we still need to deal with the combinatorial 
structure of the feasible set and the irregularity at the or-kink. As we will see later, 
a direct treatment as described in Sect. 3 struggles with this issue. Thus, a nearby 
idea is a relaxation of this kink. Motivated by the computational results from [21, 
24], we perform a global relaxation and smoothing of the kink using a Scholtes-type 
approach which is visualized in Fig.  4. Note that the popular relaxation approach 
due to Kanzow and Schwartz, see [24, 25], would only lead to a shift of the kink but 
preserves its difficult variational structure. Thus, this idea does not reflect the gen-
eral intention of this section which is why we do not consider it here.

Let t ≥ 0 be a relaxation parameter. In order to perform the relaxation of our 
interest, we focus on two modified NCP-functions characterized below. Note that 
any other (smoothed) or-compatible NCP-function can be used for this approach for 
the price of a potentially different underlying convergence analysis.

– First, we will deal with the smoothed Fischer–Burmeister function �t
FB

∶ ℝ
2 → ℝ 

given by 

 The smoothing of the Fischer–Burmeister function has been suggested by Kan-
zow in [23] where �t

FB
 is used for the numerical treatment of linear complemen-

tarity problems, see [16] as well. The smoothing of NCP-functions in nonlinear 
complementarity-constrained programming is the subject of interest in [10].

– For our second approach, we make use of �t
KS

∶ ℝ
2 → ℝ given by 

∀(a, b) ∈ ℝ
2 ∶ �t

FB
(a, b) ∶= a + b −

√
a2 + b2 + 2t.

Fig. 4  Geometric illustration of 
the Scholtes-type global relaxa-
tion approach
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 Clearly, this function is related to the NCP-function �KS from Sect.  3. How-
ever, since �KS is already smooth, �t

KS
 cannot be referred to as a smoothed NCP-

function. Instead, �t
KS

 results from �KS by subtracting the offset t. In this way, the 
boundary of the associated zero sublevel set becomes smooth. That is why we 
will refer to �t

KS
 as the offset Kanzow–Schwartz function. Clearly, �t

KS
 is con-

tinuously differentiable for each t ≥ 0 since �KS possesses this property.
For some relaxation parameter t ≥ 0 and a function �t ∈ {�t

FB
,�t

KS
} , we now consider 

the relaxed surrogate

whose feasible set will be denoted by X(�t) . Noting that for each t ≥ 0 , one has

the sets X(�t
FB
) and X(�t

KS
) are the same. However, their particular nonlinear 

description differs significantly. In the lemma below, we summarize the geometrical 
properties of the family {X(�t)}t≥0 . The proof of this result is rather standard and, 
thus, omitted.

Lemma 5.1 For �t ∈ {�t
FB
,�t

KS
} , the family {X(�t)}t≥0 possesses the following 

properties:

1. X(�0) = X,
2. 0 ≤ s ≤ t ⟹ X(𝜑s) ⊂ X(𝜑t) , and
3. 

⋂
t>0 X(𝜑

t) = X.

Due to the above lemma, the following general strategy for the numerical treatment 
of (MPOC) is reasonable. For a sequence {tk}k∈ℕ of positive relaxation parameters con-
verging to zero, we solve the relaxed surrogate ( P(�tk

FB
) ) or ( P(�tk

KS
) ). Noting that these 

problems are standard nonlinear programs, it is reasonable to demand that we are in 
position to compute associated KKT points. If the obtained sequence of points pos-
sesses an accumulation point, then the latter is feasible to (MPOC). In the following, 
we will discuss whether this accumulation point is stationary for (MPOC) as well. For 
that purpose, let us introduce the set

for a feasible point x ∈ X(�t) of ( P(�t) ). Clearly, I�t

(x) comprises all indices corre-
sponding to smoothed or-constraints active at x.

∀(a, b) ∈ ℝ
2 ∶ 𝜑t

KS
(a, b) ∶=

{
ab − t if a + b ≥ 0

−
1

2
(a2 + b2 + 2t) if a + b < 0.

f (x) → min

gi(x) ≤ 0 i ∈ M

hj(x) = 0 j ∈ P

�t(Gl(x),Hl(x)) ≤ 0 l ∈ Q

(P(�t))

∀(a, b) ∈ ℝ
2 ∶ �t

FB
(a, b) ≤ 0 ⟺ �t

KS
(a, b) ≤ 0,

I�
t

(x) ∶= {l ∈ Q |�t(Gl(x),Hl(x)) = 0}
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5.1  The smoothed Fischer–Burmeister function

Here, we analyze the proposed relaxation scheme w.r.t. the smoothed Fischer–Bur-
meister function �t

FB
 . First, we characterize its inherent convergence properties. After-

wards, the regularity of the associated nonlinear subproblems ( P(�t
FB
) ) is discussed in 

more detail.

Theorem 5.1 Let {tk}k∈ℕ be a sequence of positive relaxation parameters converg-
ing to zero. For each k ∈ ℕ , let xk ∈ X(�

tk
FB
) be a KKT point of ( P(�tk

FB
) ). Suppose 

that {xk}k∈ℕ converges to some point x̄ ∈ X where MPOC-MFCQ holds. Then, x̄ is a 
W-stationary point of (MPOC).

Proof Since xk is a KKT point of ( P(�tk
FB
) ) for each k ∈ ℕ , we find multipliers �k

i
≥ 0 

( i ∈ Ig(xk) ), �kj  ( j ∈ P ), and �k
l
≥ 0 ( l ∈ I�

tk
FB (xk) ) such that

holds where we used

for all k ∈ ℕ and all l ∈ Q . Noting that xk → x̄ holds while all involved mappings are 
continuous, we may assume

For each k ∈ ℕ , we formally set �k
l
∶= 0 for all l ∈ Ig(x̄) ⧵ Ig(xk) as well as �k

l
∶= 0 

for all l ∈ I(x̄) ⧵ I𝜑
tk
FB(xk) . This yields

Note that �k
l
, �k

l
∈ (0, 2) holds for all k ∈ ℕ and l ∈ Q . This means that the sequences 

{�k
l
}k∈ℕ and {�k

l
}l∈ℕ converge w.l.o.g. to �l ∈ [0, 2] and �l ∈ [0, 2] for each l ∈ Q , 

respectively. By construction, we have �l = 1 and �l = 0 for all l ∈ I0+(x̄) while 
�l = 0 and �l = 1 hold true for all l ∈ I+0(x̄) . For each l ∈ Q , we have

0 = ∇f (xk) +
∑

i∈Ig(xk)

�k
i
∇gi(xk) +

∑
j∈P

�k
j
∇hj(xk)

+
∑

l∈I
�
tk
FB (xk)

�k
l

(
�k
l
∇Gl(xk) + �k

l
∇Hl(xk)

)

�k
l
∶= 1 −

Gl(xk)√
G2

l
(xk) + H2

l
(xk) + 2tk

�k
l
∶= 1 −

Hl(xk)√
G2

l
(xk) + H2

l
(xk) + 2tk

∀k ∈ ℕ ∶ Ig(xk) ⊂ Ig(x̄), I𝜑
tk
FB (xk) ⊂ I(x̄).

(12)

0 = ∇f (xk) +
∑

i∈Ig(x̄)

𝜆k
i
∇gi(xk) +

∑
j∈P

𝜌k
j
∇hj(xk)

+
∑
l∈I(x̄)

𝜉k
l

(
𝛼k
l
∇Gl(xk) + 𝛽k

l
∇Hl(xk)

)
.
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by feasibility of xk for ( P(�tk
FB
) ). Taking the limit, we particularly have �l + �l ≥ 1 for 

all l ∈ I00(x̄) , which yields that �l or �l is positive for l ∈ I00(x̄).
Let us assume that the sequence {(𝜆k

Ig(x̄)
, 𝜌k, 𝜉k

I(x̄)
)}k∈ℕ is unbounded. We set

Thus, {(�̃�k
Ig(x̄)

, �̃�k, 𝜉k
I(x̄)

)}k∈ℕ is bounded and converges w.l.o.g. to some nonvanishing 
(�̃�Ig(x̄), �̃�, 𝜉I(x̄)) . Dividing (12) by ‖(𝜆k

Ig(x̄)
, 𝜌k, 𝜉k

I(x̄)
)‖2 and taking the limit k → ∞ while 

respecting the properties of the limits �, � ∈ ℝ
q as well as the continuous differenti-

ability of all involved mappings, we come up with

Noting that �̃�i ≥ 0 ( i ∈ Ig(x̄) ) and 𝜉l ≥ 0 ( l ∈ I(x̄) ) holds true, the validity of MPOC-
MFCQ yields �̃�i = 0 ( i ∈ Ig(x̄) ), �̃�j = 0 ( j ∈ P ), 𝜉l = 0 ( l ∈ I0+(x̄) ∪ I+0(x̄) ), and 
𝜉l𝛼l = 𝜉l𝛽l = 0 ( l ∈ I00(x̄) ). Since �l or �l is positive for each l ∈ I00(x̄) , we already 
have 𝜉l = 0 ( l ∈ I(x̄) ). Summarizing these observations, the multiplier (�̃�Ig(x̄), �̃�, 𝜉I(x̄)) 
vanishes which is a contradiction.

Thus, {(𝜆k
Ig(x̄)

, 𝜌k, 𝜉k
I(x̄)

)}k∈ℕ is bounded and converges w.l.o.g. to some multiplier 
(𝜆Ig(x̄), 𝜌, 𝜉I(x̄)) . Therefore, taking the limit in (12) yields

with �i ≥ 0 ( i ∈ Ig(x̄) ) and �l ≥ 0 ( l ∈ I(x̄) ). Finally, we set

in order to see that x̄ is a W-stationary point of (MPOC).   ◻

At the first glance, the result from Theorem 5.1 seems to be comparatively weak 
when taking into account similar investigations for other classes of disjunctive pro-
grams. On the other hand, the fact that the proposed method produces W-stationary 

�k
l
+ �k

l
= 1 + 1 −

Gl(xk) + Hl(xk)√
G2

l
(xk) + H2

l
(xk) + 2tk

= 1 −
�
tk
FB
(Gl(xk),Hl(xk))√

G2
l
(xk) + H2

l
(xk) + 2tk

≥ 1

∀k ∈ ℕ ∶ (�̃�k
Ig(x̄)

, �̃�k, 𝜉k
I(x̄)

) ∶=
(𝜆k

Ig(x̄)
, 𝜌k, 𝜉k

I(x̄)
)

‖(𝜆k
Ig(x̄)

, 𝜌k, 𝜉k
I(x̄)

)‖2
.

0 =
∑

i∈Ig(x̄)

�̃�i∇gi(x̄) +
∑
j∈P

�̃�j∇hj(x̄)

+
∑

l∈I0+(x̄)

𝜉l∇Gl(x̄) +
∑

l∈I+0(x̄)

𝜉l∇Hl(x̄) +
∑

l∈I00(x̄)

𝜉l(𝛼l∇Gl(x̄) + 𝛽l∇Hl(x̄)).

0 = ∇f (x̄) +
∑

i∈Ig(x̄)

𝜆i∇gi(x̄) +
∑
j∈P

𝜌j∇hj(x̄)

+
∑

l∈I0+(x̄)

𝜉l∇Gl(x̄) +
∑

l∈I+0(x̄)

𝜉l∇Hl(x̄) +
∑

l∈I00(x̄)

𝜉l(𝛼l∇Gl(x̄) + 𝛽l∇Hl(x̄)).

∀l ∈ I0+(x̄) ∪ I00(x̄) ∶ 𝜇l ∶=

{
𝜉l l ∈ I0+(x̄),

𝜉l𝛼l l ∈ I00(x̄)

∀l ∈ I+0(x̄) ∪ I00(x̄) ∶ 𝜈l ∶=

{
𝜉l l ∈ I+0(x̄),

𝜉l𝛽l l ∈ I00(x̄)
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points actually means that local minimizers of (MPOC) which are only W-stationary 
can be found by this approach. Apart from that, the variational geometry of (MPOC) 
suggests that the biactive situation is rather artificial at local minimizers of (MPOC), 
and whenever the biactive set is empty, then all introduced stationarity notions for 
(MPOC) coincide.

The following simple example confirms that the results of Theorem 5.1 cannot be 
strengthened.

Example 5.1 Let us consider the simple or-constrained program

Its globally optimal solutions are given by (1,  0) and (0,  1) and these points are 
S-stationary. Furthermore, the point x̄ ∶= (0, 0) is W-stationary but not a local mini-
mizer of (13).

Let us consider the associated program ( P(�t
FB
) ) for some t ∈ (0, 1] . One can eas-

ily check that x(t) ∶= (
√
t,
√
t) is a KKT point of the latter. Taking the limit t ↓ 0 , 

we have x(t) → x̄ . Note that MPOC-LICQ is valid at x̄ . This means that we cannot 
strengthen the assertion of Theorem 5.1.

In order to guarantee that the local minimizers associated with the nonlinear pro-
gram ( P(�t

FB
) ) are KKT points, a constraint qualification needs to be imposed on the 

latter problem. As we will show below, the validity of MPOC-MFCQ at some feasible 
point of (MPOC) implies that standard MFCQ is valid in a neighborhood of this point 
w.r.t. ( P(�t

FB
) ). This way, the assumptions of Theorem 5.1 turn out to be quite natural. 

Particularly, the need for KKT points associated with ( P(�t
FB
) ) is not restrictive since 

MPOC-MFCQ is demanded to hold at the associated limit point.

Proposition 5.1 Let x̄ ∈ X be a feasible point of (MPOC) where MPOC-MFCQ is 
valid. Then, there exists a neighborhood U ⊂ ℝ

n of x̄ such that MFCQ holds for 
( P(�t

FB
) ) at all points from X(�t

FB
) ∩ U for all t > 0.

Proof Invoking [24, Lemma 2.2], we find a neighborhood U of x̄ such that the union

is positive-linearly independent for each x ∈ U since MPOC-MFCQ is valid and all 
appearing functions are continuously differentiable.

Now, fix t > 0 as well as x ∈ X(�t
FB
) ∩ U . If U is small enough, we have 

Ig(x) ⊂ Ig(x̄) and I𝜑t
FB(x) ⊂ I(x̄) by continuity of g, G, H, and �t

FB
 . Let us set

(13)
1

2
(x1 − 1)2 +

1

2
(x2 − 1)2 → min

x1 ≤ 0 ∨ x2 ≤ 0.

[
{∇gi(x) | i ∈ Ig(x̄)} ∪ {∇Gl(x) | l ∈ I0+(x̄) ∪ I00(x̄)}

∪ {∇Hl(x) | l ∈ I+0(x̄) ∪ I00(x̄)}
]
∪ {∇hj(x) | j ∈ P}
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for all l ∈ Q . By construction, it holds �l, �l ∈ (0, 2) . Furthermore, �l + �l ≥ 1 holds 
for all l ∈ Q since x is feasible to ( P(�t

FB
) ). Hence, �l or �l is positive for each l ∈ Q . 

Clearly, we have

if U is chosen sufficiently small. Thus, we may assume that the union

is positive-linearly independent.
Now, suppose that there are multipliers �i ≥ 0 ( i ∈ Ig(x) ), �j ( j ∈ P ), and �l ≥ 0 

( l ∈ I�
t
FB (x) ) such that

is valid. This is equivalent to

since we have I𝜑t
FB(x) ⊂ I(x̄) by choice of U. The positive-linear independence of 

the union in (14) and Ig(x) ⊂ Ig(x̄) yield �i = 0 ( i ∈ Ig(x) ), �j = 0 ( j ∈ P ), �l = 0 
( l ∈ (I0+(x̄) ∪ I+0(x̄)) ∩ I𝜑

t
FB(x) ), �l�l = 0 ( l ∈ I00(x̄) ∩ I𝜑

t
FB (x) ), as well as �l�l = 0 

( I00(x̄) ∩ I𝜑
t
FB(x) ). Noting that �l or �l is positive, we can infer �l = 0 for all indices 

l ∈ I00(x̄) ∩ I𝜑
t
FB (x) , i.e. �l = 0 holds for all l ∈ I�

t
FB (x) . Consequently, MFCQ holds 

for ( P(�t
FB
) ) at x.   ◻

�l ∶= 1 −
Gl(x)√

G2
l
(x) + H2

l
(x) + 2t

�l ∶= 1 −
Hl(x)√

G2
l
(x) + H2

l
(x) + 2t

∀l ∈ I0+(x̄) ∩ I𝜑
t
FB(x) ∶ 𝛼l ≠ 0 𝛽l ≈ 0

∀l ∈ I+0(x̄) ∩ I𝜑
t
FB(x) ∶ 𝛼l ≈ 0 𝛽l ≠ 0

(14)

[
{∇gi(x) | i ∈ Ig(x̄)}

∪ {𝛼l∇Gl(x) + 𝛽l∇Hl(x) | l ∈ (I0+(x̄) ∪ I+0(x̄)) ∩ I𝜑
t
FB(x)}

∪ {∇Gl(x) | l ∈ I00(x̄) ∩ I𝜑
t
FB(x)}

∪ {∇Hl(x) | l ∈ I00(x̄) ∩ I𝜑
t
FB(x)}

]
∪ {∇hj(x) | j ∈ P}

0 =
∑

i∈Ig(x)

�i∇gi(x) +
∑
j∈P

�j∇hj(x) +
∑

l∈I
�t
FB (x)

�l
(
�l∇Gl(x) + �l∇Hl(x)

)

0 =
∑

i∈Ig(x)

𝜆i∇gi(x) +
∑
j∈P

𝜌j∇hj(x)

+
∑

l∈(I0+(x̄)∪I+0(x̄))∩I
𝜑t
FB (x)

𝜉l
(
𝛼l∇Gl(x) + 𝛽l∇Hl(x)

)

+
∑

l∈I00(x̄)∩I
𝜑t
FB (x)

𝜉l𝛼l∇Gl(x) +
∑

l∈I00(x̄)∩I
𝜑t
FB (x)

𝜉l𝛽l∇Hl(x)
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5.2  The offset Kanzow–Schwartz function

Now, we investigate the proposed relaxation scheme in terms of the function �t
KS

 . 
Recalling that the problems ( P(�t

FB
) ) and ( P(�t

KS
) ) possess the same feasible sets, 

it is reasonable to believe that the qualitative properties of this method to not sig-
nificantly differ from the relaxation approach involving the smoothed Fischer–Bur-
meister function �t

FB
 . In order to check this, let us review Example 5.1 first. Indeed, 

it is not difficult to see that x(t) ∶= (
√
t,
√
t) is a KKT point of the program ( P(�t

KS
) ) 

associated with (13) for each t ∈ (0, 1] again. Since we have x(t) → x̄ as t ↓ 0 where 
x̄ ∶= (0, 0) is a W-stationary point of (13) where MPOC-LICQ holds, the above con-
jecture seems to be confirmed.

Fix t > 0 and some x̃ ∈ X(𝜑t
KS
) . Assume that I𝜑t

KS(x̃) is nonempty. Then, for each 
l ∈ I𝜑

t
KS (x̃) , the mapping x ↦ �t

KS
(Gl(x),Hl(x)) behaves bilinear w.r.t. Gl(x) and Hl(x) 

for arguments from a neighborhood of x̃ since Gl and Hl are continuous functions. 
Particularly, the relaxed subproblem ( P(�t

KS
) ) corresponds to a classical Scholtes-

type relaxation locally around x̃ in the sense of the particular underlying nonlin-
ear description of the relaxed feasible set. That is why the proofs of the upcom-
ing results, which characterize the convergence behavior of the suggested relaxation 
scheme as well as the regularity of the associated nonlinear subproblems, directly 
follow by reprising the arguments used in [21, Section 3.1] and [24, Section 3] in the 
context of MPCCs and MPSCs, respectively, while doing some problem-tailored but 
nearby adjustments.

Theorem 5.2 Let {tk}k∈ℕ be a sequence of positive relaxation parameters converg-
ing to zero. For each k ∈ ℕ , let xk ∈ X(�

tk
KS
) be a KKT point of ( P(�tk

KS
) ). Suppose 

that {xk}k∈ℕ converges to some point x̄ ∈ X where MPOC-MFCQ holds. Then, x̄ is a 
W-stationary point of (MPOC).

Proposition 5.2 Let x̄ ∈ X be a feasible point of (MPOC) where MPOC-MFCQ is 
valid. Then, there exists a neighborhood U ⊂ ℝ

n of x̄ such that MFCQ holds for 
( P(�t

KS
) ) at all points from X(�t

KS
) ∩ U for all t > 0.

Due to the above results, the qualitative properties of the proposed relaxa-
tion scheme do not depend on the actual choice of the underlying function from 
{�t

FB
,�t

KS
} . However, we note that the nonlinearities hidden within these two func-

tions are essentially different which is why we want to investigate the quantitative 
properties of the respective resulting relaxation method in numerical practice, see 
Sect. 6.

6  Numerical results

In this section, we are going to compare the solution approaches discussed in 
Sects.  3–5 by means of different instances of or-constrained programming. Par-
ticularly, we are going to investigate the direct replacement of the or-constraints by 
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means of nonlinear inequalities induced by the Kanzow–Schwartz function �KS , 
see Sect. 3, the reformulation of the or-constrained program as an MPSC or MPCC 
which then is treated with the aid of suitable Scholtes-type relaxation methods, see 
Sect. 4, and the direct Scholtes-type relaxation approach based on the smoothed Fis-
cher–Burmeister function �t

FB
 and the offset Kanzow–Schwartz function �t

KS
 dis-

cussed in Sect.  5. The following problems, which are chosen from model classes 
with significant practical relevance, will serve as the benchmark for our numerical 
comparison: 

1. a nonlinear disjunctive program in the sense of Balas, see Sect. 6.2.1,
2. an optimization problem where the domains of the underlying variables possess 

gaps, see Sect. 6.2.2, and
3. an or-constrained optimal control problem of the non-stationary heat equation in 

two spacial dimensions, see Sect. 6.2.3.

For each of these examples, we first discuss the underlying problem structure. After-
wards, the numerical results are presented. In order to provide a reasonable quantita-
tive comparison of the five discussed computational methods, we make use of per-
formance profiles, see [9], based on computed function values. Note that we do not 
use time as an performance index here since the transformation of the or-constrained 
program into an MPSC or MPCC comes for the price of several slack variables and 
additional constraints whose respective number depends linearly on the number of 
original or-constraints. Thus, we can expect that the other approaches would clearly 
outrun these two methods w.r.t. computation time. In order to guarantee that the 
nonlinear surrogate programs which arise from the different solution methods we 
want to compare can be tackled with the same NLP solver, we decided only to use 
the smooth Kanzow–Schwartz NCP-function for the direct reformulation of the or-
constraints, cf. Section 3.

We would like to mention that the use of other relaxation methods for MPSCs 
and MPCCs, see [21, 24], is possible when using the approach from Sect. 4. How-
ever, in order to guarantee comparability of numerical results, one should try to 
focus on relaxation ideas which apply to all the problem classes (MPOC), (MPSC), 
and (MPCC) at the same time. Naturally, this seems to restrict us to generalizations 
of so-called one-sided relaxation schemes (MPCC-terminology) like Scholtes-type 
methods, the relaxation approach due to Kanzow and Schwartz, see [25], and the 
local relaxation approach due to Steffensen and Ulbrich, see [35]. We already noted 
at the beginning of Sect.  5 that the relaxation approach of Kanzow and Schwartz 
only shifts the kink in the set O from (1) and, thus, does not solve the combinato-
rial issues connected with the feasible set of (MPOC). On the other hand, it has 
been reported in [24, Section  6.2.3] that local relaxation might not be enough to 
solve particular instances of switching-constrained programming successfully, and 
this rules out the relaxation scheme of Steffensen and Ulbrich. We, thus, only focus 
on Scholtes-type relaxation methods which were shown to be very robust in terms of 
disjunctive programming, see e.g. [21, 24].
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6.1  Implementation

The subsequently described numerical experiments were carried out using MAT-
LAB R2018a. For our comparison, we exploited the five algorithms stated below: 

IPOPT:  the IPOPT interior-point algorithm from [39] is applied to the NLP 
( MPOC(�KS) ) which results from (MPOC) by reformulating all or-
constraints with the aid of the smooth Kanzow–Schwartz function, 
see Sect. 3,

ScholtesSC:  the relaxation method of Scholtes is applied to the switching-con-
strained reformulation (SC-MPOC) of (MPOC), see Sect. 4.1,

ScholtesCC:  the relaxation method of Scholtes is applied to the complemen-
tarity-constrained reformulation (CC-MPOC) of (MPOC), see 
Sect. 4.2,

smoothedFB:  the direct relaxation method from Sect. 5 using the smoothed Fis-
cher–Burmeister function, and

offsetKS:  the direct relaxation method from Sect. 5 which exploits the offset 
Kanzow-Schwartz function.

 Each of these algorithms is called via user-supplied gradients of objective and con-
straint functions. We use the global stopping tolerance 10−4 for IPOPT’s stopping toler-
ance in case of algorithm IPOPT and for the maximum or-constraint violation

in case of the other four methods. In order to allow a comparison of the computa-
tional results, the relaxed subproblems arising in the methods ScholtesSC, Schol-
tesCC, smoothedFB, and offsetKS are solved with IPOPT as well. Here, the inter-
nal stopping tolerance of IPOPT is set to 10−6 . For all these relaxation approaches, 
the relaxation parameter is chosen to be tk ∶= 0.01k for each k ∈ ℕ , and the algo-
rithm is automatically terminated whenever tk drops below 10−8.

Since we aim for a fair quantitative comparison of these five methods, we cannot rely 
on computation time since by construction, the numerical effort of these approaches is 
essentially different. Instead, we focus our attention on the comparison of computed 
function values (w.r.t. different starting points) with the globally optimal function value 
in order to classify the robustness of the suggested methods. In light of the fact that 
or-constrained programs are likely to possess a substantial amount of local minimizers 
which are not globally optimal, this is a reasonable approach. Here, we make use of the 
quantity

max{max{0,min{Gl(x),Hl(x)}} | l ∈ Q}

(15)Q�(x
a
s
) ∶=

{
f (xa

s
) − fmin + � if xa

s
is feasible within tolerance,

+∞ otherwise
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as the underlying metric for the resulting performance profiles. Above, we used xa
s
 in 

order to denote the final iterate of a run of algorithm a ∈ A with

for the starting point associated with the index s ∈ S . If unknown, a reasonable 
approximate of the global minimal function value fmin needs to be determined. 
Finally, � ≥ 0 is an additional parameter which reduces sensitivity to numerical 
accuracy. Using the metric Q� defined above, the resulting performance ratio is 
given by

In our performance profiles, we plot the illustrative parts of the curves 
�a ∶ [1,∞) → [0, 1] given by

for each algorithm a ∈ A where |⋅| denotes the cardinality of a set. Thus, �a(�) may 
be interpreted as the probability that the final iterate produced by algorithm a has 
a function value which is not worse than �-times the best computed function value 
w.r.t. all algorithms from A.

6.2  Numerical experiments

In this section, we present the numerical results associated with three prominent 
instances of or-constrained programming.

6.2.1  Disjunctive programming

Let us define sets X1,X2 ⊂ ℝ
3 as stated below:

Now, we consider the nonlinear program

which can be interpreted as an instance of disjunctive programming in the sense 
of Balas, see [1]. One can easily check that its global minimizer is given by 

A ∶= {�����, ����������, ����������, ����������, �������}

∀s ∈ S∀a ∈ A ∶ rs,a ∶=
Q�(x

a
s
)

min{Q�(x
�
s
) | � ∈ A}

.

∀� ∈ [1,∞) ∶ �a(�) ∶=
||{s ∈ S | rs,a ≤ �}||

|S|

X1 ∶= {x ∈ ℝ
3 | x1 ≥ 4, x1 + (x2 − 2)2 + (x3 + 2)2 ≥ 5},

X2 ∶= {x ∈ ℝ
3 | x2

1
+ x2

2
≤ x3, (x1 − 1)2 + x2

2
+ x3 ≥ 1, x2 ≤ 0}.

(x1 − 1)2 + (x2 − 2)2 + (x3 + 2)2 → min

x ∈ X1 ∪ X2
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x̄ ∶= (0, 0, 0) which possesses the minimal function value fmin = 9 . Note that this 
program possesses additional local minimizers which are not globally optimal at all 
points from the set

Introducing two slack variables u, v ∈ ℝ , we can equivalently restate the program of 
interest as the or-constrained problem

which can be processed by our five algorithms. We use 500 starting points whose 
x-components are randomly chosen from [0,  4] while u and v are random scalars 
from [−1, 0] . The resulting performance profile for � ∶= 1 can be found in Fig. 5. 
As we can see, the relaxation methods reliably compute the best function value and 
identify the actual global minimizer in most of the cases. There is no significant dif-
ference between the direct relaxation methods and those ones which are applied to 
surrogate reformulations of (16). All these algorithms do not outrun IPOPT whose 
performance is also quite good since it finds the best function value in more than 

{(1, 0, 1)} ∪ {(4, x2, x3) ∈ ℝ
3 | (x2 − 2)2 + (x3 + 2)2 = 1}.

(16)

(x1 − 1)2 + (x2 − 2)2 + (x3 + 2)2 → min
x,u,v

4 − x1 − u ≤ 0

5 − x1 − (x2 − 2)2 − (x3 + 2)2 − u ≤ 0

x2
1
+ x2

2
− x3 − v ≤ 0

1 − (x1 − 1)2 − x2
2
− x3 − v ≤ 0

x2 − v ≤ 0

u ≤ 0 ∨ v ≤ 0

1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IPOPT
ScholtesSC
ScholtesCC
smoothedFB
offsetKS

Fig. 5  Performance profile for the disjunctive program from Sect. 6.2.1
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85% of the cases. This is, however, not surprising since problem (16) possesses just 
one or-constraint.

6.2.2  Optimization problems with gap domains

In contrast to standard box-constrained programming, it may happen that variables 
need to be chosen such that they do not belong to a critical interval. One may think 
of physical quantities needing to stay away from given critical values or situations in 
production planning where a certain amount of products has to be bought or sold. In 
order to model such constraints, we fix vectors �, u ∈ ℝ

n satisfying � < u and con-
sider the system

These constraints induce so-called gap domains which are heavily disconnected. 
Here, the feasible set crumbles into 2n branches. Consequently, the underlying opti-
mization problem is likely to possess several local minimizers which are not glob-
ally optimal. We note that due to � < u , the biactive set I00(x) is empty for all fea-
sible points x of the underlying or-constrained optimization problems. This means 
that all the introduced stationarity notions, see Definition 2.1, coincide for programs 
with or-constraints of type (17).

For a random vector a ∈ [0, 1]50 sorted in ascending order with at least 15 entries 
which are greater than 0.5, we consider the optimization problem

whose variables possess gap domains. By construction, its globally minimal func-
tion value is given by

(17)xl ≤ �l ∨ xl ≥ ul l = 1,… , n.

(18)

∑50

l=1
(xl − al)

2 → min

∑50

l=1
xl ≤ 15

xl ≤ 0 ∨ xl ≥ 1 l = 1,… , 50
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Fig. 6  Performance profiles for the optimization problem with gap domains from Sect. 6.2.2
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For our experiments, we challenged our algorithms with 500 randomly chosen start-
ing points from [−1, 2]50 . Two resulting performance profiles for � ∶= 1 with differ-
ently scaled �-axes can be found in Fig. 6.

Noting that the feasible set of (18) is disconnected, it is not surprising that the relax-
ation methods clearly outrun IPOPT which generally gets stuck in the branch of (18) 
associated with the respective starting point. A direct relaxation of the program by 
means of smoothedFB or offsetKS does not really solve this issue. For example, one 
can easily check that the method offsetKS relaxes the gap-constraints to

which is equivalent to the or-constrained system

for each t ∈ [0,
1

4
] . That means that the method needs to handle highly disconnected 

feasible sets for comparatively large relaxation parameters already. Similar effects 
can be observed for smoothedFB. Both direct relaxation methods turn out to com-
pute one particular locally optimal solution which is not the global minimizer of 
(18) in most of the situations, respectively, and the performance profiles underline 
this observation. It is not difficult to see that the MPSC- or MPCC-reformulations 
of (18) considered in Sect. 4 still possess disconnected feasible sets. However, the 
associated Scholtes-type relaxation methods ScholtesSC and ScholtesCC seem to 
be much more stable in numerical practice since they compute the actual global 
minimizer of (18) in most of the situations. One reason for this behavior might be 
the presence of slack variables which allow some freedom when the nonlinear sub-
problems are solved.

6.2.3  Or‑constrained optimal control

Motivated by the considerations in [24, Section 6.2.2], we want to study the opti-
mal control of the non-stationary heat equation with the aid of two control func-
tions u and v which influence distinct parts �u and �v of the underlying domain � 
over time. Here, we additionally assume that at least one of the controls needs to 
be nonnegative at each time instance. Such a constraint arises when due to techni-
cal restrictions, it is not possible to cool �u and �v at the same time. In terms of 
this paper, this means that the control functions need to satisfy an or-constraint in 
pointwise fashion. In order to guarantee that the associated optimal control prob-
lem possesses an optimal solution, standard L2-regularity of controls is generally 
not enough since this conservative regularity assumption does not guarantee the 
weak sequential closedness of the underlying set of feasible controls. Following 
ideas from [5, 6] where pointwise switching or complementarity constraints are 

fmin =
∑35

l=1
a2
l
+
∑50

l=36
(1 − al)

2.

x1(1 − x1) ≤ t l = 1,… , n

x1 ≤
1

2
−

√
1

4
− t ∨ x1 ≥

1

2
+

√
1

4
− t l = 1,… , n



271

1 3

Numerical methods for or-constrained optimization

considered, this issue can be solved by considering controls from a first-order 
Sobolev space.

Fix I ∶= (0, 6) as well as � ∶= (−1, 1)2 and let �  be the boundary of � . Further-
more, we set �u ∶= (−1, 0] × (−1, 1) and �v ∶= (0, 1) × (−1, 1) . The non-stationary 
heat equation of our interest is given by

where �A ∶ � → ℝ denotes the characteristic function of the measurable set A ⊂ 𝛺 
which equals 1 on A and vanishes on � ⧵ A . Following classical arguments, see [37] 
where the Lebesgue and Sobolev spaces of interest are characterized as well, there 
exists a continuous linear mapping S ∶ H1(I) × H1(I) → L2(I;H1(�)) which assigns 
to each pair (u, v) of controls the uniquely determined (weak) solution y of (19). Let 
us define the desired state yd ∶= S(ud, vd) where ud, vd ∈ H1(I) are given by

Now, we are in position to state the optimal control problem of our interest below:

For our experiments, we choose � ∶= 10−6 and � ∶= 10−5 . Observe that the pair 
(ud, vd) is not feasible to (21) since these functions violate the pointwise or-con-
straint precisely for all those t ∈ I satisfying 1 < t < 3.

In order to tackle (21) with the suggested algorithms, we first need to perform 
a suitable discretization. Therefore, we tessellate the domain � with the aid of the 
function generateMesh from MATLAB’s PDE toolbox using the tolerance 
h ∶= 10−1 . The time interval I is subdivided into equidistant intervals of width 
� ∶= 5 ⋅ 10−2 . Noting that state and control need to possess first-order Sobolev regu-
larity, we use standard piecewise affine and continuous finite elements for spatial 
and temporal discretization. This leads to a conforming approximation of the H1-
norm in the objective functional of (21).

This discretization results in a finite-dimensional program of type (MPOC) which 
possesses 121 simple or-constraints on the discretized control functions and a con-
vex, quadratic objective functional. Thus, this program can be decomposed into 2121 
convex subproblems which indicates that the overall discretized program possesses 
a huge amount of local minimizers. For our comparison of the suggested numerical 
methods, we need to identify a reasonable candidate for a global minimizer of the 
optimal control problem. In order to do this, we use the following heuristic proce-
dure adapted from [24, Section 6.2.2] in order to find a coarse upper bound for the 

(19)
𝜕ty(t,𝜔) − 𝛥𝜔y(t,𝜔) −

1

10
𝜒𝛺u

(𝜔)u(t) − 1

10
𝜒𝛺v

(𝜔)v(t) = 0 a.e. on I ×𝛺

�⃗(𝜔) ⋅ ∇𝜔y(t,𝜔) = 0 a.e. on I × 𝛤

y(0,𝜔) = 0 a.e. on 𝛺

(20)∀t ∈ I ∶ ud(t) ∶= −20 sin(�t∕3) vd(t) ∶= 10 cos(�t∕2).

(21)

1

2
��S(u, v) − yd

��2L2(I;L2(�))
+

�

2

�
‖u‖2

L2(I)
+ ‖v‖2

L2(I)

�

+
�

2

����tu��2L2(I) + ���tv��2L2(I)
�

→ min
u,v

u(t) ≥ 0 ∨ v(t) ≥ 0 a.e. on I.
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globally minimal function value. First, we solve the program exactly for a rough 
time discretization (we used � ∶= 0.375 ) by computing the (global) minimizers of 
all 217 resulting convex subproblems and comparing the obtained solutions. After-
wards, we lift the obtained global minimizer to the finer time grid using linear inter-
polation. The obtained point is used as a starting point for our five algorithms. The 
best obtained outcome possesses a function value of fmin = 0.2156 . The resulting 
controls are depicted in Fig. 7. They are closely related to ud and vd from (20) except 
for the time interval (1, 3) where the pointwise or-constraint from (21) leads to sig-
nificant changes.

For our numerical experiment, we performed algorithmic runs for 500 starting 
points which were randomly chosen elementwise from [−10, 10] . The resulting per-
formance profile for � ∶= 0 can be found in Fig. 7. As it turns out, the Scholtes-type 
direct relaxation methods smoothedFB and offsetKS perform much better than the 
other two relaxation methods ScholtesSC and ScholtesCC. A reason for that might 
be that due to the transformation to a switching- or complementarity-constrained pro-
gram, the surrogate problems under consideration in ScholtesSC and ScholtesCC pos-
sess lots of additional slack variables, namely 242, and inequality constraints which 
makes them uncomfortably large. Due to the fact that the feasible set of the discre-
tized or-constrained optimal control problem is strongly connected, the direct method 
IPOPT keeps up at least with the latter relaxation methods. Another reason for that 
behavior might be the fact that MPOC-LICQ is valid at all feasible points of the discre-
tized optimal control problem which implies that GCQ holds at all feasible points of the 
associated surrogate ( MPOC(�KS) ), see Lemma 3.1. However, IPOPT cannot chal-
lenge the direct relaxation methods smoothedFB and offsetKS which produce points 
with the best objective value much more frequently. Finally, it should be noted that 
smoothedFB performs slightly better than offsetKS. This might be caused by the fact 
that the relaxation via the smoothed Fischer–Burmeister function avoids bilinearities 
which appear when the Kanzow–Schwartz function is used for that purpose.
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Fig. 7  Potential global minimizer (left) and performance profile (right) for the or-constrained optimal 
control problem from Sect. 6.2.3



273

1 3

Numerical methods for or-constrained optimization

6.3  Summary

Our examples indicate that the correct choice for a numerical method which can be 
used to solve or-constrained optimization problems heavily depends on the underly-
ing problem structure. In situations where only a few or-constraints need to be consid-
ered while the resulting feasible set is still connected, there is no significant difference 
between all the suggested algorithms, see Sect. 6.2.1. On the other hand, optimization 
problems with gap domains should be transferred into surrogate MPSCs or MPCCs 
which then should be solved by classical relaxation methods. This procedure turned 
out to annihilate the disconnectedness of the underlying feasible set successfully, see 
Sect. 6.2.2. Finally, whenever a huge number of simple or-constraints needs to be con-
sidered such that the underlying feasible set is still connected, then a direct relaxation of 
the program seems to be the correct approach since this method regularizes the feasible 
set while not blowing up the number of variables and constraints, see Sect. 6.2.3.

7  Concluding remarks

In this paper, we discussed three different approaches for the numerical handling of 
or-constrained optimization problems with the aid of different methods from con-
tinuous optimization. First, we investigated the reformulation of or-constraints as 
(smooth or nonsmooth) inequality constraints using suitable NCP-functions. Sec-
ond, we transferred the or-constrained optimization problem into a switching- or 
complementarity-constrained surrogate problem which can be solved numerically 
with the aid of relaxation methods. The qualitative properties of these transforma-
tions were discussed in detail. Third, a direct Scholtes-type relaxation of optimiza-
tion problems with or-constraints based on the smoothed Fischer–Burmeister func-
tion or the offset Kanzow–Schwartz function was suggested and the convergence 
properties of this approach were investigated. A numerical comparison of all these 
methods based on different models from or-constrained optimization has been car-
ried out. It turned out that the precise choice of the method heavily depends on the 
structural properties of the underlying problem’s feasible set. Generally, relaxation 
methods perform much better than algorithms based on a simple replacement of the 
or-constraints using NCP-functions.
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