
Computational Optimization and Applications (2019) 74:443–480
https://doi.org/10.1007/s10589-019-00115-8

A new infeasible proximal bundle algorithm for nonsmooth
nonconvex constrained optimization

Najmeh Hoseini Monjezi1 · S. Nobakhtian1,2

Received: 23 July 2018 / Published online: 15 June 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Proximal bundle method has usually been presented for unconstrained convex opti-
mization problems. In this paper, we develop an infeasible proximal bundle method
for nonsmooth nonconvex constrained optimization problems. Using the improve-
ment function we transform the problem into an unconstrained one and then we build
a cutting plane model. The resulting algorithm allows effective control of the size of
quadratic programming subproblems via the aggregation techniques. The novelty in
our approach is that the objective and constraint functions can be any arbitrary (regu-
lar) locally Lipschitz functions. In addition the global convergence, starting from any
point, is proved in the sense that every accumulation point of the iterative sequence
is stationary for the improvement function. At the end, some encouraging numerical
results with a MATLAB implementation are also reported.

Keywords Nonsmooth optimization · Nonconvex optimization · Constrained
programming · Proximal bundle method · Improvement function · Infeasible
algorithm

Mathematics Subject Classification 90C26 · 90C30 · 49J52 · 65K05

1 Introduction

We consider the following constrained optimization problem

B S. Nobakhtian
nobakht@math.ui.ac.ir

Najmeh Hoseini Monjezi
najmeh.hoseini@sci.ui.ac.ir

1 Department of Mathematics, University of Isfahan, Isfahan, Iran

2 Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-019-00115-8&domain=pdf

444 N. Hoseini Monjezi, S. Nobakhtian

min
x∈X f (x),

g(x) ≤ 0, (1)

where the objective and constraint functions f , g:Rn → R are locally Lipschitz but
potentially nonsmooth and nonconvex. In addition X ⊆ R

n is a convex compact set.
Several numerical methods have been proposed for solving nonsmooth problems.

Two classes of the most efficient methods are subgradient methods [17,34] and bundle
methods. Bundle methods were first introduced by Lemaréchal [23] and have been
developed over the years. Proximal bundle methods are currently considered among
the most efficient methods for nonsmooth optimization problems, at least for convex
problems [15,16,24]. Not long after works on the bundle methods for the convex case,
the unconstrained counterpart of problem (1) was considered in [8,20,22] and more
recently in [13,14,18]. The success of the proximal bundle method in unconstrained
optimization (convex and nonconvex functions) greatly stimulated research to extend
it to solve nonconvex constrained problems.

Extending Lemaréchal’s algorithm to the nonconvex case, Mifflin [28] gives a
bundle algorithm using the so-called downshift mechanism for problem (1). In [27], a
proximal bundle method is presented for problem (1) with linear constraints by using
the improvement function for handling the constraints. This method admits only the
weak convergence in the sense that at least one of the accumulation points of the
serious iterative sequence is stationary. We recall that, a new trial point is called a
serious iterate if it is accepted as the next step, and a null iterate otherwise. Recently in
[11] an algorithm is stated for problem (1)with the strong convergence, in the sense that
every accumulation point is stationary, for classes of lower−C1 functions (in the sense
of [31]). In [7], an algorithm is proposed for problem (1) where f and g are lower−C1

or upper − C1 functions and the progress function is used for handling the constraint
and showed that every accumulation point of the serious iterative sequence is stationary
for the progress function. In addition, redistributed proximal bundle methods [13,14]
are extended for solving problem (1) in [37] by using the penalty function, where
the objective and constraint functions are lower − C2. Moreover, these methods are
studied in [25] by using the improvement function where the objective and constraint
functions are lower − C1. More recently, in [26] a semi-infinite programming (SIP)
problem is studied, where the objective function is lower − C2 and the constraint
functions are twice continuously differentiable. By using a maximum function, the
SIP problem is formulated as a nonsmooth constrained optimization problem. Then
an infeasible bundlemethod based on the so-called improvement function is presented.
By utilizing a special constraint qualification, the global convergence is obtained in
the sense that the generated sequence converges to the KKT points of problem (1) as
well as the KKT points of the SIP problem.

Some other methods for constrained nonsmooth nonconvex optimization problems
are gradient sampling (GS) methods; see, for instance [5,36], where the penalty and
improvement functions for handling the constraints are used, respectively. The global
convergence of the sequential quadratic programming GS algorithm [36] and the
penalty sequential quadratic programming GS algorithm [5] are established in the
sense that, with probability one, every accumulation point of the iterative sequence is
stationary, respectively, for the improvement function and the penalty function.

123

A new infeasible proximal bundle algorithm for nonsmooth… 445

Techniques for bundle compression and aggregation, which are usual in the convex
bundle algorithm, are not used in [26,28,37] and although mentioned in [7,11,25,27],
are not explicitly addressed for updating formulas and the practical aspects. Without
these features, we can not guarantee that the number of constraints in the subproblems
can be kept smaller than a given desired bound. Therefore the method can not be
guaranteed to be practical, then numerical difficulties may arise. In our method, we
preserve the possibility of using aggregation techniques, which allow effective control
to the size of subproblems and in addition we present updating formulas.

It isworthmentioning that in themost of the citedmethods for constrainedproblems,
e.g., [5,7,27,28,36] all the serious iterates and also the starting point, are required to be
feasible. In thosemethods computing a feasible point is essential to start the algorithm.
This preliminary general nonsmooth feasibility problemmay be as difficult as to solve
problem (1).

In this paper,wepropose an infeasible proximal bundlemethod to solve problem (1).
To handle nonconvexity, we extend the redistributed proximal bundle method [13,14]
to the class of all regular locally Lipschitz functions, which is less restrictive than
lower−C1 and lower−C2 functions. We use the improvement function to regularize
the constraint, which is one of the most effective tools in this context; see [21,26,33].
At least part of the motivation for using the improvement function consists in avoiding
the need to estimate a suitable value of the penalty parameter, which is often a delicate
task. Thenwe obtain the convex cutting planemodel. Different from the unconstrained
optimization, our cutting plane model no longer approximates the objective function
f or its local convexification as in [13,14]. In addition, unlike [26] our model does
not approximate a maximum of the piecewise-linear models of the local convexifica-
tion of the objective and constraint functions. However, we consider the augmented
improvement function at the current step. Moreover, we compute the proximal bun-
dle point of the model function to obtain new bundle elements and generate better
minimizer estimate. The global convergence of the proposed algorithm is proved
in the sense that, every accumulation point of the serious iterates sequence is sta-
tionary for the improvement function, when f and g are regular locally Lipschitz
functions.

It is worth mentioning that in [26,37] the authors use the fact that when f and g are
lower−C2 and the convexity parameter is large enough then the local convexification
of f and g can be obtained, however, in ourmodel the regular functions are considered.

The proposed method is implemented in the MATLAB environment and applied to
solve some test optimization problems. The numerical results show that this method
can successfully be used to solve optimization problems. We also compare the pro-
posed algorithm with the public software SolvOpt [34] and the proximal bundle
method [25].

The rest of the paper is organized as follows. In Sect. 2 we review some basic
definitions and results from nonsmooth analysis. In Sect. 3 we provide the details of
our algorithm and its convergence presented in Sect. 4. Computational experience is
reported in Sect. 5 and, finally, in Sect. 6 the conclusions are presented.

123

446 N. Hoseini Monjezi, S. Nobakhtian

2 Preliminaries

Our notations are fairly standard. We denote by 〈u, v〉 = ∑n
i=1 uivi the inner product

of two vectors u, v ∈ R
n . We use ‖ · ‖ to denote the standard Euclidean norm. For

x ∈ R
n and ε > 0, Bε(x) is an open ball of the radius ε centered at x and Bε(x) is a

closed ball of radius ε centered at x .
First we recall some concepts and results from nonsmooth analysis. Most of the

materials included here can be found in [3]. Then we recall the definition of the
improvement function and state some of its properties.

A function h:Rn → R is said to be locally Lipschitz of rank L > 0 at x ∈ R
n if

for some ε > 0, we have |h(y)− h(z)| ≤ L‖y− z‖ for all y, z ∈ Bε(x). The classical
directional derivative of h at x in the direction d ∈ R

n is defined as

h′(x; d) := lim
α→0

h(x + αd) − h(x)

α
.

The Clarke directional derivative of h at x in the direction d is defined by

h◦(x; d) := lim sup
y→x
α↓0

h(y + αd) − h(y)

α
.

The Clarke subdifferential (generalized gradient) of h at x is defined as

∂ch(x) :=
{
ξ ∈ R

n| ξ T d ≤ h◦(x; d), ∀d ∈ R
n
}

.

Each element ξ ∈ ∂ch(x) is called a subgradient of h at x . It is well-known that ∂ch(x)
is a nonempty convex compact set in R

n . Also the Clarke subdifferential ∂ch(x) is
upper semicontinuous for every x ∈ R

n .
The function h:Rn → R is convex, if h(λx + (1 − λ)y) ≤ λh(x) + (1 − λ)h(y),

for all x, y ∈ R
n and λ ∈ [0, 1]. The subdifferential of a convex function h at x is the

set

∂h(x) := {
ξ ∈ R

n| h(y) ≥ h(x) + 〈ξ, y − x〉, ∀y ∈ R
n} ,

and it coincides with the Clarke subdifferential for every convex function.
Let ε ≥ 0 the ε-subdifferential of a convex function h at x is defined as

∂εh(x) := {
ξ ∈ R

n| h(y) ≥ h(x) + 〈ξ, y − x〉 − ε, ∀y ∈ R
n} .

Each element ξ ∈ ∂εh(x) is called an ε-subgradient of h at x [27].
The function h:Rn → R is regular at x provided that h is locally Lipschitz at x

and admits directional derivatives h′(x; d) at x for all d, with h′(x; d) = h◦(x; d).
Let S be a subset of Rn . Its indicator function IS :Rn → R∞ is the function which

has value 0 on S and +∞ elsewhere.

123

A new infeasible proximal bundle algorithm for nonsmooth… 447

The family of lower − C1 functions was introduced in [35]. It constitutes a broad
class of locally Lipschitz functions that contains lower−C2 functions as a subfamily.
Combining [6, Thm. 2 andCor. 3] with [35, Prob. 2.4], when h:Rn → R is lower−C1,
then h is semismooth and regular. But the converse is not necessarily true. Spingarn in
[35, P. 83] gives an example of a regular function in R2 whose Clarke subdifferentials
is not strictly submonotone at some points and therefore the function is not lower−C1.

A point x∗ ∈ R
n is called a stationary point of h:Rn → R if 0 ∈ ∂ch(x∗). If x∗

is a local minimizer of h, then x∗ is a stationary point of h. Also a point x∗ ∈ X is
called a stationary point of h on X if 0 ∈ ∂ch(x∗) + ∂ IX (x∗). When x∗ ∈ X is a local
minimizer of h on X , then x∗ is stationary for h on X .

Recall that x∗ ∈ X satisfies the Fritz John necessary optimality conditions for
problem (1) if there exist λ∗

0 ≥ 0, λ∗
1 ≥ 0 with λ∗

0 +λ∗
1 = 1 such that 0 ∈ λ∗

0∂c f (x
∗)+

λ∗
1∂cg(x

∗) + ∂ IX (x∗) and λ∗
1g(x

∗) = 0, g(x∗) ≤ 0. When λ∗
0 > 0, then x∗ satisfies

the Karush–Kuhn–Tucker (KKT) conditions.

2.1 The improvement function

We introduce the improvement function h:Rn → R associated with problem (1). For
a given point x ∈ R

n , let hx (y) = h(y, x) := max{ f (y) − f (x), g(y)}. We recall
some useful properties of this function. Directly by definition of the improvement
function and subdifferential calculus [3], we have

∂ch(y, x) ⊆
⎧
⎨

⎩

∂c f (y) f (y) − f (x) > g(y)
conv{∂c f (y) ∪ ∂cg(y)} f (y) − f (x) = g(y)
∂cg(y) f (y) − f (x) < g(y),

(2)

where “conv” denotes convex hull, and equality holds when f and g are regular
functions. In addition h(x, x) = g+(x) = max{g(x), 0}, for all x ∈ R

n .
Let X ⊆ R

n be a convex set. We have IX (·) is a convex function, and ∂ IX (·) is the
normal cone to X at x , i.e.,

∂ IX (x) = NX (x) := {
v ∈ R

n| 〈v, y − x〉 ≤ 0, ∀y ∈ X
}
.

Firstwe recall the following result from [7, Lemma2.1],which shows that the improve-
ment function is suitable to serve as an alternative of the penalty function.

Lemma 1 Suppose that f and g are locally Lipschitz functions, then the following
hold:
(A) If x∗ is a local minimizer of problem (1), then it is local minimizer of h(·, x∗) on

X. In addition we have 0 ∈ ∂ch(x∗, x∗) + ∂ IX (x∗).
(B) If 0 ∈ ∂ch(x∗, x∗) + ∂ IX (x∗) for x∗ ∈ X, then only one of the following occurs:

(i) if g(x∗) > 0, then 0 ∈ ∂cg(x∗) + ∂ IX (x∗), i.e., x∗ is a stationary point of g
on X.

(ii) if g(x∗) < 0, then 0 ∈ ∂c f (x∗) + ∂ IX (x∗), i.e., x∗ is stationary for f on X
and it is a KKT point of problem (1).

123

448 N. Hoseini Monjezi, S. Nobakhtian

(iii) finally g(x∗) = 0 implies that x∗ satisfies the Fritz John necessary conditions
for problem (1).

3 Description of the algorithm

In this section we describe the new algorithm. The main idea of the method is as
follows. Given the last serious iterate xk (the starting point x0 is regarded as the first
serious iterate). We generate candidate points by iterating with the proximal bundle
method applied to a piecewise-linear model of the augmented improvement function,
until the next serious iterate xk+1 is obtained. However, to decide whether a candidate
point can be the next serious iterate, we use a usual descent condition. When the new
serious iterate xk+1 has been found, the piecewise-linear model should be redefined,
according to xk+1, for the next iteration. In the sequel of this section we will discuss
different elements of the algorithm, which itself will be presented at the end of this
section.

3.1 Model function

As usual in the bundlemethods, the available information is used to define a piecewise-
linear model of h(·, xk). In our setting, we are working with possible nonconvexity
of f , g and consequently of h(·, xk). We define the linearization errors for f and g at
xk , corresponding with y j ∈ R

n , respectively by

ekf j := f (xk) − f (y j) − 〈ξ j
f , x

k − y j 〉, (3a)

ekg j
:= g(xk) − g(y j) − 〈ξ j

g , xk − y j 〉, (3b)

where ξ
j
f ∈ ∂c f (y j) and ξ

j
g ∈ ∂cg(y j). For a convex function, linearization errors

are always nonnegative. This feature is crucial to prove the convergence of the most
of the bundle methods [4,16]. However, in the nonconvex case, it may yield negative
linearization error. To overcome this drawback, we extend the approach introduced in
[13,14] for nonconvex constrained optimization problems andworkwith the following
augmented function

hηl (·, xk) = h(·, xk) + ηl

2
‖ · −xk‖2, (4)

where ηl is a certain parameter, that adjusted dynamically. Let l be the current iteration
index and Ll ⊆ {0, 1, . . . , l − 1} is the index set at the lth iteration. We generate the
convex piecewise-linear model as

Hl(y, x
k) := h(xk, xk) + max

j∈Ll

{
−ckf j + 〈skf j , y − xk〉,−ckg j

+ 〈skg j
, y − xk〉

}

= g+(xk) + max
j∈Ll

{
−ckf j + 〈skf j , y − xk〉,−ckg j

+ 〈skg j
, y − xk〉

}
, (5)

123

A new infeasible proximal bundle algorithm for nonsmooth… 449

where

ckf j := ekf j + g+(xk) + ηlb
k
j , ckg j

:= ekg j
+ g+(xk) − g(xk) + ηlb

k
j , (6a)

skf j := ξ
j
f + ηld

k
j , skg j

:= ξ
j
g + ηld

k
j , dkj := y j − xk, bkj := ‖y j − xk‖2

2
, (6b)

and ekf j , e
k
g j

are stated in (3a), (3b) and the bundle of information is defined as follows

Bl ⊆
⋃

i∈Ll

{(
fi , gi , ξ

i
f , ξ

i
g, e

k
fi , e

k
gi , b

k
i , d

k
i

)}
,

where fi := f (yi) and gi := g(yi). Clearly Hl(·, xk) is a piecewise-linear model
for the augmented improvement function (4). We call m f (·, xk) := g+(xk) − ckf j +
〈skf j , ·−xk〉 andmg(·, xk) := g+(xk)−ckg j

+〈skg j
, ·−xk〉 as oracle planes. Any choice

of the positive parameter ηl ∈ R that keeps ckf j and ckg j
nonnegative is acceptable. In

our setting we take

ηl ≥ max

⎧
⎪⎨

⎪⎩
max
j∈Ll
y j �=xk

⎧
⎨

⎩

−
(
ekf j + g+(xk)

)

bkj
,
−

(
ekg j

+ g+(xk) − g(xk)
)

bkj

⎫
⎬

⎭
, ω

⎫
⎪⎬

⎪⎭
+ ω,

(7)

where ω > 0 is a positive constant.

Remark 1 In [13], the authors established the proximal bundle method for uncon-
strained problem when f is lower −C2. Moreover in [37] a proximal bundle method
and in [26] an infeasible proximal bundle algorithm were presented for constrained
problems where f and g are lower−C2. They can say nothing about what is obtained
if the sequence {ηl} remains too small. Since they used the fact that when ηl is large
enough and f , g are lower − C2, then the augmented function hηl (·, xk) is convex.
Indeed, in our approach we do not require any lower−C2, lower−C1 or prox-regular
assumption on the functions. Therefore hηl (·, xk) in (4) can be nonconvex in some
iterations and only we choose ηl such that (7) is satisfied.

Lemma 2 If ηl is selected according to Eq. (7), then for every j ∈ Ll , we obtain
ckf j ≥ 0 and ckg j

≥ 0.

Proof By using (7) for all j ∈ Ll when y j �= xk , we have

(ηl − ω)bkj ≥ −
(
ekf j + g+(xk)

)
and (ηl − ω)bkj ≥ −

(
ekg j

+ g+(xk) − g(xk)
)

,

and by (6a) we obtain ckf j ≥ ωbkj ≥ 0 and ckg j
≥ ωbkj ≥ 0, for all j ∈ Ll and y j �= xk .

When y j = xk we have ckf j = g+(xk) ≥ 0 and ckg j
= g+(xk) − g(xk) ≥ 0. Hence

for all j ∈ Ll we get ckf j ≥ 0 and ckg j
≥ 0. ��

123

450 N. Hoseini Monjezi, S. Nobakhtian

We assume the last serious iterate until now, will be one of the bundle points,
i.e., xk ∈ {y j } j∈Ll . That is, there exists l(k) ∈ Ll such that xk = yl(k). Hence

m0
f (·, xk) = g+(xk)+〈ξ l(k)f , ·−xk〉 andm0

g(·, xk) = g+(xk)−g(xk)+〈ξ l(k)g , ·−xk〉
are the cutting planes of Hl(·, xk). Also ckfl(k) = g+(xk) and ckgl(k) = g+(xk) − g(xk),
therefore we have

Hl(x
k, xk) = g+(xk) + max

j∈Ll

{
−ckf j ,−ckg j

}
= g+(xk).

The iterates {yl} include both the serious steps xk and the null steps yl (which are
candidate points that were not serious). As we have mentioned above, for all k there
exists l(k) such that xk = yl(k). Therefore we have {xk} ⊆ {yl}.

Given μl > 0, a positive proximal parameter, the next iterate yl is generated by
solving the following convex problem

min
y∈X Hl(y, x

k) + μl

2
‖y − xk‖2. (8)

Clearly, yl is unique. If yl provides a significant decrease with respect to h(xk, xk), we
call it serious iterate, otherwise null iterate (we explain this case in the next subsection).
From the optimality conditions of problem (8) we have 0 ∈ ∂Hl(yl , xk) + μl(yl −
xk) + ∂ IX (yl). Therefore, there exist ξ̂ kl ∈ ∂Hl(yl , xk) and vl ∈ ∂ IX (yl) such that
yl = xk − 1

μl
(̂ξ kl + vl) and μl(xk − yl) = (̂ξ kl + vl) ∈ ∂Hl(yl , xk) + ∂ IX (yl).

Since the model (5) is piecewise-linear, there exist αl , βl ∈ R
|Ll | with αl

j , β
l
j ≥ 0

and
∑|Ll |

j=1(α
l
j + βl

j) = 1 such that ξ̂ kl := ∑|Ll |
j=1(α

l
j s

k
f j

+ βl
j s

k
g j

). We called ξ̂ kl the
aggregate subgradient. The aggregate error is defined by

êkl := g+(xk) − Hl(y
l , xk) − 〈̂ξ kl , xk − yl〉 ≥ 0, (9)

where the inequality follows from ξ̂ kl ∈ ∂Hl(yl , xk). It is easy to verify that ξ̂ kl ∈
∂̂ekl

Hl(xk, xk). We define the aggregate plane by m∗
l (·, xk) := g+(xk) − êkl + 〈̂ξ kl , · −

xk〉. To avoid overflow, when generating the new model Hl(·, xk), we may replace all
older planes corresponding to αl

j > 0 and βl
j > 0 by the aggregate plane. Note that

this aggregate plane can directly be defined from the aggregate couple (̂ekl , ξ̂
k
l).

Accordingly, we have two kinds of planes in the bundle, namely: the oracle
and aggregate planes. Therefore we shall write the index set in the form Ll :=
Loracle
l

⋃Lagg
l and their bundles in the form Bl := Boracle

l

⋃Bagg
l ,

Boracle
l ⊆

⋃

i∈Loracle
l

{(
fi , gi , ξ

i
f , ξ

i
g, e

k
fi , e

k
gi , b

k
i , d

k
i

)}
,

and Bagg
l ⊆

⋃

i∈Lagg
l

{(
êki , ξ̂

k
i ∈ ∂Hi (y

i , xk)
)}

.

123

A new infeasible proximal bundle algorithm for nonsmooth… 451

It is worth mentioning that for any iterate yl (serious or null), we add one element in
Boracle
l that is

(
fl , gl , ξ lf , ξ

l
g, e

k
fl
, ekgl , b

k
l , d

k
l

)
(and also in Loracle

l). Corresponding to
any element in this bundle we have two cutting planes in the model, for f and g. Like
our method, in [19,33] for convex constrained problems one bundle for both f and g
is considered and thus the implementation of the algorithm and updating the formulas
are simple. However, unlike our method, in some bundle methods for constrained
problems two bundles for f and g independently are considered; see e.g., [25,26].
Therefore the convex piecewise-linear model is as follows

Hl(y, x
k) = g+(xk) + max

{

max
j∈Lagg

l

{
−êkj + 〈̂ξ kj , y − xk〉

}
,

max
j∈Loracle

l

{
−ckf j + 〈skf j , y − xk〉,−ckg j

+ 〈skg j
, y − xk〉

} }

.

(10)

3.2 Acceptance test

An iterate yl is considered good enough to become the next serious iterate when
h(yl , xk) provides a significant decrease with respect to h(xk, xk) = g+(xk). Letm ∈
(0, 1) be a given parameter. Define the predicted decrease δl := êkl + 1

2μl
‖̂ξ kl + vl‖2.

Note that since êkl ≥ 0, it follows that δl ≥ 0. When yl satisfies the descent test

h(yl , xk) ≤ g+(xk) − mδl , (11)

a serious iterate is declared, i.e., xk+1 := yl . Otherwise, yl is a null iterate and xk

remains unchanged. The algorithm stops when δl is small enough. In this case, both
êkl and ‖̂ξ kl + vl‖ are small and since ξ̂ kl ∈ ∂̂ekl

Hl(yl , xk) and vl ∈ ∂ IX (yl), we deduce

xk is a stationary point (we will resume the discussion of convergence in Sect. 4).

Remark 2 Recalling the definition of h(·, xk), we conclude that if the descent test is
satisfied and a serious iterate is declared, we get

f (xk+1) − f (xk) ≤ g+(xk) − mδl and g(xk+1) ≤ g+(xk) − mδl . (12)

In particular, if xk is feasible, i.e., g+(xk) = 0, it follows from (12) that f (xk+1) <

f (xk) and g(xk+1) ≤ 0. Thus xk+1 is feasible too and { f (xk)} is strictly monotone.
Otherwise, when xk is infeasible, it is possible f (xk+1) > f (xk) due to g+(xk) =
g(xk) > 0. Therefore outside of the feasible region, the method is not monotone with
respect to f . However outside of the feasible region we have g(xk+1) < g+(xk) =
g(xk). This seems intuitively reasonable: while it is natural to accept the increase in
the objective function value in order to decrease infeasibility.

123

452 N. Hoseini Monjezi, S. Nobakhtian

3.3 Updating themodel

Suppose that yl is a null iterate, we will augment the piecewise-linear model Hl(·, xk)
and generate Hl+1(·, xk). Note that the cutting plane respect to the last serious iterate
(i.e., xk) should keep in themodel. Tomake Hl+1(·, xk)better than Hl(·, xk),we should
add two more elements: the cutting plane and the aggregate plane corresponding to yl .
It is enough to make sure {(̂ekl , ξ̂ kl)} ⊆ Bagg

l+1 and {(fl , gl , ξ lf , ξ lg, ekfl , ekgl , bkl , dkl)} ⊆
Boracle
l+1 . Moreover we set Loracle

l+1 = Loracle
l ∪ {l} and Lagg

l+1 = Lagg
l ∪ {l}. Therefore,

when there is a null iterate the updating of the bundle and presenting of the model
accomplish without any problem.

Remark 3 It is worth mentioning that the total number of the elements in Bl can be
kept as small as three, at every step of the method. It can be given by

Bl+1 =
{(

fl , gl , ξ
l
f , ξ

l
g, e

k
fl , e

k
gl , b

k
l , d

k
l

)
,
(
êkl , ξ̂

k
l

)
,

(
fl(k), gl(k), ξ

l(k)
f , ξ l(k)g , ekfl(k) , e

k
gl(k) , b

k
l(k), d

k
l(k)

)}
.

Asusual in the convex proximal bundlemethod (see, for instance [19]) the total number
of elements in the bundle can be kept as small as two, namely: the cutting plane at
the last iterate yl and the last aggregate plane. Let us emphasize that the situation
in our setting is slightly different from methods for standard convex programming.
These differences are actually natural, having inmind that convex and nonconvex cases
require significantly different tools. Like our setting in [7] the cutting plane respect to
the last serious iterate xk is considered.

When a new serious iterate is declared, the model Hl(·, xk) has to be properly
revised and at the next iteration we start working with the new model Hl(·, xk+1).
Therefore any element in Bagg

l and Boracle
l that is depended on k should be redefine.

On the other hand, since we did not store y j and Hj (y j , xk) for any j ∈ Ll , we rede-
fine the elements of Bagg

l and Boracle
l by updating formulas. Incidentally, by updating

formulas the computation of the new cutting model Hl(·, xk+1) is easy. We update the
linearization errors and the other items for all j ∈ Loracle

l according to the following
relations

ek+1
f j

= ekf j + f (xk+1) − f (xk) − 〈ξ j
f , x

k+1 − xk〉, (13a)

ek+1
g j

= ekg j
+ g(xk+1) − g(xk) − 〈ξ j

g , xk+1 − xk〉, (13b)

bk+1
j = bkj + 1

2
‖xk+1 − xk‖2 − 〈dkj , xk+1 − xk〉, (13c)

dk+1
j = dkj − (xk+1 − xk). (13d)

The update aims at satisfying (3a), (3b) and the two last relations (6b). The aggregate
subgradients and the aggregate errors for all j ∈ Lagg

l , respectively, are updated by

ξ̂ k+1
j = ξ̂ kj + ηl(x

k − xk+1), (14a)

123

A new infeasible proximal bundle algorithm for nonsmooth… 453

êk+1
j = êkj + g+(xk+1) − g+(xk) + ηl

2
‖xk+1 − xk‖2 − 〈̂ξ kj , xk+1 − xk〉

+ (f (xk+1) − f (xk))+. (14b)

The update aims at satisfying the key relation ξ̂ kj ∈ ∂̂ekj
Hl(xk, xk); see Lemma 4.

In the following lemma, we show the relationship between hηl (·, xk) and
hηl (·, xk+1), that these are the augmented functions in two tandem serious iterations.
We also show that the same relationship holds for their cutting plane models.

Lemma 3 Functions hηl (·, xk) and hηl (·, xk+1) satisfy the following inequality

hηl (y, x
k+1) ≥ hηl (y, x

k) − (f (xk+1) − f (xk))+ + ηl〈y − xk+1, xk − xk+1〉
− ηl

2
‖xk+1 − xk‖2, (15)

for all y ∈ R
n. Furthermore, the above inequality is true for Hl(·, xk) and Hl(·, xk+1)

by replacing hηl (·, xk) and hηl (·, xk+1), respectively.

Proof First, we show that

h(y, xk+1) ≥ h(y, xk) − (f (xk+1) − f (xk))+, ∀y ∈ R
n . (16)

Consider y ∈ R
n . If f (y) − f (xk+1) ≥ g(y) and f (y) − f (xk) ≥ g(y), then

h(y, xk+1) − h(y, xk) = f (xk) − f (xk+1) ≥ −(f (xk+1) − f (xk))+. When f (y) −
f (xk+1) < g(y) and f (y)− f (xk) < g(y), then h(y, xk+1)− h(y, xk) = 0 and (16)
holds. Now suppose that f (y) − f (xk+1) < g(y) and f (y) − f (xk) ≥ g(y), then
h(y, xk+1)−h(y, xk) = g(y)− f (y)+ f (xk) > f (y)− f (xk+1)− f (y)+ f (xk) =
f (xk) − f (xk+1) ≥ −(f (xk+1) − f (xk))+. Finally if f (y) − f (xk+1) ≥ g(y) and
f (y) − f (xk) < g(y), then h(y, xk+1) − h(y, xk) = f (y) − f (xk+1) − g(y) ≥ 0
which again implies (16). Using (4) we get

hηl (y, x
k+1)≥ hηl (y, x

k)+ηl

2
(‖y − xk+1‖2−‖y − xk‖2) − (f (xk+1) − f (xk))+.

We know that

‖y − xk‖2 = ‖y − xk+1 + xk+1 − xk‖2
= ‖y − xk+1‖2 + ‖xk+1 − xk‖2 + 2〈y − xk+1, xk+1 − xk〉,

which implies (15).
Now we show that (15) holds for Hl(·, xk) and Hl(·, xk+1) by replacing hl(·, xk)

and hl(·, xk+1), respectively. For all j ∈ Loracle
l we have

Hl(y, x
k+1) ≥ g+(xk+1) − ck+1

f j
+ 〈sk+1

f j
, y − xk+1〉

= −ek+1
f j

− ηlb
k+1
j + 〈ξ j

f + ηl(y
j − xk+1), y − xk+1〉

123

454 N. Hoseini Monjezi, S. Nobakhtian

= −
(
ekf j + f (xk+1)− f (xk)−〈ξ j

f , x
k+1 − xk〉

)
− ηl

(1

2
‖xk+1 − xk‖2

+ bkj − 〈y j − xk, xk+1 − xk〉
)

+ 〈ξ j
f + ηl(y

j − xk+1), y − xk+1〉
= −(ekf j +ηlb

k
j)+ f (xk) − f (xk+1) − ηl

2
‖xk+1 − xk‖2 + 〈ξ j

f , y − xk〉
+ ηl〈y j − xk+1, y − xk+1〉 + ηl〈y j − xk, xk+1 − xk〉

= −(ekf j + ηlb
k
j) + f (xk)− f (xk+1)−ηl

2
‖xk+1 − xk‖2 + 〈ξ j

f , y − xk〉
+ ηl〈y j − xk, y − xk〉 + ηl〈xk − xk+1, y − xk+1〉

= −(ekf j + ηlb
k
j)+ f (xk) − f (xk+1)−ηl

2
‖xk+1 − xk‖2 + 〈skf j , y − xk〉

+ ηl〈xk − xk+1, y − xk+1〉
= g+(xk) − ckf j + 〈skf j , y − xk〉 − (f (xk+1) − f (xk))+

− ηl

2
‖xk+1 − xk‖2 + ηl〈xk − xk+1, y − xk+1〉, (17)

where the first inequality comes from the definition of Hl(y, xk+1) in (10), the first
equality holds by the first relation in (6a) and the first relation in (6b), the second
equality is satisfied by (13a) and (13c) and the two last equalities follow from the first
relation in (6a) and the first relation in (6b), respectively.
By the same discussion and adding −(f (xk+1) − f (xk))+, for all j ∈ Loracle

l we
deduce

Hl(y, x
k+1) ≥ g+(xk) − ckg j

+ 〈skg j
, y − xk〉 − (f (xk+1) − f (xk))+

−ηl

2
‖xk+1 − xk‖2 + ηl〈xk − xk+1, y − xk+1〉. (18)

Since (17) and (18) hold for all j ∈ Loracle
l , we get

Hl(y, x
k+1) ≥ g+(xk) + max

j∈Loracle
l

{−ckf j + 〈skf j , y − xk〉,−ckg j
+ 〈skg j

, y − xk〉}

− (f (xk+1) − f (xk))+−ηl

2
‖xk+1−xk‖2+ηl〈xk − xk+1, y − xk+1〉.

(19)

By using the definition of Hl(y, xk), (14a), (14b), for all j ∈ Lagg
l , we have

Hl(y, x
k+1) ≥ g+(xk+1) − êk+1

j + 〈̂ξ k+1
j , y − xk+1〉

= g+(xk+1)−
(
êkj + g+(xk+1)−g+(xk)+ηl

2
‖xk+1 − xk‖2 + (f (xk+1)

− f (xk))+ − 〈̂ξ kj , xk+1 − xk〉
)

+ 〈̂ξ kj + ηl(x
k − xk+1), y − xk+1〉

123

A new infeasible proximal bundle algorithm for nonsmooth… 455

= g+(xk) + (−êkj + 〈̂ξ kj , y−xk〉)+ηl〈xk − xk+1, y − xk+1〉
− (f (xk+1) − f (xk))+ − ηl

2
‖xk+1 − xk‖2,

therefore

Hl(y, x
k+1) ≥ g+(xk) + max

j∈Lagg
l

{
−êkj + 〈̂ξ kj , y − xk〉

}
− (f (xk+1) − f (xk))+

− ηl

2
‖xk+1 − xk‖2 + ηl〈xk − xk+1, y − xk+1〉. (20)

Using (10), (19) and (20), we deduce

Hl(y, x
k+1) ≥ Hl(y, x

k) − (f (xk+1) − f (xk))+ − ηl

2
‖xk+1 − xk‖2

+ ηl〈xk − xk+1, y − xk+1〉, (21)

and the proof is completed. ��
Lemma 4 Suppose that the associated yl is declared as a serious iterate, i.e., xk+1 =
yl . Then the following hold:

(i) If for each j ∈ Loracle
l we update ek+1

f j
and ek+1

g j
according to relations (13a),

(13b), then conditions (3a), (3b) are satisfied with k := k + 1.
(ii) If for each j ∈ Lagg

l we update the aggregate errors and the aggregate sub-

gradients according to relations (14a) and (14b), then êk+1
j ≥ 0 and ξ̂ k+1

j ∈
∂̂ek+1

j
H j (xk+1, xk+1).

Proof (i) Let j ∈ Loracle
l , we have

ek+1
f j

= ekf j + f (xk+1) − f (xk) − 〈ξ j
f , x

k+1 − xk〉
= f (xk) − f (y j) − 〈ξ j

f , x
k − y j 〉 + f (xk+1) − f (xk) − 〈ξ j

f , x
k+1 − xk〉

= f (xk+1) − f (y j) − 〈ξ j
f , x

k+1 − y j 〉,

and the same argument applies for ek+1
g j

.

(i i) Let j ∈ Lagg
l . Since ξ̂ kj ∈ ∂̂ekj

H j (xk, xk) and Hj (·, xk) is convex, it follows
that Hj (y, xk) ≥ Hj (xk, xk)+〈̂ξ kj , y− xk〉− êkj for all y ∈ R

n . By using (14a), (14b)
and (21), we obtain

Hj (y, x
k+1) ≥ Hj (y, x

k) − (f (xk+1) − f (xk))+ + ηl〈xk − xk+1, y − xk+1〉
− ηl

2
‖xk+1 − xk‖2

≥ Hj (x
k, xk) + 〈̂ξ kj , y − xk〉 − êkj − (f (xk+1) − f (xk))+

+ ηl〈xk − xk+1, y − xk+1〉 − ηl

2
‖xk+1 − xk‖2

123

456 N. Hoseini Monjezi, S. Nobakhtian

= 〈̂ξ kj , y − xk〉 + g+(xk+1) − êk+1
j + ηl〈xk − xk+1, y − xk+1〉

− 〈̂ξ kj , xk+1 − xk〉
= g+(xk+1) − êk+1

j + ηl〈xk − xk+1, y − xk+1〉 + 〈̂ξ kj , y − xk+1〉
= g+(xk+1) + 〈̂ξ kj + ηl(x

k − xk+1), y − xk+1〉 − êk+1
j . (22)

By the convexity of Hl(·, xk+1), we get ξ̂ k+1
j ∈ ∂̂ek+1

j
H j (xk+1, xk+1). In particular,

set y := xk+1 in (22) and using this fact that Hj (xk+1, xk+1) = g+(xk+1) we deduce
êk+1
j ≥ 0. ��

Remark 4 In the following we assume that {ηl} is bounded. From (7) it is clear that
ηl ≥ 2ω for all l, so we suppose that there exists η such that 2ω ≤ ηl ≤ η for all
l. Since the analysis of the algorithm do not require the constant η to be known, this
assumption is not restrictive on implementation of the algorithm. The boundedness
of {ηl} has been established in [14] for the unconstrained optimization problems with
lower−C1 objective functions and in [25] for the constrained optimization problems
with lower − C1, objective and constraint functions, respectively. However, in our
convergence analysis we consider this assumption with regular functions which is
weaker than lower − C1 assumption.

3.4 Upper envelopemodel

The argument of this paper are actually two-fold. The first line is as follows. For
nonconvex problem (1), we use the improvement function to get rid of the constraint
and use the term ηl

2 ‖ · −x‖2 to deal with potentially negative linearization errors.
We do not require any lower − C2, lower − C1 or prox-regular assumption therefore
the augmented function (4) can be convex or nonconvex. Then we state the convex
cutting plane model Hl(·, xk) for (4) and use the usual bundle argument for this
model. The second line of argument deals with connecting the convex cutting plane
model Hl(·, xk) with the original nonconvex problem to analysis the convergence
of the method. For this purpose, motivated by [30], we define the upper envelope
modelM↑(y, x) associatedwith the cutting plane for constrained problems. It is worth
mentioning that the upper envelope model in [30] was defined for the unconstrained
optimization problems. Furthermore, the method of [30] employs the “downshift”
mechanism, that is absolutely different from our mechanism for the definition of the
cutting planes.

Suppose that BR(x) is a fixed closed ball large enough such that contains all pos-
sible trial steps y+ (this assumption was considered in [7,30]). Set B(x) := {y| y ∈
BR(x), y is a trial point}. We define the upper envelope model M↑(·, x):Rn → R,
for a given point x ∈ R

n , as

M↑(y, x) := g+(x) + sup
2ω≤η≤η, y+∈B(x)

ξ f ∈∂c f (y+), ξg∈∂cg(y+)

{
m f

y+,ξ f ,η
(y, x), mg

y+,ξg,η
(y, x)

}
,

123

A new infeasible proximal bundle algorithm for nonsmooth… 457

where 2ω ≤ η ≤ ηwith η defined in Remark 4. The planem f
y+,ξ f ,η

(y, x) is the cutting

plane at the serious iterate x and the trial step y+ as follows

m f
y+,ξ f ,η

(y, x) : = −cy+ + 〈ξ f + η(y+ − x), y − x〉
= −ω

2
‖y+ − x‖2 + 〈ξ f + η(y+ − x), y − x〉. (23)

Also mg
y+,ξg,η

(y, x) is the cutting plane at the serious iterate x and the trial step y+ as

mg
y+,ξg,η

(y, x) : = −cy+ + 〈ξg + η(y+ − x), y − x〉
= −ω

2
‖y+ − x‖2 + 〈ξg + η(y+ − x), y − x〉. (24)

The boundedness of BR(x) and the definition of η imply that M↑(·, x) is defined
everywhere. In the following we state some properties of the upper envelope model
M↑(·, x). These results can be found in [7, Lemma 6.1], however we state the proof
since the definition of the upper envelopemodelM↑(·, x), its cutting planes and details
of the proof are different from [7].

Lemma 5 Suppose that f and g are regular functions, then the following hold:

(i) M↑(·, x) is a convex function.
(ii) Hl(·, x) ≤ M↑(·, x) for all l.
(iii) M↑(x, x) = g+(x).
(iv) ∂M↑(x, x) ⊆ ∂ch(x, x).

Proof The proof of (i) is obvious. To prove (ii), from (6a), for all j ∈ Ll , we have
ckf j = ekf j + g+(xk) + ηlbkj . By using (7), we obtain

ekf j + g+(xk) + ηlb
k
j ≥ ω

2
‖y j − xk‖2,

therefore for all j ∈ Ll we have ckf j ≥ ω
2 ‖y j − xk‖2. The same argument holds for g

and we again get ckg j
≥ ω

2 ‖y j − xk‖2. Therefore we deduce − ckf j ≤ −ω
2 ‖y j − xk‖2

and − ckg j
≤ −ω

2 ‖y j − xk‖2. Compare the definition of Hl(·, xk) in (5) with the

definition of M↑(·, x) and their cutting planes [see relations (6a), (6b), (23) and (24)].
The second term in their cutting planes is similar, i.e., skf j with ξ f + η(y+ − x) and

skg j
with ξg + η(y+ − x). Therefore

−ckf j + 〈skf j , y − xk〉 ≤ −ω

2
‖y j − xk‖2 + 〈ξ j

f + ηl(y j − xk), y − xk〉,

and

−ckg j
+ 〈skg j

, y − xk〉 ≤ −ω

2
‖y j − xk‖2 + 〈ξ j

g + ηl(y j − xk), y − xk〉.

123

458 N. Hoseini Monjezi, S. Nobakhtian

Since we assume BR(x) is large enough such that it contains all possible trial steps,
we get Hl(·, x) ≤ M↑(·, x) for all l and the proof of (ii) is completed.

We have cy+ = ω
2 ‖y+ − x‖2 ≥ 0 and cx = 0, therefore we obtain (iii)

M↑(x, x) = g+(x) + sup
y+∈BR(x)

{−cy+} = g+(x).

To prove (iv). Let ξ ∈ ∂M↑(x, x) and define m(·, x) = M↑(x, x) + 〈ξ, · − x〉 =
g+(x) + 〈ξ, · − x〉, the tangent plane to the graph of M↑(·, x) at x associated with ξ .
By using convexity, we have m(·, x) ≤ M↑(·, x). Fix a vector d ∈ R

n and consider
the values M↑(x + td, x) for t > 0. According to the definition of M↑(·, x) for any
t > 0, there exist 2ω ≤ ηt ≤ η, yt ∈ BR(x) and ξ

f
t ∈ ∂c f (yt) or ξ

g
t ∈ ∂cg(yt)

such that M↑(x + td, x) ≤ g+(xk) + m f

yt ,ξ
f
t ,ηt

(x + td, x) + t2 or M↑(x + td, x) ≤
g+(xk) + mg

yt ,ξ
g
t ,ηt

(x + td, x) + t2.

We suppose that M↑(x + td, x) ≤ g+(xk) + m f

yt ,ξ
f
t ,ηt

(x + td, x) + t2, therefore

m(x + td, x) ≤ g+(xk) + m f

yt ,ξ
f
t ,ηt

(x + td, x) + t2

= g+(x) − cyt + 〈ξ f
t + ηt (yt − x), td〉 + t2

= g+(x) − ω

2
‖yt − x‖2 + 〈ξ f

t + ηt (yt − x), td〉 + t2.

When M↑(x + td, x) ≤ g+(xk) + mg
yt ,ξ

g
t ,ηt

(x + td, x) + t2, we again get the above

relation with ξ
g
t ∈ ∂cg(yt). Therefore, we can say

m(x + td, x) ≤ g+(x) − ω

2
‖yt − x‖2 + 〈ξt + ηt (yt − x), td〉 + t2, (25)

where ξt = ξ
f
t or ξ gt . Since ξ

f
t ∈ ∂c f (yt), ξ

g
t ∈ ∂cg(yt) and f , g are locally Lipschitz

on BR(x), hence {ξt } is bounded. Therefore {ξt + ηt (yt − x)} is bounded and since d
is an arbitrary fixed vector, then 〈ξt +ηt (yt − x), td〉 → 0 as t → 0. Passing the limit
in (25), we get limt→0 −ω

2 ‖yt − x‖2 ≥ 0 which implies that limt→0
ω
2 ‖yt − x‖2 = 0

and we deduce yt → x . Consider the sequence {ξt }, since f and g are regular, we have
ξt ∈ ∂ch(yt , x). As we have mentioned above, this sequence is bounded on BR(x),
passing to a subsequence if necessary, we may assume there exists ξ̂ such that ξt → ξ̂ .
Since yt → x , it follows from the upper semicontinuity of the Clarke subdifferential
that ξ̂ ∈ ∂ch(x, x). From (25), we obtain 〈ξ, d〉 ≤ 〈ξt + ηt (yt − x), d〉 + t , let t → 0
which implies that 〈ξ, d〉 ≤ 〈̂ξ, d〉. Thus

〈ξ, d〉 ≤ 〈̂ξ, d〉 ≤ max{〈ξ, d〉, ξ ∈ ∂ch(x, x)} = (h(·, x))◦(x, d).

Since d is an arbitrary vector, we get ξ ∈ ∂ch(x, x) and the proof is completed. ��

123

A new infeasible proximal bundle algorithm for nonsmooth… 459

3.5 Statement of the algorithm

Now we are in position to state our infeasible proximal bundle algorithm for solving
problem (1).

Algorithm 1 (Infeasible Constrained Proximal BundleMethod)
Step 1 Choose parametersm ∈ (0, 1), ω > 0, tol ≥ 0, |L|max ≥ 3. Choose x0 ∈ R

n ,
set y0 := x0, and compute (f0, g0, ξ0f , ξ

0
g). Set k := 0, l := 0, e0f0 := 0, e0g0 :=

0, b00 := 0, d00 := 0, Boracle
l := {(f0, g0, ξ0f , ξ0g , e0f0 , e

0
g0 , b

0
0, d

0
0)}, Bagg

l := ∅,
Loracle
l := {0} and Lagg

l := ∅.
Step 2 Selectηl > 0 as in (7) by replacingLl withLoracle

l . By using (10) set Hl(y, xk).
Choose μl > 0 and compute yl as the solution to

min
y∈X Hl(y, x

k) + μl

2
‖y − xk‖2.

Set ξ̂ kl + vl := μl(xk − yl), êkl := g+(xk) − Hl(yl , xk) − 〈̂ξ kl , xk − yl〉, δl :=
êkl + 1

2μl
‖̂ξ kl + vl‖2 and (fl , gl , ξ lf , ξ

l
g, e

k
fl
, ekgl , b

k
l , d

k
l).

Step 3 If δl ≤ tol, stop.
Step 4 Compute hl := h(yl , xk). If hl ≤ g+(xk) − mδl , then yl is a serious iterate.

Otherwise, yl is a null iterate.
Step 5 If |Loracle

l ∪ Lagg
l | ≥ |L|max, then delete at least two elements from Loracle

l ∪
Lagg
l except l(k), i.e., the element corresponding to xk . In addition delete their

corresponding elements from Boracle
l ∪ Bagg

l . Let Loracle
l+1 := Loracle

l ∪ {l}, Lagg
l+1 :=

Lagg
l ∪ {l} and

Boracle
l+1 := Boracle

l ∪ {(fl , gl , ξ lf , ξ lg, ekfl , ekgl , bkl , dkl)},
Bagg
l+1 := Bagg

l ∪ {(̂ekl , ξ̂ kl)}.

Step 6 If yl is a serious iterate, set xk+1 := yl , f (xk+1) := fl , g(xk+1) := gl .
Update the bundle elements according to (13a)–(13d) for all j ∈ Loracle

l+1 and to
(14a)–(14b) for all j ∈ Lagg

l+1. Set k = k + 1.
Step 7 Set l = l + 1 and go to Step 2.

Remark 5 It is worth mentioning that contrary to some nonconvex constrained opti-
mization algorithms that solve a quadratic programming subproblem and also use a
line searchmethod, e.g., [5,27,28,36], our setting does not employ any line search sub-
routine and it only solves a quadratic programming subproblem, without impairing its
global convergence.

Remark 6 We require a usual rule for choosing the proximal parameter μl . The con-
ditions that μl should be satisfied, for the global convergence, are very simple and we
state these in the convergence results (see Sect. 4).

123

460 N. Hoseini Monjezi, S. Nobakhtian

4 Convergence analysis

In this section, we establish the global convergence of Algorithm 1. We assume from
now on that the stopping tolerance tol is set to zero. Note that, if the algorithm stops
at Step 3, then δl = 0. Indeed, δl = 0 implies that ‖ξ kl + vl‖ = 0 and êkl = 0. Since
ξ̂ kl ∈ ∂̂ekl

Hl(xk, xk), we have

Hl(y, x
k) ≥ Hl(x

k, xk) + 〈̂ξ kl , y − xk〉 − êkl = g+(xk) + 〈̂ξ kl , y − xk〉 − êkl , (26)

for all y ∈ R
n . By vl ∈ ∂ IX (yl), we get

IX (y) ≥ IX (yl) + 〈vl , y − yl〉
= 〈vl , y − yl〉 = IX (xk) + 〈vl , y − xk〉 + 〈vl , xk − yl〉
= IX (xk) + 〈vl , y − xk〉 + 〈vl , 1

μl
(̂ξ kl + vl)〉, (27)

for all y ∈ R
n . By (26) and (27), we obtain

Hl(y, x
k) + IX (y) ≥ g+(xk) + 〈̂ξ kl , y − xk〉 − êkl + IX (xk) + 〈vl , y − xk〉

+
〈

vl ,
1

μl
(̂ξ kl + vl)

〉

= g+(xk)+IX (xk)+〈̂ξ kl + vl , y − xk〉 − êkl +
〈

vl ,
1

μl
(̂ξ kl + vl)

〉

.

(28)

We have ‖̂ξ kl + vl‖ = êkl = 0 by using this fact in relation (28) we deduce

Hl(y, x
k) + IX (y) ≥ g+(xk) + IX (xk) + 〈0, y − xk〉.

Due to Lemma 5 (ii) and (iii), we get

M↑(y, xk) + IX (y) ≥ M↑(xk, xk) + IX (xk) + 〈0, y − xk〉,

and by the convexity of M↑(·, xk) and IX (·), we deduce 0 ∈ ∂M↑(xk, xk)+∂ IX (xk).
Using Lemma 5 (iv) we obtain 0 ∈ ∂ch(xk, xk) + ∂ IX (xk). Hence when Algorithm 1
stops finitely, the last serious iterate xk is stationary for the improvement function
h(·, xk) on X .

From now on, we assume that Algorithm 1 does not stop and generates an
infinite sequence of iterates. As customary in the bundle method, we consider
two cases: the serious iterates sequence {xk} is either finite or infinite. Set A :=
{l| l is a serious iteration} collects the indices of the serious iterates in the sequence
{yl}. We denote the feasible set of problem (1) by D := {x ∈ X | g(x) ≤ 0}.

123

A new infeasible proximal bundle algorithm for nonsmooth… 461

Proposition 1 Suppose that k1 is any serious iteration, then for all k ≥ k1 we get
xk ∈ {x ∈ R

n, g(x) ≤ g+(xk1)}. Therefore, if there exists k2 such that xk2 ∈ D, then
xk ∈ D for all k ≥ k2.

Proof By using Remark 2 for any k we have g(xk+1) < g(xk). ��

From Proposition 1, we obtain immediately that if x0 is a feasible point, then the
sequence of the serious iterates {xk} is feasible too.
Lemma 6 Suppose that f is bounded below on D, and Algorithm 1 generates an
infinite number of serious iterates. Then {δl}l∈A → 0 and {̂ekl }l∈A → 0. Furthermore
if there exists μ > 0 such that μl ≤ μ for all l ∈ A, then {̂ξ kl + vl}l∈A → 0.

Proof By Proposition 1, we consider two cases: either xk /∈ D for all k or there exists
an index k3 such that xk ∈ D for all k ≥ k3.

(i) If xk /∈ D for all k, by using (12)we havemδl(k+1) ≤ g(xk)−g(xk+1) for all k ≥ 0.
Therefore {g(xk)} is decreasing and g(xk) > 0. Thus this sequence is decreasing
and bounded below which implies that, there exists g such that gl(k) → g as
l(k) ∈ A and k → ∞. Therefore

∑
l∈A δl ≤ g(x0)−g

m < ∞.
(ii) Now suppose that, there exists k3 such that if k < k3, then xk /∈ D and for all

k ≥ k3 we have xk ∈ D. By using (12) we have mδl(k+1) ≤ f (xk) − f (xk+1)

for all k ≥ k3. Hence { f (xk)} is decreasing for k ≥ k3 and since f is bounded
below on D there exists f such that f (xk) → f as l(k) ∈ A and k → ∞. This
implies

∑

l∈A
δl =

∑

l∈A, l<l(k3)

δl+
∑

l∈A, l≥l(k3)

δl ≤ 1

m
(g(x0)−g(xk3) + f (xk3) − f) < ∞.

Hence in each case we have
∑

l∈A δl < ∞, which implies that {δl}l∈A → 0. By
the definition of δl we have êkl ≤ δl and 1

2μl
‖̂ξ kl + vl‖2 ≤ δl , it immediately follows

that {̂ekl }l∈A → 0 and by μl ≤ μ, we have {̂ξ kl + vl}l∈A → 0. Hence the proof is
completed. ��

In what follows, we assume that Algorithm 1 generates an infinite sequence of serious
iterates and show that every accumulation point of this sequence is a stationary point
of the improvement function. Here, motivated by Lemma 1, we call x∗ is a stationary
point of the constraint violation if 0 ∈ ∂cg(x∗) along with g(x∗) > 0.

Theorem 1 Suppose that f and g are regular functions, f is bounded below on D
and {ηl} is bounded above. Assume that Algorithm 1 generates an infinite sequence of
serious iterates. If there exists μ > 0 such that μl ≤ μ, then for every accumulation
point of {xk}, i.e., x∗ we have 0 ∈ ∂ch(x∗, x∗) + ∂ IX (x∗), that is x∗ is a stationary
point of the improvement function on X. In particular, x∗ is either a stationary point
of the constraint violation or a Fritz John point or a KKT point of problem (1).

123

462 N. Hoseini Monjezi, S. Nobakhtian

Proof By using Lemma 6 we have

{δl}l∈A → 0, {̂ekl }l∈A → 0 and {̂ξ kl + vl}l∈A → 0. (29)

Suppose that l ∈ A, since ξ̂ kl + vl ∈ ∂Hl(yl , xk) + ∂ IX (yl) and by the convexity of
Hl(·, xk) + IX (·) for all y ∈ R

n , we obtain

M↑(y, xk) + IX (y) ≥ Hl(y, x
k) + IX (y)

≥ Hl(y
l , xk) + IX (yl) + 〈̂ξ kl + vl , y − yl〉

= g+(xk) − êkl + 〈̂ξ kl , yl − xk〉 + IX (yl) + 〈̂ξ kl + vl , y − yl〉
= g+(xk) − êkl + 〈̂ξ kl + vl , y − xk〉 + 〈vl , xk − yl〉
= g+(xk) − êkl + 〈̂ξ kl + vl , y − xk〉 +

〈

vl ,
1

μl
(̂ξ kl + vl)

〉

,

(30)

where the first inequality comes from Lemma 5 (ii), the first equality follows from (9)
and the last equality from xk − yl = 1

μl
(̂ξ kl + vl).

Since {xk} is in the compact set X , it has a subsequence xk →k∈K x∗ with x∗ ∈ X .
We know l ∈ A so that l = l(k). Since xk → x∗ and xk − yl = 1

μl
(̂ξ kl + vl) → 0,

therefore yl → x∗ as k ∈ K, l(k) → ∞. On the other hand vl ∈ ∂ IX (yl) and X is a
convex compact set hence there exists ε such that {vl} ⊆ ∂ IX (x∗) + Bε(0). Consider
(30), (29) for all k ∈ K, passing to the limit and by the boundedness of {vl}, we obtain
limk→∞,k∈K M↑(y, xk) + IX (y) ≥ limk→∞,k∈K g+(xk) + 〈0, y − xk〉 and hence

M↑(y, x∗) + IX (y) ≥ g+(x∗) + 〈0, y − x∗〉 = M↑(x∗, x∗) + IX (x∗) + 〈0, y − x∗〉.

Using the convexity of M↑(·, x∗) + IX (·), we deduce 0 ∈ ∂M↑(x∗, x∗) + ∂ IX (x∗)
and by Lemma 5 (iv) we have 0 ∈ ∂ch(x∗, x∗) + ∂ IX (x∗).

When g(x∗) > 0, then 0 ∈ ∂cg(x∗) + ∂ IX (x∗) and, we get x∗ is a stationary point
of the constraint violation. If g(x∗) = 0, then x∗ is a Fritz John point. Otherwise, x∗
is a KKT point of problem (1). ��
We conclude by considering the case when the number of serious iterates is finite, i.e.,
there exists l∗ := max{l| l ∈ A}. We denote the corresponding last serious iterate by
xend := xk(l

∗) = yl
∗
. Then for all l ≥ l∗ the iterate xend is fixed. We show that xend

is a stationary point of the improvement function on X .

Theorem 2 Assume that f and g are regular functions and Algorithm 1 takes a finite
number of serious iterates. If {ηl} is bounded above andμl ≤ μl+1 ≤ μ for all l ≥ l∗,
then0 ∈ ∂ch(xend, xend)+∂ IX (xend), i.e., xend is a stationary point of the improvement
function on X. In particular, x∗ is either a stationary point of the constraint violation
or a Fritz John point or a KKT point of problem (1).

Proof Suppose that l is large enough, such that l ≥ l∗. Let yl be the optimal solution
of (8). We show that the sequence {Hl(yl , xend) + μl

2 ‖yl − xend‖2} is bounded above

123

A new infeasible proximal bundle algorithm for nonsmooth… 463

and nondecreasing. Since ξ̂ endl ∈ ∂Hl(yl , xend) and Hl(·, xend) is convex, we have
Hl(y, xend) ≥ Hl(yl , xend)+ 〈̂ξ endl , y− yl〉 for every y ∈ R

n . By using the definition
of the aggregate plane and (9) we have m∗

l (y, x
end) = Hl(yl , xend) + 〈̂ξ endl , y − yl〉.

Substituting y = xend , we get Hl(yl , xend) = m∗
l (x

end, xend) − 〈̂ξ endl , xend − yl〉.
Then we obtain

Hl(y
l , xend) + μl

2
‖yl − xend‖2

≤ Hl(y
l , xend) + μl‖yl − xend‖2

≤ Hl(y
l , xend) + μl〈yl − xend, yl − xend〉 − 〈vl , xend − yl〉

= Hl(y
l , xend) + 〈̂ξ endl , xend − yl〉

= m∗
l (x

end, xend) ≤ Hl+1(x
end, xend) = g+(xend),

where the first inequality is clear, and the second inequality follows from vl ∈ ∂ IX (yl),
the first equality holds by the definition of ξ̂ endl , the second equality is satisfied by the
definition ofm∗

l (·, xend) and the last inequality by the definition of Hl+1(·, xend), hence
the sequence is bounded above. Next let us prove that this sequence is nondecreasing

Hl+1(y
l+1, xend) + μl+1

2
‖yl+1 − xend‖2

≥ m∗
l (y

l+1, xend) + μl+1

2
‖yl+1 − xend‖2

≥ m∗
l (y

l+1, xend) + μl

2
‖yl+1 − xend‖2

= Hl(y
l , xend) + 〈̂ξ endl , yl+1 − yl〉 + μl

2
‖yl+1 − xend‖2

= Hl(y
l , xend) + 〈μl(x

end − yl) − vl , y
l+1 − yl〉 + μl

2
‖yl+1 − xend‖2

≥ Hl(y
l , xend) + 〈μl(x

end − yl), yl+1 − yl〉 + μl

2
‖yl+1 − xend‖2

= Hl(y
l , xend) + μl

2

(‖yl − xend‖2 + ‖yl+1 − yl‖2)

≥ Hl(y
l , xend) + μl

2
‖yl − xend‖2.

Where thefirst inequality holds by the definition of Hl+1(·, xend), the second inequality
byμl+1 ≥ μl and the first equality by the definitionm∗

l (·, xend) and the third inequality
follows from vl ∈ ∂ IX (yl). Therefore the sequence {Hl(yl , xend)+ μl

2 ‖yl −xend‖2} is
nondecreasing and by its boundedness, we obtain this sequence is convergent. Passing
to the limit in the above inequality we have liml→∞ μl

2 ‖yl+1 − yl‖2 ≤ 0. By assump-
tion that μl ≤ μl+1 ≤ μ, we obtain μl ≥ μl∗ that is {μl} is bounded below by μl∗ .
This implies that yl+1 − yl → 0, therefore {yl} is bounded.
By using the definition of δl we have

123

464 N. Hoseini Monjezi, S. Nobakhtian

δl = êendl + 1

2μl
‖̂ξ endl + vl‖2

= g+(xend) − Hl(y
l , xend) − 〈̂ξ endl , xend − yl〉 + 1

2μl
‖̂ξ endl + vl‖2

≤ g+(xend) − Hl(y
l , xend) − 〈̂ξ endl , xend − yl〉 + 1

μl
‖̂ξ endl + vl‖2

= g+(xend) − Hl(y
l , xend) − 〈̂ξ endl , xend − yl〉 +

〈
1

μl
(̂ξ endl + vl), ξ̂

end
l + vl

〉

= g+(xend) − Hl(y
l , xend) − 〈̂ξ endl , xend − yl〉 + 〈xend − yl , ξ̂ endl + vl〉

≤ g+(xend) − Hl(y
l , xend) + 〈xend − yl , vl〉

≤ g+(xend) − Hl(y
l , xend),

where the first equality holds by the definition of êendl in (9), the last inequality follows
from vl ∈ ∂ IX (yl) and 〈vl , xend − yl〉 ≤ 0 and the other relations are obvious. By
considering above inequality for l + 1, we obtain

δl+1 ≤ g+(xend) − Hl+1(y
l+1, xend). (31)

Since l is a null iteration, it follows that (11) is not satisfied. We observe that either
f (y) − f (xend) > g+(xend) − mδl or g(y) > g+(xend) − mδl .
(I) Without loss of generality we suppose that f (y) − f (xend) > g+(xend) − mδl .
Therefore we get

−cendfl + 〈sendfl , yl − xend〉 = −
(
eendfl + g+(xend) + ηl

2
‖yl − xend‖2

)

+ 〈ξ lf + ηl(y
l − xend), yl − xend〉

= − f (xend) + f (yl) + 〈ξ lf , xend − yl〉 − g+(xend)

+ 〈ξ lf , yl − xend〉 − ηl

2
‖yl − xend‖2 + ηl‖yl − xend‖2

= f (yl) − f (xend) − g+(xend) + ηl

2
‖yl − xend‖2

> g+(xend) − mδl − g+(xend) + ηl

2
‖yl − xend‖2

≥ −mδl , (32)

where the first equality is due to the first relation on (6a) and relations on (6b) and the
second equality holds by (3a). By the definition of Hl+1(·, xend) in (10), we obtain

Hl+1(y, x
end) ≥ g+(xend) − cendfl + 〈sendfl , y − xend〉, ∀y ∈ R

n .

Substituting y := yl+1, then we get

−Hl+1(y
l+1, xend) ≤ −g+(xend) + cendfl − 〈sendfl , yl+1 − xend〉. (33)

123

A new infeasible proximal bundle algorithm for nonsmooth… 465

Thus (32) and (33) imply that −mδl − Hl+1(yl+1, xend) ≤ −g+(xend) + 〈sendfl
, yl −

yl+1〉, and by (31) we obtain 0 ≤ δl+1 ≤ mδl + 〈sendfl
, yl − yl+1〉.

(II) If g(y) > g+(xend) − mδl , then by the same argument we again conclude that

0 ≤ δl+1 ≤ mδl + 〈sendgl , yl − yl+1〉.

Since {yl} is bounded, the functions f and g are locally Lipschitz and X is compact,
it follows that {ξ lf } and {ξ lg} are bounded on that set. Therefore by the boundedness of
{ηl}, we get sendfl

= ξ lf + ηl(yl − xend) and sendgl = ξ lg + ηl(yl − xend) are bounded.

Since yl − yl+1 → 0 and m ∈ (0, 1), we deduce δl → 0. By the definition of δl we
also have êendl → 0 and 1

2μl
‖̂ξ endl + vl‖2 → 0, on the other hand we have μl ≤ μ,

therefore we get ξ̂ endl + vl → 0. Which implies that yl → xend . By the convexity of
Hl(·, xend) and ξ̂ endl + vl ∈ ∂Hl(yl , xend) + ∂ IX (yl), it follows from Lemma 5 (ii)
that

M↑(y, xend) + IX (y) ≥ Hl(y, x
end) + IX (y)

≥ Hl(y
l , xend) + IX (yl) + 〈̂ξ endl + vl , y − yl〉

= g+(xend) − êendl + 〈̂ξ endl , yl − xend〉 + 〈̂ξ endl + vl , y − yl〉
= g+(xend) − êendl + 〈̂ξ endl + vl , y − xend〉 + 〈vl , xend − yl〉
= g+(xend)−êendl +〈̂ξ endl +vl , y−xend〉+

〈

vl ,
1

μl
(̂ξ endl + vl)

〉

,

where the first equality follows from (9) and the last equality by xend − yl = 1
μl

(̂ξ endl +
vl). Passing to the limit in above inequality and by the boundedness of {vl} (since there
exists ε such that {vl} ⊆ ∂ IX (xend) + Bε(0)), we obtain

M↑(y, xend) + IX (y) ≥ g+(xend) + 〈0, y − xend〉
= M↑(xend, xend) + IX (xend) + 〈0, y − xend〉.

By the convexity of M↑(·, xend) and IX (·), we get 0 ∈ ∂M↑(xend, xend) + ∂ IX (xend)
and using Lemma 5 (iv) we deduce 0 ∈ ∂ch(xend, xend) + ∂ IX (xend). The remainder
of the proof is the same as the proof of Theorem 1. ��

5 Numerical experiments

In this section, we report the results of numerical experiments for the proposed algo-
rithm. To provide a brief comparison of Algorithm 1, we used the public software
SolvOpt [34], which is one of the most efficient codes available for nonsmooth opti-
mization, and the proximal bundle method (PBM) [25], which was proposed for
constrained nonsmooth nonconvex optimization with inexact information. But in this
experiment we consider the PBM method without any noise.

123

466 N. Hoseini Monjezi, S. Nobakhtian

All algorithms are coded in MATLAB R2012a and run on a PC Intel Core I5 with
CPU 2.5GHz and 4GB of RAM.

Two classes of test problems are used to measure the efficiency of the considered
algorithms. The first class is taken from [1,32] with constant number of variables and
the second class is from [10] such that these problems can be formulated with any
number of variables. Therefore we state numerical results in two experiments.

We set the algorithm parameters as follows tol := 10−8, m := 0.01 or 0.25 (for
n = 20, 50 we used m = 0.25 and for the others we set m = 0.01), ω := 1.2
and |L|max := 100. As our convex compact feasible set, we use X := B10(0).
The Quadratic programming solver is quadprog.m, which is available in the MAT-
LAB optimization toolbox. It is worth mentioning that, there is not any sensitivity
to quadprog.m and any other quadratic programming solver can replace it. For each
run, and for all of the algorithms, we give the total number of the evaluations (Note
that evaluations include function evaluations and subgradient evaluations). We did not
report the computational times, since for most of the problems (i.e., for n = 2, 3, 4, 5)
the time is near zero and for others there were not a very big difference in the com-
putational times of the different solvers. To check the precision, we will report the
objective function value and the constraint function value in the last serious iteration.

We consider two stopping criteria for all algorithms: the first one is “the algorithms
stop when the optimality condition is satisfied” and the second one is “the algorithms
stop when the number of iterations exceeded 10,000”. Nevertheless, stoppage due to
the maximum number of function evaluations was never invoked in these experiments.
In addition Algorithm 1 and PBM terminated when one of the following criteria is
satisfied, if δl ≤ 10−8 or the value of δl did not decrease in 150 consecutive iterations.

In order to obtain a better comparison of the considered algorithms, we analyze the
results using the performance profile and data profile introduced in [2,9,29]. Next we
give a brief descriptions of the performance and data profiles. Given a set of solvers S
and a set of problems P . We are interested in using the number of function evaluations
as an efficiency measure. For each problem p ∈ P and solver s ∈ S, define

tp,s = number of function evaluations required to solve problem p by solver s.

In the performance profile, we use a ratio to compare the implementation of each
solver s on problem p with the best solver on this problem. This ratio is defined as
follow

rp,s = tp,s
min{tp,s | s ∈ S} .

We assume that a parameter rM ≥ rp,s for all p, s are chosen, and rp,s = rM if and
only if solver s does not solve problem p. The performance profile ρs(τ) is defined as

ρs(τ) = 1

n p
size{p ∈ P| rp,s ≤ τ }.

123

A new infeasible proximal bundle algorithm for nonsmooth… 467

Here n p is the number of problems in P . It is clear that τ ∈ [1, rM]. The value of
ρs(1) gives the percentage of test problems for which the corresponding algorithm is
the best (with respect to the number of function evaluations). Since the ratio for some
problems and solvers is large, we scale τ using the natural logarithm. Therefore, in
the performance profiles, the value of ρs(τ) at log(τ) = 0 (not at τ = 1) gives the
percentage of test problems for which the corresponding algorithm is the best.

Data profile was first introduced in [29]. Data profiles try to answer the question:
what percentage of problems can be solvedwithin the budget of k function evaluations?
The authors in [29] assume that the required number of function evaluations to satisfy
the convergence test is likely to grow as the number of variables increases. The data
profile of an optimization algorithm s is defined using

ds(α) = 1

n p
size

{

p ∈ P| tp,s
n + 1

≤ α

}

,

where n is the number of variables in the problem p ∈ P and ds(α) is the percentage
of problems that can be solved with α(n + 1) function evaluations.

5.1 Experiment 1

We recall that in the convergence analysis, we assume that f and g are regular locally
Lipschitz functions which are less restrictive than the lower − C1 assumption. Now
our aim is to design some examples which are not lower −C1. Spingarn in [35] gives
an example of a regular function in R

2 which is not lower − C1, as follows:

f (x1, x2) =

⎧
⎪⎨

⎪⎩

|x2| if x1 ≤ 0
|x2| − x21 if x1 ≥ 0, |x2| ≥ x21
x41−x22
2x21

if x1 ≥ 0, |x2| ≤ x21 .

We consider this function as objective function and using some lower−C1 constraints
from [32], we design three problems as follows:

Problem 1: min
x∈X f (x1, x2)

g(x) = max{−x41 − 2x22 − 1, 2x21 − x22 − 2.5} ≤ 0.

Problem 2: min
x∈X f (x1, x2)

g(x) = max{x21 − x22 , − 2x21 − x22 } ≤ 0.

Problem 3: min
x∈X f (x1, x2)

g(x) = max{100x21 + x22 − 101, 80x21 − x22 − 79} ≤ 0.

We observe that f (x1, x2) is bounded below by 0. We also have f (0, 0) = 0, so
0 = min(x1,x2)∈Rn f (x1, x2). On the other hand (0, 0) is a feasible point for Problems

123

468 N. Hoseini Monjezi, S. Nobakhtian

Table 1 The description of test problems

Problem Problem type n fopt References

1 Nonsmooth nonconvex 2 0

2 Nonsmooth nonconvex 2 0

3 Nonsmooth nonconvex 2 0

4 (Beale) Nonsmooth convex 3 0.1111 [1]

5 (Charalambous and Bandler) Nonsmooth nonconvex 2 1.9522 [32]

6 (Charalambous and Bandler) Nonsmooth nonconvex 2 2.25 [32]

7 (Rosen and Suzuki) Nonsmooth convex 4 −44 [1]

8 (Fiacco and McCormick) Nonsmooth nonconvex 2 2.6667 [1]

1–3. Therefore x∗ = (0, 0) is an optimal solution for these problems and the optimal
value is f ∗ = 0.

In addition,we consider some problems from [1,32].We consider two types of prob-
lems,with nonsmooth convex andnonsmooth nonconvex functions.Abrief description
of each test problem is given in Table 1, where the following notations are used. We
denote n for the number of variables, fopt for the optimal value and Ref. for the ref-
erence of each problem. For each problem we used ten randomly generated starting
points (by using rand.m and randn.m functions in MATLAB) and the starting points
are the same for all algorithms. Some of the starting points are feasible and the oth-
ers are infeasible. To better organize the numerical results, these randomly generated
starting points are not reported in the tables. The interested reader can findmore details
about these points by sending email to the authors. The numerical results are listed in
Tables 2, 3, 4, 5, 6, 7, 8 and 9, where the following notations are used:

x0: starting point;
F/InF: feasible/infeasible;
NE: number of evaluations;
ffinal: final objective value;
gfinal: final constraint value.

The results of Tables 2, 3, 4, 5, 6, 7, 8 and 9 show a reasonable performance of Algo-
rithm 1. One can observe that Algorithm 1 performs well and provides an optimal
solution to each example. We note that the accuracy obtained by Algorithm 1 was
similar for both feasible and infeasible starting points, that means the algorithm is not
sensitive with feasible or infeasible points. As comparing with PBM and SolvOpt,
in this part we run every algorithm 80 times, for 51 examples we observe that Algo-
rithm 1 needs the least number of function evaluations than SolvOpt and PBM. For
28 examples SolvOpt method uses the least number of evaluations than others and for
one example PBM needs the least number of function evaluations. For more details
and carefully comparison see Tables 2, 3, 4, 5, 6, 7, 8 and 9.

Figure 1 presents the performance profiles for Experiment 1. Algorithm 1 has
the best performance for 63% of the problems; meaning that Algorithm 1 is able to
solve 63% of the problems with the least number of function evaluations than the
other solvers. The SolvOpt and PBM solve roughly 39% and 3% of the problems

123

A new infeasible proximal bundle algorithm for nonsmooth… 469

Table 2 Comparison between Algorithm 1, PBM and SolvOpt for Problem 1

No. F/InF Algorithm 1 PBM SolvOpt
NE\ ffinal\gfinal NE\ ffinal\gfinal NE\ ffinal\gfinal

1 F 92\0.0000\ − 1.0000 200\0.0000\ − 1.0000 248\0.0000\ − 1.0370

2 F 36\0.0000\ − 1.0000 96\0.0000\ − 1.0000 309\0.0000\ − 1.0000

3 F 156\0.0000\ − 1.1009 404\0.0000\ − 1.7476 192\0.0000\ − 2.6218

4 InF 344\0.0000\ − 1.0157 320\0.0000\ − 1.0004 352\0.0000\ − 1.3819

5 F 56\0.0000\ − 1.0001 316\0.0000\ − 1.0000 219\0.0000\ − 1.7804

6 InF 144\0.0000\ − 1.7722 268\0.0000\ − 1.5289 198\0.0000\ − 1.0352

7 F 56\0.0000\ − 1.0000 76\0.0000\ − 1.0000 247\0.0000\ − 1.5200

8 F 68\0.0000\ − 1.0000 124\0.0000\ − 1.0000 324\0.0000\ − 1.0000

9 F 88\0.0000\ − 1.0000 168\0.0000\ − 1.0000 178\0.0000\ − 1.0000

10 F 78\0.0000\ − 1.3068 692\0.9127\ − 1.1044 189\0.0000\ − 1.0522

Table 3 Comparison between Algorithm 1, PBM and SolvOpt for Problem 2

No. F/InF Algorithm 1 PBM SolvOpt
NE\ ffinal\gfinal NE\ ffinal\gfinal NE\ ffinal\gfinal

1 F 368\0.0000\ − 0.3662 804\0.0000\ − 0.0080 222\0.0000\ − 5.6551

2 InF 68\0.0000\ − 0.0000 244\0.0000\ − 0.0000 1458\0.0000\0.0000
3 InF 160\0.0000\ − 2.6929 492\0.0000\ − 0.2112 213\0.0000\ − 1.1238

4 InF 596\0.0000\ − 2.3098 806\0.0000\ − 0.8563 1511\0.0000\ − 0.0146

5 F 304\0.0000\ − 0.8774 1952\0.0000\ − 0.2451 230\0.0000\ − 4.4388

6 InF 128\0.0000\ − 0.1838 808\0.0000\ − 0.0037 375\0.0000\ − 0.1428

7 F 348\0.0000\ − 0.6142 420\0.0000\ − 0.2416 203\0.0000\ − 4.7954

8 InF 128\0.0000\ − 0.9227 425\0.0000\ − 0.8067 1369\0.0000\0.0000
9 F 48\0.0000\ − 0.0449 484\0.0000\0.0000 330\0.0000\ − 0.2070

10 InF 124\0.0000\ − 6.9328 248\0.0000\ − 0.2321 1233\0.0000\0.0000

Table 4 Comparison between Algorithm 1, PBM and SolvOpt for Problem 3

No. F/InF Algorithm 1 PBM SolvOpt
NE\ ffinal\gfinal NE\ ffinal\gfinal NE\ ffinal\gfinal

1 F 272\0.0000\ − 77.7359 404\0.0001\ − 78.9512 171\0.0000\ − 78.9827

2 InF 168\0.0000\ − 75.6739 425\0.0000\ − 78.9848 214\0.0000\ − 52.4033

3 InF 196\0.0000\ − 77.8558 803\0.0368\ − 47.3978 256\0.0000\ − 0.7503

4 InF 208\0.0000\ − 72.0699 680\0.0000\ − 78.7087 192\0.0000\ − 19.1845

5 InF 180\0.0000\ − 78.7087 502\0.1384\ − 77.2705 218\0.0000\ − 17.0941

6 InF 282\0.0000\ − 78.9753 692\0.0829\ − 20.7627 287\0.0000\ − 4.8255

7 InF 232\0.0000\ − 77.5943 520\0.0000\ − 78.9923 385\0.0000\ − 73.7245

8 F 108\0.0000\ − 78.9509 120\0.0000\ − 78.9993 171\0.0000\ − 63.9593

9 InF 312\0.0000\ − 70.0585 456\1.6416\ − 12.1302 270\0.0000\ − 52.0973

10 InF 204\0.0000\ − 64.1682 652\1.8050\0.3988 222\0.0000\ − 11.5426

123

470 N. Hoseini Monjezi, S. Nobakhtian

Table 5 Comparison between Algorithm 1, PBM and SolvOpt for Problem 4

No. F/InF Algorithm 1 PBM SolvOpt
NE\ ffinal\gfinal NE\ ffinal\gfinal NE\ ffinal\gfinal

1 F 456\0.1112\ − 0.0000 625\0.1112\ − 0.0002 269\0.1111\0.0000
2 F 116\0.1111\ − 0.0048 741\0.1111\ − 0.0000 366\0.1111\0.0001
3 InF 364\0.1111\ − 0.0001 521\0.1809\ − 0.3021 365\0.1111\0.0001
4 InF 136\0.1111\ − 0.0079 426\0.1113\ − 0.0001 417\0.1111\0.0000
5 InF 136\0.1111\ − 0.0011 254\0.1112\ − 0.0000 441\0.1111\0.0000
6 InF 132\0.1113\ − 0.0002 348\0.1112\ − 0.0000 478\0.1111\0.0000
7 InF 640\0.1111\ − 0.0000 421\0.1111\0.0000 390\0.1111\0.0001
8 InF 188\0.1112\ − 0.0007 506\0.1447\ − 0.0365 258\0.1111\0.0000
9 InF 160\0.1112\ − 0.0024 532\0.1111\ − 0.0002 344\0.1111\0.0000
10 InF 284\0.1111\ − 0.0004 487\0.8481\ − 0.7561 1036\0.1111\0.0000

Table 6 Comparison between Algorithm 1, PBM and SolvOpt for Problem 5

No. F/InF Algorithm 1 PBM SolvOpt
NE\ ffinal\gfinal NE\ ffinal\gfinal NE\ ffinal\gfinal

1 InF 300\1.9522\ − 0.4734 804\1.9522\ − 0.3688 198\1.9522\ − 0.3530

2 InF 180\1.9522\ − 0.3159 524\1.9522\ − 0.3452 260\1.9522\ − 0.3530

3 F 192\1.9522\ − 0.3093 540\1.9524\ − 0.3678 196\1.9522\ − 0.3530

4 InF 288\1.9522\ − 0.3573 325\1.9522\ − 0.3652 247\1.9522\ − 0.3530

5 F 216\1.9522\ − 0.3540 415\1.9522\ − 0.3459 192\1.9522\ − 0.3632

6 F 200\1.9522\ − 0.3610 684\1.9523\ − 0.3540 241\1.9522\ − 0.3540

7 F 212\1.9522\ − 0.3266 1284\1.9525\ − 0.3850 222\1.9522\ − 0.3540

8 F 240\1.9522\ − 0.4827 1204\1.9522\ − 0.3382 232\1.9522\ − 0.3540

9 F 160\1.9522\ − 0.4016 389\1.9523\ − 0.3525 204\1.9522\ − 0.3540

10 F 172\1.9522\ − 0.3370 625\1.9522\ − 0.3520 211\1.9522\ − 0.3549

Table 7 Comparison between Algorithm 1, PBM and SolvOpt for Problem 6

No. F/InF Algorithm 1 PBM SolvOpt
NE\ ffinal\gfinal NE\ ffinal\gfinal NE\ ffinal\gfinal

1 InF 420\2.2500\ − 0.0000 489\2.1982\0.0341 381\2.2500\0.0000
2 InF 441\2.2500\0.0000 524\2.2502\ − 0.0001 257\2.2500\0.0000
3 InF 400\2.2500\0.0000 596\2.2500\0.0000 402\2.2500\0.0000
4 InF 528\2.2500\ − 0.0000 624\2.2500\0.0000 436\2.2500\0.0000
5 F 632\2.2500\0.0000 826\2.2500\ − 0.0000 423\2.2500\0.0000
6 InF 384\2.2500\0.0000 528\2.2500\ − 0.0000 325\2.2500\0.0000
7 InF 308\2.2500\0.0000 478\2.8353\0.0304 417\2.2500\0.0000
8 InF 444\2.2500\ − 0.0000 498\2.2500\ − 0.0000 405\2.2500\0.0000
9 F 292\2.2500\ − 0.0000 752\2.2500\ − 0.0002 314\2.2500\0.0000
10 InF 293\2.2500\ − 0.0000 631\2.0753\0.2897 367\2.2500\ − 0.0000

123

A new infeasible proximal bundle algorithm for nonsmooth… 471

Table 8 Comparison between Algorithm 1, PBM and SolvOpt for Problem 7

No. F/InF Algorithm1 PBM SolvOpt
NE\ ffinal\gfinal NE\ ffinal\gfinal NE\ ffinal\gfinal

1 F 568\ − 44\ − 0.0000 745\ − 44.0000\ − 0.0000 464\ − 44\ − 0.0001

2 InF 884\ − 43.9999\ − 0.0001 532\ − 44.0000\ − 4.1799 2242\ − 44\0.0000
3 InF 784\ − 44.0001\ − 0.0000 578\ − 41.9821\ − 5.5826 517\ − 44.0000\0.0000
4 InF 800\ − 44\ − 0.0000 792\ − 43.8921\ − 3.3509 401\ − 44.0001\ − 0.0000

5 InF 680\ − 44.0001\ − 0.0001 1256\ − 44\ − 0.0002 367\ − 44\0.0002
6 F 576\ − 44\ − 0.0000 652\ − 44\0.0005 371\ − 44\0.0004
7 F 500\ − 43.9999\ − 0.0000 745\ − 44\0.0003 365\ − 44\0.0004
8 F 300\ − 44\ − 0.0004 364\ − 44\0.0000 388\ − 44\0.0000
9 InF 428\ − 44\ − 0.0000 589\ − 44\ − 0.0000 388\ − 43.9999\ − 0.0001

10 InF 820\ − 44.0001\ − 0.0003 859\ − 43.8987\0.1204 399\ − 44\ − 0.0001

Table 9 Comparison between Algorithm 1, PBM and SolvOpt for Problem 8

No. F/InF Algorithm 1 PBM SolvOpt
NE\ ffinal\gfinal NE\ ffinal\gfinal NE\ ffinal\gfinal

1 InF 300\2.6667\ − 0.0000 406\2.6667\ − 0.0000 283\2.6667\0.0000
2 InF 288\2.6667\0.0000 336\2.6667\ − 0.0000 323\2.6667\0.0000
3 InF 168\2.6667\ − 0.0000 384\2.6667\0.0000 306\2.6667\0.0000
4 InF 280\2.6667\ − 0.0000 542\2.6667\ − 0.0000 349\2.6667\0.0000
5 InF 228\2.6667\ − 0.0000 386\2.6668\ − 0.0001 320\2.6667\0.0000
6 F 312\2.6667\ − 0.0000 488\2.6667\0.0000 339\2.6667\0.0000
7 F 384\2.6667\ − 0.0000 566\2.6667\ − 0.0000 351\2.6667\0.0000
8 InF 376\2.6667\ − 0.0000 558\2.6667\0.0000 334\2.6667\0.0000
9 F 320\2.6667\ − 0.0000 504\2.6667\ − 0.0000 337\2.6667\0.0000
10 InF 308\2.6667\0.0000 488\2.6667\ − 0.0000 381\2.6667\0.0000

with the least number of function evaluations. If we choose being within a factor of
log(τ) � 0.4 of the best solver as the scope of our interest, then Algorithm 1 is the
best solver for all problems while SolvOpt and PBM are the best solvers for 78% and
50% of the problems.

Figure 2 illustrates the data profiles for Experiment 1. Suppose the user has a
budget limit of 100 number of function evaluations; according to Fig. 2, with this
budget Algorithm 1 has the best performance, solving roughly 68% of the problems;
while SolvOpt and PBM solve 52% and 18% of the problems, respectively. Moreover,
if the user has a budget limit of 200 number of function evaluations, then Algorithm 1
solves 100% of the problems and it has the best performance among all the solvers.
While PBM has the worst performance among all the solvers since with this budget it
solves roughly 64% of the problems.

Moreover it is clear from Figs. 1 and 2 that Algorithm 1 and PBM can solve 100%
and 97% of the problems, while PBM solves 80% of the problems.

123

472 N. Hoseini Monjezi, S. Nobakhtian

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

ρ
τ

log(τ

Algorithm 1

PBM

SolvOpt

Fig. 1 Performance profile for Experiment 1

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700

d_
s(

α

Number of Func�on Evalua�ons

Algorithm 1

PBM

SolvOpt

Fig. 2 Data profile for Experiment 1

5.2 Experiment 2

In this subsection, we consider a series of polynomial functions developed in [10],
which were used in [13,14,25,37] and these problems can be formulated with any
number of variables. For each i = 1, 2, . . . , n, the function hi :Rn → R is defined by
hi (x) := (i x2i − 2xi) + ∑n

j=1 x j . There are five classes of test functions defined by
hi in [10] as follows:

f1(x) :=
n∑

i=1

|hi (x)|,

f2(x) := max
1≤i≤n

|hi (x)|,

123

A new infeasible proximal bundle algorithm for nonsmooth… 473

f3(x) :=
n∑

i=1

|hi (x)| + 1

2
‖x‖2,

f4(x) :=
n∑

i=1

|hi (x)| + 1

2
‖x‖,

f5(x) :=
n∑

i=1

(hi (x))
2.

It has been proved in [13] that these test functions are nonconvex and globally
lower−C1 in R2 and they are nonsmooth except f5. These properties carry to higher
dimensions as well. We also have 0 = minx∈Rn fk(x) and {0} ∈ argminx∈Rn fk(x) for
k = 1, 2, 3, 4, 5. For constraint functions, we consider the pointwise maximum of a
finite collection of quadratic functions from [12], as follows

g(x) = max
1≤i≤N

{〈x, Ai x〉 + 〈bi , x〉 + ci },

where Ai are n × n matrices, bi ∈ R
n and ci ∈ R for i = 1, 2, . . . , N . The terms

of Ai and bi and the coefficients ci were chosen randomly as uniformly distributed
numbers in [−5, 5]. We consider the following test problems

min
x∈X fi (x)

g(x) ≤ 0,

where X ⊆ R
n for i = 1, 2, 3, 4, 5 and n = 2, 3, 4, 5, 10, 20, 50. We use two starting

points as follows x0 = [1, 1, . . . , 1] and x0 = [1, 1/2, . . . , 1/n] for each problem,
hence we have 70 examples.

Our results for deterministic tests are summarized in Tables 10, 11, 12, 13 and 14,
which show a reasonable performance of Algorithm 1. Where the notations are the
same as the previous subsection. We analyse the results in more details as follows:

• For the objective function f1, we tested 14 nonconvex examples. Table 10 shows
that values of ffinal obtained by Algorithm 1 and SolvOpt are quite correct whereas
PBM can not calculate the correct solution for n = 10, 20, 50. Algorithm 1 needs
the least number of function evaluations for n = 2, 3, 4, whereas SolvOpt uses the
least function evaluations for n = 5, 10, 20, 50.

• For the objective function f2, we tested 14 examples. Table 11 demonstrates that
ffinal obtained by Algorithm 1 is quite correct for all examples. Whereas, SolvOpt
can not find the correct solution for n = 5 with x0 = [1, 1, . . . , 1] and PBM
can not calculate the correct solutions for n = 5, 20, 50 with x0 = [1, 1, . . . , 1]
and for n = 50 with x0 = [1, 1/2, . . . , 1/n]. Which means that Algorithm 1 has
the most accuracy for the objective function f2. Moreover, Algorithm 1 needs
the least number of function evaluations for 10 examples, SolvOpt uses the least
number of function evaluations for 3 examples and PBM needs the least number
of evaluations for one example.

123

474 N. Hoseini Monjezi, S. Nobakhtian

• The corresponding results for the 14 examples of function f3 are reported in
Table 12. These results show that ffinal obtained by Algorithm 1 is quite correct
for all examples. While, PBM fails to find the correct solution for n = 20, 50 with
x0 = [1, 1, . . . , 1] and for n = 10with x0 = [1, 1/2, . . . , 1/n]. Also the generated
solutions by SolvOpt are false for n = 10, 50 with x0 = [1, 1, . . . , 1]. Moreover
Algorithm 1 needs the least number of function evaluations for 8 examples and
SolvOpt uses the least number of function evaluations for 6 examples.

• The results for function f4 are proposed in Table 13. These results show that ffinal
obtained by Algorithm 1 is quite correct for all examples except n = 20 with
x0 = [1, 1, . . . , 1] and n = 50 with x0 = [1, 1/2, . . . , 1/n]. Whereas, PBM can
not calculate the correct solutions for n = 3, 10, 20, 50with x0 = [1, 1, . . . , 1] and
for n = 10, 50 with x0 = [1, 1/2, . . . , 1/n] and SolvOpt fails to find the correct
solutions for n = 10, 20, 50 with x0 = [1, 1, . . . , 1]. Moreover Algorithm 1 uses
the least number of evaluations for 6 examples, SolvOpt needs the least number of
function evaluations for 7 examples and PBM needs the least number of function
evaluations for one example.

• The generated results for function f5 are stated in Table 14. The results illustrate
that Algorithm 1 finds the correct solutions for all examples. While, PBM fails
to find the correct solutions for n = 3, 5, 50 with x0 = [1, 1, . . . , 1] and for
n = 5, 10, 20 with x0 = [1, 1/2, . . . , 1/n] and SolvOpt can not calculate the
correct solution for n = 20 with x0 = [1, 1, . . . , 1]. Moreover SolvOpt uses the
least number of function evaluations for 12 examples and Algorithm 1 needs the
least number of function evaluations for 2 examples. Which means that SolvOpt
uses the least number of evaluations for function f5, that these results are acceptable
since f5 is a smooth function.

Figure 3 presents the performance profiles for Experiment 2. SolvOpt and Algo-
rithm 1 have the best performance for 51% and 47% of the problems with the least
number of function evaluations. While PBM has the best performance for 5% of the
problems. The performances of Algorithm 1 and SolvOpt are more competitive than
the performance of PBM method for these problems.

Figure 4 states the data profiles for Experiment 2. Suppose that the user has a budget
limit of 100 number of function evaluations; according to Fig. 4, with this budget
SolvOpt and Algorithm 1 solves roughly 53% and 52% of the problems, respectively;
while PBM solves about 18% of the problems. Moreover, if the user has a budget limit
of 300 number of function evaluations, then Algorithm 1 and SolvOpt solve about
93% and 90% of the problems; while PBM solves 58% of the problems.

Moreover the results in Figs. 3 and 4 are shown that Algorithm 1 and PBM can
solve 97% and 94% of the problems, respectively; while PBM solves roughly 70% of
the problems.

5.3 The behaviour of parameter�l

At the end, we are interested in exploring the assumption that the parameter ηl remains
bounded. In [14] the authors report that ηl was less than 2n+2 when solving 73 of the

123

A new infeasible proximal bundle algorithm for nonsmooth… 475

Table 10 Comparison between Algorithm 1, PBM and SolvOpt for f1

n Algorithm 1 PBM SolvOpt
NE\ ffinal\gfinal NE\ ffinal\gfinal NE\ ffinal\gfinal

x0 = [1, 1, . . . , 1]
2 228\0.0000\ − 13.1440 440\0.0000\ − 13.0022 394\0.0000\ − 13.0000

3 684\0.0000\ − 8.0001 740\0.0000\ − 8.0000 693\0.0000\ − 8.0000

4 556\0.0000\ − 5.0032 612\0.0000\ − 5.0035 809\0.0000\ − 5.0000

5 3428\0.0000\ − 1.0002 2484\0.0000\ − 0.0000 585\0.0000\ − 0.0000

10 6160\0.0000\ − 4.0575 4884\0.0052\ − 5.7132 700\0.0000\ − 5.0515

20 5556\0.0000\ − 7.9350 4140\0.0061\ − 8.5914 885\0.0000\ − 0.3540

50 4884\0.0000\ − 4.7010 5188\0.0068\ − 4.7139 1315\0.0000\ − 3.6234

x0 = [1, 1/2, . . . , 1/n]
2 100\0.0000\ − 13.0021 404\0.0000\ − 13.0029 449\0.0000\ − 13.0145

3 152\0.0000\ − 8.0059 1008\0.0000\ − 8.0031 718\0.0000\ − 8.0239

4 1328\0.0000\ − 5.0008 492\0.0000\ − 5.0011 575\0.0000\ − 5.0011

5 1552\0.0000\ − 4.1016 1580\0.0000\ − 4.1041 611\0.0000\ − 4.1012

10 944\0.0000\ − 41.0000 920\0.0032\ − 35.6420 584\0.0000\ − 41.0000

20 2624\0.0000\ − 7.1000 2328\0.0015\ − 6.5421 593\0.0000\ − 7.1000

50 2500\0.0000\ − 50.9987 2884\0.0041\ − 40.5231 1719\0.0000\ − 51.5825

Table 11 Comparison between Algorithm 1, PBM and SolvOpt for f2

n Algorithm 1 PBM SolvOpt
NE\ ffinal\gfinal NE\ ffinal\gfinal NE\ ffinal\gfinal

x0 = [1, 1, . . . , 1]
2 120\0.0000\ − 5.1203 500\0.0000\0.0000 251\0.0000\0.0000
3 784\0.0000\ − 8.0031 740\0.0000\ − 8.0129 693\0.0000\ − 8.0015

4 556\0.0000\ − 5.0029 612\0.0000\ − 5.0035 809\0.0000\ − 5.0181

5 1708\0.0000\ − 4.1002 1436\0.0031\ − 3.0035 503\0.1640\ − 3.1258

10 1344\0.0000\ − 41.0071 2004\0.0000\ − 41.0089 1441\0.0000\ − 36.0887

20 2952\0.0000\ − 11.1556 3164\0.0049\ − 5.1549 3283\0.0000\ − 6.1300

50 5364\0.0000\ − 4.9401 8044\0.0068\ − 50.0729 7270\0.0000\ − 55.0339

x0 = [1, 1/2, . . . , 1/n]
2 192\0.0000\ − 7.99811 60\0.0000\ − 13.0278 286\0.0000\ − 13.0000

3 268\0.0000\ − 8.0131 1004\0.0000\ − 7.9985 677\0.0000\ − 8.4212

4 596\0.0000\ − 5.0000 631\0.0000\ − 5.0000 692\0.0000\ − 5.0000

5 224\0.0000\ − 4.0998 659\0.0000\ − 4.0085 707\0.0000\ − 4.1000

10 520\0.0000\ − 41.0001 1208\0.0000\ − 41.0005 952\0.0000\ − 41.0000

20 6080\0.0000\ − 7.1578 6448\0.0000\ − 6.5565 4204\0.0000\ − 6.5589

50 7284\0.0000\ − 47.8721 8244\0.0069\ − 46.7210 8277\0.0000\ − 48.8494

123

476 N. Hoseini Monjezi, S. Nobakhtian

Table 12 Comparison between Algorithm 1, PBM and SolvOpt for f3

n Algorithm 1 PBM SolvOpt
NE\ ffinal\gfinal NE\ ffinal\gfinal NE\ ffinal\gfinal

x0 = [1, 1, . . . , 1]
2 152\0.0000\ − 14.8587 248\0.0000\ − 15.0863 250\0.0000\ − 15.0000

3 484\0.0000\ − 14.9983 896\0.0000\ − 15.0001 546\0.0000\ − 15.0000

4 588\0.0000\ − 10.9995 1032\0.0000\ − 10.9998 601\0.0000\ − 11.0000

5 332\0.0000\ − 5.0000 780\0.0000\ − 5.0000 593\0.0000\ − 5.0000

10 1092\0.0000\ − 3.0002 1404\0.0000\ − 3.0000 535\0.0915\ − 12.5151

20 3140\0.0000\ − 2.0999 2676\0.0314\ − 2.1000 1064\0.0000\ − 2.1000

50 1684\0.0000\ − 2.1621 3412\0.1079\ − 3.1312 1343\0.0514\ − 6.1794

x0 = [1, 1/2, . . . , 1/n]
2 164\0.0000\ − 15.8553 636\0.0000\ − 14.9981 308\0.0000\ − 15.0000

3 156\0.0000\ − 15.0000 756\0.0000\ − 15.0005 656\0.0000\ − 15.0000

4 800\0.0000\ − 11.0000 812\0.0000\ − 11.0000 573\0.0000\ − 11.0000

5 352\0.0000\ − 5.0000 756\0.0000\ − 5.0003 550\0.0000\ − 5.0000

10 448\0.0000\ − 3.0000 636\0.0123\ − 3.0121 577\0.0000\ − 3.1000

20 2724\0.0000\ − 2.1000 1836\0.0000\ − 2.0999 532\0.0000\ − 2.1000

50 1516\0.0000\ − 2.1721 2892\0.0000\ − 2.1617 612\0.0000\ − 2.1512

Table 13 Comparison between Algorithm 1, PBM and SolvOpt for f4

n Algorithm 1 PBM SolvOpt
NE\ ffinal\gfinal NE\ ffinal\gfinal NE\ ffinal\gfinal

x0 = [1, 1, . . . , 1]
2 272\0.0000\ − 15.0041 380\0.0000\ − 15.0003 389\0.0000\ − 15.0000

3 940\0.0000\ − 14.9950 1132\0.0012\ − 17.9989 509\0.0000\ − 15.0000

4 296\0.0000\ − 11.0000 452\0.0000\ − 11.0000 537\0.0000\ − 11.0000

5 384\0.0000\ − 4.9998 1156\0.0000\ − 5.0002 557\0.0000\ − 5.0000

10 1140\0.0000\ − 2.9999 1488\0.0409\ − 4.9955 587\0.2139\ − 12.5151

20 2824\0.0241\ − 3.1519 4084\0.3151\ − 4.1981 688\0.1016\ − 2.3618

50 1556\0.0000\ − 2.1515 2956\0.0721\ − 8.2014 987\0.1685\ − 4.3566

x0 = [1, 1/2, . . . , 1/n]
2 332\0.0000\ − 15.0036 176\0.0000\ − 15.0000 423\0.0000\ − 15.0000

3 144\0.0000\ − 14.9979 1208\0.0000\ − 14.9851 385\0.0000\ − 15.0000

4 404\0.0000\ − 10.9994 596\0.0000\ − 10.9885 477\0.0000\ − 11.0000

5 388\0.0000\ − 5.0000 1084\0.0000\ − 4.9985 580\0.0000\ − 5.0000

10 716\0.0000\ − 3.0000 1176\0.1317\ − 4.1321 613\0.0000\ − 3.0000

20 1248\0.0000\ − 2.1000 2056\0.0000\ − 2.1000 1138\0.0000\ − 2.1000

50 844\0.0204\ − 2.1701 3316\0.1251\ − 2.1712 712\0.0000\ − 2.1510

123

A new infeasible proximal bundle algorithm for nonsmooth… 477

Table 14 Comparison between Algorithm 1, PBM and SolvOpt for f5

n Algorithm 1 PBM SolvOpt
NE\ ffinal\gfinal NE\ ffinal\gfinal NE\ ffinal\gfinal

x0 = [1, 1, . . . , 1]
2 172\0.0000\ − 16.8166 388\0.0000\ − 17.1210 173\0.0000\ − 15.0117

3 348\0.0000\ − 14.8979 148\0.0012\ − 14.8951 206\0.0000\ − 15.0000

4 720\0.0000\ − 10.9980 804\0.0000\ − 10.9989 244\0.0000\ − 11.0000

5 1092\0.0000\ − 4.9244 1752\0.0235\ − 17.9985 264\0.0000\ − 5.0000

10 4348\0.0000\ − 2.9973 4804\0.0000\ − 2.9959 332\0.0000\ − 3.0000

20 2404\0.0000\ − 6.7112 3004\0.0000\ − 4.1312 448\0.1016\ − 2.9628

50 1612\0.0000\ − 2.8131 2052\0.1091\ − 2.1510 698\0.0000\ − 2.1392

x0 = [1, 1/2, . . . , 1/n]
2 104\0.0000\ − 15.0004 220\0.0000\ − 15.0010 172\0.0000\ − 15.0071

3 240\0.0000\ − 14.9981 300\0.0000\ − 14.8999 213\0.0000\ − 15.0000

4 468\0.0000\ − 11.0734 996\0.0000\ − 11.0000 233\0.0000\ − 11.0000

5 744\0.0000\ − 4.9998 1022\0.0045\ − 10.9597 230\0.0000\ − 5.0000

10 2920\0.0000\ − 3.0000 3284\0.1317\ − 3.0000 312\0.0000\ − 3.0000

20 1316\0.0000\ − 2.1008 1924\0.1561\ − 2.1010 491\0.0000\ − 2.4112

50 1276\0.0000\ − 2.1590 1724\0.0000\ − .2.2131 560\0.0000\ − 2.1731

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

ρ
τ

log(τ

Algorithm 1

PBM

SolvOpt

Fig. 3 Performance profile for Experiment 2

75 exact unconstrained optimization problems; for one test problem ηl was between
2n + 2 and 25n and for the remaining one ηl exceeded 25n.

123

478 N. Hoseini Monjezi, S. Nobakhtian

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700

d_
s(
α

Number of Func�on Evalua�ons

Algorithm 1

PBM

SolvOpt

Fig. 4 Data profile for Experiment 2

In our results, to select ηl (in Step 2) we use (7) with equality, i.e.,

ηl = max

⎧
⎪⎪⎨

⎪⎪⎩
max

j∈Loracle
l

y j �=xk

⎧
⎨

⎩

−
(
ekf j + g+(xk)

)

bkj
,
−

(
ekg j

+ g+(xk) − g(xk)
)

bkj

⎫
⎬

⎭
, ω

⎫
⎪⎪⎬

⎪⎪⎭
+ ω.

For solving the 80 problems of Experiment 1 described in Sect. 5.1, ηl = 2ω in 60
problems, ηl is bounded by 2n in 16 problems and it is between 2n and 25n for 4 test
problems. On the other hand, for solving the 70 problems of Experiment 2 considered
in Sect. 5.1, ηl = 2ω in 25 problems, ηl is bounded by 2n in 39 problems and it is
between 2n and 25n for 6 test problems. Overall, the experiments support that the
assumption on the sequence {ηl} is quite reasonable and this sequence is bounded.

6 Conclusions

We have presented an infeasible proximal bundle method using the improvement
function and the aggregate technique which is adapted for nonsmooth nonconvex
constrained optimization problems with regular functions. The global convergence
of the proposed algorithm was proved in the sense that every accumulation point of
the sequence of serious iterates is stationary for the improvement function, with an
arbitrary starting point. We present results of numerical experiments using some test
problems.Our limited computational experiments suggest the good performance of the
proposed method and we can say that our new solver is comparable with the existing
solvers for nonsmooth nonconvex optimization problems.

123

A new infeasible proximal bundle algorithm for nonsmooth… 479

Acknowledgements The second-named author was partially supported by a Grant from IPM (No.
98900417). The authors would like to extend gratitude toward the anonymous referees whose suggestions
helped to improve the presentation of this paper.

References

1. Asaadi, J.: A computational comparison of some non-linear programs. Math. Program. 4, 144–154
(1973)

2. Beiranvand, V., Hare, W., Lucet, Y.: Best practices for comparing optimization algorithms. Optim.
Eng. 18, 815–848 (2017)

3. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory.
Springer, New York (1998)

4. Correa, R., Lemaréchal, C.: Convergence of some algorithms for convexminimization.Math. Program.
62, 261–275 (1993)

5. Curtis, F.E., Overton, M.L.: A sequential quadratic programming algorithm for nonconvex, nonsmooth
constrained optimization. SIAM J. Optim. 22, 474–500 (2012)

6. Daniilidis, A., Georgiev, P.: Approximate convexity and submonotonicity. J. Math. Anal. Appl. 291,
292–301 (2004)

7. Dao, M.N.: Bundle method for nonconvex nonsmooth constrained optimization. J. Convex Anal. 22,
1061–1090 (2015)

8. Dao, M.N., Gwinner, J., Noll, D., Ovcharova, N.: Nonconvex bundle method with application to a
delamination problem. Comput. Optim. Appl. 65, 173–203 (2016)

9. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-
gram. 91, 201–213 (2002)

10. Ferrier, C.: Bornes Dualse de Problemes d’Optimisation Polynomiaux. Ph.D. thesis, Laboratoire
Approximation et Optimisation, Universite Paul, Toulouse (1997)

11. Gabarrou, M., Alazard, D., Noll, D.: Design of a flight control architecture using a non-convex bundle
method. Math. Control Signals Syst. 25, 257–290 (2013)

12. Hare, W., Sagastizábal, C.: Computing proximal points of nonconvex functions. Math. Program. 116,
221–258 (2009)

13. Hare,W., Sagastizábal, C.: A redistributed proximal bundlemethod for nonconvex optimization. SIAM
J. Optim. 20, 2442–2473 (2010)

14. Hare,W., Sagastizábal,C., Solodov,M.:Aproximal bundlemethod for nonsmoothnonconvex functions
with inexact information. Comput. Optim. Appl. 63, 1–28 (2016)

15. Hintermüller, M.: A proximal bundle method based on approximate subgradients. Comput. Optim.
Appl. 20, 245–266 (2001)

16. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex analysis and minimization algorithms II. In: Advanced
Theory and Bundle Methods. vol. 306 of Grundlehren der mathematischen Wissenschaften (1993)

17. Hoseini, N., Nobakhtian, S.: A new trust region method for nonsmooth nonconvex optimization.
Optimization 67, 1265–1286 (2018)

18. Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M.M.: A proximal bundle method for nonsmooth DC
optimization utilizing nonconvex cutting planes. J. Glob. Optim. 68, 501–535 (2017)

19. Karas, E., Ribeiro, A., Sagastizábal, C., Solodov, M.: A bundle filter method for nonsmooth convex
constrained optimization. Math. Program. Ser. B 116, 297–320 (2009)

20. Kiwiel, K.C.: A linearization algorithm for nonsmooth minimization. Math. Oper. Res. 10, 185–194
(1985)

21. Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Lecture Notes in Mathematics,
vol. 1133. Springer, Berlin (1985)

22. Kiwiel, K.C.: Restricted step and Levenberg–Marquardt techniques in proximal bundle methods for
nonconvex nondifferentiable optimization. SIAM J. Optim. 6, 227–249 (1996)

23. Lemaréchal, C.: Bundle methods in nonsmooth optimization. In: Lemaréchal, C., Mifflin, R. (eds.)
Nonsmooth Optimization (Laxenburg, 1977), IIASA Proc. Ser., vol. 3, pp. 79–102. Pergamon Press,
Oxford (1978)

24. Lemaréchal, C.: Lagrangian relaxation. In: Computational Combinatorial Optimization, Lecture Notes
in Computer Science, vol. 2241, pp. 112–156. Springer, Berlin (2001)

123

480 N. Hoseini Monjezi, S. Nobakhtian

25. Lv, J., Pang, L.P., Meng, F.Y.: A proximal bundle method for constrained nonsmooth nonconvex
optimization with inexact information. J. Glob. Optim. 70, 517–549 (2017)

26. Lv, J., Pang, L.P., Xu, N., Xiao, Z.-H.: An infeasible bundle method for nonconvex constrained opti-
mization with application to semi-infinite programming problems. Numer. Algorithm 80, 397–427
(2019)

27. Mäkelä,M.M.,Neittaanmäki, P.:NonsmoothOptimization:Analysis andAlgorithmswithApplications
to Optimal Control. World Scientific, Singapore (1992)

28. Mifflin, R.: A modification and extension of Lemarechal’s algorithm for nonsmooth minimization. In:
Sorensen, D.C., Wets, R.B. (eds.) Nondifferential and Variational Techniques in optimization (Lex-
ington, 1980), Mathematical Programming Studies, vol. 17, pp. 77–90. North-Holland, Amsterdam
(1982)

29. Moré, J.J., Wild, S.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20, 172–
191 (2009)

30. Noll, D.: Cutting plane oracles to minimize non-smooth non-convex functions. Set-Valued Var. Anal.
18, 531–568 (2010)

31. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)
32. Rustem, B., Nguyen, Q.: An algorithm for the inequality-constrained discretemin-max problem. SIAM

J. Optim. 8, 265–283 (1998)
33. Sagastizábal, C., Solodov, M.: An infeasible bundle method for nonsmooth convex constrained opti-

mization without a penalty function or a filter. SIAM J. Optim. 16, 146–169 (2005)
34. Shor, N.Z.: Minimization Methods for Non-Differentiable Functions. Springer, Berlin (1985)
35. Spingarn, J.E.: Submonotone subdifferentials of Lipschitz functions. Trans.Am.Math. Soc. 264, 77–89

(1981)
36. Tang, C.M., Liu, S., Jian, J.B., Li, J.L.: A feasible SQP-GS algorithm for nonconvex, nonsmooth

constrained optimization. Numer. Algorithms 65, 1–22 (2014)
37. Yang, Y., Pang, L., Ma, X., Shen, J.: Constrained nonconvex nonsmooth optimization via proximal

bundle method. J. Optim. Theory Appl. 163, 900–925 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	A new infeasible proximal bundle algorithm for nonsmooth nonconvex constrained optimization
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The improvement function

	3 Description of the algorithm
	3.1 Model function
	3.2 Acceptance test
	3.3 Updating the model
	3.4 Upper envelope model
	3.5 Statement of the algorithm

	4 Convergence analysis
	5 Numerical experiments
	5.1 Experiment 1
	5.2 Experiment 2
	5.3 The behaviour of parameter ηl

	6 Conclusions
	Acknowledgements
	References

