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Abstract
In this paper, we introduce and analyze a new algorithm for solving equilibrium prob-
lem involving pseudomonotone and Lipschitz-type bifunction in real Hilbert space.
The algorithm requires only a strongly convex programming problem per iteration.
A weak and a strong convergence theorem are established without the knowledge of
the Lipschitz-type constants of the bifunction. As a special case of equilibrium prob-
lem, the variational inequality is also considered. Finally, numerical experiments are
performed to illustrate the advantage of the proposed algorithm.
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Variational inequality
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1 Introduction

In this paper, we consider the equilibrium problem (EP) which is to find x∗ ∈ C such
that

f (x∗, y) ≥ 0, ∀y ∈ C, (1)

whereC is a nonempty closed convex subset in a real Hilbert space H , f : H×H −→
R is a bifunction. The solution set of (1) is denoted by EP( f ). Equilibrium problem is
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also called the Ky Fan inequality due to his contribution to this field [1]. The problem
unifies many important mathematical models such as saddle point problem, fixed
point problem, variational inequality and Nash equilibrium problem [2,3]. Recently,
methods for solving equilibrium problem have been studied extensively [4–17]. One
of the most popular methods is the proximal point method [4–6]. But the method
cannot be applied to pseudomonotone equilibrium problem. Another method is the
proximal-likemethod (the extragradient method) [7]. By using the idea of Korpelevich
extragradient method in [8], this method was extended by Quoc et al. in [9]

{
x0 ∈ C, yn = argmin

{
λ f (xn, y) + 1

2‖xn − y‖2, y ∈ C
}
,

xn+1 = argmin
{
λ f (yn, y) + 1

2‖xn − y‖2, y ∈ C
}
,

(2)

where λ is a suitable parameter. It was proved that the sequence {xn} generated by
(2) converges to a solution of equilibrium problem under the assumptions of pseu-
domonotonicity and Lipschitz-type condition of f . But at each iteration, one needs
to calculate two strongly convex programming problems. This method was improved
by many authors; see,e.g., [10–15]. Based on the Malitsky’s work in the variational
inequality [18], Nguyen [15] proposed the following method

{
x0, y1 ∈ C, xn = (ϕ−1)yn+xn−1

ϕ

yn+1 = argmin
{
λ f (yn, y) + 1

2‖xn − y‖2, y ∈ C
}
,

(3)

where ϕ =
√
5+1
2 and λ is a suitable parameter. It is easy to see this method need only

one strongly convex programming problem per iteration. The main drawback of algo-
rithms (2) and (3) is a requirement to know Lipschitz-type constants of equilibrium
bifunction. In order to overcome this shortcoming, Dang [10,11,13,14] proposed the
non-summable and diminishing step size sequence for solving strongly pseudomono-
tone equilibrium problem. In this work, we propose a new gradient method for solving
pseudomonotone equilibrium problem. It is worth pointing out that the proposed algo-
rithm uses a new step size and does not require the knowledge of the Lipschitz-type
constants of the bifunction.

The remainder of this paper is organized as follows. In Sect. 2, we present some
definitions and preliminaries that will be needed throughout the paper. In Sect. 3, we
propose a new algorithm and analyze its convergence. In Sect. 4, we particularize our
method to the variational inequality. Finally, preliminary numerical experiments are
provided which demonstrate our algorithm performance.

2 Preliminaries

In this section, we recall some concepts and results for further use.

Definition 2.1 A bifunction f : C × C −→ R is said to be as follows:

(i) Monotone on C if f (x, y) + f (y, x) ≤ 0, ∀x, y ∈ C .

(ii) Pseudomonotone on C if f (x, y) ≥ 0 
⇒ f (y, x) ≤ 0, ∀x, y ∈ C .
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(iii) Strong pseudomonotone on C if f (x, y) ≥ 0 
⇒ f (y, x) ≤ −γ ‖x −
y‖2, ∀x, y ∈ C . Where γ > 0.

Definition 2.2 A mapping h : C −→ R is called subdifferentiable at x ∈ C if there
exists a vector w ∈ H such that h(y) − h(x) ≥ 〈w, y − x〉,∀y ∈ C .

Definition 2.3 Amapping F : H → H is said to be sequentially weakly continuous if
the sequence {xn} converges weakly to x implies {F(xn)} converges weakly to F(x).

For solving the equilibrium problem, we assume that the bifunction f satisfies the
following conditions:

(C1) f is pseudomonotone on C and f (x, x) = 0 for all x ∈ C .
(C1′) f is strong pseudomonotone on C and f (x, x) = 0 for all x ∈ C .
(C2) f satisfies the Lipschitz-type condition on C . That is, there exist two positive

constants c1, c2 such that f (x, y) + f (y, z) ≥ f (x, z) − c1‖x − y‖2 − c2‖y −
z‖2, ∀x, y, z ∈ C .

(C3) f (x, .) is convex and subdifferentiable on C for every fixed x ∈ C .
(C4) lim supn→∞ f (xn, y) ≤ f (x, y) for every sequence
{xn} which converges weakly to x and for each y ∈ C .

For a proper, convex and lower semicontinuous function g : C → (−∞,+∞] and
λ > 0, the proximal mapping of g associated with λ is defined by

proxλg(x) = argmin

{
λg(y) + 1

2
‖x − y‖2 : y ∈ C

}
, x ∈ H . (4)

The following lemma is a property of the proximal mapping.

Lemma 2.1 [19] For all x ∈ H , y ∈ C and λ > 0, the following inequality holds:

λ{g(y) − g(proxλg(x))} ≥ 〈x − proxλg(x), y − proxλg(x)〉. (5)

Remark 2.1 From Lemma 2.1, we note that if x = proxλg(x), then

x ∈ Argmin{g(y) : y ∈ C} := {x ∈ C : g(x) = min
y∈C g(y)}. (6)

Lemma 2.2 Let δ ∈ (0,+∞) and x, y ∈ H. Then

‖(δ + 1)x − δy‖2 = (δ + 1)‖x‖2 − δ‖y‖2 + δ(δ + 1)‖x − y‖2.

Lemma 2.3 Let {an}, {bn} be two nonnegative real sequences such that ∃N > 0, ∀n >

N , an+1 ≤ an − bn. Then {an} is bounded and limn→∞ bn = 0.

Lemma 2.4 Let {xn} be a sequence in H such that xn⇀x. Then

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞ ‖xn − y‖, ∀y �= x .
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For a closed and convex K ⊆ H , the (metric) projection PK : H −→ C is defined,
for all x ∈ H by PK (x) = argmin{‖ y − x ‖| y ∈ K }.
Lemma 2.5 Let C be a nonempty, closed and convex set in H and x ∈ H. Then

〈PCx − x, y − PCx〉 ≥ 0, ∀y ∈ C .

3 Algorithm and its convergence

In this section, we propose an iterative algorithm for solving the equilibrium problem
(1). The algorithm is designed as follows:

Algorithm 3.1

(Step 0) Choose λ1 > 0, x0, y0, y1 ∈ C, μ ∈ (0, 1), α ∈ (0, 1), θ ∈ (0, 1], δ ∈
(

√
1+4( α

2−θ
+1−α)−1

2 , 1).
(Step 1) Given the current iterate xn−1, yn−1, yn , compute

xn = (1 − δ)yn + δxn−1. (7)

yn+1 = argmin

{
λn f (yn, y) + 1

2
‖xn − y‖2, y ∈ C

}
= proxλn f (yn ,.)(xn).

(8)

If yn+1 = xn = yn , then stop: yn is a solution. Otherwise, go to step 2.
(Step 2) Compute

λn+1 =

⎧⎪⎪⎨
⎪⎪⎩

min
{

αμθ(‖yn−yn−1‖2+‖yn+1−yn‖2)
4δ( f (yn−1,yn+1)− f (yn−1,yn)− f (yn ,yn+1))

, λn

}
,

i f f (yn−1, yn+1) − f (yn−1, yn) − f (yn, yn+1) > 0,

λn, otherwise.

(9)

Set n := n + 1 and return to step 1.

Remark 3.1 Under hypotheses (C1) and (C3), from Lemma 2.1 and Remark 2.1, we
obtain that if Algorithm 3.1 terminates at some iterate, i.e., yn+1 = xn = yn , then
yn ∈ EP( f ).

Lemma 3.1 The sequence {λn}generatedbyAlgorithm3.1 is amonotonically decreas-
ing sequence with lower bound min{ αμθ

4δmax{c1,c2} , λ1}.

Proof It is easily checked that {λn} is a monotonically decreasing sequence. Since f
is a Lipschitz-type bifunction with constants c1 and c2, in the case of f (yn−1, yn+1)−
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f (yn−1, yn) − f (yn, yn+1) > 0, we have

αμθ(‖yn − yn−1‖2 + ‖yn+1 − yn‖2)
4δ( f (yn−1, yn+1) − f (yn−1, yn) − f (yn, yn+1))

≥ αμθ(‖yn − yn−1‖2 + ‖yn+1 − yn‖2)
4δ(c1‖yn−1 − yn‖2 + c2‖yn+1 − yn‖2)

≥ αμθ(‖yn − yn−1‖2 + ‖yn+1 − yn‖2)
4δmax{c1, c2}(‖yn−1 − yn‖2 + ‖yn+1 − yn‖2)

= αμθ

4δmax{c1, c2} . (10)

It is clear that the sequence {λn} has the lower bound min{ αμθ
4δmax{c1,c2} , λ1}. ��

Remark 3.2 The limit of {λn} exists and we denote λ = limn→∞ λn . It is obvious that
λ > 0. If λ1 ≤ αμθ

4δmax{c1,c2} , then {λn} is a constant sequence. The following lemma
plays a crucial role in the Proof of the Theorem 3.1.

Lemma 3.2 Under the conditions (C1), (C2)and (C3). Let {xn}and {yn}be sequences
generated by Algorithm 3.1 and E P( f ) �= ∅. Then {xn} and {yn} are bounded.
Proof Since yn+1 = proxλn f (yn ,.)(xn). By Lemma 2.1, we get

λn( f (yn, y) − f (yn, yn+1)) ≥ 〈xn − yn+1, y − yn+1〉, ∀y ∈ C . (11)

Let u ∈ EP( f ). Substituting y = u into the last inequality, we have

λn( f (yn, u) − f (yn, yn+1)) ≥ 〈xn − yn+1, u − yn+1〉. (12)

As u ∈ EP( f ), we obtain f (u, yn) ≥ 0. Thus f (yn, u) ≤ 0 because of the pseu-
domonotonicity of f . Hence, from (12) and λn > 0, we obtain

− λn f (yn, yn+1) ≥ 〈xn − yn+1, u − yn+1〉. (13)

Since yn = proxλn−1 f (yn−1,.)(xn−1), we get

λn−1( f (yn−1, y) − f (yn−1, yn)) ≥ 〈xn−1 − yn, y − yn〉, ∀y ∈ C . (14)

In particular, substituting y = yn+1 into the last inequality, we have

λn−1( f (yn−1, yn+1) − f (yn−1, yn)) ≥ 〈xn−1 − yn, yn+1 − yn〉. (15)

Since xn = (1 − δ)yn + δxn−1, we obtain yn = 1
1−δ

xn − δ
1−δ

xn−1. Hence,

yn − xn = δ

1 − δ
(xn − xn−1) = δ(yn − xn−1). (16)
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Combining (15), (16) and λn > 0, we have

λn( f (yn−1, yn+1) − f (yn−1, yn)) ≥ λn

λn−1

1

δ
〈xn − yn, yn+1 − yn〉. (17)

Adding (13) and (17), we get

2λn( f (yn−1, yn+1) − f (yn−1, yn) − f (yn, yn+1))

≥ 2〈xn − yn+1, u − yn+1〉 + 2
λn

λn−1

1

δ
〈xn − yn, yn+1 − yn〉

= ‖xn − yn+1‖2 + ‖yn+1 − u‖2 − ‖xn − u‖2

+ λn

λn−1

1

δ
(‖xn − yn‖2 + ‖yn+1 − yn‖2 − ‖xn − yn+1‖2). (18)

That is

‖yn+1 − u‖2 ≤ ‖xn − u‖2 − ‖xn − yn+1‖2 − λn

λn−1

1

δ
(‖xn − yn‖2 + ‖yn+1

− yn‖2 − ‖xn − yn+1‖2) + 2λn( f (yn−1, yn+1) − f (yn−1, yn) − f (yn, yn+1))

= ‖xn − u‖2 +
(

λn

λn−1

1

δ
− 1

)
‖xn − yn+1‖2 − λn

λn−1

1

δ
(‖xn − yn‖2 + ‖yn+1 − yn‖2)

+ 2λn+1
λn

λn+1
( f (yn−1, yn+1) − f (yn−1, yn) − f (yn, yn+1)).

(19)

By definition of λn and (19), we obtain

‖yn+1 − u‖2 ≤ ‖xn − u‖2 +
(

λn

λn−1

1

δ
− 1

)
‖xn − yn+1‖2

− λn

λn−1

1

δ
(‖xn − yn‖2 + ‖yn+1 − yn‖2)

+ 1

2
μ

λn

λn+1

1

δ
αθ(‖yn − yn−1‖2 + ‖yn − yn+1‖2). (20)

In the last inequality, in the case of f (yn−1, yn+1)− f (yn−1, yn)− f (yn, yn+1) ≤ 0,
it is obvious that

2λn+1
λn

λn+1
( f (yn−1, yn+1) − f (yn−1, yn) − f (yn, yn+1))

≤ 0 ≤ 1

2
μ

λn

λn+1

1

δ
αθ(‖yn − yn−1‖2 + ‖yn − yn+1‖2).
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Since

lim
n→∞

λn

λn−1
= 1 > α, lim

n→∞ λn
μ

λn+1
= μ, 0 < μ < 1. (21)

we have that ∃N ≥ 0, such that ∀n ≥ N , λn
λn−1

1
δ

− 1 > 0, 0 < λn
μ

λn+1
< 1 and

α < λn
λn−1

.

From the relation yn+1 = 1
1−δ

xn+1 − δ
1−δ

xn , by Lemma 2.2 and (16), we have

‖yn+1 − u‖2 = ‖ 1

1 − δ
(xn+1 − u) − δ

1 − δ
(xn − u)‖2

= 1

1 − δ
‖xn+1 − u‖2 − δ

1 − δ
‖xn − u‖2 + 1

1 − δ

δ

1 − δ
‖xn+1 − xn‖2

= 1

1 − δ
‖xn+1 − u‖2 − δ

1 − δ
‖xn − u‖2 + δ‖yn+1 − xn‖2. (22)

Also, from λn
λn−1

1
δ

− 1 ≤ λn−1
λn−1

1
δ

− 1 = 1
δ

− 1, (20), (21) and (22), it implies that
∀n ≥ N ,

1

1 − δ
‖xn+1 − u‖2 − δ

1 − δ
‖xn − u‖2 + δ‖yn+1 − xn‖2

≤ ‖xn − u‖2 +
(
1

δ
− 1

)
‖xn − yn+1‖2 − α

δ
(‖xn − yn‖2 + ‖yn+1 − yn‖2)

+ α

2δ
θ(‖yn − yn−1‖2 + ‖yn − yn+1‖2). (23)

Thus,

1

1 − δ
‖xn+1 − u‖2 + αθ

2δ
‖yn+1 − yn‖2

≤ 1

1 − δ
‖xn − u‖2 + αθ

2δ
‖yn − yn−1‖2 +

(
θα

δ
− α

δ

)
‖yn+1 − yn‖2

+
(
1

δ
− 1 − δ

)
‖yn+1 − xn‖2 − α

δ
‖yn − xn‖2

= 1

1 − δ
‖xn − u‖2 + αθ

2δ
‖yn − yn−1‖2

+ (θ − 1)α

δ
‖yn+1 − yn‖2 +

(
1

δ
− 1 − δ

)
‖yn+1 − xn‖2

− α

δ
(‖xn − yn+1‖2 + ‖yn − yn+1‖2 + 2〈xn − yn+1, yn+1 − yn〉). (24)
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For n ≥ N , let

an = 1

1 − δ
‖xn − u‖2 + αθ

2δ
‖yn − yn−1‖2,

η = 1

2 − θ
. (25)

Combining (24), (25) and−2〈xn−yn+1, yn+1−yn〉 ≤ η‖xn−yn+1‖2+ 1
η
‖yn−yn+1‖2,

we have

an+1 ≤ an +
(

(θ − 1)α

δ
− α

δ
+ α

δ

1

η

)
‖yn+1 − yn‖2 +

(
1

δ
− 1 − δ − α

δ

+αη

δ

)
‖yn+1 − xn‖2

= an +
(
1

δ
− 1 − δ − α

δ
+ αη

δ

)
‖yn+1 − xn‖2. (26)

Since δ ∈ (

√
1+4( α

2−θ
+1−α)−1

2 , 1), we obtain 1
δ

− 1 − δ − α
δ

+ αη
δ

< 0.
For n ≥ N , let

bn = −
(
1

δ
− 1 − δ − α

δ
+ αη

δ

)
‖yn+1 − xn‖2. (27)

Then (26) can be written as an+1 ≤ an − bn , ∀n ≥ N . From Lemma 2.3, we can con-
clude that {an} is bounded, limn→∞ bn = 0 and the limit of {an} exists. By definition of
bn , we can show that limn→∞ ‖yn+1−xn‖ = 0. From the relation (16), ‖yn− yn−1‖ ≤
‖yn − xn‖ + ‖xn − yn−1‖ and ‖xn − yn−1‖ ≤ ‖xn − xn−1‖ + ‖xn−1 − yn−1‖, we get

lim
n→∞ ‖yn − xn‖ = lim

n→∞ ‖xn − xn−1‖ = lim
n→∞ ‖yn − yn−1‖ = lim

n→∞ ‖yn+1 − xn‖ = 0.

(28)

Also, we obtain limn→∞ an = limn→∞ 1
1−δ

‖xn −u‖2. This implies that the sequence
{xn} is bounded and so {yn} is bounded. That is the desired result. ��

Theorem 3.1 Assume that (C1)−(C4) and E P( f ) �= ∅ hold. Then the sequences {xn}
and {yn} generated byAlgorithm 3.1 converge weakly to a solution of the equilibrium
problem.

Proof By Lemma 3.2, the sequence {xn} is bounded and there exists a subsequence
{xnk } that converges weakly to some x∗ ∈ H . Then ynk⇀x∗, ynk+1⇀x∗ and x∗ ∈ C .

From the relation (11), we have

λnk ( f (ynk , y) − f (ynk , ynk+1)) ≥ 〈xnk − ynk+1, y − ynk+1〉, ∀y ∈ C . (29)
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Since f satisfies the Lipschitz-type condition on C , we have

λnk ( f (ynk , ynk+1)) ≥ λnk ( f (ynk−1, ynk+1)

− f (ynk−1, ynk )) − λnk c1‖ynk − ynk−1‖2
−λnk c2‖ynk − ynk+1‖2. (30)

From the relations (17) and (30), it follows that

λnk ( f (ynk , ynk+1)) ≥ λnk

λnk−1

1

δ
〈xnk − ynk , ynk+1

−ynk 〉 − λnk c1‖ynk − ynk−1‖2
−λnk c2‖ynk − ynk+1‖2. (31)

Combining the relations (29) and (31), it follows that, for all y ∈ C ,

f (ynk , y) ≥ 1

λnk−1

1

δ
〈xnk − ynk , ynk+1 − ynk 〉 + 1

λnk
〈xnk − ynk+1, y − ynk+1〉

− c1‖ynk − ynk−1‖2 − c2‖ynk − ynk+1‖2. (32)

Let k → ∞, using the facts limk→∞ ‖ynk − xnk‖ = limk→∞ ‖xnk − ynk+1‖ =
limk→∞ ‖ynk − ynk−1‖ = 0, {xn} is bounded, limn→∞ λn = λ > 0 and the hypothesis
(C4), we obtain f (x∗, y) ≥ 0, ∀y ∈ C . That is x∗ ∈ EP( f ). Next we prove that
xn⇀x∗. Assume that {xn} has at least two weak cluster points x∗ ∈ EP( f ) and
x̄ ∈ EP( f ) such that x∗ �= x̄ . Let {xni } be a sequence such that xni ⇀x̄ as i → ∞,
noting the fact that ∀u ∈ EP( f ),

lim
n→∞ ‖xn − u‖ = lim

n→∞
√

(1 − δ)an . (33)

By Lemma 2.4, we get

lim
n→∞ ‖xn − x̄‖ = lim

i→∞ ‖xni − x̄‖ = lim inf
i→∞ ‖xni − x̄‖ < lim inf

i→∞ ‖xni − x∗‖
= lim

n→∞ ‖xn − x∗‖ = lim
k→∞ ‖xnk − x∗‖ = lim inf

k→∞ ‖xnk − x∗‖
< lim inf

k→∞ ‖xnk − x̄‖ = lim
k→∞ ‖xnk − x̄‖ = lim

n→∞ ‖xn − x̄‖. (34)

Which is impossible. Hence we deduce that xn⇀x∗. Since limn→∞ ‖xn − yn‖ = 0,
we have yn⇀x∗. That is the desired result. ��
Next, we prove Algorithm 3.1 converges strongly to the solution of (1) under a strong
pseudomonotonicity assumption of the bifunction f .

Theorem 3.2 Assume that (C1′), (C2), (C3) and E P( f ) �= ∅ hold. Then the
sequences {xn} and {yn} generated by Algorithm 3.1 converge strongly to the unique
solution u of the equilibrium problem.
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Proof The strong pseudomonotonicity assumption of the bifunction f implies that (1)
has a unique solution, which we denote by u. Since yn ∈ C , we have f (u, yn) ≥ 0.
As f is strong pseudomonotone, we get f (yn, u) ≤ −γ ‖yn − u‖2. Hence, from (12)
and λn > 0, we have

− λn f (yn, yn+1) ≥ 〈xn − yn+1, u − yn+1〉 + λnγ ‖yn − u‖2. (35)

Adding (35) and (17), we obtain

2λn( f (yn−1, yn+1) − f (yn−1, yn) − f (yn, yn+1))

≥ 2〈xn − yn+1, u − yn+1〉 + 2
λn

λn−1

1

δ
〈xn − yn, yn+1 − yn〉 + 2λnγ ‖yn − u‖2

= ‖xn − yn+1‖2 + ‖yn+1 − u‖2 − ‖xn − u‖2 + 2λnγ ‖yn − u‖2

+ λn

λn−1

1

δ
(‖xn − yn‖2 + ‖yn+1 − yn‖2 − ‖xn − yn+1‖2). (36)

Moreover, by Lemma 3.1, Remark 3.2 and (36), we also have

‖yn+1 − u‖2 ≤ ‖xn − u‖2 − ‖xn − yn+1‖2

− λn

λn−1

1

δ
(‖xn − yn‖2 + ‖yn+1 − yn‖2 − ‖xn − yn+1‖2)

+ 2λn( f (yn−1, yn+1) − f (yn−1, yn) − f (yn, yn+1)) − 2λnγ ‖yn − u‖2

≤ ‖xn − u‖2 +
(

λn

λn−1

1

δ
− 1

)
‖xn − yn+1‖2 − λn

λn−1

1

δ
(‖xn − yn‖2 + ‖yn+1 − yn‖2)

+ 2λn+1
λn

λn+1
( f (yn−1, yn+1) − f (yn−1, yn) − f (yn, yn+1)) − 2λγ ‖yn − u‖2.

(37)

By definition of λn and (37), we obtain

‖yn+1 − u‖2 ≤ ‖xn − u‖2 +
(

λn

λn−1

1

δ
− 1

)
‖xn − yn+1‖2

− λn

λn−1

1

δ
(‖xn − yn‖2 + ‖yn+1 − yn‖2)

+ 1

2
μ

λn

λn+1

1

δ
αθ(‖yn − yn−1‖2 + ‖yn − yn+1‖2) − 2λγ ‖yn − u‖2. (38)
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Using (38) and the same techniques as in the proof of (21)–(24), we have ∃N ≥ 0,
such that ∀n ≥ N ,

1

1 − δ
‖xn+1 − u‖2 + αθ

2δ
‖yn+1 − yn‖2

≤ 1

1 − δ
‖xn − u‖2 + αθ

2δ
‖yn − yn−1‖2

+ (θ − 1)α

δ
‖yn+1 − yn‖2 +

(
1

δ
− 1 − δ

)
‖yn+1 − xn‖2

− α

δ
(‖xn − yn+1‖2 + ‖yn − yn+1‖2 + 2〈xn − yn+1, yn+1 − yn〉) − 2λγ ‖yn − u‖2.

(39)

For n ≥ N , let

an = 1

1 − δ
‖xn − u‖2 + αθ

2δ
‖yn − yn−1‖2, η = 1

2 − θ
,

bn = −
(
1

δ
− 1 − δ − α

δ
+ αη

δ

)
‖yn+1 − xn‖2 + 2λγ ‖yn − u‖2. (40)

Using (40) and the same argument as in the proof of (26), we obtain an+1 ≤ an − bn ,
∀n ≥ N . From Lemma 2.3 and the definition of bn , we can conclude that {an} is
bounded, limn→∞ bn = 0. Using 1

δ
− 1 − δ − α

δ
+ αη

δ
< 0 and (28), we have

lim
n→∞ ‖xn − u‖ = lim

n→∞ ‖yn − u‖ = lim
n→∞ bn = 0. (41)

The proof is complete. ��

4 The case of variational inequalities

Let f (x, y) = 〈F(x), y − x〉, ∀x, y ∈ C, where F : C → H is a mapping. Then
the equilibrium problem becomes the variational inequality. That is, find x∗ ∈ C such
that

〈F(x∗), y − x∗〉 ≥ 0, ∀y ∈ C . (42)

Moreover, we have proxλn f (yn ,.)(xn) = PC (xn − λn F(yn)). The solution set of (42)
is denoted by V I (F,C). It is well known that x∗ ∈ V I (F,C) if and only if it satisfies
the following projection equation

x∗ = PC (x∗ − λF(x∗)), (43)

where λ is any positive real number. For solving pseudomonotone variational inequal-
ity, we propose the following method.
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Algorithm 4.1 (Step 0) Choose λ1 > 0, x0, y0, y1 ∈ C, μ ∈ (0, 1), α ∈ (0, 1),

θ ∈ (0, 1], δ ∈ (

√
1+4( α

2−θ
+1−α)−1

2 , 1).
(Step 1) Given the current iterate xn−1, yn−1, yn , compute

xn = (1 − δ)yn + δxn−1.

yn+1 = PC (xn − λn F(yn)).

If yn+1 = xn = yn(or F(yn) = 0), then stop: yn is a solution. Otherwise, go to step
2.

(Step 2) Compute

λn+1 =
{
min{αμθ(‖yn−yn−1‖2+‖yn+1−yn‖2)

4δ〈F(yn−1)−F(yn),yn+1−yn〉 , λn}, i f 〈F(yn−1) − F(yn), yn+1 − yn〉 > 0,

λn, otherwise.

Set n := n + 1 and return to step 1.

Remark 4.1 If F(yn) = 0, we have yn = PC (yn − λF(yn)). Thus yn ∈ V I (F,C)

follows directly from (43).
Recall that the mapping F is Lipschitz-continuous with constant L > 0, if there

exists L > 0 such that

‖ F(x) − F(y) ‖≤ L ‖ x − y ‖, ∀x, y ∈ C . (44)

If F is Lipschitz-continuous and pseudomonotone, then the conditions (C1)−(C3)
hold for f with c2 = c1 = L

2 . Then the following conclusion follows fromLemma 3.2.

Lemma 4.1 Let {xn} and {yn} be sequences generated by Algorithm 4.1 and
V I (F,C) �= ∅. Then {xn} and {yn} are bounded.

The next statement is classical.

Lemma 4.2 [20] Assume that F : C → H is a continuous and pseudomonotone
mapping. Then x∗ ∈ V I (F,C) if and only if x∗ is a solution of the following problem

f ind x ∈ C s.t . 〈F(y), y − x〉 � 0, ∀y ∈ C .

We analyze the finite and infinite dimensions separately.

Theorem 4.1 Let H be a finite dimensional real Hilbert space. Assume that F is a
pseudomonotone Lipschitz continuous mapping on C and V I (F,C) is nonempty. Let
{xn} and {yn} be two sequences generated by Algorithm 4.1. Then {xn} and {yn}
converge to the same point x∗ ∈ V I (F,C).

Proof Since the sequence {xn} is bounded, there exists a subsequence {xnk } that con-
verges to some x∗ ∈ H . From the relation (28), we have ynk → x∗, ynk+1 → x∗ and
x∗ ∈ C . Noting the fact that

ynk+1 = PC (xnk − λnk F(ynk )). (45)
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By the continuity of F and the projection, we get

x∗ = lim
k→∞ ynk+1 = lim

k→∞ PC (xnk − λnk F(ynk )) = PC (x∗ − λF(x∗)). (46)

We deduce from (43) that x∗ ∈ V I (F,C). By using (33), we obtain limn→∞ ‖xn −
x∗‖ exists. Combining limk→∞ xnk = x∗ and limn→∞ ‖xn − yn‖ = 0 , we have
limn→∞ xn = limn→∞ yn = x∗. That is the desired result. ��

Inspired by [21], we give the proof of the following theorem.

Theorem 4.2 Assume that F is pseudomonotone on a infinite dimensional H, sequen-
tially weakly continuous and Lipschitz continuous on C and V I (F,C) is nonempty.
Let {xn} and {yn} be two sequences generated by Algorithm 4.1. Then {xn} and {yn}
converge weakly to the same point x∗ ∈ V I (F,C).

Proof From Lemma 4.1, the sequences {xn} and {yn} are bounded. Hence there exists
a subsequence {xnk } of {xn} that converges weakly to some x∗ ∈ H . Then ynk⇀x∗
and x∗ ∈ C . Next we prove x∗ ∈ V I (F,C). Since ynk+1 = PC (xnk − λnk F(ynk )),
by Lemma 2.5, we have

〈ynk+1 − xnk + λnk F(ynk ), z − ynk+1〉 ≥ 0, ∀z ∈ C . (47)

That is

〈xnk − ynk+1, z − ynk+1〉 ≤ λnk 〈F(ynk ), z − ynk+1〉, ∀z ∈ C . (48)

Therefore, we get

1

λnk
〈xnk − ynk+1, z − ynk+1〉 + 〈F(ynk ), ynk+1 − ynk 〉 ≤ 〈F(ynk ), z − ynk 〉, ∀z ∈ C .

(49)

Fixing z ∈ C , let k → ∞, using the facts (28), {yn} is bounded and limk→∞ λnk =
λ > 0, we obtain

lim inf
k→∞ 〈F(ynk ), z − ynk 〉 ≥ 0. (50)

We choose a decreasing positive sequence {εk} such that limk→∞ εk = 0. By definition
of the lower limit, for each εk , we denote bymk the smallest positive integer such that

〈F(yni ), z − yni 〉 + εk ≥ 0, ∀i ≥ mk . (51)

As {εk} is decreasing, it is easy to see that the sequence {mk} is increasing. From

Remark 4.1, for each k, F(ynmk
) �= 0. Let znmk

= F(ynmk
)

‖F(ynmk
)‖2 . Then we get

〈F(ynmk
), znmk

〉 = 1 for each k. Moreover, from (51), we have

〈F(ynmk
), z + εk znmk

− ynmk
〉 ≥ 0. (52)
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By definition of pseudomonotone, we obtain

〈F(z + εk znmk
), z + εk znmk

− ynmk
〉 ≥ 0. (53)

Since {ynk } converges weakly to x∗ ∈ C and F is sequentially weakly continuous on
C , we have {F(ynk )} converges weakly to F(x∗). We can suppose that F(x∗) �= 0
(otherwise, x∗ is a solution). Since the norm mapping is sequentially weakly lower
semicontinuous, we have

‖F(x∗)‖ ≤ lim inf
k→∞ ‖F(ynk )‖. (54)

As {ynmk
} ⊂ {ynk } and limk→∞ εk = 0, we have

0 ≤ lim
k→∞ ‖εk znmk

‖ = lim
k→∞

εk

‖F(ynmk
)‖ ≤ 0

‖F(x∗)‖ = 0. (55)

Let k → ∞ in (53), we get

〈F(z), z − x∗〉 ≥ 0. ∀z ∈ C . (56)

By Lemma 4.2, we obtain x∗ ∈ V I (F,C) and as in the proof of Theorem 3.1, we
have xn⇀x∗ and yn⇀x∗. That is the desired result. ��
Remark 4.2 When F is monotone, as in [22,23], it is not necessary to impose the
sequential weak continuity of F .

Now applying Theorem 3.2 with variational inequalities, we have the following
result.

Theorem 4.3 Assume that F is strong pseudomonotone on a infinite dimensional H,
Lipschitz continuous on C and V I (F,C) is nonempty. Let {xn} and {yn} be two
sequences generated by Algorithm 4.1. Then {xn} and {yn} converge strongly to the
unique solution u ∈ V I (F,C).

5 Numerical experiments

In this section, we provide numerical experiments to illustrate our algorithm and
compare them with other existing algorithms in [15,23,24]. First, we compare
Algorithm 3.1 with the Algorithm (3) (Algorithm 3.1 in [15]). Then we compare
Algorithm 4.1 with Algorithm A in [23], Algorithm 2.1 in [24] and Algorithm 3.2 in
[24]. We report the number of iterations (iter.) and computing time (time) measured
in seconds for all the tests. The termination criteria are the following

Alg. 3.1, Alg. 4.1, Alg. (3). max{‖yn+1 − xn‖, ‖yn − xn‖} ≤ ε.

Alg.A in [23]. max{‖xn+1 − yn‖, ‖xn+1 − xn‖} ≤ ε.

Alg. 2.1 in [24],Alg. 3.2 in [24]. ‖xn − PC (xn − F(xn))‖ ≤ ε.
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For Algorithm 3.1, we take α = μ = 0.98, θ = 1(δ = 0.62) and θ = 0.75(δ =
0.53). For Algorithm A in [21], we use α = λ0 = 0.4 and δ = 1.001. For Algorithm
3.2 in [24], we choose P = I , α−1 = 1, θ = 1.5, ρ = 0.1 and β = 0.3. We take
ε = 10−6 for all algorithms.

Problem 1 We consider the equilibrium problem for the following bifunction f :
H × H → R which comes from the Nash-Cournot equilibrium model in [9–15].

f (x, y) = 〈Px + Qy + q, y − x〉, (57)

where q ∈ R
m is chosen randomly with its elements in [−m,m], and the matrices

P and Q are two square matrices of order m such that Q is symmetric positive
semidefinite and Q− P is negative semidefinite. In this case, the bifunction f satisfies
(C1)−(C4)with the Lipschitz-type constants c1 = c2 = ‖P−Q‖

2 , see [9, Lemma 6.2].
For Algorithm 3.1, we take λ1 = 1

2c1
. For Algorithm (3), we take λ = ϕ

4c1
.

For numerical experiments: we suppose that the feasible set C ⊂ R
m has the form

of

C = {x ∈ R
m : −2 ≤ xi ≤ 5, i = 1, . . . ,m}, (58)

where m = 10, 100, 500. We take y1 = x0 = y0 = (1, . . . , 1) for all algorithms. For
every m, as shown in Table 1, we have generated two random samples with different
choice of P , Q and q. The Table 1 shows that our algorithm may perform better, even
if the Lipschitz constants are known.

Problem 2 The second problem is HpHard problem , we choose F(x) = Mx + q
with q ∈ Rn and M = NNT + S + D, where every entry of the n × n matrix N
and of the n × n skew-symmetric matrix S is uniformly generated from (−5, 5), and
every diagonal entry of the n × n diagonal D is uniformly generated from (0, 0.3)
(so M is positive definite), with every entry of q uniformly generated from (−500, 0).
The feasible set is R+

n . This problem was considered in [24]. For all tests, we take
y1 = x0 = y0 = (1, 1, . . . , 1). For Algorithm 4.1, we choose λ1 = 0.4. For Algorithm
2.1 in [24], we take P = (I + MT )(I + M) and θ = 0.7. For every n, as shown in
Table 2, we have generated three random samples with different choice of M and q.

Table 1 Problem 1

m Algorithm 3.1 (θ = 1) Algorithm 3.1 (θ = 0.75) Algorithm (3)

Iter. Time Iter. Time Iter. Time

10 253 2.46 204 2.14 306 3.15

361 3.69 202 1.94 302 2.88

100 430 8.13 398 6.99 594 8.39

488 8.49 400 6.91 573 8.59

500 536 73.41 431 71.37 646 81.80

577 77.83 440 54.27 617 78.09
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Problem 3 The third problem was considered in [23,25], where

F(x) = ( f1(x), f2(x), . . . , fm(x)),

fi (x) = x2i−1 + x2i + xi−1xi + xi xi+1 − 2xi−1 + 4xi + xi+1 − 1,

i = 1, 2, . . . ,m, x0 = xm+1 = 0.

The feasible set is C = Rm+ . We take λ1 = 0.4 for Algorithm 4.1. For all tests, we
take y1 = x0 = y0 = (0, 0, . . . , 0). The results are summarized in Table 3.

Problem 4 Kojima–Shindo Nonlinear Complementarity Problem (NCP) was consid-
ered in [23,25,26], where n = 4 and the mapping F is defined by

F(x1, x2, x3, x4) =

⎡
⎢⎢⎣
3x21 + 2x1x2 + 2x22 + x3 + 3x4 − 6
2x21 + x1 + x22 + 10x3 + 2x4 − 2
3x21 + x1x2 + 2x22 + 2x3 + 9x4 − 9

x21 + 3x22 + 2x3 + 3x4 − 3

⎤
⎥⎥⎦

The feasible set isC = {x ∈ R+
4 |x1+x2+x3+x4 = 4}.We choose as starting points:

y1 = x0 = y0 = (1, 1, 1, 1) and y1 = x0 = y0 = (2, 0, 0, 2). We take λ1 = 0.8 for
Algorithm 4.1. The Tables 2, 3 and 4 illustrate that Algorithm 4.1 may work better.
As in the previous experiments, Algorithms 3.1 and 4.1 may perform better when
choosing θ = 0.75.

Table 2 Problem 2

n Algorithm 4.1 (θ = 1) Algorithm 4.1 (θ = 0.75) Algorithm 2.1 in [24]

Iter. Time Iter. Time Iter. Time

30 2762 0.043 2470 0.034 5670 0.580

3327 0.046 2949 0.040 6003 0.617

4780 0.067 3932 0.054 4468 0.461

200 7214 0.998 5985 0.811 45887 94.2

5591 0.748 4705 0.686 42884 87.9

7214 1.060 6168 0.811 39370 80.4

Table 3 Problem 3

m Algorithm 4.1 (θ = 1) Algorithm 4.1 (θ = 0.75) Algorithm A in [23] Algorithm 3.2 in [24]

Iter. Time Iter. Time Iter. Time Iter. Time

50 65 0.0017 53 0.0014 49 0.0015 295 0.013

500 70 0.005 58 0.003 53 0.004 313 0.039

5000 76 0.035 62 0.021 58 0.035 333 0.96

50000 81 0.499 66 0.421 62 0.468 353 4.99

500000 87 5.16 71 4.19 67 5.53 373 63.7
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Table 4 Problem 4

x0 Algorithm 4.1 (θ = 1) Algorithm 4.1 (θ = 0.75) Algorithm A in [23]

Iter. Time Iter. Time Iter. Time

(2, 0, 0, 2) 52 0.154 47 0.149 72 0.200

(1, 1, 1, 1) 60 0.166 58 0.169 166 0.304

6 Conclusions

In this work, we consider a convergence result for equilibrium problem involving
Lipschitz-type and pseudomonotone bifunctions but the Lipschitz-type constants are
unknown. We modify the gradient method with a new step size. A weak and a strong
convergence theorem are proved for sequences generated by the algorithm. The numer-
ical experiments confirm the computational effectiveness of the proposed algorithm.
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