
Vol.:(0123456789)

Computational Optimization and Applications (2019) 74:517–545
https://doi.org/10.1007/s10589-019-00121-w

1 3

Minimizing the average searching time for an object
within a graph

Ron Teller1 · Moshe Zofi1,2 · Moshe Kaspi1

Received: 31 July 2018 / Published online: 29 July 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
This paper presents a new graph search problem for which a searcher wishes to find
an object that may be found at a set of locations. The searcher doesn’t know the
object’s exact location, but does know the a-prior probability of finding the object
at each location. He wishes to build a searching path for reaching the object that
starts from a given location and ends when reaching the object (or after searching
the entire set with a false result). The objective is to find a searching path which will
minimize the average searching time. We consider two scenarios for this problem:
one when there is an unknown number of objects on the set and another when there
is exactly one object on the set (the sum of probabilities is equal to 1). We show
that this problem is NP-Hard, and supply a branch and bound algorithm for find-
ing an optimal solution for large scale problems. We also study greedy approaches
and other heuristics and compare the performance of these algorithms in various
situations.

Keywords  Graph search algorithms · Object searching · Branch and bound ·
Dynamic programming · Greedy algorithm · Heuristic search · TSP · Ant colony
optimization

 *	 Moshe Zofi
	 zofi@bgu.ac.il

	 Ron Teller
	 rontel@bgu.ac.il

	 Moshe Kaspi
	 moshe@bgu.ac.il

1	 Department of Industrial Engineering and Management, Ben Gurion University of the Negev,
Beer‑Sheva, Israel

2	 Department of Industrial Management, Sapir College, Sderot, Israel

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-019-00121-w&domain=pdf

518	 R. Teller et al.

1 3

1  Introduction

We consider the following problem: a searcher wishes to find a specific object,
which may be found at a number of locations. He doesn’t know the object’s exact
location, but knows the a-prior probability of finding it at various locations. His goal
is to construct a searching path for reaching the object (a prioritized list of locations
he will visit in order to find the object). The search ends when the searcher finds the
object or after he searched the entire set of locations with a false result.

The exact searching time on a given path is unknown (due to the probabilities)
and therefore, the searcher’s objective is to find the searching path which will
minimize the average searching time (AST) - namely the path with the lowest
expected time of finding the object. We call this problem the Min AST.

The Min AST problem has two scenarios: (a) when there is an unknown num-
ber of objects (the sum of probabilities of finding the object at the given set of
locations ≥ 0 ) and (b) when there is exactly one object (the sum of probabilities
of finding the object at the given set of locations = 1).

The Min AST problem can be reduced to the minimum weight Hamiltonian path
problem and thus it is NP-Hard. This fact motivated us to look for approximation
algorithms, meta-heuristics and special structures of the problem, where polyno-
mial time algorithms may be applied. Some of these algorithms are inspired by
the extensive research that was done on the Traveling Salesmen Problem (TSP)
over the past decades.

In practice, searching objects at discrete locations is a scenario that may arise
in various fields.

Consider the case in which we are interested in buying a single item, which
may (or may not) be found in several stores—such as a unique clothing item in an
unusual size or a rare replacement part for an electronic device. This item can be
found in more than one store (the probability of finding the item in each store is
given), and we want to determine the order in which to visit the stores such that
we can find an item in as less time as possible. Consider another case in which we
are trying to find a spot in a parking lot as quickly as possible. We know what the
chance is of each parking lot to be full, but we still need to determine the order
in which to visit the parking lots. All of these examples fit scenario (a) in which
there can be more than one object, and the probability of finding it in one location
does not necessarily affect the probability of finding it in another.

Consider another problem where a rescue team is sent to find a lost traveler and
is given the locations he had planned to visit. The team has an a priori knowledge
about former lost travelers at different locations, and therefore can assess the likeli-
ness of the traveler to get lost at each of the locations he planned to visit. According
to this information, the team tries to plan a course where the expected searching
time for finding the lost traveler will be minimal. This example fits scenario (b),
since there is exactly one lost traveler, and if the team doesn’t find him at a specific
location, then the chances of finding him at the other possible locations increases.

The problem described in this paper belongs to the field of search in which
the prior knowledge of the location and behavior of the target is incomplete or

519

1 3

Minimizing the average searching time for an object within…

probabilistic. This field has been widely researched in the last half-decade and
various problems have been formulated for scenarios where a searcher wishes to
obtain a target or an object. As described in the survey by Benkoski et al. [1], a
search problem can be categorized by the following features:

•	 The mobility of the target (moving or stationary)
•	 The motivation of the target (optimization problem or search game)
•	 The type of space and time (continuous or discrete)

Many search problems have been formulated as game theory problems. In these
problems the searcher is trying to find a target that has its own motivation. In game
theory, Search games are zero-sum games where the target is evading the searcher.
Some of the well-known search games are The Linear Search Problem proposed by
Beck [2] where the searcher tries to find an immobile evader on a straight line, and
The Princess and Monster Problem proposed by Isaacs [3], where the searcher tries
to find the target in a dark room and detect the target if he is close enough. Another
known searching problem in game theory is The Rendezvous Problem [4], where the
searcher and a mobile target wish to find each other as soon as possible. The Min
AST problem described in this paper assumes the target has no motivation; therefore
The Min AST problem is not a game, but an optimization problem.

Searching problems with a motiveless target (sometimes referred to as Opti-
mal Searcher Path problems), deal with the computation complexity, the solution
approaches and the algorithms for different searching scenarios. These problems dif-
fer in the type of space and time of the search environment (continuous or discrete).
Most available research deal with scenarios where the searcher’s searching effort
is limited in time or in motion. Some studies deal with problems where the goal is
to maximize the probability of detection within these limits. Stone [5] summarized
a variety of scenarios where the goal is to optimally allocate searching resources.
Brown [6] introduced the problem of searching a stationary target within a set of
cells and with limited time effort, Stewart [7] dealt with the problem where the
amount of resources spent is time dependent. Weber [8] introduced a problem where
the space is discrete and limited (only two locations) but the time is continuous and
the target moves with some random Markovian process. For other related problems
in search theory see [1].

Many of the search problems in the literature (see [6–11]) take into considera-
tion a detection function or a glimpse probability, that describes the chance of the
searcher to find the target when both of them are at the same position or somewhat
adjacent to each other. The problem described in this paper assumes that if the
searcher and the object are at the same position, the searcher will surely find the
object.

In recent years, some new optimization search problems were proposed, where
the searching effort is unlimited, and the goal is to construct a path that covers the
entire search space and has a minimal average searching time. These problems are
similar to the Min AST problem. Jotshi and Batta [12] described a scenario where a
searcher wants to locate an immobile entity that is uniformly distributed on a graph’s
edges. His objective is to minimize the expected searching time. The authors later

520	 R. Teller et al.

1 3

extended the problem for searching two immobile entities on an undirected network
where the entity locations are probabilistically known and dependent [13]. Both
problems are related to the Chinese Postman Problem in which we need to cover all
edges and thus differ from the Min AST.

Another problem formulated by Berman et al. [14] deals with a person who wants
to get service from stationary facilities as fast as possible. The facilities are prone
to disruption (the facility has a constant probability of becoming inactive) and the
person is given the a priori knowledge of the stochastic behavior of each facility.
This problem can be seen as a search problem where the searcher wishes to find a
functioning facility. Since the chance of the facility to fail is equal in all locations
and is not conditioned by other factors, Berman’s problem covers a specific case
of many searching scenarios. The best known algorithm for obtaining an optimal
result for Berman’s problem is a forward dynamic programming, with a computa-
tion complexity of

(
n32n

)
 . This algorithm assumes there are equal probabilities to all

the vertices. Due to its computation complexity, Berman’s algorithm struggles with
obtaining optimal results in graphs with more than 20 vertices.

Scenario (a) of the Min AST problem is closely related to the problem of sequen-
tial testing of multi-component systems [15]. Each component is associated with a
different test cost and a given probability that it is functioning correctly. The compo-
nents functionality is independent of each other. In order to minimize the total cost
of testing the system’s functionality, we must determine the right order of testing
all of the system’s components. Scenario (a) of the Min AST is a variation of the
sequential testing problem on complete graphs where the edge weights represent the
test costs.

Another related problem is the minimum latency problem (or the traveling repair-
man problem) [16, 17], in which we want to find a tour for a single repairman pass-
ing through n vertices (representing machines or customers), which will minimize
the average waiting time. The Min AST problem differs from this problem in two
ways: (1) The Min AST objective is given from the searcher point of view (which is
to minimize its total traveling time) and not from the machine’s point of view (which
is to minimize the accumulative waiting time until it is visited). (2) Each vertex is
associated with an a-prior probability, which highly influences the order of visits, as
shown in Example 1 in Sect. 2.3.

In this paper we extend the scope of the above possible searching scenarios
and offer a more general formulation to discrete searching problems for a station-
ary object. We provide a mathematical formulation to this problem, and perform
an analysis of several searching paths for general and for several special graphs and
problem structures (on finite and infinite graphs).

Our paper proposes a dynamic programming algorithm and a branch and bound
algorithm that unlike Berman’s algorithm are not restricted to the special case in
which all the probabilities are equal and that can also be applied to the scenario of
dependent probabilities (exactly one object on the graph). We show that the ability
to prune branches strongly depends on the probabilities on the vertices, and thus the
runtime of this algorithm becomes shorter as the probabilities grow higher. In cases
of high probabilities, the algorithm quickly yields optimal results for large scale
problems (500 vertices and more). When the probabilities are relatively low, the Min

521

1 3

Minimizing the average searching time for an object within…

AST problem acts more and more like the TSP, and thus our bounding techniques
become less efficient. We will explain why some well-known bounding techniques
for the TSP (like the assignment problem relaxation and the cutting planes method)
cannot be applied for the Min AST problem and propose other bounding techniques
and test their cost-effectiveness.

We show that in many cases, good results for the Min AST problem may be
obtained by using greedy approaches or other well-known meta-heuristics. The
greedy algorithms result’s quality gets better as the probability of finding the object
at each vertex grows. We adapt the ant colony optimization algorithm to the Min
AST problem and show that it produces very good results in all problem instances.

Performance analysis will be presented for each of the algorithms we suggest,
after which we recommend using different solution approaches for different types of
problem instances.

The paper is organized as follows: Sect. 2 provides mathematical definitions and
formulations of the Min AST problem. Section 3 will introduce several solution
approaches for the problem followed by Sect. 4 which will provide test results and
a comparison between approaches. Section 5 will summarize the work and will pro-
vide ideas for future work.

2 � Problem analysis

2.1 � Problem definition and notation

Consider a complete graph G = (V ,E) comprised of a set of vertices V numbered
1, 2,… , n and a set of connecting edges E , each with a weight ti,j that indicates the
traveling time or distance between the vertices in its ends. The required object can
be found at each vertex j ∈ V with a given probability pj . The graph may contain
a single required object (i.e.

∑n

j=1
pj = 1 ), or an unknown number of objects (i.e. ∑n

j=1
pj ≥ 0 ). The searcher’s objective is to find the path that starts with a given ver-

tex (indexed 0) and has the minimal average searching time (AST), which is the path
with the least expected searching time. The searching process ends when the object
is found, with no need to return to the starting vertex. Without loss of generality, we
assume that the searcher’s travelling speed is constant.

A valid search path SP is an ordered list of vertices that contains each of the
graph’s vertices exactly once.1

We note that even though the searcher may visit only a partial part of the path (if
the object is found at early stages), all possible cases must be considered when cal-
culating the AST.

We consider two scenarios: (a) where there is an unknown number of objects and
(b) where there is exactly one object on the graph. In the first scenario, finding the
object is not guaranteed by the end of the process, and the probability of finding the
object at each vertex is not dependent on the state of the searching process. In the

1  The case in which repeated visits on vertices (backtracking) is allowed is presented at Sect. 3.5

522	 R. Teller et al.

1 3

second scenario, by the end of the searching process, the object is found with certainty.
Moreover, if the object is not found at a certain vertex, the probability of finding it at
each of the remaining vertices on the path increases (this paradigm will be elaborated
in Sect. 2.3).

2.2 � Search path analysis

In this section we show how to calculate the average searching time in general and also
for some special cases for a given SP . Let vi be the i th vertex in the SP and let ti be
the traveling time between vi−1 and vi . We set p0 to be 0 in all cases (the object is not
located at the starting vertex). Our approach for calculating the AST for a given path is
to add up all the traveling times (as indicated by the edges we chose) on the SP multi-
plied by the chance of actually traveling through them during the searching process. We
analyze finite and infinite search paths (in finite and infinite graphs), for both scenarios
(described above).

The probability of traversing the i th edge ei (the edge between vertices vi−1 and vi )
on SP is calculated by multiplying all the probabilities of not finding the object at any
of the i − 1 vertices prior to the i th vertex. Thus, for an unknown number of objects,
the probability of traversing the i th edge pei is calculated as: pei =

∏i−1

j=1

�
1 − pj

�
.

Note that whether one node contains an object is independent of whether another
node contains an object.

When we consider the scenario of a single object, the original probabilities on the
vertices grow larger as we move along the SP (if the vertices visited in the SP do not
contain the required item, then the probability of finding the item at the rest of the
vertices increases). Updating the probabilities can be replaced with the simple sum:
pei = 1 −

∑i−1

j=1
pj

The following section will demonstrate the calculation of the AST for several cases
in finite and infinite graphs.

Search paths in finite graphs
Consider the SP presented at Fig. 1, containing n vertices on a finite graph.
In the most general case where ti and pi may vary for each i and when there is an

unknown number of objects on the graph (scenario (a) ), the AST will be calculated as
follows:

AST =

n∑

i=1

[
ti

i−1∏

j=1

(
1 − pj

)
]

Fig. 1   A sample search path in a finite graph

523

1 3

Minimizing the average searching time for an object within…

When there is exactly one object (scenario (b) ) the average searching time will
be:

Special cases

1.	 when pi = pj = p∀i, j , then for scenario (a) : AST =
∑n

i=1
ti(1 − p)i−1 and for sce-

nario (b) : AST =
∑n

i=1
ti
�
1 − (i − 1)p

�

2.	 when ti = tj = t ∀i, j , then for scenario (a) : AST = t
∑n

v

�∏i−1

j=1

�
1 − pj

��
 and for

scenario (b) : AST = t
∑n

i=1

�
1 −

∑i−1

j=1
pj

�

3.	 when pi = pj = p ∩ ti = tj = t ∀i, j , then for scenario (a) , we calculate AST using
the sum of a finite geometric progression with q = 1 − p and a1 = t such that:

	  And for scenario (b) :

Search paths in infinite graphs
Consider the SP presented at Fig. 2, containing an infinite number of vertices

on an infinite graph
In the most general case (where ti and pi may vary for each i ), the AST for sce-

nario (a) is:

In the case of scenario (b) , if there is a coefficient c for which pi = 0∀i > c ,
then the search path can be treated as a finite search path with c vertices and can
be calculated as mentioned in the previous section. Otherwise:
AST =

∑∞

i=1

�
ti

�
1 −

∑i−1

j=1
pj

��

AST =

n∑

i=1

[
ti

(
1 −

i−1∑

j=1

pj

)]

AST = a1
qn − 1

q − 1
= t

(1 − p)n − 1

(1 − p) − 1
= t

1 − (1 − p)n

p

AST = t

n∑

i=1

1 − (i − 1)p = t

[
n − p

n−1∑

i=1

i

]
= nt

[
1 −

(n − 1)p

2

]

AST =

∞∑

i=1

[
ti

i−1∏

j=1

(
1 − pj

)
]

Fig. 2   A sample search path in an infinite graph

524	 R. Teller et al.

1 3

Special cases

1.	 when pi = pj = p ∀i, j , then for scenario (a) : AST =
∑∞

i=1
ti(1 − p)i−1 and for

scenario (b) : AST =
∑∞

i=1
ti
�
1 − (i − 1)p

�

2.	 when ti = tj = t ∀i, j then for scenario (a) : AST = t
∑∞

i=1

�∏i−1

j=1

�
1 − pj

��
 and for

scenario (b) : AST = t
∑∞

i=1

�
1 −

∑i−1

j=1
pj

�

3.	 when pi = pj = p ∩ ti = tj = t ∀i, j , then for scenario (a) we calculate AST using
the sum of infinite geometric progression with q = 1 − p and a1 = t , and get:
AST =

a1

1−q
=

t

p
 . Note that in scenario (b) p =

1

∞
∼ 0 since there is only one

object: limp→0 AST = limp→0
t

p
= ∞

We can see that in all the cases described above, the earlier an edge appears in the
search path, the greater impact it has on the AST. This is due to a higher probability of
being visited. When the probabilities of finding the object increase, the contribution of
edges to the AST drops drastically as a function of their location in the search path.

2.3 � Mathematical formulation

Consider a complete graph G = {V ,E} containing |V| = n vertices (indexed
0,… , n − 1 ) where all the vertices are connected by |E| = n(n − 1) edges.

Let T be a distance (or traveling time) matrix whose common element ti,j represents
the traveling time along the edge connecting vertices i and j.

Let pi represent the probability of finding the object at vertex i.
Let xi,s = {1, 0} be a binary decision variable which will receive the value of 1 if the

searching path will visit vertex i in stage s and 0 otherwise.
Since the searching path starts at vertex 0 in stage 0, we can say that:

The searching path will include all of the vertices, each in a different stage and
therefore:

The distance between two consecutive vertices i and j visited at stages s − 1 and s
can be written as:

(1) x0,0 = 1

(2)

n−1∑

i=1

xi,s = 1 ∀s

(3)

n−1∑

s=0

xi,s = 1 ∀i

n−1∑

i=0

n−1∑

j=0

xi,s−1xj,sti,j

525

1 3

Minimizing the average searching time for an object within…

The probability of not finding the object until stage s in scenario (a) in which ∑n−1

i=0
pi > 0 is:

Therefore the objective of minimizing the average searching time (AST) can
be written as:

Summarizing all the above we get the full complete formulation for scenario
(a) as follows:

For scenario (b) in which
∑n−1

i=0
pi = 1 , the probability of not finding the object

until stage s is: 1 −
∑s−1

k=o

∑n−1

i=0
pixi,k and thus the objective changes to:

The following example demonstrates the possible searching paths and their
ASTs.

Example 1  Consider the graph presented at Fig. 3. The searcher is located at vertex
‘S’. The probabilities of finding the object at vertices ‘a’, ‘b’ and ‘c’ are 0.1, 0.6
and 0.3 respectively. The traveling time between every two vertices is written on the
connecting edge.

s−1∏

k=0

n−1∑

i=0

xi,k
(
1 − pi

)

MinAST =

n−1∑

s=1

[(
s−1∏

k=0

n−1∑

i=0

xi,k
(
1 − pi

)
)(

n−1∑

i=0

n−1∑

j=0

xi,s−1xj,sti,j

)]

MinAST =

n−1∑

s=1

[(
s−1∏

k=0

n−1∑

i=0

xi,k
(
1 − pi

)
)(

n−1∑

i=0

n−1∑

j=0

xi,s−1xj,sti,j

)]

s.t.

(1) x0,0 = 1

(2)

n−1∑

i=1

xi,s = 1 ∀s

(3)

n−1∑

s=0

xi,s = 1 ∀i

xi,j = {1, 0} ∀i, j = 0,… , n − 1

MinAST =

n−1∑

s=1

[(
1 −

s−1∑

k=0

n−1∑

i=0

pixi,k

)(
n−1∑

i=0

n−1∑

j=0

xi,s−1xj,sti,j

)]

526	 R. Teller et al.

1 3

This graph contains six possible searching paths. In the following, we cal-
culate the AST for each possible SP for both scenarios (a) and (b) as described
in Sect. 2.1. The best searching path in each scenario is emphasized using bold
characters.

Scenario (a): there is an unknown number of objects in the graph.

Scenario (b): the graph contains exactly one object.

Note that the optimal searching path for scenarios (a) and (b) in a given graph
may differ.

2.4 � Problem complexity

The min AST problem can be reduced to the well-known NP-Complete problem of
determining whether a Hamiltonian path exists within a given graph [18].

Theorem 1  Finding the minimal AST is NP-Hard for scenarios (a) and (b).

[SP 1] S → a → b → c ∶ AST = 1 + (1 − 0.1) ∗ 4 + (1 − 0.1) ∗ (1 − 0.6) ∗ 6 = 6.76

[SP 2] S → a → c → b ∶ AST = 1 + (1 − 0.1) ∗ 5 + (1 − 0.1) ∗ (1 − 0.3) ∗ 6 = 9.28

[�� �] � → � → � → �∶ ��� = � + (� - �.�) ∗ � + (� - �.�) ∗ (� - �.�) ∗ � = �.�

[SP 4] S → b → c → a ∶ AST = 2 + (1 − 0.6) ∗ 6 + (1 − 0.6) ∗ (1 − 0.3) ∗ 5 = 5.8

[SP 5] S → c → a → b ∶ AST = 3 + (1 − 0.3) ∗ 5 + (1 − 0.3) ∗ (1 − 0.1) ∗ 4 = 9.02

[SP 6] S → c → b → a ∶ AST = 3 + (1 − 0.3) ∗ 6 + (1 − 0.3) ∗ (1 − 0.6) ∗ 4 = 8.32

[SP 1] S → a → b → c ∶ AST = 1 + (1 − 0.1) ∗ 4 + [1 − (0.1 + 0.6)] ∗ 6 = 6.4

[SP 2] S → a → c → b ∶ AST = 1 + (1 − 0.1) ∗ 5 + [1 − (0.1 + 0.3)] ∗ 6 = 9.1

[SP 3] S → b → a → c ∶ AST = 2 + (1 − 0.6) ∗ 4 + [1 − (0.6 + 0.1)] ∗ 5 = 5.1

[SP �]S → b → c → a∶ AST = � + (� − �.�)*� + [� − (�.6 + �.�)] ∗ � = �.�

[SP 5] S → c → a → b ∶ AST = 3 + (1 − 0.3) ∗ 5 + [1 − (0.3 + 0.1)] ∗ 4 = 8.9

[SP 6] S → c → b → a ∶ AST = 3 + (1 − 0.3) ∗ 6 + [1 − (0.3 + 0.6)] ∗ 4 = 7.6

Fig. 3   A sample graph contain-
ing 4 vertices and 6 edges

527

1 3

Minimizing the average searching time for an object within…

Proof  The problem of determining whether a Hamiltonian path exists in a graph
G = (V ,E) starting from a specific vertex ( vs) is NP-Complete.□

Let G′ be a weighted complete graph comprised out of the same vertices in G and
Let w{u,v} represent the weight of the edge connecting vertices u and v.

Let w{u,v} =

{
1, {u, v} ∈ E(G)
∞, otherwise

 , and let pi < 1 ∀i ∈ V
(
G�

)
.

Let ASTmin be the solution of finding the minimal AST for either scenario (a) or
(b) , with vs as the starting vertex.

If ASTmin < ∞ , then a Hamiltonian path exists in the original G (the path with the
minimal AST in G′ by the algorithm is a Hamiltonian Path in G ). If ASTmin = ∞ ,
then no Hamiltonian Path in G that starts from vertex vs exists.

Thus, determining whether we can find an ASTmin < ∞ is equivalent to determin-
ing whether a Hamiltonian path exists in the graph.

Obtaining an approximation with a constant �-factor to the TSP in its general case
is NP-Complete [19]. This is also true for the minimum weight Hamiltonian path
problem, as such an algorithm would solve the Hamiltonian path problem which is
also NP-Complete.

Therefore; it is obvious that obtaining a constant �-factor to the Min AST problem
is NP-Complete (Otherwise we could use any approximation algorithm for the Min
AST problem to obtain an approximation to the minimum weight Hamiltonian path
problem by setting all probabilities to 0).

3 � Solution approaches

This section will present several solution approaches for the problem. We start with
dynamic programming and branch and bound methods which obtain optimal solu-
tions but may require high computations and memory usage. We then provide sev-
eral heuristics that reach good solutions and require much less resources.

3.1 � Dynamic programming

Berman et al. [14] introduced a forward dynamic programming algorithm that pro-
duces an exact solution for a problem when all probabilities are equal. We performed
several adjustments in this algorithm so that it can reach the optimal solution when
the probabilities are not equal [as required in scenarios (a) and (b)].

The algorithm has |V| − 1 stages (numbered 0 to n − 1 ). The number of stages is
equal to the number of vertices in the complete search path (not including the start-
ing vertex). In each stage, we generate a table in which the rows represent the group
of vertices that have been added to the path until the previous stage (set Ai in the
algorithm); and the columns represent the vertices that can be added to the path in
the current stage (see Fig. 2).

528	 R. Teller et al.

1 3

This algorithm has a time complexity of O
(
2nn3

)
 (assuming a table of binomial

coefficients is pre-processed); the i th stage of the algorithm requires O
(
n

(
n

i

))

memory as it keeps a table with
(
n

i

)
 rows and n columns. In order to retrieve the

optimal path, all tables must be kept, and the total amount of memory required is

O

�
∑n

i=1
n

�
n

i

��
= O(2n) . This algorithm is not affected by the probabilities on the

graph and runs in a constant amount of time for all graph instances of the same size.

Algorithm Forward-Dynamic-Programming (G, LastStageTable, Stage)
1. If Stage = 0 , create a table NewStageTable where NewStageTable[0, i] = t0,i

2. Else (1 ≤ Stage ≤ n − 1) , create a table NewStageTable with

(
n

Stage

)

 rows and n columns.
 2.1. For each row i in LastStageTable:

 2.1.1. Calculate the cumulative probability* for the row: pri =
∏

l∈Ai

�
1 − pl

�∗∗

 2.1.2. For each column j in LastStageTable:
 2.1.2.1. If the vertex represented by column j belongs to the set Ai , then cell C(i, j) = ∞

 2.1.2.2. Else C(i, j) = mink∈Ai

{
LastStageTable

[
index

(
Ai − k

)∗∗∗
, k
]
+ tk,jpri

}

 2.2. If Stage = n − 1 , return the minimal value in NewStageTable,
 Else, call ForwardDynamicProgramming(G,NewStageTable, Stage + 1)

*At a given stage, the computation of the cumulative probability (which represents the chance of not
finding the object in any of the vertices in the set Ai ) is the same for all the cells in the same row, as they
all share the same previously visited vertices.
**In the case of a single object in the graph, this expression is replaced with 1 −

∑
l∈A pl

***Function index
(
Ai

)
 returns the lexicographic index of the combination Ai (out of

(
n

size
(
Ai

)
)

combinations).

DP Example
Figure 4 presents the tables created using the algorithm in each stage for the

sample graph given in Fig. 3. The example is suitable for scenario (a).

•	 Table S0 (generated at stage 0) contains a single row representing the starting
vertex s , and 3 columns representing all the other vertices ( a, b, c) , each cell
contains the traveling time between s and the vertex in the column.

Fig. 4   Finding the minimal AST for scenario (a) on the graph presented at Fig. 3 using dynamic pro-
gramming

529

1 3

Minimizing the average searching time for an object within…

•	 Table S1 (generated at stage 1) contains
(
3

1

)
= 3 rows (the number of all possi-

ble combinations of a single vertex), for each row we calculate its cumulative
probability pri , a sample calculation for row 1: pr1 = 1 − pa = 0.9.

	  The value of each cell is calculated by mink∈Ai

{
S0

[
Ai − k, k

]
+ tk,jpri

}
 where

Ai depends on the cell row ( {a} , {b} or {c} ) and j depends on the cell column ( a ,
b or c).

	  In stage 1, Ai − k = � , which means that Ai − k is the starting vertex s.
	  The calculation for the sample cell “to c via {a} “ (row 1, column 3) is:

 (note that there is no minimum function since A contains only one vertex).
•	 Table S2 (generated in stage 2) contains

(
3

2

)
= 3 rows (the number of all possi-

ble combinations of two vertices), for each row we calculate its cumulative prob-
ability pri , a sample calculation for row 1: pr1 =

(
1 − pa

)(
1 − pb

)
= 0.36.

	  The value of each cell is calculated by mink∈Ai

{
S1
[
Ai − k, k

]
+ tk,jpri

}
 where

Ai depends on the cell row ( {a, b} , {a, c} or {b, c} ) and j depends on the cell col-
umn ( a , b or c).

	  The calculation of the sample cell “to c via {a, b} “ is:

•	 When stage 2 is complete we get Stage = n − 1 , and return the minimal value
found in S2 (i.e., MinAST = 5.4).

	  The optimal SP is reconstructed backwards.
	  The last vertex added to the path is c . We have reached c from a (which pro-

vided the minimal value when we calculated “to c via {a, b}“). We have also
reached vertex a from b , and we have reached b from s . Thus the optimal search
path is: s → b → a → c.

3.2 � Branch and bound algorithm

In order to achieve optimal results in larger graphs, we propose a depth first branch
and bound algorithm with two different bounding techniques which are very effi-
cient when the probabilities are not low.

The main features of a branch and bound algorithm are:

1.	 A branching technique that determines how to split the search area into sub-areas.
2.	 A bounding technique that determines how to calculate a lower bound and an

upper bound for each sub-area.
3.	 A search strategy that determines which sub-area will be explored at the next

step.

S0
[
1, columnofa

]
+ ta,cpr1 = 1 + 0.9 ∗ 5 = �.�

min

{
S1
[
row of {b}, column of a

]
+ ta,c ∗ pr1 = 3.6 + 5 ∗ 0.36 = 5.4

S1
[
row of {a}, column of b

]
+ tb,c ∗ pr1 = 4.6 + 6 ∗ 0.36 = 6.76

= �.�

530	 R. Teller et al.

1 3

Branching
The branching technique in our algorithm is to iteratively construct search paths.

The root of the tree is a search path containing the starting vertex and all the other
vertices as candidates. As the tree branches, we add more vertices to the search path.
When the candidate list is empty (and the tree is at depth |V| ), we have constructed a
full search path.

Bounding
Many efficient lower bounding techniques for the Traveling Salesman Problem

(such as The Assignment Problem Relaxation) are not suitable for the Min AST prob-
lem. Opposed to the TSP (in which the contribution of each edge is independent
of its location in the tour), the contribution of each edge in the Min AST problem
depends on the cumulative probability of the vertices along the path, prior to the tra-
versed edge. The cutting plane method is also unsuitable since it is used to refine the
feasible set of mixed integer linear programs, and the Min AST problem is not linear
(see Sect. 2.4).

We offer the following two lower bounding techniques. The first provides a good
bound with relatively minor computation effort, while the other provides a tighter
bound but requires larger computation effort.

In Sect. 4 we will show that both bounds outperform each other depending on the
probabilities.

Lower bound 1
Let vc be the vertex added to the path in the considered node. Let vf represent

the vertex that was added to path in the predecessor (father) node. Let ASTf be the
AST calculated in the predecessor node. Let tf ,c represent the traveling time required
between vf and vc . Let pf and pc represent the probabilities of finding the object in vf
and vc

Let CPf and CPc denote the cumulative probability of not finding the object in the
path constructed until the predecessor node and until the current node respectively.

Thus, the lower bound in a given node is ASTc = ASTf + CPf ∗ tf ,c and the
cumulative probability of not finding the object until reaching the current node is
CPc = CPf ∗

(
1 − pc

)
.

This lower bound is calculated from the average searching time of the partial path
that was constructed until reaching the current node. This bound does not take into
consideration the vertices which are not included in the partial path, and therefore
is not very tight. When the probabilities are relatively high, the contribution of the
edges added to the path in the late stages is negligible. Thus, the bound is close to
the best possible solution in the current branch.

This bound is computed in O(1) time.
Lower bound 2
This lower bound extends the previous by adding to ASTc the minimal value for

any possible search path that may be constructed through the remaining unvisited
vertices.

Let s be the vertex added to the path in the current node and Vr be the list of the
remaining unvisited vertices which need to be added to the search path. Also let Pr
be the list of the probabilities of the vertices in Vr

531

1 3

Minimizing the average searching time for an object within…

1.	 Generate a traveling time list Tr , for each vertex v in Vr.

	  Add the minimal traveling time tv that must be spent in order to visit vertex v
using any of the available vertices tv = min

(
ti,v

)
∀i ∈ Vr ∪ {s}∕{v}

2.	 Order Tr in an ascending order and Pr in a descending order.
	  Set CPt = CP where CP is the cumulative probability of not finding the object

in the path constructed until the current node.
3.	 Go over the ordered lists Tr and Pr

	  For each traveling time ti and probability pi , update the lower bound
to LB = LB + ti ∗ CPi , and set the temporary cumulative probability to
CPt = CPt ∗

(
1 − pi

)
.

Step 1 of the procedure requires a time complexity of O
(
n2
)
 (in the worst case

n vertices need to be examined, and finding the minimal traveling time tv for each
requires O(n) calculations). Step 2 of the procedure requires O(n log n) calculations
and Step 4 of the procedure requires O(n) calculations.

In total, calculating this lower bound requires O
(
n2
)
 calculations. Note that as the

constructed path becomes larger, the list of the remaining vertices becomes shorter,
thus this lower bound computes faster.
Upper bound
To obtain an upper bound we used the following three techniques:

1.	 Run any heuristic to obtain an initial upper bound.
	  This algorithm may produce a tight upper bound, as shown in Sect. 4. This

bound is mainly used for pruning branches in higher tree levels.
2.	 For each node, calculate the AST of the path constructed until the current node,

and use a greedy algorithm to complete the path with the remaining vertices. This
bound may be tighter than the previous bound in branches that start with different
vertices than those found using the greedy algorithm.

	  This upper bound requires O
(
n2
)
 calculations, but computes faster in advanced

stages (as the number of unvisited vertices decreases).
3.	 Each feasible solution (nodes at level |V| in the tree) is tested against the best

upper bound found. If it produces a better result, than the best upper bound is
updated and the path that was constructed until that node is marked as the best
path so far.

Search termination
When each of the nodes in the tree contains a full search path or is otherwise

pruned, and when there are no more nodes to examine, the algorithm terminates.
The upper bound obtained is the optimal AST, and the optimal search path is the
path that was marked as the best path so far.

3.3 � A greedy approach

As we saw earlier, the AST is affected by both (1) the traveling times and (2) the
probabilities along the searching path. We propose the following three greedy

532	 R. Teller et al.

1 3

approaches for finding the minimal AST. The first approach prioritizes shorter
traveling times. The second approach prioritizes higher probabilities, and the third
approach is based on the ratio between the two.

1.	 The closest unvisited vertex
	  At each new step of the search, turn to the closest unvisited vertex.
	  Note that this vertex might have a very low probability.
2.	 The unvisited vertex with the highest probability
	  At each new step of the search, turn to the vertex with the highest probability.
	  Since we do not take the traveling time into consideration, this might lengthen

the tour and thus increase the AST.
	  Note that when all probabilities are equal, this method is essentially a random

walk.
	  Note that in the special case in which ti,j = t ∀i, j this method finds the optimal

solution.
	  This approach yields poor results and thus it was discarded.
3.	 The unvisited vertex with the highest probability per traveling time ratio
	  At each new step of the search, we turn to the vertex with the best trade-off

between the probability and the traveling time. (i.e., the vertex with the maximal
ratio between the probability for finding the object and the traveling time needed
to reach it).

	  Note that when all probabilities are equal, this algorithm gives the same result
as the closest unvisited vertex algorithm.

It should be noted that the closest unvisited vertex algorithm has been studied by
Berman et al. [14] for scenarios in which all probabilities are equal, and obtained
average results of 7% above the optimal solution.

Rosenkrantz et al. [20] proved that the greedy algorithm for the TSP (under the
triangle inequality) yields an approximation of log |V| . The following example will
show that greedy algorithms (1) and (3) may reach solutions with a higher ratio than
log|V| of the optimal solution, when the probabilities are equal. This ratio (denoted
as � ) may increase when the probabilities are not equal.

Example 2  Consider the graph illustrated in Fig. 5. The search starts at the rhombus
(green) vertex. The vertices in the graph are aligned on a straight line. The traveling
time between each two adjacent vertices is presented on the edge connecting them.
In the complete graph (containing a connecting edge between every pair of nodes),
the traveling time between each two vertices is the sum of the traveling times along
the straight line between them (and thus the triangle inequality holds). There are m

Fig. 5   A graph for Example 2

533

1 3

Minimizing the average searching time for an object within…

vertices on each side of the starting node. We assume that the probability of finding
the object at each vertex is 0.5 (which implies that this example is relevant to the
greedy ratio algorithm as well).

When Δ → 0 , all the vertices on the left side of the stating vertex are essentially
at the same position. In this case the optimal search path will visit all the squared
(orange) vertices on the left side and then go back and visit the circle (blue) vertices
on the right side, starting from the closest and moving towards the farthest.

A greedy algorithm will perform the opposite: at each step, the next circled (blue)
vertex is closer than the closest squared (orange) vertex. At the i th step of the algo-
rithm, the traveling time to the next circled vertex is 2i , while the traveling time to
the closest squared vertex is 2i + Δ . Therefore, the greedy algorithm will choose to
visit all the blue vertices first and then go back to visit all the orange vertices. In this
case:

Therefore � =
Greedy

OPT
≥

m−1

3
 . Note that in this case � increases linearly with the

number of vertices. This factor may be even worse when the probability is not con-
stant for all the vertices.

Consider the same graph structure as in the previous example, but with p → 1 for
every squared vertex and p → 0 for every circled vertex.

In this case:
ASTopt ≅ 1 (the distance to the closest squared vertex).
The “closest unvisited vertex” method will yield ASTgreedy ≅ 2m+1 + 1 (twice the

distance of the line connecting all circled vertices, and the distance to first squared
vertex) and � =

Greedy

OPT
≅ 2m+1.

Note that in this case the “unvisited vertex with maximal ratio” method will yield
the optimal solution.

Semi greedy algorithms
As shown in Sect. 2.3, the impact of an edge on the AST becomes smaller as

the edge is placed further in the search path. This implies that when trying to find
a good solution, it is more important to find a good order of vertices in the earlier
stages of the search path than in the later ones.

The following two heuristics emphasize the importance of choosing the first ver-
tices along the path.

The first heuristic (1) finds a path SPK of length k with the minimal AST; (2)
sets the starting vertex to the last vertex in SPK ; and (3) repeats (1) and (2) after

ASTopt = [1 + Δ] +

[
m−1∑

i=1

(1 − p)i ∗ Δ

]
+
[
(1 − p)m ∗ (2 + Δ)

]
+

[

(1 − p)m+1
m∑

i=1

(1 − p)i ∗ 2
i

]

≤ 1 +
(
1

2

)m

∗ (1 + 2
m) ≤ 3

ASTgreedy =

[
m−1∑

i=0

(1 − p)i ∗ 2
i

]
+ (1 − p)m ∗ (2m + 1 + Δ) + (1 − p)m+1

[
m−1∑

i=1

(1 − p)i ∗ Δ

]
≥ m − 1

534	 R. Teller et al.

1 3

subtracting the vertices in SPK from the graph, until all the vertices are included in
the path.

Algorithm K-Steps-Forward ( s, k, vertex − list)
1. If vertex − list is empty then return the solution path.
2. If �vertex − list�⟩k then k = |vertex − list|.
3. Find the minimal AST path SPK of length k that

starts in s and contains vertices from vertex − list.
4. Add SPK to the solution path.
5. Remove the vertices in SPK from vertex − list.
6. Set s to the be the last vertex in SPK.
7. Return to 1

We chose to find the SPK in step 3 using a simple brute force algorithm (which
calculated the AST for all possible paths).

The second heuristic is similar, but with a slight difference: only the first j ver-
tices in SPK are added to the solution path, and only they are subtracted from the
graph. This somewhat reminds a chess game in which we look k steps forward but
only perform j steps of what seems to be the best plan.

Algorithm K-Steps-Ahead-J-Steps-Forward ( s, j, k, vertex − list)
1. If vertex − list is empty then return the constructed path.
2. If �vertex − list�⟩k then k = |vertex − list|
3. Find the minimal AST path SPK of length k that starts in s

from the vertices in vertex − list.
4. Add the first j vertices in SPK to the solution path.
5. Remove the first j vertices in SPK from vertex − list.
6. Set s to be the jth vertex in SPK
7. Return to 1

At the i th step of the algorithm we calculate the AST for
(
n − i ∗ j

k

)
 paths, each

requiring O(k) calculations. The algorithm will perform n
j
 steps. Thus the runtime of

this algorithm is

3.4 � Ant colony optimization

Ant colony optimization (ACO) was chosen as the preferred meta-heuristic for the
Min AST problem since it is suitable for solving path related problems, and because
it was adjustable for the problem without weakening the algorithm’s strength. In
preliminary benchmarks, ACO outperformed other meta-heuristics and showed opti-
mal or close to optimal results for a wide range of problem instances. The strength

n

j∑

i=1

((
n − i ∗ j

k

)
∗ k

)
= O

(
k ∗ nk+1

)

535

1 3

Minimizing the average searching time for an object within…

of this method when considering the Min AST problem is in its ability to differ-
entiate between search paths even with small AST margins. This is achieved by
applying a ranking mechanism for the ant pheromone deposition (for further read-
ing about ACO see Ref. [21]). This ranking mechanism is important since as the
algorithm advances and reaches better solutions, the AST margins between the paths
drop drastically. In this case in order to obtain optimal results, the algorithm has to
be able to distinguish between these solutions and keep directing itself towards the
optimal solution.

In this algorithm, the computation time needed for a single ant to construct an
entire path is O

(
n2
)
 . The total number of ants that will be generated depends on the

number of iterations ( I ) and number of ants in each iteration ( A ). Thus the required
computation time for this algorithm is O

(
n2 ∗ I ∗ A

)
.

3.5 � Allowing repeated visits on the same vertices

The Min AST problem was formulated in Sect. 2 using a complete graph in which
each pair of vertices is connected by a unique edge. This formulation refers to the
case in which each vertex is visited exactly once. However, in many real-life search-
ing scenarios (such as the ones presented in Sect. 1) revisiting of vertices is possible
and in non-complete graphs is sometimes even necessary. Note that when repeated
visits on the same vertices are allowed, valid search paths exist in any connected
graph.

By performing the following adjustments, we can use the methods presented
in Sects. 3.1, 3.2, 3.3 and 3.4 to solve the Min AST for any connected graph when
repeated visits of vertices are allowed.

1.	 Calculate a shortest path matrix (whose common element indicates the shortest
traveling time between each pair of vertices) and use it instead of the weighted
adjacency matrix of the graph.

2.	 If the shortest path from vertex i to vertex j goes through another vertex k which
was not yet visited, then the search path will not consider a direct move from
vertex i to vertex j . This elimination will significantly shorten the list of candidate
vertices for the next visit in any stage of the search.

3.	 After visiting a vertex for the first time, the probability of finding the object in it
becomes 0, such that any new visit to that same vertex (performed on the way to
a new vertex) will not increase the probability for finding the object.2

2  When dealing with dynamic programming (Sect. 3.1), only the first adjustment is relevant.

536	 R. Teller et al.

1 3

4 � Computational experiments and results analysis

This section presents several computational experiments. We tested all of the algo-
rithms suggested in Sect. 3 on graphs with different sizes and different ranges of
probabilities. The goal was to examine the running time and the size limits of the
optimal solution methods (branch and bound and dynamic programming), and com-
pare the heuristics’ solution quality and running time to these results.

4.1 � Experiment methodology

The test was divided into four probability groups:
A.	

B.	

C.	

D.	

100 different graphs for 8 different problem sizes were generated (10, 20, 30, 40,
50, 100, 200 and 500 vertices) for each probability group. The probability assigned
to each vertex was selected uniformly between the group’s probability boundaries.
Each edge was assigned with a random traveling time between 0 and 10.

Not all size categories are available for all the probability groups: The DP algo-
rithm cannot solve problems instances of size 30 and higher (in any group) due to
running time and memory limits, and the branch and bound algorithm’s running
time is dependent on the probability distribution.

Groups B and D have the same mean probability, but group B’s probability range
is shorter than group D’s. These probability distributions allow us to test the effect
of the probability variance on the algorithms and not just on the mean.

All the experiments were tested considering scenario (a) . The performance of the
algorithms when considering independent or dependent probabilities is typically the
same so that presenting the results for both scenarios is redundant.

We present the running time (in milliseconds) for both heuristics and optimal
methods. The minimal time-span the computer was able to measure is 15.6 ms;
therefore shorter running times are presented as ~ 0. Since in the branch and bound
algorithm the running time is not deterministic (unlike all the other algorithms), we
show the average, the median and the maximal running time.

The performance of all the heuristics are presented with respect to the optimal
solution value for three comparison parameters:

(a) the percentage of runs in which the heuristics reached the optimal solution,
(b) the average ratio between the heuristic’s solution value to the optimal solution
value, and (c) the worst ratio between the heuristic’s solution value to the optimal
solution value.

Tables 1, 2, 3 and 4 present the experiments for each of the probability groups.

0.1 < pi < 0.3

0.4 < pi < 0.6

0.8 < pi < 1.0

0.1 < pi < 0.9

537

1 3

Minimizing the average searching time for an object within…

4.2 � Branch and bound and dynamic programming results analysis

The experimental results show that the branch and bound algorithms (B&B)
using LB1 or LB2 dominates the dynamic programming algorithm (DP). The
running time of the DP is deterministic (meaning that it is constant for any prob-
lem instance of a given size) and exponential, while the running time of the B&B
is non-deterministic (it may even vary between problems of the same size), and
may be factorial in the worst case. In practice, the B&B algorithms were able to
produce results much faster than the DP in all probability groups and for all prob-
lem sizes. Experiments of the DP algorithm for problems of size 30 and larger
are not available since the expected running time of a problem instance of size 30
is more than a week. Moreover, the DP algorithm suffers from a major flaw: the
memory consumption it requires grows very fast with the problem size, much like

Table 1   Case 0.1 < pi < 0.3 for all vertices (Group A)

*Denotes problem instances where the DP algorithm exceeded the running time limit (1 h for a single
instance) and was out of memory

Method Comparison parameters Problem size

n = 10 n = 20 n = 30

B&B with LB1 Running time (ms) 5.14 2658.72 664,525.9
Median ~ 0 936 62,462.8
Max 31.2 63,352 14,111,398.05

B&B with LB2 Running time (ms) 1.88 634.3 122,986.5
Median ~ 0 265.2 19,983.72
Max 15.6 6458.44 2,659,333.44

Dynamic programming Running time (ms) 10.92 186,700.59 *
Greedy by distance Running time (ms) ~ 0 ~ 0 ~ 0

% Runs reached optimum 23% 4% 0%
Average ratio optimum 111.15 117.68 130.04
Worst ratio to optimum 152.89 174.73 198.18

Greedy by ratio Running time ~ 0 ~ 0 ~ 0
% Runs reached optimum 16% 3% 0%
Average ratio optimum 115.54 120.62 128.62
Worst ratio to optimum 210.24 183.33 190.47

Three steps ahead, one step fwd Running time ~ 0 6.7 36.97
% Runs reached optimum 27% 5% 4%
Average ratio optimum 108.22 110.44 107.27
Worst ratio to optimum 137.23 143.04 152.33

Ant colony optimization Running time 24.96 94.38 207.01
% Runs reached optimum 90% 48% 6%
Average ratio optimum 100.01 102.57 105.48
Worst ratio to optimum 112.38 123.35 128.07

538	 R. Teller et al.

1 3

its running time. For a problem of size 20, the memory consumption was about
0.25 GB and in problems of size 23 it exceeded the limit of 2 (Fig. 6).

The expected consumption for a problem of size 30 is 300 GB.

Table 2   Case 0.4 < pi < 0.6 for all vertices (Group B)

*Denotes problem instances where the DP algorithm exceeded the running time limit (1 h for a single
instance) and was out of memory

Method Comparison param-
eters

Problem size

n = 10 n = 20 n = 30 n = 40 n = 50

B&B with LB1 Running time (ms) 0.78 13.4 227.76 4068.81 63,520.33
Median ~ 0 15.6 109.2 1653.61 20,014.92
Max 15.6 109.2 3182.42 42,135.87 711,442.56

B&B with LB2 Running time (ms) 0.88 16.36 248.19 3937.15 54,621.87
Median ~ 0 15.6 124.8 1747.21 19,281.72
Max 15.6 124.8 2870.41 39,405.85 512,525.68

Dynamic program-
ming

Running time (ms) 9.98 186,700.59 * * *

Greedy by distance Running time (ms) ~ 0 ~ 0 ~ 0 ~ 0 ~ 0
% runs reached opti-

mum
35% 7% 0% 0% 0%

Average ratio opti-
mum

110.48 111.67 119.11 116.79 115.86

Worst ratio to opti-
mum

228.54 262.2 368.72 437.51 259.75

Greedy by ratio Running time ~ 0 ~ 0 ~ 0 ~ 0 ~ 0
% runs reached opti-

mum
36% 8% 0% 0% 0%

Average ratio opti-
mum

110.79 111.09 120.36 115.2 115.01

Worst ratio to opti-
mum

202.34 262.2 368.71 238.16 245.02

Three steps ahead, one
step fwd

Running time 0.93 6.39 36.97 123.86 313.56
% Runs reached

optimum
77% 40% 38% 25% 14%

Average ratio opti-
mum

100.55 100.41 100.44 100.4 100.24

Worst ratio to opti-
mum

110.05 112.56 110.89 110.35 114.93

Ant colony optimiza-
tion

Running time 25.58 94.84 208.41 369.87 571.11
% Runs reached

optimum
99% 58% 11% 0% 0%

Average ratio opti-
mum

100.01 100.26 100.51 100.63 102.4

Worst ratio to opti-
mum

101.46 110.91 112.35 117.11 217.594

539

1 3

Minimizing the average searching time for an object within…

Ta
bl

e 
3  

C
as

e
0
.8

<
p
i
<
1
.0

 fo
r a

ll
ve

rti
ce

s (
G

ro
up

 C
)

*D
en

ot
es

 p
ro

bl
em

 in
st

an
ce

s w
he

re
 th

e
D

P
al

go
rit

hm
 e

xc
ee

de
d

th
e

ru
nn

in
g

tim
e

lim
it

(1
 h

 fo
r a

 si
ng

le
 in

st
an

ce
) a

nd
 w

as
 o

ut
 o

f m
em

or
y

**
D

en
ot

es
 p

ro
bl

em
 in

st
an

ce
s w

he
re

 th
e

Th
re

e
ste

ps
 a

he
ad

, o
ne

 st
ep

 fo
rw

ar
d

al
go

rit
hm

’s
 ru

nn
in

g
tim

e
ex

ce
ed

ed
 th

e
tim

e
lim

it
(1

 h
 fo

r a
 si

ng
le

 in
st

an
ce

)

M
et

ho
d

C
om

pa
ris

on
 p

ar
am

et
er

s
Pr

ob
le

m
 si

ze

n =
 10

n =
 20

n =
 30

n =
 40

n =
 50

n =
 10

0
n =

 20
0

n =
 50

0

B
&

B
 w

ith
 L

B
1

Ru
nn

in
g

tim
e

(m
s)

0.
29

1.
9

5.
95

14
.7

2
28

.6
5

24
4.

15
17

71
.7

47
,1

47
.5

M
ed

ia
n

~ 
0

~ 
0

~ 
0

15
.6

31
.2

18
7.

2
14

97
.6

39
,9

51
.8

M
ax

15
.6

15
.6

31
.2

46
.8

78
87

3.
6

10
,7

17
16

8,
87

1
B

&
B

 w
ith

 L
B

2
Ru

nn
in

g
tim

e
(m

s)
0.

53
3.

26
11

.1
8

30
.1

7
58

.7
6

51
8.

32
37

24
.0

85
,6

47
M

ed
ia

n
~ 

0
~ 

0
15

.6
32

.1
46

.8
40

5.
6

30
88

.8
72

,5
24

.8
M

ax
15

.6
15

.6
46

.8
10

9.
8

18
7.

2
18

72
22

,7
60

30
,3

35
9

D
yn

am
ic

 p
ro

gr
am

m
in

g
Ru

nn
in

g
tim

e
(m

s)
11

.2
3

18
6,

87
4

*
*

*
*

*
*

G
re

ed
y

by
 d

ist
an

ce
Ru

nn
in

g
tim

e
(m

s)
~ 

0
~ 

0
~ 

0
~ 

0
~ 

0
1.

71
9.

67
14

1.
8

%
 R

un
s r

ea
ch

ed
 o

pt
im

um
69

%
39

%
43

%
42

%
51

%
49

%
46

%
41

%
A

ve
ra

ge
 ra

tio
 o

pt
im

um
10

0.
87

10
1.

23
10

0.
95

10
1.

38
10

0.
62

10
1.

61
10

0.
9

10
1.

66
W

or
st

ra
tio

 to
 o

pt
im

um
11

9.
56

13
8.

7
13

8.
2

15
0.

04
13

9.
43

14
0.

67
13

3.
6

15
3.

72
G

re
ed

y
by

 ra
tio

Ru
nn

in
g

tim
e

~ 
0

~ 
0

~ 
0

~ 
0

~ 
0

1.
71

9.
6

14
2.

11
%

 R
un

s r
ea

ch
ed

 o
pt

im
um

74
%

48
%

46
%

46
%

49
%

48
%

47
%

47
%

A
ve

ra
ge

 ra
tio

 o
pt

im
um

10
0.

47
10

0.
74

10
0.

58
10

1.
64

10
0.

82
10

1.
25

10
0.

6
10

0.
85

W
or

st
ra

tio
 to

 o
pt

im
um

11
4.

84
12

1.
34

13
4.

74
15

0.
04

14
5.

73
14

0.
67

11
5.

5
14

6.
89

Th
re

e
ste

ps
 a

he
ad

, o
ne

 st
ep

 fw
d

Ru
nn

in
g

tim
e

0.
31

6.
24

37
.7

5
12

4.
33

31
5.

9
56

93
.4

10
6,

84
1

**
%

 R
un

s r
ea

ch
ed

 o
pt

im
um

10
0%

10
0%

99
%

10
0%

99
%

99
%

98
%

**
A

ve
ra

ge
 ra

tio
 o

pt
im

um
10

0
10

0
~ 

10
0

10
0

~ 
10

0
~ 

10
0

10
0

**
W

or
st

ra
tio

 to
 o

pt
im

um
10

0
10

0
~ 

10
0

10
0

10
0.

2
~ 

10
0

10
0

**
A

nt
 c

ol
on

y
op

tim
iz

at
io

n
Ru

nn
in

g
tim

e
24

.9
6

94
.5

3
20

8.
26

36
9.

41
57

2.
05

22
62

.4
90

31
.6

60
,3

99
.6

%
 R

un
s r

ea
ch

ed
 o

pt
im

um
10

0%
94

%
92

%
88

%
85

%
79

%
71

%
54

%
A

ve
ra

ge
 ra

tio
 o

pt
im

um
10

0
~ 

10
0

~ 
10

0
~ 

10
0

10
0

10
0.

02
~ 

10
0

~ 
10

0
W

or
st

ra
tio

 to
 o

pt
im

um
10

0
~ 

10
0

~ 
10

0
~ 

10
0

10
0

10
2.

03
~ 

10
0

10
0.

23

540	 R. Teller et al.

1 3

Our results show that the running time of the B&B algorithms varies between
the probability groups: the algorithm produced results much faster for groups
with higher probabilities. This finding was anticipated and is explained in Sect. 3.
When the probabilities are high, the obtained bounds are tighter and allow prun-
ing numerous branches in early stages. In the high probability group (0.8–1),
LB1 performed about two times better than LB2. It seems that in these scenar-
ios the calculation of the tighter bound is an “over-kill” and the pruning mecha-
nism works well even without it. LB1 and LB2 performed in a similar manner
when the probabilities spread was limited (0.4–0.6), and LB2 performed two
times better when there was a large spread (0.1–0.9). In the low probability group
(0.1–0.3), LB2 performed two times better than LB1. We can conclude that cost-
effectiveness of calculating the tighter bound increases as the average probability
decreases and its boundaries become wider. We note that the number of nodes
LB2 generates is always smaller than LB1, but the generation time of each node

Table 4   Case 0.1 < pi < 0.9 for all vertices (Group D)

*Denotes problem instances where the DP algorithm exceeded the running time limit (1 h for a single
instance) and was out of memory

Method Comparison parameters Problem size

n = 10 n = 20 n = 30

B&B with LB1 Running time (ms) 1.1 87.11 46,992.96
Median ~ 0 15.6 780
Max 15.1 577.2 2,937,483.22

B&B with LB2 Running time (ms) 0.936 71.44 21,168.56
Median ~ 0 15.6 811.2
Max 15.1 390 1,059,543.19

Dynamic programming Running time (ms) 10.45 186,844.26 *
Greedy by distance Running time (ms) ~ 0 ~ 0 ~ 0

% Runs reached optimum 18% 2% 0%
Average ratio optimum 127.99 124 121.38
Worst ratio to optimum 411.2 486.58 270.5

Greedy by ratio Running time ~ 0 ~ 0 ~ 0
% Runs reached optimum 16% 1% 0%
Average ratio optimum 125.4 127.31 118.64
Worst ratio to optimum 411.2 402.25 226.3

Three steps ahead, one step fwd Running time ~ 0 6.08 37.12
% Runs reached optimum 73% 36% 19%
Average ratio optimum 100.64 102.17 100.83
Worst ratio to optimum 111.99 149.59 126.01

Ant colony optimization Running time 25.89 95 207.32
% Runs reached optimum 94% 51% 1%
Average ratio optimum 100.04 100.15 100.46
Worst ratio to optimum 103.35 111.62 127.67

541

1 3

Minimizing the average searching time for an object within…

is longer. LB2 becomes more effective than LB1 only if the number of nodes it
generated was significantly smaller than LB1.

It can be seen that in both LB1 and LB2, the median running time is much lower
than the average running time in all the probability groups. This is due to the proba-
bilistic generation method of the graphs. In most cases, the running time will be
close to the median, but occasionally an extremely hard instance will be generated
(usually a problem instance where most of the probabilities are close to the lower
limit of the probability group), and cause an unusually long running time. These
instances push the average above the median, and in all cases the worst running time
was many times the median (and the average).

We conclude that for any problem instance of this type, the branch and bound
algorithms are preferable over the dynamic programming algorithm. LB1 should be
used when the average probability is high and the variance of the probability is low,
while LB2 should be used when the average probability is low and when the prob-
ability variance is high.

4.3 � Heuristics results analysis

As expected, when the average probability grows, these heuristics yield better
results. The contribution of edges to the AST is related to their location in the search
path. This contribution becomes higher as the average probability increases (Fig. 7).

Solutions that were constructed by a greedy approach will generally have a good
start, but this start may lead to very bad moves in later stages. As we described,
these bad moves may have a very small impact on the AST when p is high. When
the average probability is low these moves usually have a strong impact on the AST.

The Greedy by distance and Greedy by ratio algorithms produced similar results
in all probability groups, even when the probability bounds were wide (0.1–0.9).
These algorithms produce a result very quickly (a matter of milliseconds even in

Fig. 6   Average, median and maximal running times for the branch and bound algorithms

542	 R. Teller et al.

1 3

graphs of 500 vertices), but their average and worst ratio from the optimal solution
is far inferior to the other heuristics. In some experiments, the solutions of these
algorithms were four times the optimum.

The improved greedy algorithm: Three steps ahead one step forward, runs with
O
(
n4
)
 time while the simple greedy algorithms Greedy by distance and Greedy by

ratio run with O
(
n2
)
 time. This algorithm produced significantly better results than

the simple greedy algorithms and similar to them, the quality of its results depends
on the probability. In Group C (0.8–1) the algorithm has rarely produced a solution
different from the optimal solution, and the average ratio from the optimal was neg-
ligible. In groups B (0.4–0.6) and D (0.1–0.9), the algorithm produced robust aver-
age results (100.2–102.2% from the optimum), but in some instances the solution
was as high as 150% of the optimal solution. In group A the quality of the average
ratio from the optimum dropped drastically (107–110%), and worst cases were as
high as 150%. The Three steps ahead one step forward algorithm produced results
in less than a second for problem instances of size 50, and a matter of seconds for
problems of size 100. In instances with 200 vertices, the running time became long
(~ 2 min in instances of size 200), and in instances with 500 vertices the running
time was over an hour.

The Ant colony optimization algorithm showed a milder dependency on the
average probability. In Group A (0.1–0.3) the average ratio between its result
and the optimal solution was 105.5%, which is far superior to the other heuristics
in this probability group. In other groups the algorithm produced robust results
(100–102.4%).

The running time of the ant colony optimization algorithm strongly depends
on the computational resources assigned to it (i.e. the number of iterations I and
number of ants in an iteration A ). Throughout the experiments, I and A were set as

Fig. 7   The average ratio between the heuristics and the optimal solution, the average running time and
the percentage of runs which reached the optimal solution

543

1 3

Minimizing the average searching time for an object within…

constants. Thus, in small problem instances the running time of the algorithm was
relatively long.

The running time and solution quality of the Three steps ahead, one step for-
ward and the ant colony optimization algorithms depend on the amount of resources
assigned to them: a wider look-ahead will yield better results but will severely
increase the running time. Similarly, increasing the number of ants and iteration will
generate better results but will increase the running time. The experiment showed
that the resources assigned to the Three steps ahead, one step forward algorithm had
better cost-effectiveness than those assigned to the ant colony optimization algorithm,
when the probabilities are high. When the probabilities are small, the ant colony opti-
mization algorithm made better use of the assigned resources. Thus we conclude that
in problem instances where the average probability isn’t low and the number of ver-
tices is low (up to 100), the Three steps ahead, one step forward is preferred, while
in instances where the average probability is low or the number of vertices is high
(above 100 vertices), the ant colony optimization algorithm is preferred.

4.4 � Running times when repeated visits are allowed

We examined the performance of the branch and bound algorithm when repeated
visits on the same vertices are allowed and compared the running times to the ones
needed when the vertices must be visited only once. Two cases were tested—the
first deals with complete graphs and the second case deals with incomplete ones.

First case—multiple visits versus single visits in complete graphs
We compared the running time required for finding the Min AST in a complete

graph using the branch and bound algorithm presented in Sect. 3.2 to the running
time required when repeated visits are allowed (as presented in Sect. 3.5).

One would expect that allowing multiple visits and performing the adjustments
presented in Sect. 3.5 will improve the efficiency of the algorithm and thus reduce
the running time. However, after performing several tests this was proved to be
wrong. On the one hand, when allowing multiple visits, the list of candidate vertices
for the next visit in any stage of the search is much shorter. On the other hand, the
lower bounds used in the algorithm are less efficient since the variance of the dis-
tances between each pair of vertices is smaller and thus fewer branches are bounded
in earlier stages. After performing several test runs in different sizes of graphs we
saw that there was no significant improvement in the running time when multiple
visits are allowed compared to the case in which a vertex must be visited only once.

Second case—complete versus incomplete graphs
In many real-life searching scenarios we use a non-complete graph which usually

represents a network of streets and roads. In such graphs, usually each vertex has
degree 4.

We compared the running time required for finding the Min AST in a complete
graph using the branch and bound algorithm presented in Sect. 3.2 to the running
time required when the graph is incomplete and each vertex has degree 4. After per-
forming several test runs in different sizes of graphs we saw that the running time
required for incomplete graphs was significantly shorter. For a graph of 40 vertices

544	 R. Teller et al.

1 3

the running time was 15 times shorter and for a graph of 50 vertices the running
time was 100 times shorter3. This improvement in the running time implies that the
branch and bound algorithm can cope with larger graphs than the ones we tested.

5 � Summary and future work

This paper presented a new searching problem for finding an object in a set of dis-
crete locations with a known a priori probability of finding the object in each loca-
tion. The objective was to find the search path that has the lowest expected searching
time (Min AST). Two scenarios were considered for this problem: one in which the
number of objects is unknown and another in which there is exactly one object. We
modeled both scenarios as graph problems, and provided an analysis of the search
paths and a mathematical formulation. A dynamic programming algorithm and a
branch and bound algorithm with two different bounding techniques LB1 and LB2
were developed to find an optimal solution for the problem. LB1 requires less com-
putation time but may be a loose bound, while LB2 requires more computation time
but provides a tighter bound.

Our experiments showed that the branch and bound algorithm with both bound-
ing techniques outperforms the dynamic programming algorithm. LB1 performed
better than LB2 when the average probability was high and the probability variance
was small. LB2 performed better than LB1 when the average probability was low.

Since the running time of the above algorithms increases exponentially with the
size of the problem (and therefore, it is impractical to use them for large problems
with low probability), we suggested several heuristics as an alternative.

We showed that the simple greedy algorithms yield reasonable results only when
the average probability is very high. In other cases these algorithms returned poor
results.

We developed an ant colony optimization algorithm and suggested the K steps
ahead J steps forward algorithm which looks K steps ahead, but performs just the
first J steps forward. The last two algorithms are computationally more complex, but
reach significantly better results than the simple greedy algorithms.

We tested this heuristics for the case where K = 3 and J = 1 (which we called:
Three steps ahead, one step forward) and showed that it had a better cost-effec-
tiveness than the ant colony optimization algorithm in smaller problems (up to 100
vertices) and when the average probability was high. We also showed that the ant
colony optimization algorithm had a better cost-effectiveness than the Three steps
ahead, one step forward algorithm when the probabilities were low.

To the best of our knowledge, the branch and bound algorithm presented in this
paper is the fastest algorithm for obtaining an optimal search path for discrete search
problems where the goal is to minimize the expected searching time. It would be inter-
esting to see if this holds for other discrete searching problems with different objectives
and constraints.

3  A comparison of running times in larger graphs was not performed since we were not able to use the
branch and bound algorithm for complete graphs of more than 50 vertices.

545

1 3

Minimizing the average searching time for an object within…

An interesting extension of the Min AST problem for future study would be to divide
the search between several searchers. Consider the example presented in Sect. 1, in
which a search team is trying to find a lost traveler. The traveler might be in danger and
thus the team may split into smaller teams (searching different places) in order to reach
the traveler as soon as possible. One possible solution approach would be to first divide
the searching area between the smaller teams, and then use the algorithms suggested in
this paper by each team in its own area.

References

	 1.	 Benkoski, S.J., Monticino, M.G., Weisinger, J.R.: A survey of the search theory literature. Naval Res.
Logist. 38(4), 469–494 (1991)

	 2.	 Beck, A.: On the linear search problem. Isr. J. Math. 2, 221–228 (1964)
	 3.	 Isaacs, R.: Differential Games: A Mathematical Theory With Applications to Warfare and Pursuit, Control

and Optimization. Courier Dover Publications, Mineola (1999)
	 4.	 Alpern, S.: The rendezvous search problem. SIAM J. Control Optim. 33(3), 673–683 (1995)
	 5.	 Stone, L.D.: Theory of Optimal Search, 2nd edn. Academic Press, New York (1975)
	 6.	 Brown, S.S.: Optimal search for a moving target in discrete time and space. Oper. Res. 28(6), 1275–1289

(1980)
	 7.	 Stewart, T.J.: Search for a moving target when search motion is restricted. Comput. Oper. Res. 6, 129–140

(1979)
	 8.	 Weber, R.R.: Optimal search for a randomly moving object. J. Appl. Probab. 23(3), 708–717 (1986)
	 9.	 Morin, M. Abi-Zeid, I. Lang, P. Lamontagne, L., Maupin, P.: The optimal searcher path problem with a

visibility criterion in discrete time and space. In: 12th International Conference on Information Fusion,
2009. FUSION’09, pp. 2217–2224. IEEE (2009)

	10.	 Sato, H., Royset, J.O.: Path optimization for the resource-constrained searcher. Naval Res. Logist. 57(5),
422–440 (2010)

	11.	 Lau, H., Huang, S., Dissanayake, G.: Discounted MEAN bound for the optimal searcher path problem
with non-uniform travel times. Eur. J. Oper. Res. 190(2), 383–397 (2008)

	12.	 Jotshi, A., Batta, R.: Search for an immobile entity on a network. Eur. J. Oper. Res. 191(2), 347–359
(2008)

	13.	 Jotshi, A., Batta, R.: Investigating the benefits of re-optimisation while searching for two immobile enti-
ties on a network. Int. J. Math. Oper. Res. 1(1), 37–75 (2009)

	14.	 Berman, O., Lanovsky, E., Krass, D.: Optimal search path for service in the presence of disruptions.
Comput. Oper. Res. 38, 1562–1571 (2011)

	15.	 Ünlüyurt, T.: Sequential testing of complex systems: a review. Discrete Appl. Math. 142(1–3), 189–205
(2004)

	16.	 Bulhões, T., Sadykov, R., Uchoa, E.: A branch-and-price algorithm for the minimum latency problem.
Comput. Oper. Res. 93, 66–78 (2018)

	17.	 Afrati, F., Cosmadakis, S., Papadimitriou, C.H., Papageorgiou, G., Papakostantinou, N.: The complex-
ity of the travelling repairman problem. RAIRO Theor. Inform. Appl. 20(1), 79–87 (1986)

	18.	 Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-
Hall, Upper Saddle River (1982)

	19.	 Sahni, S., Gonzalez, T.: P-complete approximation problems. J. Assoc. Comput. Mach. 23(3), 555–565
(1976)

	20.	 Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics for the traveling sales-
man problem. SIAM J. Comput. 6, 563–581 (1977)

	21.	 Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling
salesman problem. IEEE Trans. Evolut. Comput. 1(1), 53–66 (1997)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Minimizing the average searching time for an object within a graph
	Abstract
	1 Introduction
	2 Problem analysis
	2.1 Problem definition and notation
	2.2 Search path analysis
	2.3 Mathematical formulation
	2.4 Problem complexity

	3 Solution approaches
	3.1 Dynamic programming
	3.2 Branch and bound algorithm
	3.3 A greedy approach
	3.4 Ant colony optimization
	3.5 Allowing repeated visits on the same vertices

	4 Computational experiments and results analysis
	4.1 Experiment methodology
	4.2 Branch and bound and dynamic programming results analysis
	4.3 Heuristics results analysis
	4.4 Running times when repeated visits are allowed

	5 Summary and future work
	References

