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Abstract
A strongly orthogonal decomposition of a tensor is a rank one tensor decomposition
with the two component vectors in each mode of any two rank one tensors are either
colinear or orthogonal. A strongly orthogonal decomposition with few number of
rank one tensors is favorable in applications, which can be represented by a matrix-
tensor multiplication with orthogonal factor matrices and a sparse tensor; and such a
decomposition with the minimum number of rank one tensors is a strongly orthogonal
rank decomposition. Any tensor has a strongly orthogonal rank decomposition. In this
article, computing a strongly orthogonal rank decomposition is equivalently refor-
mulated as solving an optimization problem. Different from the ill-posedness of the
usual optimization reformulation for the tensor rank decomposition problem, the opti-
mization reformulation of the strongly orthogonal rank decomposition of a tensor is
well-posed. Each feasible solution of the optimization problemgives a strongly orthog-
onal decomposition of the tensor; and a global optimizer gives a strongly orthogonal
rank decomposition, which is however difficult to compute. An inexact augmented
Lagrangian method is proposed to solve the optimization problem. The augmented
Lagrangian subproblem is solved by a proximal alternating minimization method,
with the advantage that each subproblem has a closed formula solution and the fac-
tor matrices are kept orthogonal during the iteration. Thus, the algorithm always can
return a feasible solution and thus a strongly orthogonal decomposition for any given
tensor. Global convergence of this algorithm to a critical point is established without
any further assumption. Extensive numerical experiments are conducted, and show
that the proposed algorithm is quite promising in both efficiency and accuracy.
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1 Introduction

Tensors (a.k.a. hypermatrices) are natural generalizations of vectors and matrices,
serving as much more apparent and convenient tools to encode, analyze, as well as
represent data and information in diverse disciplines of applied science. As one of
the two sides of a coin, opposite to their capability over matrices, computations with
tensors are subject to the curse of dimensionality [29,32]. A vector can be represented
as an array indexed by one subscript, a matrix by two, whereas a higher order tensor
by several. Usually, we refer to order as the number of subscripts needed to express a
tensor, each subscript represents one mode, whereas the range of each subscript is the
dimension in that mode. As is well-known, almost all computations of tensors have
complexity exponential with respect to their orders and dimensions [29]. This brings
a heavy obstacle to warrant tensors in many real applications. This tough situation
dramatically improves if the tensor has a rank one decomposition with few rank one
components, since in which case the computational complexity becomes linear with
respect to either the order, the dimensions, or the rank of this tensor. Therefore, there
is a natural invitation to the study of tensor rank one decompositions. As a result, the
focus of research on tensors has been putting on both theoretical and computational
properties of tensor rank one decompositions. This article falls into this main stream
as well, and will be devoted to a particular rank one decomposition of tensors—the
strongly orthogonal (rank) decomposition.

The conception of strongly orthogonal rank and the corresponding decomposition
were proposed in the thesis of Franc in 1992 [17]. It is a natural generalization of SVD
formatrices from a restricted perspective (cf. Sect. 2.4). In [33], “free orthogonal rank”
and “free rank decomposition” were employed instead of “strong orthogonal rank”
and “strong orthogonal rank decomposition” respectively by Leibovici and Sabatier.
We will follow the terminologies of [17,27]. The number of rank one tensors in a
strongly orthogonal decomposition is referred as the length of this decomposition.

In the following, we want outline three aspects that motivate this work. The first
one is the wide range applications of strongly orthogonal (rank) decompositions of
tensors, please refer to [3,12,13,27,29,30,33] and references therein. Particularly, in
statistical modelings for learning latent variables [3] and blind source separations [12,
13], orthogonality is a reasonable requirement. Unlike the second order case in which
a complete orthogonality (a.k.a. diagonalization) can be assumed (guaranteed by SVD
ofmatrices, cf. Sect. 2.4), complete orthogonality for higher order tensors is impossible
in general [27,32,41]. Therefore, strong orthogonality becomes an appropriate tradeoff
between orthogonality and diagonality—it preserves the orthogonality and seeks the
most sparsity on the representation. As a result, strongly orthogonal decompositions as
well as general orthogonal decompositions have being adopted in diverse applications
[6,10,13,14,24,28,29,36].

The second one is the appealing theoretical and computational benefits by consider-
ing strong orthogonality over the general rank one decompositions. The most general
tensor rank one decomposition is decomposing a tensor with rank one components
without further requirements on the structures of these rank one tensors. The small-
est number of rank one tensors in such a decomposition is the rank of that tensor. It
is well-known that determining the rank, computing a rank decomposition of a ten-
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sor is very difficulty [32]. From the computational complexity perspective, they are
respectively NP-complete and NP-hard problems [15,19]. Given the freedom on the
structures of the decomposed rank one tensors, the tensor rank one decomposition
and approximation problems suffer from many numerical difficulties as well, such as
the component matrices of the iteration become unbounded, etc, please see [15,29]
and references therein. However, whenever strong orthogonality is imposed on the
decomposed rank one tensors, both the decomposition and the approximation become
well-possed (cf. Sect. 2.3). Thus, from the computational point of view, the strongly
orthogonal decomposition is a good candidate for tensor decomposition.

The strongly orthogonal (rank) decomposition has a geometric meaning as well.
One widely admitted rule of science is simplification. A tensor (hypermatrix) is actu-
ally the coordinate representation of an element in a certain tensor space under a
chosen coordinate system. A representation with simple coordinates should be the
goal in many tasks. SVD for matrices and principal component analysis are both ruled
by this principle, and it can represent a matrix with the simplest coordinates (i.e., a
diagonal matrix). With the matrix-tensor multiplication, it is easy to see that a strongly
orthogonal rank decomposition of a tensor also falls into this principle (cf. Proposi-
tion 2.1). Thus, geometrically, computing a strongly orthogonal rank decomposition is
equivalent to finding a coordinate system such that the representation of this tensor is
the simplest in the sense of having the fewest nonzero coordinates. This concise math-
ematical interpretation will provide insights on investigations of strongly orthogonal
rank decompositions.

The last but not the least is a direct motivation for this article—computing out a
strongly orthogonal (rank) decomposition for a given tensor. There lacks a systematic
study on this issue in the literature, since the works [17,27,33]. To compute a strongly
orthogonal decomposition for a given tensor, in [27], a greedy tensor decomposition
is proposed. In each step of this algorithm, a best rank one approximation problem
subject to orthogonality constraints must be solved. As observed already by Kolda
[27], solving such a sequence of optimization problems is a very challenging task.
Moreover, it is pointed out that the difficulty with this approach is in enforcing the
constraints [27, Page 252]. A purpose of this article is providing a numerical method
enforcing the orthogonality constraints during the iteration and computing a strongly
orthogonal decomposition with the rank one tensors all at once.

At present, there has no computational complexity of computing a strongly orthog-
onal rank decomposition for a given tensor [27–29]. However, it is suspected to be
NP-hard, in viewing of the NP-hardness of some related problems [11,20,34]. Thus,
it would be difficult and impossible (if this problem is indeed NP-hard and P�=NP)
to compute out a strongly orthogonal rank decomposition of a general tensor in poly-
nomial time. Therefore, the primary purpose of this article is presenting a heuristic
approach for computing a strongly orthogonal decomposition of a given tensor with
length as short as possible and a numerical method to realize it. Hopefully, this heuris-
tic approach could give a strongly orthogonal rank decomposition in several cases as
well.

The main contributions of this article are

(1) With l0-norm and matrix-tensor multiplication, the strongly orthogonal rank
decomposition is reformulated as an optimization problem over the matrix mani-
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folds (cf. (9)) the first time (Proposition 2.1). This should serve as a standard tool
and accumulate a step towards a systematic way for analyzing strongly orthogonal
rank decompositions.

(2) A heuristic optimization problem (cf. (12)) is proposed to approximate the hard
problem (9) which has a discontinuous objective function. An inexact augmented
Lagrangian method is proposed to solve (12), i.e., Algorithm 3.1. With a careful
design, all the subproblems have closed formula solutions, all the iterations ful-
fill the orthogonality constraints, and thus this algorithm always give a strongly
orthogonal decomposition (Algorithm 4.1). Global convergence to a critical point
of (12) is established without any further hypothesis (Proposition 3.3). Extensive
numerical experiments show that this approach is quite promising (Sect. 5), and
in several cases strongly orthogonal rank decompositions can be found.

The equivalent reformulation (9) actually reflects the difficulty in the sense that
the task is minimizing a discontinuous (letting alone differentiable) function over a
system of a large number of highly nonlinear equations and a manifold constraint.
Note that even the optimization of a differentiable function over a smooth manifold is
a hard computational problem in general [2]. Therefore, there is no guarantee that an
algorithm can always return a global optimizer for (9). Actually, advances onmanifold
optimization are more focused on smooth functions for finding critical points, see
[2,25] and references therein; a call for study on nonsmooth manifold optimization
is given by Absil and Hosseini very recently [1]. This gives a motivation for the
particularly designed inexact augmented Lagrangian method to problem (12).

With the discontinuous objective function in (9), a common strategy is replacing
it with a heuristic continuous surrogate [1,16]. The l1-norm is applied in this article
(cf. (12)). It is a reasonable choice, which can be viewed as a penalty approach (cf.
Sect. 2.5).Although (12) belongs to the class of optimization problemswith continuous
objective function over a compact feasible set, there is no theoretical guarantee for a
numerical optimization method on finding their global optimizers for such problems
[2,7], since the constraints are highly nonlinear and nonconvex. Usually, a wisely
designed optimization method could converge to a critical point [2,7].

The l1-norm is a nonsmooth function. The nonsmoothness of (12) and the particular
structure that the variables of the manifold constraints are not related directly to the
objective function (cf. (12))motivate us to a particularly designed algorithm.A general
thought is employing the penalty technique. The augmented Lagrangian method is a
modification of the penalty method in a wise way to avoid the penalty parameter being
forced to going infinite. Thus, the augmented Lagrangian method has more stable
numerical performance over the penalty method [7]. The general picture in this article
is applying the augmented Lagrangian method to (12) and keeping the orthogonality
of the iterations with a careful design. On the other hand, the “inexact version” is
studied as (i) subproblems cannot always be guaranteed to be solved exactly and (ii)
the subproblem can be solved only inexactly within appropriate required precision to
improve the overall efficiency.

The rest paper is organized as follows. For the convenience of reading, several
technical details are put in Appendixes. Preliminaries on matrix-tensor multiplica-
tion (Sect. 2.1), the orthogonal group and related optimization properties (Sect. 2.2),
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strongly orthogonal decompositions of a tensor (Sect. 2.3), some optimization tech-
niques (Sect. 2.6) will be given in Sect. 2. In Sect. 2.5, the problem of computing a
strongly orthogonal rank decomposition of a tensor is equivalently reformulated as a
nonlinear optimization problem with orthogonality constraints and l0-norm objective
function. Replacing the l0-norm by the l1-norm surrogate, we get a heuristic of the
problem, i.e., (12). In Sect. 3, an inexact augmented Lagrangianmethod (ALM) is pro-
posed to solve this optimization problem. Critical points of the augmented Lagrangian
function (Sect. 3.1), KKT points of the problem (12) (Sect. 3.2) are investigated. In
order to study the KKT points, a nonsmooth version of the standard Lagrange mul-
tiplier theory is reviewed in Appendix B, since the l1-norm is a nonsmooth function.
Global convergence of the algorithm is established without any further hypothesis in
Sect. 3.3, whose proof is put in Appendix C. The augmented Lagrangian subproblem
is discussed in Sect. 4. Section 4.1 presents more details on implementing the ALM
algorithm. The augmented Lagrangian subproblem is solved by a proximal alternating
minimization (PAM) method, whose global convergence is also established without
any further hypothesis in Sect. 4.2 and the proof is put in Appendix D. To this end,
the convergence theory for a general PAMmethod is reviewed in Appendix A. Exten-
sive numerical experiments are reported in Sect. 5. Sect. 5.1 is for concrete examples
taken from literatures, Sect. 5.2 is for completely orthogonal decomposable tensors,
in which a kind of condition numbers for tensors are discussed, Sect. 5.3 is for random
examples, whereas Sect. 5.4 draws some conclusions for the numerical computations.
Some final conclusions are given in Sect. 6.

2 Preliminaries

In this section, we will review some basic notions on tensors and preliminaries on
strongly orthogonal (rank) decompositions of a tensor, as well as those of optimization
theory which will be conducted in this article.

Given a positive integer k ≥ 2, and positive integers n1, . . . , nk , the tensor space
consisting of real tensors of dimension n1 ×· · ·×nk is denoted asRn1 ⊗· · ·⊗R

nk . In
this Euclidean space, inner product and the induced norm can be defined. The Hilbert–
Schmidt inner product of two given tensors A,B ∈ R

n1 ⊗ · · · ⊗ R
nk is defined as

〈A,B〉 :=
n1∑

i1=1

· · ·
nk∑

ik=1

ai1...ik bi1...ik .

The Hilbert–Schmidt norm ‖A‖ is then defined as

‖A‖ := √〈A,A〉.

2.1 Matrix-tensor multiplication

Given a tensorA ∈ R
n1⊗· · ·⊗R

nk and k matrices B(i) ∈ R
ni ×ni for i ∈ {1, . . . , k}, the

matrix-tensor multiplication (B(1), . . . , B(k)) ·A results in a tensor inRn1 ⊗· · ·⊗R
nk ,

defined entry-wisely as
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[
(B(1), . . . , B(k)) · A]i1...ik

:=
n1∑

j1=1

· · ·
nk∑

jk=1

b(1)
i1 j1

. . . b(k)
ik jk

a j1... jk (1)

for all it ∈ {1, . . . , nt } and t ∈ {1, . . . , k}.
Let n∗ := ∏k

i=1 ni . The mode- j matrix flattening of A is a matrix A( j) ∈ R
n j × n∗

n j

defined entry-wisely as

a( j)
i j i∗j

= ai1...ik for all i j ∈ {1, . . . , n j } and i∗j ∈
{
1, . . . ,

n∗

n j

}
(2)

with

i∗j = (i1 − 1)
n∗

n1n j
+ · · · + (i j−1 − 1)

n∗

n1 · · · n j
+ (i j+1 − 1)

n∗

n1 · · · n j+1
+ · · · + ik .

Wewill denote byA(f,i) = A(i) themode-i matrix flattening ofA. Let I be the identity
matrix of appropriate size. It follows that

[
(B(1), . . . , B(k)) · A](f,i) = B(i)[(B(1), . . . , B(i−1), I , B(i+1), . . . , B(k)) · A](f,i)

for all i ∈ {1, . . . , k}.
It follows from the Hilbert–Schmidt inner product that

〈A,B〉 = 〈A(f,i),B(f,i)〉
for any pair A,B ∈ R

n1 ⊗ · · · ⊗ R
nk and any i ∈ {1, . . . , k}.

Let O(n) ⊂ R
n×n be the group of n × n orthogonal matrices. Whenever B(i) ∈

O(ni ) for each i ∈ {1, . . . , k}, it is a direct calculation to see that

‖(B(1), . . . , B(k)) · A‖ = ‖A‖.

2.2 Orthogonal group and its normal cone

For any A ∈ O(n), the Fréchet normal cone to O(n) at A is defined as

N̂O(n)(A) := {B ∈ R
n×n | 〈B, C − A〉 ≤ o(‖C − A‖) for all C ∈ O(n)}.

Usually, we set N̂O(n)(A) = ∅ whenever A /∈ O(n). The (limiting) normal cone to
O(n) at A ∈ O(n) is denoted by NO(n)(A) and is defined as

B ∈ NO(n)(A) ⇐⇒ ∃Ak ∈ O(n), Ak → A, ∃Bk ∈ N̂O(n)(Ak), such that Bk → B.

It is easily seen from the definition that the normal cone NO(n)(A) is always closed.
The indicator function δO(n) of O(n) is defined as
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δO(n)(X) :=
{
0 if X ∈ O(n),

+∞ otherwise.

Given a function f : Rn → R ∪ {∞}, the regular subdifferential of f at x ∈ R
n is

defined as

∂̂ f (x) :=
{
h ∈ R

n : lim inf
x �=y→x

f (y) − f (x) − 〈h, y − x〉
‖y − x‖ ≥ 0

}

and the (limiting) subdifferential of f at x is defined as

∂ f (x) :=
{
h ∈ R

n : ∃{xk} → x and {hk} → h satisfying hk ∈ ∂̂ f (xk) for all k
}
.

We refer to [40] for more details on variational analysis concepts. An important fact
about normal cone NO(n)(A) and the subdifferential of the indicator function δO(n) of
O(n) at A is (cf. [40])

∂δO(n) = NO(n). (3)

Note that the group O(n) of orthogonal matrices of size n × n is a smooth manifold
of dimension n(n−1)

2 . It follows from [40, Chapter 6.C] that

NO(n)(A) = N̂O(n)(A) = {AS | S ∈ Sn×n},

where Sn×n ⊂ R
n×n is the subspace of n × n symmetric matrices.

Given a matrix B ∈ R
n×n , the projection of B onto the normal cone of O(n) at A

is

πNO(n)(A)(B) = A

(
ATB + BTA

2

)
.

Therefore,

B ∈ NO(n)(A) ⇐⇒ B − A

(
ATB + BTA

2

)
= O

⇐⇒ B − ABTA = O ⇐⇒ ATB − BTA = O, (4)

since

(
I − 1

2
AAT

)
ABTA = 1

2
ABTA

and

I − 1

2
AAT
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is an invertible matrix. The invertibility follows from the fact that xT(I − 1
2 AAT)x =

1
2‖x‖2.

2.3 Strongly orthogonal decomposition

Two rank one tensors

U = u(1) ⊗ · · · ⊗ u(k) and V = v(1) ⊗ · · · ⊗ v(k)

with unit component vectors u(i)’s and v(i)’s are strongly orthogonal, denoted as
U ⊥s V , if U ⊥ V , i.e.,

〈U ,V〉 =
k∏

i=1

〈u(i), v(i)〉 = 0,

and

u(i) = ±v(i) or u(i) ⊥ v(i) for all i = 1, . . . , k.

Given a tensor A ∈ R
n1 ⊗ · · · ⊗ R

nk , a strongly orthogonal decomposition means
a rank one decomposition of A

A =
r∑

i=1

λiu
(1)
i ⊗ · · · ⊗ u(k)

i (5)

such that the set of rank one tensors {u(1)
i ⊗· · ·⊗u(k)

i }r
i=1 is a set of mutually strongly

orthogonal rank one tensors. For each given tensor A ∈ R
n1 ⊗ · · · ⊗ R

nk , there is a
natural strongly orthogonal decomposition as

A =
n1∑

i1=1

· · ·
nk∑

ik=1

ai1...ik e
(1)
i1

⊗ · · · ⊗ e(k)
ik

,

where {e(s)
1 , . . . , e(s)

ns } is the standard basis ofRns for all s ∈ {1, . . . , k}. It is immediate
to see that this can be done for any given orthogonal basis ofRns for all s ∈ {1, . . . , k}.

A strongly orthogonal decomposition ofAwith the minimum r is called a strongly
orthogonal rank decomposition of A and the corresponding r is the strongly orthog-
onal rank of A, denoted as rankSO(A) [27]. It is called free orthogonal rank by
Leibovici and Sabatier [33]. Some properties on strongly orthogonal rank of a tensor
are investigated in [22], including an upper bound of the strongly orthogonal ranks
and expected strongly orthogonal rank for a given tensor space.

2.4 An SVD perspective of strongly orthogonal rank decomposition

Given a matrix A ∈ R
n1×n2 , the classical singular value decomposition (SVD) of A

reads that there exist orthogonal matrices U ∈ O(n1), V ∈ O(n2) and a diagonal
matrix � ∈ R

n1×n2 such that (cf. [21])
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A = U�V T = (U , V ) · �. (6)

The diagonality of the matrix� ensures that we can take a nonnegative diagonal of�,
and define these diagonals as singular values of the matrix A. Arrange these singular
values in nonincreasing order along the diagonals. Suppose without loss of generality
that n1 ≤ n2, and the columns of U and V are denoted as ui ’s and v j ’s. Then the SVD
(6) can be expanded as

A =
n1∑

i=1

λiuivTi =:
n1∑

i=1

λiui ⊗ vi =
r∑

i=1

λiui ⊗ vi , (7)

where r = rank(A) is the rank of the matrix A. Obviously, (7) is a strongly orthogonal
rank decomposition of A. The importance of SVD for matrices and its fundamental
influence are widely known [18].

The beautiful nature of the matrix case makes many essential features of orthogonal
decompositions simple andvague to picture their higher order counterparts, i.e., tensors
(a.k.a. hypermatrices). There exist various attempts to generalize this fundamental
singular value decomposition of a matrix to tensors. As the philosophy suggests, each
generalization has its own advantages with the sacrifice of losing some attracting
properties of their matrix counterpart [14].

Perhaps the most important fact that people unwilling to see is the missing of
diagonalization for a tensor. It is a commonly admitted fact that for a given tensor
A ∈ R

n1 ⊗ · · · ⊗ R
nk there cannot always exist a set of orthogonal matrices Ui ∈

O(ni ) for all i ∈ {1, . . . , k} and a diagonal tensor � ∈ R
n1 ⊗ · · · ⊗ R

nk (i.e., the
only possible nonzero entries of � are λi1...ik with i1 = · · · = ik = i for i ∈
{1, . . . ,min{n1, . . . , nk}}) such that (cf. [32])

A = (U1, . . . , Uk) · �. (8)

Therefore, searching a decomposition of the form (8) keeping the orthogonality
of Ui ’s and allowing possible a non-diagonal tensor � should be the main task in
decomposing a tensor and a reasonable alternative orthogonal decomposition scheme
for a tensor. Compared with the other decompositions of a tensor, the decomposition
(8) has the advantage of interpolation with orthogonal coordinates change, parallelling
to the discussion on geometry of vector spaces in the matrix case by Jordan [26].

2.5 Optimization reformulation for the strongly orthogonal rank decomposition

Given a tensorA ∈ R
n1 ⊗· · ·⊗R

nk , we consider the following optimization problem

min ‖B‖0
s.t. (U (1), . . . , U (k)) · A = B,

U (i) ∈ O(ni ) for all i = 1, . . . , k,

(9)

where ‖B‖0 is the zero norm of B, i.e., counting the number of nonzero entries of B.
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Proposition 2.1 (Optimization Reformulation) For any given tensor A ∈ R
n1 ⊗· · ·⊗

R
nk , the minimization problem (9) has an optimizer (B, U (1), . . . , U (k)) with optimal

value being rankSO(A), and a strongly orthogonal rank decomposition of A is given
by

A =
n1∑

i1=1

· · ·
nk∑

ik=1

bi1...iku
(1)
i1

⊗ · · · ⊗ u(k)
ik

, (10)

where u(s)
i is the i-th row of U (s) for all i ∈ {1, . . . , ns} and s ∈ {1, . . . , k}.

Proof We first show that the optimization problem (9) always has an optimizer. Note
that each O(ni ) is a compact set. By the matrix-tensor multiplication, we have that

‖B‖ = ‖(U (1), . . . , U (k)) · A‖ = ‖A‖.

Thus, the feasible set of (9) is compact. Since the zero norm is lower semi-
continuous, we conclude that the minimum in (9) is always attainable by an optimizer
(B, U (1), . . . , U (k)).

In the following, we assume that (B, U (1), . . . , U (k)) is such an optimizer. It follows
from the matrix-tensor multiplication that

A = ((U (1))TU (1), . . . , (U (k))TU (k)
) · A

= ((U (1))T, . . . , (U (k))T
) · ((U (1), . . . , U (k)) · A)

= ((U (1))T, . . . , (U (k))T
) · B

=
n1∑

i1=1

· · ·
nk∑

ik=1

bi1...iku
(1)
i1

⊗ · · · ⊗ u(k)
ik

,

where u(s)
i is the i-th row of U (s) for all i ∈ {1, . . . , ns} and s ∈ {1, . . . , k}. Thus,

each optimizer (B, U (1), . . . , U (k)) of (9) gives a strongly orthogonal decomposition
of A, and the number of strongly orthogonal rank one tensors in this decomposition
is exactly the number of nonzero entries of B, i.e., ‖B‖0. Consequently, we must have
rankSO(A) ≤ ‖B‖0 and hence the optimal value of (9) is lower bounded by rankSO(A).

In the following, we complete the proof by constructing a feasible solution of (9)
from a strongly orthogonal rank decomposition of A. Suppose that (5) gives such a
decomposition, i.e.,

A =
r∑

i=1

λiu
(1)
i ⊗ · · · ⊗ u(k)

i . (11)

By the definition of strong orthogonality, we have that each pair of the vectors
u(s)
1 , . . . ,u(s)

r consists of either orthogonal or equal or two opposite vectors, for all
s ∈ {1, . . . , k}. Thus, without loss of generality (changing λi to −λi if necessary),
we can assume that the set {u(s)

1 , . . . ,u(s)
r } forms an orthnormal set of vectors for all

s ∈ {1, . . . , k}. Let ps be the cardinality of the set {u(s)
1 , . . . ,u(s)

r } for all s ∈ {1, . . . , k}.
Note that ps ≤ min{r , ns} and strict inequality can happen for all s ∈ {1, . . . , k}.
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Let U (s) ∈ O(ns) with the first ps columns being these of {u(s)
1 , . . . ,u(s)

r } for all
s ∈ {1, . . . , k}, and tensor B ∈ R

n1 ⊗ · · · ⊗ R
nk with entries

bi1...ik :=
{

λi if u(s)
i is the is-th column of U (s) for all s = 1, . . . , k,

0 otherwise.

Immediately, we see that ‖B‖0 = r and

A = (U (1), . . . , U (k)) · B.

Therefore, the above constructed (B, U (1), . . . , U (k)) is a feasible solution to (9) with
objective function value ‖B‖0 = r = rankSO(A). As a result, the optimal value of (9)
is upper bounded by rankSO(A).

Hence, an optimizer (B, U (1), . . . , U (k)) of (9) exists with ‖B‖0 = rankSO(A) and
a strongly orthogonal rank decomposition of A is given as (10) with this optimizer.
The proof is then complete. ��

With Proposition 2.1, computing a strongly orthogonal rank decomposition of a
given tensorA can be done, if one can solve the optimization problem (9). Moreover,
optimizers of (9) will give such decompositions. Therefore, we will concentrate on
solving the problem (9) in the rest article.

The constraint is nonlinear inU (i)’s and linear inB. However, the objective function
is not even continuous. In order to resolve this, we would like to use a continuous spar-
sitymeasure ‖B‖1 (i.e., the absolute sumof all the entries ofB) as a surrogate for ‖B‖0.

min ‖B‖1
s.t. (U (1), . . . , U (k)) · A = B,

U (i) ∈ O(ni ) for all i = 1, . . . , k.

(12)

The heuristic of employing l1-norm ‖B‖1 for l0-norm ‖B‖0 is quite popular and
useful in compressive sensing as well as in convex mathematical optimization models
[16]. Theoretical justification for this convex relaxation has been established in the
literature. For our problem (9), (12) is still nonconvex, and hence it is hard to give a
theoretical guarantee on exactness of the relaxation. However, this heuristic is quite
reasonable: If B is an optimizer of (9) such that bi1...ik = 0 for (i1, . . . , ik) ∈ S
with a subset S ⊆ {1, . . . , n1} × · · · × {1, . . . , nk}, then the constraint bi1...ik = 0 for
(i1, . . . , ik) ∈ S can be added into (9). The objective function value is then constant and
irrelevant to the optimization, and hence it can be removed. On the other hand, |bi1...ik |
is a nonsmooth penalty for the constraint bi1...ik = 0. By adding

∑
(i1,...,ik )∈S |bi1...ik |

into the objective function, we get a penalized problem with equal penalty weights.
‖B‖1 −∑(i1,...,ik )∈S |bi1...ik | can be added into the objective function as a regularizer
for selecting an optimizer with the minimum absolute sum from the set of optimizers
with bi1...ik = 0 for (i1, . . . , ik) ∈ S.

2.6 Optimization techniques

In this section, we give some basic optimization techniques that will be used in the
sequel.
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For a given α ∈ R, sign(α) is the sign of α, defined as

sign(α) :=

⎧
⎪⎨

⎪⎩

1 if α > 0,

0 if α = 0,

−1 if α < 0.

Given a vector x̃ ∈ R
n and parameter γ > 0, the optimizer of the following

optimization problem

min
x∈Rn

‖x‖1 + γ

2
‖x − x̃‖2

is given by

x∗ = T 1
γ
(x̃) :=

(
sign((x̃)1)max

{
0, |(x̃)1| − 1

γ

}
, . . . , sign((x̃)n)max

{
0, |(x̃)n | − 1

γ

})T

.

It is known as the soft-thresholding, and Tα is the soft-thresholding operator for a
given α > 0.

Given a matrix A ∈ R
n×n , an optimizer of the following optimization problem

min
X∈O(n)

‖X − A‖2

is given by X∗ = U V T [18], where U , V ∈ O(n) are taken from the full singular
value decomposition of A, i.e., U	V T = A for some nonnegative diagonal matrix
	 ∈ R

n×n .

3 Augmented Lagrangianmethod

In this section, we apply the classical augmented Lagrangian method (ALM) for
solving problem (12).

A standard reformulation of (12) by putting the orthogonality constraints into the
objective function is

min ‖B‖1 +∑k
i=1 δO(ni )(U

(i))

s.t. (U (1), . . . , U (k)) · A = B.
(13)

With Lagrangian multiplier X and penalty parameter ρ, the augmented Lagrangian
function of problem (13) is (cf. [7])

Lρ(U,B;X ) = ‖B‖1 +
k∑

i=1

δO(ni )(U
(i)) + 〈X , (U (1), . . . , U (k)) · A − B〉

+ρ

2
‖(U (1), . . . , U (k)) · A − B‖2. (14)
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For given matrices U (i)
s ∈ O(ni ) for all i ∈ {1, . . . , k} and s = 1, 2, . . . , let

Us := (U (1)
s , . . . , U (k)

s ).

For convenience, we define

‖Us‖ := ‖U (1)
s ‖ + · · · + ‖U (k)

s ‖.

Note that minimization problem (13) is an equality constrained nonlinear optimiza-
tion problem with nonsmooth objective function. The classical inexact augmented
Lagrangian method for solving (13) is

Algorithm 3.1 inexact ALM
The input is a tensor A ∈ R

n1 ⊗ · · · ⊗ R
nk .

Given a sequence of positive numbers {εs} such that
∑∞

s=1 εs < ∞, a penalty
parameter ρ1 > 0, a penalty adjustment parameter γ > 1, and a penalty adjustment
threshold parameter τ ∈ (0, 1).

Step 0: Initialization: choose initial guess X1 ∈ R
n1 ⊗ · · · ⊗ R

nk . Set s := 1.
Step 1: Solve the subproblem

(Us,Bs) ≈ argminU,B Lρs (U,B;Xs) (15)

such that

U (i)
s ∈ O(ni ) for all i ∈ {1, . . . , k}, (16)

and

dist(0, ∂Lρs (Us,Bs;Xs)) ≤ εs . (17)

Step 2: Update the multiplier as

Xs+1 = Xs + ρs((U
(1)
s , . . . , U (k)

s ) · A − Bs). (18)

Step 3: Update the penalty parameter as

ρs+1 =
{

ρs if ρs−1‖Xs+1−Xs‖
ρs‖Xs−Xs−1‖ ≤ τ,

γρs otherwise.
(19)

Step 4: Unless a termination criterion is fulfilled, set s := s + 1 and go to Step 1.

Several problems should be addressed for Algorithm 3.1: (i) Step 1 is well-defined,
i.e., there exists a solution for (15), (16) and (17); and (ii) efficient computation of such
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a solution as εs ↓ 0. For a succinct representation, these algorithmic implementations
will be discussed later. Convergence properties will be established first, assuming
Algorithm 3.1 is well-defined.

To that end, critical points of the augmented Lagrangian function and KKT points
of the original optimization problem (12) will be discussed.

3.1 Critical points

In the following, we study the critical points of the augmented Lagrangian. For a given
multiplier X , we can split Lρ(U,B;X ) as

Lρ(U,B;X ) := f (U) + Q(U,B) + g(B), (20)

where

f (U) :=
k∑

i=1

δO(ni )(U
(i)), g(B) := ‖B‖1,

and

Q(U,B) := 〈X , (U (1), . . . , U (k)) · A − B〉 + ρ

2
‖(U (1), . . . , U (k)) · A − B‖2

with

U := (U (1), . . . , U (k)) ∈ R
n1×n1 × · · · × R

nk×nk .

With the natural structure of the variables, we can partition the subdifferentials or
gradients of the functions involved so far accordingly. The subdifferentials and gradi-
ents are kept aligned as the variables without vectorizing, e.g., the partial derivatives
of Q(U,B) are collected in the same tensor format as B and the block matrix structure
of U. This notation can be easily understood from the linear operator perspective of
subdifferentials and gradients. In particular,

∂ f (U) =

⎧
⎪⎨

⎪⎩

⎡

⎢⎣
B1
...

Bk

⎤

⎥⎦
∣∣∣∣Bi ∈ ∂δO(ni )(U

(i))

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎨

⎪⎩

⎡

⎢⎣
B1
...

Bk

⎤

⎥⎦
∣∣∣∣Bi ∈ NO(ni )(U

(i))

⎫
⎪⎬

⎪⎭
,

and

∇UQ(U,B) = ρ

⎡

⎢⎢⎣

U (1)V (1)
[
V (1)

]T − B(f,1)
[
V (1)

]T + 1
ρ
X (f,1)

[
V (1)

]T

...

U (k)V (k)
[
V (k)

]T − B(f,k)
[
V (k)

]T + 1
ρ
X (f,k)

[
V (k)

]T

⎤

⎥⎥⎦
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where

V (i) := [(U (1), . . . , U (i−1), I , U (i+1), . . . , U (k)) · A](f,i) for all i ∈ {1, . . . , k}.
(21)

Likewise,

∇BQ(U,B) = ρ

(
B − (U (1), . . . , U (k)) · A − 1

ρ
X
)

.

We also have that

W ∈ ∂g(B) ⇐⇒ wi1...ik ∈ ∂|bi1...ik | =

⎧
⎪⎨

⎪⎩

1 if bi1...ik > 0

[−1, 1] if bi1...ik = 0

−1 if bi1...ik < 0

(22)

for all i j ∈ {1, . . . , n j } and j ∈ {1, . . . , k}.
Given a lower semicontinuous function f , a critical point of f is a point x such

that 0 ∈ ∂ f (x).

Proposition 3.2 (Critical Points) With notation as above, a point (U,B) ∈ (Rn1×n1 ×
· · · × R

nk×nk ) × (Rn1 ⊗ · · · ⊗ R
nk ) is a critical point of the minimization problem

min
U,B

Lρ(U,B;X )

if and only if

(
U (i))T(B(f,i) − 1

ρ
X (f,i))[V (i)]T − V (i)(B(f,i) − 1

ρ
X (f,i))TU (i) = O for all i ∈ {1, . . . , k}

and

ρ((U (1), . . . , U (k)) · A − B) + X ∈ ∂g(B).

Proof By the structure of the augmented Lagrangian (cf. (20)), we have that

∂ULρ(U,B;X ) = ∂ f (U) + ∇UQ(U,B) and ∂BLρ(U,B;X ) = ∇BQ(U,B) + ∂g(B).

The rest then follows from (4). ��

3.2 KKT points

In this section, we study KKT points of the optimization problem (12). A general the-
ory on Lagrange multiplier rule for optimization problems with nonsmooth objective
functions is presented in Appendix B, for more details, we refer to [40].
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In the following, we first rewrite (12) in the form (43) as 1

min ‖B‖1
s.t. (U (1), . . . , U (k)) · A − B = O,

(U (1), . . . , U (k),B) ∈ O(n1) × · · · × O(nk) × (Rn1 ⊗ · · · ⊗ R
nk
)
,

(23)

whereO ∈ R
n1 ⊗· · ·⊗R

nk is the zero tensor. Note that all requirements inAppendix B
for the objective and constraint functions and abstract set X are satisfied. In the fol-
lowing, we will show that the constraint qualification (44) is satisfied at each feasible
point of (23).

Note that in this case

X = O(n1) × · · · × O(nk) × (Rn1 ⊗ · · · ⊗ R
nk
)
,

and

NX (U (1), . . . , U (k),B) = NO(n1)(U
(1)) × · · · × NO(nk )(U

(k)) × {O}.

Let matrices V (i) ∈ R
ni × n∗

ni be defined as (21) for all i ∈ {1, . . . , k}. Let X ∈
R

n1 ⊗ · · ·⊗R
nk . With a direct calculation, the system (44) for problem (23) becomes

∇(〈X , (U (1), . . . , U (k)) · A − B〉) =

⎡

⎢⎢⎢⎢⎣

X (f,1)
(
V (1)

)T
...

X (f,k)
(
V (k)

)T

−X

⎤

⎥⎥⎥⎥⎦
∈ NX (U (1), . . . , U (k),B),

(24)
which implies directly X = O from the last relation. Therefore, the constraint quali-
fication (44) is satisfied at each feasible, and hence local minimum, solution of (23).

Next, we present the KKT system of (23) in an explicit form.With (24) and the fact
that each NO(ni )(U

(i)) is a linear space (cf. Sect. 2.2), it is easy to see that a feasible
point (U,B) = (U (1), . . . , U (k),B) is a KKT point of (23) (as well as (12)) if and
only if the following system is fulfilled

X ∈ ∂‖B‖1, and X (f,i)(V (i))T ∈ NO(ni )(U
(i)) for all i ∈ {1, . . . , k}. (25)

3.3 Global convergence

Suppose that {(Us,Bs,Xs)} is a sequence generated by Algorithm 3.1. We will show
first that the sequence {(Us,Bs,Xs)} is bounded. Then, suppose that (U∗,B∗,X∗) is

1 We can reformulate (23) as an optimization problem with a smooth objective function by packing ‖B‖1
into the constraints as well. Then, optimality conditions can be derived as [39]. While, it seems that it is not
a wise choice here to destroy the smooth nature of the constraints and introduce a heavy task on computing
the normal cone of a feasible set whose constraints involve nonsmooth functions.
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one of its limit points. We will next show that (U∗,B∗,X∗) is a KKT point of (12),
i.e., the system (25) is satisfied.

Proposition 3.3 Let {(Us,Bs,Xs)} be the iteration sequence generated by Algo-
rithm3.1. Then it is a bounded sequence, every limit point (U∗,B∗,X∗)of this sequence
satisfies the feasibility of problem (12), i.e.,

(U (1)∗ , . . . , U (k)∗ ) · A = B∗ and U (i)∗ ∈ O(ni ) for all i ∈ {1, . . . , k},

and (U∗,B∗) is a KKT point of problem (12).

The proof of Proposition 3.3 is given in Appendix C. Proposition 3.3 gives the
global convergence result for Algorithm 3.1. In the following Sect. 4, we will address
the well-definiteness and computation issues.

4 Augmented Lagrangian subproblem

In this section, we apply a proximal alternating minimization (PAM) method to solve
the augmented Lagrangian subproblem (15), (16) and (17). For the sake of notational
simplicity, we will omit the outer iteration indices of Algorithm 3.1 and present the
algorithm for the problem

(U∗,B∗) ≈ argminU,B Lρ(U,B;X )

for given multiplier X and penalty parameter ρ. The initial guess for this problem
is denoted as (U0,B0), which can be taken as the previous outer iteration of Algo-
rithm 3.1.

4.1 Proximal alternatingminimization algorithm

The algorithm is a regularized proximal multi-block nonlinear Gauss–Seidel method:
starting from s = 1, iteratively solve the following problems

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Bs = argminB Lρ(Us−1,B;X ) + c(0)
s
2 ‖B − Bs−1‖2,

and for j = 1, . . . , k, solve

U ( j)
s ∈ argminU ( j) Lρ

(
(U (1)

s , . . . , U ( j−1)
s , U ( j), U ( j+1)

s−1 , . . . , U (k)
s−1),Bs;X

)

+ c( j)
s
2 ‖U ( j) − U ( j)

s−1‖2,
(26)

in which c( j)
s ≥ 0 for all j ∈ {0, . . . , k} and s = 1, 2, . . . are proximal parameters

chosen by the user. There are k+1 subproblems in (26), whereas the last k subproblems
are of the same structure. A good news is that all the subproblems have optimal
solutions in closed formulae. In the sequel, we will derive these closed formulae.
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The first subproblem is equivalent to

min
B∈Rn1⊗···⊗R

nk
‖B‖1 + ρ

2
‖B − (U (1)

s−1, . . . , U (k)
s−1) · A − 1

ρ
X‖2 + c(0)

s

2
‖B − Bs−1‖2

� min
B∈Rn1⊗···⊗R

nk
‖B‖1 + ρ + c(0)

s

2

∥∥∥∥B − ρ(U (1)
s−1, . . . , U (k)

s−1) · A + X + c(0)
s Bs−1

ρ + c(0)
s

∥∥∥∥
2

whose solution is analytic and obtained by the soft-thresholding (cf. Sect. 2.6)

Bs = T 1

ρ+c(0)s

(
ρ(U (1)

s−1, . . . , U (k)
s−1) · A + X + c(0)

s Bs−1

ρ + c(0)
s

)
.

In the next,we derive optimal solutions for the rest subproblems. Let j ∈ {1, . . . , k},
and

V ( j)
s := [(U (1)

s , . . . , U ( j−1)
s , I , U ( j+1)

s−1 , . . . , U (k)
s−1) · A](f, j)

.

Then the subproblem for computing U ( j)
s is

min
U ( j)∈O(n j )

〈X , (U (1)
s , . . . , U ( j−1)

s , U ( j), U ( j+1)
s−1 , . . . , U (k)

s−1) · A〉

+ρ

2
‖(U (1)

s , . . . , U ( j−1)
s , U ( j), U ( j+1)

s−1 , . . . , U (k)
s−1) · A − Bs‖2 + c( j)

s

2
‖U ( j) − U ( j)

s−1‖2.
(27)

Note that

〈X , (U (1)
s , . . . , U ( j−1)

s , U ( j), U ( j+1)
s−1 , . . . , U (k)

s−1) · A〉
= 〈X (f, j), U ( j)V ( j)

s 〉 = 〈X (f, j)(V ( j)
s )T, U ( j)〉.

Likewise,

〈Bs, (U
(1)
s , . . . , U ( j−1)

s , U ( j), U ( j+1)
s−1 , . . . , U (k)

s−1) · A〉 = 〈B(f, j)
s (V ( j)

s )T, U ( j)〉.

With these facts and U ( j) ∈ O(n j ), the subproblem (27) is equivalent to

min
U ( j)∈O(n j )

‖U ( j) − c( j)
s U ( j)

s−1 + (X (f, j) − ρB(f, j)
s

)
(V ( j)

s )T‖2,

which in turn can be solved by singular value decomposition (SVD) or polar decom-
position [18] (cf. Sect. 2.6).

We are now in the position to present the proximal alternating minimization algo-
rithm for the augmented Lagrangian subproblem.
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Algorithm 4.1 PAM
The inputs are tensorsA,X ∈ R

n1⊗· · ·⊗R
nk , parameters ρ > 0, ε > 0, 0 < c < c.

Step 0: Initialization: choose initial guess B0 ∈ R
n1 ⊗ · · · ⊗ R

nk , and U0 :=
(U (1)

0 , . . . , U (k)
0 ) ∈ O(n1) × · · · × O(nk). Set s := 1.

Step 1: Choose c(0)
s ∈ [c, c], and compute

Bs = T 1

ρ+c(0)s

(
ρ(U (1)

s−1, . . . , U (k)
s−1) · A + X + c(0)

s Bs−1

ρ + c(0)
s

)
. (28)

Step 2: For j = 1, . . . , k, choose c( j)
s ∈ [c, c] and compute the full singular value

decomposition

U	V T = c( j)
s U ( j)

s−1 − (X (f, j) − ρB(f, j)
s

)
(V ( j)

s )T, (29)

and let U ( j)
s = U V T.

Step 3: Unless ‖s‖ ≤ ε (see (30) for s ), set s := s + 1 and go to Step 1.

4.2 Convergence analysis

In this section, we will establish the global convergence of Algorithm 4.1. To that end,
optimality conditions of problem (26) will be derived first.

A direct calculation shows that the optimality conditions for the subproblem (26)
are the following system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ

(
Bs − (U (1)

s−1, . . . , U (k)
s−1) · A − 1

ρX
)

+ c(0)
s
(Bs − Bs−1

) ∈ −∂‖Bs‖1,
X (f, j)(V ( j)

s )T + ρ
(
U ( j)

s V ( j)
s − B(f, j)

s
)
(V ( j)

s )T + c( j)
s (U ( j)

s − U ( j)
s−1) ∈ −∂O(n j )(U

( j)
s )

for all j = 1, . . . , k.

With the fact that the normal cones of the orthogonal groups are linear subspaces, the
above system can be simplified as
⎧
⎪⎨

⎪⎩
ρ

(
Bs − (U (1)

s−1, . . . , U (k)
s−1) · A − 1

ρ
X
)

+ c(0)
s
(Bs − Bs−1

) ∈ −∂‖Bs‖1,
X (f, j)(V ( j)

s )T − ρB(f, j)
s (V ( j)

s )T + c( j)
s (U ( j)

s − U ( j)
s−1) ∈ −∂O(n j )(U

( j)
s ) for all j = 1, . . . , k.

Let

s :=

⎡

⎢⎢⎢⎢⎣

X (f,1)(V (1)
s − Ṽ (1)

s )T − ρB(f,1)
s (V (1)

s − Ṽ (1)
s )T + c(1)

s (U (1)
s − U (1)

s−1)
...

X (f,k)(V (k)
s − Ṽ (k)

s )T − ρB(f,k)
s (V (k)

s − Ṽ (k)
s )T + c(k)

s (U (k)
s − U (k)

s−1)

ρ
(
(U (1)

s−1, . . . , U (k)
s−1) · A − (U (1)

s , . . . , U (k)
s ) · A

)
− c(0)

s
(Bs − Bs−1

)

⎤

⎥⎥⎥⎥⎦
,

(30)
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where for j ∈ {1, . . . , k}

Ṽ ( j)
s := [(U (1)

s , . . . , U ( j−1)
s , I , U ( j+1)

s , . . . , U (k)
s ) · A](f, j)

.

Comparedwith the critical points of the augmented Lagrangian function (cf. Sect. 3.1),
we have that

s ∈ ∂Lρ(Us,Bs,X ). (31)

Wewill show thatAlgorithm4.1 converges. It is basedon ageneral result established
in [4, Theorem 6.2]. We summarized the convergence theory for this general PAM in
Appendix A.

Proposition 4.2 For any given tensorsA,X ∈ R
n1⊗· · ·⊗R

nk , and parameters ρ > 0,
ε > 0, 0 < c < c, we have that the sequence {(Us,Bs)} produced by Algorithm 4.1
converges and

‖s‖ → 0 as s → ∞

for the sequence {s} generated by (28), (29) and (30). Then Algorithm 4.1 is finite
termination.

The proof of Proposition 4.2 is given in Appendix D.

5 Numerical experiments

In this section, we test Algorithm 3.1 for several classes of tensors. All the tests were
conducted on a Dell PC with RAM 4GB and 3.2GHz CPU in 64bt Windows operation
system. All codes were written in MatLab with Tensor ToolBox by Bader and Kolda
[5]. Some default parameters were chosen as γ = 1.05, τ = 0.8, and

εs = max{10−10 ∗ max{ni | 1 ≤ i ≤ k},min{0.8s, 0.8 ∗ ε̂s−1}} with ε̂0 = 0.8,

with ε̂s−1 := ‖s−1‖ ≤ εs−1 for s ≥ 2. The initial guess X1 = O, and B1 =
((U (1)

1 )T, . . . , (U (k)
1 )T) · A with each U (i)

1 ∈ O(ni ) randomly chosen for all i ∈
{1, . . . , k} (unless otherwise stated). The other parameters are given concretely. The
maximum outer iteration number (i.e., the maximum iteration number allowed for
Algorithm 3.1) is 1000. The termination rule is

‖(U (1)
s ,...,U (k)

s )·A−Bs‖
‖A‖

√∏k
i=1 ni

< 10−8 and
√

‖max{|Xs |−1,0}‖2+ 1
‖A‖2

∑k
i=1 ‖(U (i)

s )TX (f,i)
s (V (i)

s )T−V (i)
s (X (f,i)

s )T(U (i)
s )T‖2

∏k
i=1 ni

< 10−8,

(32)

representing the relative feasibility and optimality residuals. Unless otherwise stated,
the inner iterationAlgorithm4.1 is terminatedwhenever either the optimality condition
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(17) is satisfied or the number of iterations exceeds 1000. If the number of the outer
iteration exceeds 1000 and (32) is not satisfied, then the algorithm fails for this test;
otherwise the problem is solved successfully.

As problem (12) is nonlinear and nonconvex, the solution found heavily depends on
the initial point. Thus, each instance is tested 10 times (unless otherwise stated) with
randomly generated initializations. In the tables, the column sucp indicates the prob-
ability of successful computations in the 10 simulations; max(len) is the maximum
length of the strongly orthogonal decomposition computed among the simulations,
and min(len) for the minimum; prob is the probability the algorithm computes out
a strongly orthogonal decomposition with length min(len). All the other columns
are the mean of the successfully solved simulations: len is the length of the strongly
orthogonal decomposition, out-it and inner-it are respectively the numbers of the
outer and inner iterations, cpu is the cpu time consumed, in(10−9) and op(10−9) are
respectively the final infeasibility and optimality residuals in the magnitude 10−9.

5.1 Examples

In the following, we test several classes of examples from known literatures.

Example 5.1 This example is taken from Kolda [28, Section 3]. Let a, â ∈ R
n be

two unit vectors and orthogonal to each other, and σ1 > σ2 > 0. The tensor A ∈
R

n ⊗ R
n ⊗ R

n is given by

A = σ1a⊗3 + σ2b ⊗ b ⊗ â, (33)

where b = 1√
2
(a+ â). The rank ofA is two, and (33) is a rank decomposition, while it

is not a strongly orthogonal decomposition. Obviously, rankSO(A) ≤ 5, by expanding
b into a and â.

We tested sampled examples with the dimensions n varying from 2 to 8. Usually,
we get a strongly orthogonal decomposition with length 5; sometimes we get 4. The
starting penalty parameter is 10 and the maximum inner iteration number is (n − 1) ∗
100. For each case, 10 simulations were generated with random [a, â] ∈ St(n, 2), and
random σ2 < σ1 ∈ (0, 1). The results are collected in Table 1.

Example 5.2 This example is taken from Ishteva et al. [24, Section 4.1]. Let a,b, c ∈
R

n be three unit vectors and orthogonal to each other. The tensorA ∈ R
n ⊗R

n ⊗R
n

is given by

A = a ⊗ b ⊗ c + b ⊗ c ⊗ a + c ⊗ a ⊗ b.

Obviously, this already gives a strongly orthogonal rank decomposition of A.
For each case, 10 simulations were generated with random [a,b, c] ∈ St(n, 3).

The penalty parameter is chosen as 10. The computational results are listed in Table 2.
All simulations were solved by the algorithm successfully. Thus the column sucp is
omitted. It is easily seen from Table 2 that in most cases the algorithm can find out a
strongly orthogonal rank decomposition.
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Table 1 Computational results for Example 5.1

n sucp len out-it inner-it cpu in(10−9) op(10−9)

2 1 4.9 26.6 110.9 1.4 1.1 5.1

3 1 4.8 46.4 230.5 2.8 1.6 7.6

4 1 4.8 51.6 342.8 4.0 1.5 7.6

5 1 4.9 50.9 443.8 5.0 0.5 0.6

6 1 4.9 51.1 2015.6 19.9 0.4 5.8

7 0.8 4.875 65.5 6129.6 55.4 1.2 6.1

8 0.8 5 108.6 30579.1 285.7 2.3 3.5

Table 2 Computational results for Example 5.2

n prob len max(len) Out-it Inner-it cpu in(10−9) op(10−9)

3 0.7 3.6 5 20.3 50.7 0.8 0.4 5.2

4 0.9 3.2 5 25.1 51.7 0.9 1.3 6.8

5 0.8 3.4 5 28.7 272.2 2.9 3.1 4.6

8 0.8 3.4 5 28.7 598 5.9 1.3 4.5

10 0.8 3.4 5 27.6 279.9 3.1 2.2 5.0

15 1 3 3 20.2 399.3 11.2 0.9 6.4

20 0.8 3.4 5 16.1 105.5 4.0 0.9 5.4

25 1 3 3 15.1 142 5.7 0.4 6.6

30 1 3 3 28.4 4955.7 199.8 0.4 6.0

35 1 3 3 44.2 8971.7 462.5 0.7 1.0

40 1 3 3 52.8 13281.4 858.3 0.05 0.004

45 1 3 3 54.8 13097.9 1106.8 0.04 0.003

50 1 3 3 58.9 18292.3 3415.6 0.004 0.0004

Example 5.3 This example is taken from Kolda [27, Example 3.3]. Let a,b ∈ R
n be

two unit vectors and orthogonal to each other, and σ1 > σ2 > σ3 > 0. The tensor
A ∈ R

n ⊗ R
n ⊗ R

n is given by

A = σ1a ⊗ b ⊗ b + σ2b ⊗ b ⊗ b + σ3a ⊗ a ⊗ a.

The definition of A gives a strongly orthogonal rank decomposition already. The
parameters are chosen the same as Example 5.2. The initialization for the orthogonal
matrices is by the factor matrices of the higher order singular value decomposition
(HOSVD) of the underlying tensor [14]. Computational results are shown in Table 3.

Example 5.4 This example is taken fromKolda [27, Example 3.6]. LetU1,U2 ∈ R
n1 ⊗

R
n2 ⊗ R

n3 be two unit rank one tensors that are not orthogonal to each other, and
σ1 ≥ σ2. The tensor A ∈ R

n1 ⊗ R
n2 ⊗ R

n3 is given by

A = σ1U1 + σ2U2.
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Table 3 Computational results for Example 5.3

n sucp prob len max(len) out-it inner-it cpu in(10−9) op(10−9)

5 0.9 1 3 3 55.1 737.2 7.7 1.9 7.9

10 1 1 3 3 61.1 9840.8 94.0 3.9 5.8

15 0.8 1 3 3 61.5 9883.2 340.0 2.6 6.2

20 0.6 1 3 3 52 10603.1 562.1 2.8 5.9

Table 4 Computational results for Example 5.4

n sucp prob len max(len) out-it inner-it cpu in(10−9) op(10−9)

(5, 5, 5) 1 1 5 5 51 2155.7 21.0 3.3 5.4

(10, 10, 10) 1 1 5 5 51.7 4764.4 46.0 1.9 3.4

(15, 15, 15) 0.8 1 5 5 43 2210 82.5 4.7 3.0

(10, 15, 20) 0.9 1 5 5 48.4 2279 65.1 3.8 4.5

(15, 20, 30) 0.9 1 5 5 34.2 1429 44.8 3.8 4.8

(20, 30, 40) 1.0 1 5 5 28.9 2108.1 74.2 1.7 6.3

The penalty parameter is chosen as 10. The computational results are given in Table 4.

Example 5.5 This example is taken from Kolda [27, Example 5.1]. Let a,b, c,d ∈ R
n

be four unit vectors and orthogonal to each other,

σ1 = 1, σ2 = 0.75, σ3 = σ4 = 0.7, σ5 = σ6 = 0.65,

and

U1 = a⊗3, U2 = b⊗3, U3 = a ⊗ c ⊗ d, U4 = a ⊗ d ⊗ c,

U5 = b ⊗ c ⊗ d, U6 = b ⊗ d ⊗ c.

The tensor A ∈ R
n ⊗ R

n ⊗ R
n is given by

A =
6∑

i=1

σiUi .

The definition of A gives a strongly orthogonal rank decomposition already. The
penalty parameter is chosen as 10. The computational results are given in Table 5.

Example 5.6 This example is taken fromNie [37, Example 5.6]. The tensorA ∈ ⊗5
R
3

is given by

A =
⎡

⎣
1
2
3

⎤

⎦
⊗5

+
⎡

⎣
1

−2
3

⎤

⎦
⊗5

+ 1

3

⎡

⎣
1

−12
−3

⎤

⎦
⊗5

+ 1

5

⎡

⎣
1
12

−13

⎤

⎦
⊗5

.
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Table 5 Computational results for Example 5.5

n sucp prob len max(len) out-it inner-it cpu in(10−9) op(10−9)

5 1 0.7 6.7 9 54.9 1048.4 10.3 3.8 5.0

10 1 0.7 6.7 9 57.9 3968.9 37.3 1.7 4.5

15 1 0.9 6.2 8 48.5 2311.9 76.3 3.6 4.0

20 1 0.5 7.3 9 40.1 4424.2 150.1 3.9 3.7

Table 6 Computational results for Example 5.7

n sucp prob len max(len) out-it inner-it cpu in(10−9) op(10−9)

2 1 1 5 5 38.9 197.1 2.3 4.1 4.6

5 1 1 5 5 103.6 39810.7 399.0 5.0 0.006

8 1 1 5 5 374.6 279100.5 2575.2 1.9 0.01

10 1 1 5 5 482 454104.7 3995.8 0.4 0.07

This tensor is a hard one, since the entries of the tensor varies from 38
15 to − 369268

5 =
−7.38× 104. The computed orthogonal decomposition has rank 213, slightly smaller
than the upper bound 35 − 15 = 228 (cf. [22]). We take the penalty parameter 10,
and run 100 simulations. Each simulation finds a decomposition with length 213. The
average outer iteration number is 83.15, the inner iteration number is 5435.59, the
cpu time is 78.771, the infeasibility is 1.7597 × 10−11, and the optimality residual is
3.6463 × 10−9.

Example 5.7 This example is taken from Nie [37, Example 5.8]. The tensor A ∈
S3(Rn), the subspace of symmetric tensors in ⊗3

R
n , is given by

ai jk = i jk − i − j − k, for all i, j, k ∈ {1, . . . , n}.

The penalty parameter is chosen as 10. The computational results are given in Table 6.

Example 5.8 This example is taken fromNie[37,Example 5.9]. The tensorA ∈ S4(Rn)

is given by

ai jkl = tan(i jkl), for all i, j, k, l ∈ {1, . . . , n}.

This example is also not easy to solve, since the entries of the tensor vary with large
magnitudes. The penalty parameter is chosen as 10. The computational results are
given in Table 7.

Example 5.9 This example is taken from Nie [37, Example 5.10]. The tensor A ∈
S4(Rn) is given by

ai jkl = sin(i + j + k + l) + cos(i jkl), for all i, j, k, l ∈ {1, . . . , n}.
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Table 7 Computational results for Example 5.8

n sucp prob min(len) len max(len) out-it inner-it cpu in(10−9) op(10−9)

2 1 1 12 12 12 63.8 699.1 9.4 8.7 0.08

3 1 0.2 10 11.6 12 56.2 524.6 6.5 7.2 1.6

4 1 0.3 51 54.8 57 70.5 3537.9 39.2 2.8 6.1

5 1 0.1 178 191.7 198 105.7 21171.7 233.1 2.2 6.8

6 0.2 0.5 495 508 521 113 41670.5 461.9 4.4 7.3

Table 8 Computational results for Example 5.9

n sucp prob min(len) len max(len) out-it inner-it cpu in(10−9) op(10−9)

2 1 1 12 12 12 43.5 209 3.0 1.9 6.6

3 1 1 53 53 53 75.2 2191.7 26.1 0.7 7.5

4 1 0.1 180 193.2 208 108 26385.9 285.3 5.8 6.0

5 0.8 0.375 499 507.5 527 139.8 57917.1 637.6 3.4 7.4

Table 9 Computational results for Example 5.10

n sucp prob min(len) len max(len) out-it inner-it cpu in(10−9) op(10−9)

2 1 1 5 5 5 18.4 167.2 1.6 0.2 0.4

3 1 1 15 15 15 70.1 14889.3 121.4 1.3 1.2

The penalty parameter is chosen as 10. The computational results are given in Table 8.

Example 5.10 The last concrete example is taken from Batselier et al. [6, Example 6].
The tensor A ∈ ⊗3

R
n is given by

ai jk = 1

i + j + k
, for all i, j, k ∈ {1, . . . , n}.

Similar reason as that in Example 5.8, this class of tensors is hard. The penalty param-
eter is 100. The computational results are given in Table 9.

5.2 Completely orthogonally decomposable tensors

We would like to separate a section for the class of completely orthogonally decom-
posable tensors (CODT), as it is of particular interest [3,23]. For this class of tensors,
we can consider an analogue condition number for tensors.

A tensor A ∈ R
n1 ⊗ · · · ⊗ R

nk is called completely orthogonally decomposable
(cf. [27,38,41]) if there exist orthogonal matrices

Ai = [ai,1, . . . , ai,ni ] ∈ R
ni ×ni for all i = 1, . . . , k

and numbers λd ∈ R+ for d = 1, . . . , D0 := min{n1, . . . , nk} such that
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A =
D0∑

d=1

λda1,d ⊗ · · · ⊗ ak,d . (34)

Note that some of the λd ’s can be zeros. By eliminating the zeros, we can further
assume that a nonzero completely orthogonally decomposable tensor takes the form

A =
D∑

d=1

λda1,d ⊗ · · · ⊗ ak,d .

with D ≤ D0 := min{n1, . . . , nk} and λd > 0, d = 1, . . . , D. It is easy to see that D
is then the strongly orthogonal rank of A.

Unlike the matrix case (i.e., k = 2), the rank one decomposition of a completely
orthogonally decomposable tensor is always unique [41], regardless of the possibility
of equal λi ’s. It can be derived from Kruskal’s uniqueness theorem [31] as well, in
which the prerequisity is the trivial inequality k − 1 ≤ (k − 2)D when D ≥ 2 and the
case D = 1 is obvious. Therefore, in this case, problem (13) has an optimizer with a
diagonal tensor B.

For this class of tensors, we implement two tests for stability of the algorithm. The
first test is on tensors with respectively small, medium, and large strongly orthogonal
ranks. All the tensors are third order, and the dimensions are listed in Table 10 case by
case. In this table, rk indicates the rank of the generated tensor. In each case, 10 simula-
tions were generated with the factor orthogonal matrices being the orthogonalization
of the columns of randomly generated matrices. The penalty parameter for tensors
with dimensions 30, 50, 80, and 100 are chosen respectively as 10, 20, 30, and 40.

Denote by λmax := max{λd | 1 ≤ d ≤ D}, and λmin := min{λd | 1 ≤ d ≤ D}.
Then

κ := λmax

λmin
(35)

will serve as the role of condition number in the tensor case. The other test is on
third order tensors of strongly orthogonal rank 3 and dimension 30 with different
levels of condition numbers, which are indicated as cond in Table 11. Computational
tests are given in Table 11 for the performance. The penalties for these nine cases are
respectively ranging from 20 to 100 with equi-gap 10.

5.3 Random examples

In this section, we test random examples to see the performance of Algorithm 3.1.
We generate two sets of random examples, the first one is generated with each

entry being drawn randomly in [−1, 1]. The second one is generated as the sum of
rk rank one tensors, with each component vector in the rank one tensor being drawn
componentwisely in [−1, 1]. In this set, we also generate symmetric tensors. The
penalty parameter is chosen as 100 for all simulations, and the results are listed in
Tables 12, 13 and 14. In Table 14, sym indicates the symmetry of the tensors; it is
symmetric when it takes value 1, and nonsymmetric otherwise.
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Table 10 Computational results for third order CODTs with different ranks

(n, rk) sucp prob min(len) len max(len)out-it inner-it cpu in(10−9) op(10−9)

(30,2) 1 1 2 2 2 18 531.5 45.5 3.9 1.7

(50,2) 1 1 2 2 2 11.5 178 34.5 8.6 5.3

(80,2) 1 0.9 2 2.1 3 13 469.5 366.5 1.9 3.0

(100,2) 1 0.9 2 2.2 4 10.3 305.4 425.8 0.9 5.2

(30,15) 1 0.2 15 17.2 19 35.6 1047.6 49.5 2.8 7.0

(50,25) 1 0.4 25 27 33 42.5 1524.3 220.7 0.3 9.1

(80,40) 1 0.1 40 45.8 54 54.8 3646 2690.5 3.8 6.5

(100,50) 1 0.1 52 62.7 79 72.8 13649.8 15725.1 4.6 5.2

(30,28) 1 0.3 32 35.2 38 45 1071 63.9 0.6 8.7

(50,48) 1 0.1 56 60.4 68 47.6 1774.5 241.1 0.3 8.5

(80,78) 1 0.1 80 90.4 96 58.5 3783.7 2331.2 0.3 9.0

(100,98) 1 0.1 102 116.3 134 67.9 10284.9 11312.8 3.4 4.9

Table 11 Computational results for third order CODTs with different condition numbers

(n, cond) sucp prob min(len) len max(len) out-it inner-it cpu in(10−9) op(10−9)

(30,2) 1 1 3 3 3 29 140.2 10.0 0.4 6.6

(30,3) 1 1 3 3 3 38.9 266.8 17.5 0.6 8.4

(30,5) 1 1 3 3 3 50.3 606.9 36.3 0.7 8.4

(30,8) 1 1 3 3 3 59.5 2820.1 146.0 0.5 9.1

(30,10) 1 1 3 3 3 57.7 3222.5 161.1 0.9 8.7

(30,15) 1 1 3 3 3 86.9 22528.9 1086.1 0.7 5.7

(30,20) 0.8 1 3 3 3 123.2 49390 2522.1 0.7 0.01

(30,25) 0.7 1 3 3 3 199.4 85041.8 4015.2 1.3 0.08

(30,30) 0.3 1 3 3 3 153.3 64728.6 4866.3 0.9 0.08

Table 12 Computational results for randomly generated nonsymmetric third order tensors

(n, rk) sucp prob min(len) len max(len) out-it inner-it cpu in(10−9) op(10−9)

(3,3) 1 1 18 18 18 56.7 822.7 5.3 0.1 6.9

(5,3) 1 0.1 15 17.7 18 71.5 3314.1 18.6 0.7 5.4

(8,3) 1 0.1 13 16.3 18 65.7 681.8 4.3 0.09 7.9

(10,3) 1 0.1 14 17.3 18 78 1423.5 8.5 0.09 6.5

(15,3) 1 0.1 14 16.6 18 59.6 1005.6 27.4 0.8 6.3

(20,3) 1 0.1 13 16 18 66.6 1583.4 44.5 0.1 7.8

(3,10) 1 1 18 18 18 62.5 5387.3 29.3 1.1 7.2

(4,10) 1 1 46 46 46 90.4 38876.7 211.4 3.5 6.0

(5,10) 0.7 1 95 95 95 124.1 88120.4 473.9 4.6 8.0

(6,10) 0.9 1 171 171 171 172.1 145383.1 802.8 2.9 5.4

(7,10) 0.4 1 280 280 280 169.7 146378.2 803.7 2.2 5.3
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Table 13 Computational results for randomly generated symmetric third order tensors

(n, rk) sucp prob min(len) len max(len) out-it inner-it cpu in(10−9) op(10−9)

(3,3) 1 0.3 15 17 18 51.7 586 3.7 0.7 5.7

(5,3) 1 0.1 15 17.4 18 65.1 2481 14.3 9.9 6.7

(8,3) 1 0.1 15 17.6 18 60.4 843.9 5.4 0.8 8.4

(10,3) 1 0.1 14 17.1 18 62.8 7665.4 43.3 1.3 7.8

(15,3) 1 0.1 14 17.2 18 50.1 661.4 19.1 0.9 7.8

(20,3) 1 0.2 16 18 23 68.5 2279.7 63.0 0.6 7.6

(3,10) 1 0.2 15 17.3 18 56.5 615.6 3.9 0.6 7.7

(4,10) 1 0.2 37 42.7 46 63.8 2994.5 17.0 1.0 6.7

(5,10) 1 0.1 77 86.7 95 122.7 69607.9 381.4 3.5 5.3

(6,10) 0.9 0.111 144 157.111 169 112.1 63797.3 345.5 2.7 3.9

(7,10) 0.8 0.125 259 273.625 280 165 136584.5 744.8 1.5 6.2

Table 14 Performance for randomly generated higher order tensor examples: symmetric and nonsymmetric

(n, k, rk, sym) sucp prob min(len) len max(len) out-it inner-it cpu in(10−9) op(10−9)

(30,4,1,0) 1 1 1 1 1 22 230 313.7 0.1 4.1

(30,4,1,1) 1 1 1 1 1 21.9 250.7 339.1 0.07 4.4

(40,4,1,0) 1 1 1 1 1 18.3 196.7 779.1 0.1 5.7

(40,4,1,1) 1 1 1 1 1 16.7 237.1 912.3 0.1 4.4

(10,5,1,0) 1 1 1 1 1 22.5 245.8 43.2 0.1 5.2

(10,5,1,1) 1 1 1 1 1 22.7 207.9 34.4 0.1 5.4

(20,5,1,0) 1 1 1 1 1 19.9 205.2 1392.1 0.1 4.7

(20,5,1,1) 1 0.8 1 1.2 2 18 207.2 1390.0 0.2 6.0

(10,5,2,0) 1 0.5 11 15.3 27 42.1 352.7 60.6 0.9 6.1

(10,5,3,0) 1 0.1 51 93 174 85.7 4775.8 1073.6 3.5 3.6

(20,5,2,0) 1 0.3 11 14.6 18 46.1 797.7 6034.9 1.1 3.8

(10,5,2,1) 1 0.3 11 20.9 27 51.8 767.2 159.0 0.9 5.7

(10,5,3,1) 1 0.1 57 124.3 213 106.4 13165 2639.9 3.3 1.7

(20,5,2,1) 1 0.1 11 20.7 28 34.8 384.4 2672.7 1.5 4.9

5.4 Conclusions

We see that problem (13) is highly nonlinear, especially when the tensor size is large,
thus solutions of Algorithm 3.1 depend on the initializations heavily. While, for most
cases, the convergence is fast with high accuracy. These can be seen from Tables 1, 2,
10, 11, 12, 13 and 14.We can also see from these computations that when the strongly
orthogonal ranks are small relative to the tensor sizes or the tensor sizes are small,
the computational performance is very well, which can be seen from Tables 3, 4, 5,
6 and 11. On the other hand, when the tensor components have a large deviation in
magnitude or the strongly orthogonal ranks are large, the performance is reduced,
which can be seen from Tables 7, 8, 9, 10, 12 and 13.
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We want to emphasize Table 11, from which we can see that the condition number
defined as (35) plays a key role in the performance of the algorithm. We think this is
an intrinsic property of the underlying tensor, which will domonstrate the efficiency
of most computations. Since the rank one decomposition for CODT is unique, and
then the condition number as (35) for CODTs is well-defined. More sophisticated
definition and investigation for general tensors should be carried out in the future.
Also, theoretical justification of the dependence of the efficiency of an algorithm on
the condition number should be investigated in the next.

6 Conclusions

In this article, computing the strongly orthogonal rank decomposition of a given ten-
sor is formulated as solving an optimization problem with the help of matrix-tensor
multiplication. This optimization problem has discrete-valued objective function (the
l0-norm of the tensor) subject to a system of nonlinear equality constraints and a set
of orthogonal constraints. As the number of components of a tensor increases expo-
nentially with respect to the tensor size, the number of nonlinear equality constraints
becomes huge for tensors with large sizes. For example, it is one million for a sixth
order ten dimensional tensor. As we can image, this class of problem is very difficult
to solve in general, partly due to (i) the huge number of equality constraints, (ii) the
orthogonality constraints, and (iii) the discrete-valued objective function.

Nevertheless, we propose to replace the objective function by a widely used
surrogate–the l1-norm of the tensor. Then, we apply an inexact augmented Lagrangian
multiplier method to solve the resulting optimization problem. During the iterations,
the orthogonality requirements are always guaranteed. Thus, the algorithmwill always
return a strongly orthogonal decomposition whatever the termination situations were
met. Moreover, the augmented Lagrangian subproblem is solved by a proximal alter-
nating minimization method with the benefit being that each subproblem has a closed
formula solution. This is one key ingredient to keep the orthogonality constraints.
Global convergence of the ALM algorithm is established without any further assump-
tions. Surprisingly, though as simple this algorithm as it sounds, the performance of the
proposed algorithm is quite well. Extensive numerical computations were conducted
with quite sounding efficiency as well as high accuracy. Note that in Table 14, the
number of nonlinear equality constraints is 3,200,000 for the case (n, k) = (20, 5).

It follows from the computations that several issues need further investigation. The
first is the exactness of the l1-norm surrogate with respect to the original l0-norm. It
can be seen from the computations that quite often, l1-norm can realize the strongly
orthogonal rank decomposition. Thus, theoretical justifications should be established.
The second would be a more efficient method to deal with tensors with larger strongly
orthogonal ranks, which are the hard ones in the present computations. Another is that
various other surrogates for the l0-norm should be studied.
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Appendix A. Convergence theorem for PAM

Let f : Rn1 × · · · × R
nk → R ∪ {+∞} be a function of the following structure

f (x) = Q(x1, . . . , xk) +
k∑

i=1

gi (xi ),

where Q is a C1 (continuously differentiable) function with locally Lipschitz contin-
uous gradient, and gi : Rni → R ∪ {+∞} is a proper lower semicontinuous function
for each i ∈ {1, . . . , k}.

We introduce the following algorithmic scheme to solve the optimization problem

min
x∈Rn1×···×R

nk
f (x).

Since f is proper and lower semicontinuous, x is an optimizer of this minimization
problem only if it is a critical point of f , i.e., 0 ∈ ∂ f (x).

Algorithm A.1 general PAM
Given parameters α j > 0 with j ∈ {1, . . . , k}, 0 < c < c, k symmetric matrices Pj

such that cI � Pj � cI for each j ∈ {1, . . . , k}.
Step 0: Initialization: choose initial guess x0 ∈ R

n1 × · · · × R
nk . Set s := 1.

Step 1: For j = 1, . . . , k, find xs, vs ∈ R
n1 × · · · × R

nk such that

g j (xs
j ) + Q(xs, j ) + 1

2
‖xs

j − xs−1
j ‖2Pj

≤ g j (x
s−1
j ) + Q(xs, j−1); (36)

vs
j ∈ ∂g j (xs

j ); (37)

‖vs
j + ∇x j Q(xs, j )‖ ≤ α j‖xs

j − xs−1
j ‖. (38)

where

xs, j = (xs
1, . . . , x

s
j , x

s−1
j+1, . . . , x

s−1
k ),

and

‖z‖2Pj
:= 〈Pjz, z〉.

Step 3: If a termination criterion is not reached, set s := s + 1 and go to Step 1.

Step 1 can be implemented through several methods. In particular, (36), (37) and
(38) are fulfilled if for all j ∈ {1, . . . , k}, xs

j is taken as aminimizer of the optimization
problem
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min
z∈Rn j

g j (z) + Q(xs
1, . . . , x

s
j−1, z, x

s−1
j+1, . . . , x

s−1
k ) + 1

2
‖z − xs−1

j ‖Pj . (39)

We now state the global convergence of AlgorithmA.1 for a wide class of objective
functions [4, Theorem 6.2].

Theorem A.2 (Proximal Alternating Minimization) Let f be a Kurdyka–Łojasiewicz
function and bounded from below. Let {xs} be a sequence produced by Algorithm A.1.
If {xs} is bounded, then it converges to a critical point of f .

Appendix B. Nonsmooth Lagrangemultiplier

The following materials can be found in [40, Chapter 10].
Let X ⊆ R

n be nonempty and closed, f0 : Rn → Rbe locallyLipschitz continuous,
F : Rn → R

m with F := ( f1, . . . , fm) and each fi locally Lipschitz continuous, and
θ : Rm → R∪{±∞} be proper, lower semicontinuous, convex with effective domain
D.

Consider the following optimization problem

min f0(x) + θ(F(x)) s.t. x ∈ X . (40)

If x is a local optimal solution to (40) such that the following constraint qualification
being satisfied

0 ∈ ∂(yTF)(x) + NX (x) and y ∈ ND(F(x)) �⇒ y = 0, (41)

then there exists a vector y such that

0 ∈ ∂( f0 + yTF)(x) + NX (x) and y ∈ ∂θ(F(x)). (42)

A vector y satisfying (42) is called a Lagrange multiplier, and the pair (x, y) satisfying
(42) is a Karush–Kuhn–Tucker pair with x a KKT point. Let M(x) be the set of
Lagrange multipliers for a KKT point x. Under the constraint qualification (41), the
set M(x) is compact.

A particular case is θ = δ{0}, the indicator function of the set {0} ⊂ R
m . Then

problem (40) reduces to

min
x∈X

f0(x) s.t. fi (x) = 0, for all i = 1, . . . , m. (43)

If each fi is continuously differentiable for i ∈ {1, . . . , m}, then the constraint quali-
fication is

y1∇ f1(x) + · · · + ym∇ fm(x) ∈ NX (x) �⇒ y = 0. (44)

It is the basic constraint qualification discussed in [39], an extension of the
Mangasarian–Fromovitz constraint qualification [35].
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The optimality condition (42) becomes

y1∇ f1(x) + · · · + ym∇ fm(x) ∈ ∂ f0(x) + NX (x),

or in a more familiar form as

v + y1∇ f1(x) + · · · + ym∇ fm(x) ∈ NX (x) for some v ∈ ∂ f0(x).

Appendix C. Proof of Proposition 3.3

Proof It follows from (16) that U (i)
s ∈ O(ni ) for all i ∈ {1, . . . , k} and s = 1, 2, . . .

and hence the sequence {Us} is bounded.
Let �s ∈ ∂Lρs (Us,Bs;Xs) be such that ‖�s‖ ≤ εs which is guaranteed by (17).

Thus,

�s =

⎡

⎢⎢⎢⎣

B(1)
s
...

B(k)
s
Ws

⎤

⎥⎥⎥⎦+ ρs

⎡

⎢⎢⎢⎢⎢⎣

U (1)
s V (1)

s
[
V (1)

s
]T − B(f,1)

s
[
V (1)

s
]T + 1

ρs
X (f,1)

s
[
V (1)

s
]T

...

U (k)
s V (k)

s
[
V (k)

s
]T − B(f,k)

s
[
V (k)

s
]T + 1

ρs
X (f,k)

s
[
V (k)

s
]T

Bs − (U (1)
s , . . . , U (k)

s ) · A − 1
ρs
Xs

⎤

⎥⎥⎥⎥⎥⎦
(45)

for some Ws ∈ ∂‖Bs‖1, and B(i)
s ∈ NO(ni )(U

(i)
s ) for all i ∈ {1, . . . , k}.

It follows from the last row in (45) and (17) that

∥∥∥∥ρs
(Bs − (U (1)

s , . . . , U (k)
s ) · A − 1

ρs
Xs
)+ Ws

∥∥∥∥ ≤ ‖�s‖ ≤ εs . (46)

By the fact thatWs is uniformly bounded (cf. (22)), and εs → 0, we conclude that
ρs
(Bs − (U (1)

s , . . . , U (k)
s ) ·A− 1

ρs
Xs
)
is bounded. Therefore, the sequence {Xs+1} is

bounded by the multiplier update rule (18).
Since Ws and Xs are both bounded, it follows from (46) that ρs

(Bs −
(U (1)

s , . . . , U (k)
s ) · A) is bounded. As {ρs} is a nondecreasing sequence of positive

numbers and {Us} is bounded, we must have that the sequence {Bs} is bounded.
In a conclusion, the sequence {Us,Bs,Xs} is bounded.
For the feasibility, note that U∗ satisfies the orthogonality by (16). The rest proof

is divided into two parts, according to the boundedness of the sequence {ρs}.
Part I. Suppose first that the penalty sequence {ρs} is bounded. By the penalty

parameter update rule (19), it follows that ρs stabilizes after some s0, i.e., ρs = ρs0
for all s ≥ s0. Thus,

‖(U (1)
s , . . . , U (k)

s ) · A − Bs‖ ≤ τ‖(U (1)
s−1, . . . , U (k)

s−1) · A − Bs−1‖ for all s ≥ s0 + 1.
(47)

The feasibility result then follows from a standard continuity argument.
Part II. In the following, we assume that ρs → ∞ as s → ∞.
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Likewise, it follows from the last row in (45) and (17) that

∥∥∥∥Bs − (U (1)
s , . . . , U (k)

s ) · A − 1

ρs
Xs + 1

ρs
Ws

∥∥∥∥ ≤ ‖�s‖
ρs

≤ εs

ρs
.

By the fact that Ws and Xs are both bounded, ρs → ∞, and εs → 0, we have that

∥∥Bs − (U (1)
s , . . . , U (k)

s ) · A∥∥→ 0. (48)

Thus, by continuity, we have that (U∗,B∗) is a feasible point.
In the following, we show that (U∗,B∗) is a KKT point. Let

Ms := ρs
(
(U (1)

s , . . . , U (k)
s ) · A − Bs

)
.

It follows from the above analysis that {Ms} is bounded. By the multiplier update rule
(18), the system (45) can be rewritten as

�s =

⎡

⎢⎢⎢⎣

B(1)
s
...

B(k)
s
Ws

⎤

⎥⎥⎥⎦+

⎡

⎢⎢⎢⎢⎣

(Ms + Xs
)(f,1)[

V (1)
s
]T

...(Ms + Xs
)(f,k)[

V (k)
s
]T

−Ms − Xs

⎤

⎥⎥⎥⎥⎦
. (49)

The boundedness of {Us,Bs,Xs,Ms} and {�s} implies the boundedness of each
{B(i)

s } for all i ∈ {1, . . . , k} as well. We assume without loss of generality that

{Us,Bs,Xs,Ms,Ws,Bus} → {U∗,B∗,X∗,W∗,M∗,B∗} as s → ∞ and s ∈ K

for an infinite index set K ⊆ {1, 2, . . . }, and in where

Bs := (B(1)
s , . . . , B(k)

s ) and B∗ := (B(1)∗ , . . . , B(k)∗ ).

Taking limitations on both sides of (49) within K, we have then

⎡

⎢⎢⎢⎢⎣

(M∗ + X∗)(f,1)
[
V (1)∗

]T
...(M∗ + X∗)(f,1)

[
V (1)∗

]T

−(M∗ + X∗)

⎤

⎥⎥⎥⎥⎦
= −

⎡

⎢⎢⎢⎣

B(1)∗
...

B(k)∗
W∗

⎤

⎥⎥⎥⎦ ,

where V (i)∗ is defined as (21) with U (i)’s being replaced by U (i)∗ ’s. By the closedness
of subdifferentials, we have

W∗ ∈ ∂‖B∗‖1,
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and

B(i)∗ ∈ NO(ni )(U
(i)∗ ) for all i ∈ {1, . . . , k}.

Since each NO(ni )(U
(i)∗ ) is a linear subspace, we have shown that (U∗,B∗) is a KKT

point of (12) with Lagrange multiplier X∗ + M∗ (cf. (25)). The proof is complete. ��

Appendix D. Proof of Proposition 4.2

Proof It is known that for all i ∈ {1, . . . , k} eachorthogonal groupO(ni ) is an algebraic
set, defined by a system of polynomial equations. Therefore,O(ni ) is a semi-algebraic
set and its indicator function is semi-algebraic [8]. The l1-norm ‖ · ‖1 is also semi-
algebraic. Also known is that each semi-algebraic function is a Kurdyka–Łojasiewicz
function (cf. [9, Appendix]). Thus, as a summation of the l1-norm, the indicator func-
tions of the orthogonal groups, and polynomials, the augmented Lagrangian function
Lρ(·, ·;X ) is a Kurdyka–Łojasiewicz function.

If the iteration sequence {(Us,Bs)} generated by Algorithm 4.1 is bounded, and the
function Lρ(·, ·;X ) is bounded from below, then the sequence {(Us,Bs)} converges
by Theorem A.2.

For any given X , it follows immediately from (14) that the function Lρ(·, ·;X ) is
bounded from below, since

Lρ(U,B;X ) = ‖B‖1 +
k∑

i=1

δO(ni )(U
(i)) + ρ

2

∥∥∥(U (1), . . . , U (k)) · A − B + 1

ρ
X
∥∥∥
2 − 1

2ρ
‖X ‖2.
(50)

In the language of Appendix A, the variable B refers to the j = 0-th block variable,
and U ( j) the j-th block for j ∈ {1, . . . , k}. Then,

g0(B) := ‖B‖1, and g j (U
( j)) = δO(n j )(U

( j)) for all j ∈ {1, . . . , k},

and the function Q is defined naturally to comprise Lρ in (50).
We first show that (38) is satisfied. By (26), we know that (38) is satisfied by α j = c

for all j ∈ {0, 1, . . . , k}.
It follows from (26), (28) and (29) that

Lρ(Us−1,Bs;X ) + c(0)
s

2
‖Bs − Bs−1‖2 ≤ Lρ(Us−1,Bs−1;X ),

Lρ

((
U (1)

s , U (2)
s−1, . . . , U (k)

s−1

)
,Bs;X

)
+ c(1)

s

2
‖U (1)

s − U (1)
s−1‖2 ≤ Lρ(Us−1,Bs;X ),

. . .

Lρ(Us ,Bs;X ) + c(k)
s

2
‖U (k)

s − U (k)
s−1‖2 ≤ Lρ

((
U (1)

s , . . . , U (k−1)
s , U (k)

s−1

)
,Bs;X

)
.
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Summing up these inequalities, we have

Lρ(Us,Bs;X ) + c

2

(
k∑

i=1

‖U (i)
s − U (i)

s−1‖2 + ‖Bs − Bs−1‖2
)

≤ Lρ(Us−1,Bs−1;X ).

Therefore, the sequence {Lρ(Us,Bs;X )} monotonically decreases to a finite limit.
On the other hand, since each component matrix of Us is an orthogonal matrix,

the sequence {Us} is bounded. Suppose that the sequence {Bs} is unbounded. Then,
it follows from (50) that the sequence {Lρ(Us,Bs;X )} should diverge to infinity,
which is an immediate contradiction. Thus, the iteration sequence {(Us,Bs)} must be
bounded, and hence converges by Theorem A.2.

In the following, we show that ‖s‖ → 0 as s → ∞. First of all, we derive an
upper bound estimate for ‖V ( j)

s − Ṽ ( j)
s ‖ as

‖V ( j)
s − Ṽ ( j)

s ‖
= ‖[(U (1)

s , . . . , U ( j−1)
s , I , U ( j+1)

s−1 , . . . , U (k)
s−1) · A](f, j)

− [(U (1)
s , . . . , U ( j−1)

s , I , U ( j+1)
s , . . . , U (k)

s ) · A](f, j)‖
= ‖(U (1)

s , . . . , U ( j−1)
s , I , U ( j+1)

s−1 , . . . , U (k)
s−1) · A

− (U (1)
s , . . . , U ( j−1)

s , I , U ( j+1)
s , . . . , U (k)

s ) · A‖
≤ ‖(U (1)

s , . . . , U ( j−1)
s , I , U ( j+1)

s−1 , . . . , U (k)
s−1) · A

− (U (1)
s , . . . , U ( j−1)

s , I , U ( j+1)
s−1 , . . . , U (k−1)

s−1 , U (k)
s ) · A‖

+ ‖(U (1)
s , . . . , U ( j−1)

s , I , U ( j+1)
s−1 , . . . , U (k−1)

s−1 , U (k)
s ) · A

− (U (1)
s , . . . , U ( j−1)

s , I , U ( j+1)
s , . . . , U (k)

s ) · A‖
= ‖(U (k)

s−1 − U (k)
s )
[
(U (1)

s , . . . , U ( j−1)
s , I , U ( j+1)

s−1 , . . . , U (k−1)
s−1 , I ) · A](f,k)‖

+ ‖(U (1)
s , . . . , U ( j−1)

s , I , U ( j+1)
s−1 , . . . , U (k−1)

s−1 , U (k)
s ) · A

− (U (1)
s , . . . , U ( j−1)

s , I , U ( j+1)
s , . . . , U (k)

s ) · A‖
≤ ‖A‖‖U (k)

s−1 − U (k)
s ‖

+ ‖(U (1)
s , . . . , U ( j−1)

s , I , U ( j+1)
s−1 , . . . , U (k−1)

s−1 , U (k)
s ) · A

− (U (1)
s , . . . , U ( j−1)

s , I , U ( j+1)
s , . . . , U (k)

s ) · A‖
≤ ‖A‖(‖U ( j+1)

s−1 − U ( j+1)
s ‖ + · · · + ‖U (k)

s−1 − U (k)
s ‖)

≤ ‖A‖‖Us − Us−1‖,

where the second inequality follows from the fact that U (i)
t ∈ O(ni ) for all i ∈

{1, . . . , k} and t = 1, 2, . . . , and the third from a standard induction.
Likewise, we have

‖(U (1)
s−1, . . . , U (k)

s−1) · A − (U (1)
s , . . . , U (k)

s ) · A‖ ≤ ‖A‖‖Us − Us−1‖.

123



736 S. Hu

Thus, we have

‖s‖ ≤ (ρ + k‖X‖ + kρ‖Bs‖)‖A‖‖Us − Us−1‖ + c(0)
s ‖Bs − Bs−1‖

+
k∑

i=1

c(i)
s ‖U (i)

s − U (i)
s−1‖

≤ [(ρ + k‖X‖ + kρ‖Bs‖)‖A‖ + c
]‖Us − Us−1‖ + c‖Bs − Bs−1‖.

Since the iteration sequence {(Us,Bs)} converges, we conclude that ‖s‖ → 0 as
s → ∞. As ε > 0 is a given parameter, Algorithm 4.1 terminates after finitely many
iterations. ��
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