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Abstract

We propose a family of spectral gradient methods, whose stepsize is determined by
a convex combination of the long Barzilai—-Borwein (BB) stepsize and the short BB
stepsize. Each member of the family is shown to share certain quasi-Newton property
in the sense of least squares. The family also includes some other gradient methods as
its special cases. We prove that the family of methods is R-superlinearly convergent
for two-dimensional strictly convex quadratics. Moreover, the family is R-linearly
convergent in the any-dimensional case. Numerical results of the family with different
settings are presented, which demonstrate that the proposed family is promising.

Keywords Unconstrained optimization - Steepest descent method - Spectral gradient
method - R-linear convergence - R-superlinear convergence

1 Introduction
Consider the unconstrained optimization problem

min £ (x), ey
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where f(x) : R" — Ris a continuously differentiable function. The gradient method
solves problem (1) by updating iterates as

Xk41 = Xk — Ok &k )

where g = V f(xr) and o > 0 is the stepsize. Different gradient methods use
different formulae for stepsizes.

The simplest gradient method is the steepest descent (SD) method due to Cauchy
[6], which computes the stepsize by exact line search,

SD .
ap” =argmin f(xx — agr)-
aeR

As is well known, every two consecutive gradients generated by the SD method are
perpendicular to each other. Moreover, if f(x) is a strictly convex quadratic function,
ie.,

fx) = %xTAx —bTx, (3)

where A € R™" is symmetric positive definite and b € R”", it can be shown that
the gradients will asymptotically reduce to a two-dimensional subspace spanned by
the two eigenvectors corresponding to the largest and smallest eigenvalues of the
matrix A and hence zigzag occurs, see [1,32] for more details. This property seriously
deteriorates the performance of the SD method, especially when the condition number
of A is large.

An important approach that changes our perspectives on the effectiveness of gradi-
ent methods is proposed by Barzilai and Borwein [2]. They viewed the updating rule
(2) as

Xk+1 = Xk — Drgr, )

where Dy = oy I. Similar to the quasi-Newton method [19], D, lis required to satisfy
the secant equation

Bisg—1 = yr—1 (5)

to approximate the Hessian as possible as it can. Here, sy = xx — x;—1 and yg_1 =
gk — 8k—1- However, since Dy is diagonal with identical diagonal elements, it is
usually impossible to find an oy such that D,:l fulfills (5) if the dimension n > 1.

Thus, Barzilai and Borwein required D,:l to meet the secant equation in the sense of
least squares,

Dy = arg Dm—igzll ID™ skt — ye—tl, (©)
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which yields
T
Sy 18k—1
BB1 k-1
ofB1 = ittt (M)
Sg—1Yk—1
Here and below, || - || means the Euclidean norm. On the other hand, one can also

calculate the stepsize by requiring Dy to satisfy
Hpyi—1 = Sk—1- ®)
That is,
Dy = arg min [lsk—1 — Dyg—1l, ©)
D=ual
which gives

T
St_1Vk—
abB2 = X 1Yk—1 (10)

yz_1Yk—1.

Apparently, when sy > 0, there holds afB! > 882 In other words, o

a long stepsize while o« EB 2 is a short one, which implies that oz,f B1 is more aggressive

than ot,f B2 in decreasing the objective value. Extensive numerical experiments show
that the long stepsize is superior to the short one in many cases, see [4,22,34] for
example. In what follows we will refer to the gradient method with the long stepsize
oz,]{B B1 a5 the BB method without specification.

Barzilai and Borwein [2] proved their method with the short BB stepsize o ,f B2 s R-
superlinearly convergent for two-dimensional strictly convex quadratics. An improved
R-superlinear convergence result for the BB method was given by Dai [8]. Global and
R-linear convergence of the BB method for general n-dimensional strictly convex
quadratics were established by Raydan [33] and Dai and Liao [14], respectively. The
BB method has also been extended to solve general nonlinear optimization problems.
By incorporating the nonmontone line search proposed by Grippo et al. [26], Ray-
dan [34] developed the global BB method for general unconstrained problems. Later,
Birgin et al. [3] proposed the so-called spectral projected gradient method which
extends Raydan’s method to smooth convex constrained problems. Dai and Fletcher
[11] designed projected BB methods for large-scale box-constrained quadratic pro-
gramming. Recently, by resorting to the smoothing techniques, Huang and Liu [27]
generalized the projected BB method with modifications to solve non-Lipschitz opti-
mization problems.

The relationship between the stepsizes in BB-like methods and the spectrum of the
Hessian of the objective function has been explored in several studies. Frassoldati et al.
[23] tried to exploit the long BB stepsize close to the reciprocal of the smallest eigen-
value of the Hessian, yielding the ABBminl and ABBmin2 methods. De Asmundis et
al. [18] developed the so-called SDA method which employs a short stepsize approx-
imates the reciprocal of the largest eigenvalue of the Hessian. Following the line of

BB1
A 1S

@ Springer



46 Y.-H. Dai et al.

[18], Gonzaga and Schneider [25] suggested a monotone method for quadratics where
the stepsizes are obtained in a way similar to the SD method. De Asmundis et al. [17]
proposed the SDC method which exploits the spectral property of Yuan’s stepsize
[16]. Kalousek [30] considered the SD method with random stepsizes lying between
the reciprocal of the largest eigenvalue and the smallest eigenvalue of the Hessian and
analysed the optimal distribution of random stepsizes that guarantees the maximum
asymptotic convergence rate.

Applications of the BB method and its variants have largely been developed for
problems arising in various different areas including image restoration [37], signal pro-
cessing [31], eigenvalue problems [29], nonnegative matrix factorization [28], sparse
reconstruction [38], machine learning [36], etc. We refer the reader to [4,7,13,20,22,39]
and references therein for more spectral gradient methods and extensions.

The success of the BB method and its variants motivates us to consider spectral
gradient methods. Our goal is to present a family of spectral gradient methods for
optimization. Notice that the Broyden class of quasi-Newton methods [5] approximate
the inverse of the Hessian by

Hf =tHEFYS + (1 — o) HPFP, (11)

where 7 € [0, 1]is a scalar parameter and HZF ¢S and HPF'? are the BFGS and DFP
matrices, respectively, that satisfy the secant equation (8), which further implies that

tHE Sy + (1 = 0 HP Pyt = s,
ie.,
t(HE P yy = sim) + (= O HP et = si-) = 0. (12)
Since the inverse of HkBFGS, say B,fFGS, satisfies (5), we can modify (12) as
t(BEF S sk — yi—) + (1 = D) (it — HP P yemy) = 0. (13)
Motivated by the above observation, we employ the idea of the BB method to approx-

imate the Hessian and its inverse by diagonal matrices. Particularly, we require the
matrix D = «/ to be the solution of

min e (D skt — ye—1) + (1 — T)(sk—1 — Dyk—1)]. (14)

In the next section, we will show that the stepsize given by the convex combination

of the long BB stepsize (xfBl and the short BB stepsize (x,fBz, ie.,

a = paf B+ (1 — a8, (15)

where yx € [0, 1], is a solution to (14). Clearly, this is a one-parametric family of
stepsizes, which include the two BB stepsizes as special instances. Moreover, any
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stepsize lies in the interval [ 52, afB!] is a special case of the family. For example,

the positive stepsize given by the geometrical mean of o ,f Bl and ,f B2 19,

p lIsk—1l
of = JapPap? = 16)

~ el

We further prove that the family of spectral gradient methods (15) is R-superlinearly
convergent for two-dimensional strictly convex quadratics. For the n-dimensional case,
the family is proved to be R-linearly convergent. Numerical results of the family (15)
with different settings of y; are presented and compared with other gradient methods,
including the BB method [2], the alternate BB method (ALBB) [11], the adaptive BB
method (ABB) [40], the cyclic BB method with stepsize o ,f Bl (CBB1)[12], the cyclic
BB method with stepsize oz,f B2 (CBB2), the cyclic method with stepsize o ,f (CP), the
Dai-Yuan method (DY) [16], the ABBminl and ABBmin2 methods [23], and the SDC
method [17]. The comparisons demonstrate that the proposed family is promising.

The paper is organized as follows. In Sect. 2, we show that each stepsize in the
family (15) solves some least squares problem (14) and hence possesses certain quasi-
Newton property. In Sect. 3, we establish R-superlinear convergence of the family
(15) for two-dimensional strictly convex quadratics and R-linear convergence for the
n-dimensional case, respectively. In Sect. 4, we discuss different selection rules for
the parameter y. In Sect. 5, we conduct some numerical comparisons of our approach
and other gradient methods. Finally, some conclusions are drawn in Sect. 6.

2 Quasi-Newton property of the family (15)

In this section, we show that each stepsize in the family (15) enjoys certain quasi-
Newton property.

For the sake of simplicity, we discard the subscript of sy and yx—1 in the following
part of this section, i.e., s = sg_1, ¥y = yr—1. Let

2

CACORES

1
T (-S—y> +(1=1)(s—ay)
o

Then, the derivative of ¢, () with respect to « is

d)’r(a) =2[t+ (1 —-1)x] {(—%) sTs — |:(1 — r)l + (-%)]sTy + (- t)yTy} .
o o o

Proposition1 IfsTy > 0 and t € [0, 1, the equation ¢. (o) = 0 has a unique root

. BB2 ,BBI
in o ", a7
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Proof We only need to consider the case 7 € (0, 1). Notice that

a3

1
w(T’a)'ZEI—i—(l—r)ot

)

sTs —[(1— ‘C)Ol2 — ra]sTy + (1 - r)oz3yTy

= -0y y—a’s"y) +1(as"y —sTs)

=1 -y ye - ?afB?) + rsTy(@ —afBh. (17)

If sTy > 0, we have y # 0 and 7y > 0. This implies that ¥ (r, «?#?) < 0 and
Y (T, ) BBly - (. Thus, Y (t,a) = 0 has a root in (o;BB2 EBI). Since @ > 0, we
know that the equation ¢ () = 0 has a root in [ 252, B8],

Now we show the uniqueness of such a root by contradiction. Suppose that o) < a2
and a1, ap € [OtBB2 ,fBl] such that ¢ (1) = 0 and ¢, (az) = 0. It follows from
(17) that

(1 =y v —afed®) + vs" y(ar — o

=(1- r)y y(ot2 a%otk Bz) + 15 y((xz —aj

BB1
)

BBl
By rearranging terms, we obtain
(1= o)y yler =) (@] + @102 + a3) = (a1 — @) (@ +a2)af ™)
= 15" y(on — ).
Since | # 2, it follows that

(1 — )y yl(eF +a1as +@3) — (a1 + a2)afB?] = —zsTy,

which gives (o + ajan + af) — (a1 + a)aPB? < 0. This is not possible since

f B2 < 4| < ay. This completes the proof. O

Proposition2 If sTy > 0 and t € [0, 1], the root of ¢..(a) = 0 in [FB% P B! is
monotone with respect to t.

Proof It suffices to show the statement holds for t € (0, 1). By the proof of Propo-
sition 1, « is an implicit function of t determined by the equation ¥ (7, ) = 0. The
derivative of (7, o) with respect to 7 is

(o)

0 —yTy@® =B + (1 - 1)y y(Ba? - o/ — 20 P - o)
T

+ sTy(@ — a8 + osTya'.
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Let w = 0. By simple calculations, we obtain

L yTy(ot3 _ 0[205532) _ STy(Ol _ a]i_’?Bl)

(1 —0)yTyBa? —20882a) + 75Ty

For a € (a,fBz, oe,fBl), a’ > 0. This completes the proof. O

Theorem 1 For each yy € [0, 1], the stepsize ay defined by (15) is a solution of (14).

Proof We only need to show that, for y, € (0, 1), ¢, (ax) vanishes at some T € (0, 1).
From (17) and (15), we have
(e o) = (1 = Dafy” ylou — af ) + v57 y(oy — of )

= (1= onapy y@f? = o) + 1 — DsTy (P! = ofP?)

= yTy[(1 = Dye? + Ty — DafBafB — afP?).

Clearly,
2
~ Yiay
T= € (0,1)
vkog + (1 — y)oB B2
is aroot of ¥ (7, ax) = 0. This completes the proof. O

3 Convergence analysis
In this section, we analyze the convergence properties of the family (15) for the
quadratic function (3). Since the gradient method (2) is invariant under translations
and rotations when applying to problem (3), we assume that the matrix A is diagonal,
ie.,

A zdiag{)‘l» )V2a a)"n}a (18)

where 0 < A <Ay <--- < Ay

3.1 Two-dimensional case
In this subsection, based on the techniques in [9], we establish the R-superlinear

convergence of the family (15) for two-dimensional quadratic functions.
Without loss of generality, we assume that

10
A_<O )\), b=0,
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where A > 1. Furthermore, assume that x| and x, are such that

eV 20, ¢ £0, i=1,2 (19)
Let
1
o — (g( ))2
2
Then it follows that
T
QBB — Sk-18k-1 1+ gr—1
k= = ,
g1Agk1 At dk—
spr G AgZ-1 A4 g
C(k = =

g (A2gor M Aaq

Thus, the stepsize (15) can be written as

=y 1+ k-1 S =) A+ qr-1
R T S g
_n+ a0 +a- )+ 0 -G +a-)? 20
O+ gr—1) A% + qr—1)
By the update rule (2) and gx = Axg, we have
8k+1 = (I — axA)gk.
Thus,
(gD = (1 —ap?(g")?
(- D2 [ + gr—1) + (1 — y)A(h + ‘]kfl)] (¢ (1))2 o1
A+ a-1)*A* + qr1)? ’
@)% = (1 = rap)*(g)?
Cgi (=2 G2 + gem) + (1= 106+ )] PP @)
A+ @-1D*A% 4+ qr-1)? '
From (21), (22) and the definition of g, we get
1 2 2 2
st = (81) (Vk()» + qr-1) + (1 = y)A(r +61k—1)) G 23)
T 22 O+ g+ A =y +aq-1) ) qf_,
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Let

24 w) + (1= y)rO + w)

hr(w) = .
Y2+ w) + (1= y) (h + w)
Then we have
1 (0) Yir? + (1 — y)? A
k() = = ;
A+ (0 —yr A +1—n
. + (1 =y
tim hywy = ELZIOR
wos e+ 1—
Since
ve(l = y)r( = 1)?
fw) = —— - (24)
(2 4+ w) + (1 = y) (2 + w))
we obtain 4’ (w) > 0 for y; € (0, 1). Thus,
hi(w) € <— e+ (1 — )/k)k> . (25)
2 e
Denoting M} = log gx. By (23), we have
M1 = My — 2Mj—1 + 21og hi(gr—1). (26)
Let 6 such that > — 6 4+ 2 = 0. Then, § = &2& Denote by
Sk = Mp+ (0 — D) My—1. 27
We have the following result.
Lemma1 Ify, € (0, 1) and
|62] > 8log A, (28)
there exists ¢ > 0 such that
6l = (V2 1) 251, k=2 (29)
Proof It follows from (26), the definition of 8, and (27) that
Sk+1 = OMy — 2My—1 + 2log hi(qk—1) = 08k + 2log hi(qk—1)- (30)

By (25), we know that
0 < loghi(qr—1) < log(yk + (1 — yx)A) < logA.
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Since |0] = /2, we get by (30) that
1] = V21&| - c1,

where ¢; = 2log A. From (28), we have

& |>21<;1 6| 2% —1 - zk;ra 2§ -1
_ c A I
kil = 2 V2 -1 b= V2 -1 :

- [(ﬁ— 1) 25 4 1) +2] e > (W2 - 1)2%¢.

This completes the proof. O

Since |0 — 1] = /2, we obtain by (27) that

|&k] < IMg| + 16 — 1| My—1| = | M| + V2| My_1|
< (V24 1) max{| Mg, |My_1]},

which, together with (29), gives

1
max{| M|, |Mr—1]} =

T V241

Lemma 2 Under the conditions of Lemma 1, for k > 2, the following inequalities
hold:

(«/E - 1) e = (W2 —122%¢. @3

max Mis: > (V2 — 1)%2%¢1 — 2¢1, (32)
—1<i<3

min_ My < —(V2 = 122%¢; + 201, (33)
—l=is

Proof The inequality (32) holds true if
Mo = (V2 - 128
or
My = (V2 - 1)2%¢).
Suppose that the above two inequalities are false. By (31), we know that either
Moy < —(V2 - 1)23¢y
or

M < —(v2 — DR2%¢y.
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From (26), we have

Myy2 = Myq1 — 2My + 21og h(qk)
= —My —2Mj + 2log h(gr) + 2log hi(gi—1). (34)

() My_1 < —(v/2Z — 1)225¢,. Tf My < 0, it follows from (34) that
2~k
Myt > —2Mi—1 + 2log hi(qi—1) = (V2 — 1)?22¢1 — 2¢y.
Otherwise, if M > 0, by (26), we get
2~k
Miy1 > —2Mj_y + 2log h(qe—1) = (v/2 — 1?22 ¢y — 2¢y.
(i) My < — (V2 — 1)2256‘1. Similar to (i), we can show that
Miys = (V2 = )25 ¢; — 2¢;
or
Miir > (V2 — D225 ¢ — 2¢1.

Thus, the inequality (32) is valid. The inequality (33) can be established in a similar
way. O

Theorem 2 If y; € (0, 1), (19) and (28) hold, the sequence {||gr||} converges to zero
R-superlinearly.

Proof From (22), we have

g | = g1 =D [O? + qr) + (1 — y) O+ gr-) ] 6|
ket A+ ge—1) (A% + gk—1) k
_ ak-10— DA + gk—1) 12
T Ot @D+ gror) K
< (o= Dar-1lg |- (35)
Since oy € ()ﬁl, 1), we have
g 1< 0= DIgl i =12, (36)
which gives
g5l < =D Vgl | i=12,j=1....5 (37)
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54 Y.-H. Dai et al.

It follows from (35), (36) and (37) that

2
g5l < (. —

<O —Dqrjalg®l, i=1,2, j=1,...,5,

5—j+1 2
DA )Qk+j—2|81£+)j,1|

which indicates that
lgsl < (L —1)° ( min qk+l) 1871
As My = log gk, we know by Lemma 2 and (39) that
lg3s) = 0= DPexp (—(V2 = D?23e1 +2¢1) 1g7)

Similarly to (35), we have

M =D [0+ g1+ 0 = yr +gi-1)]
18l = (h+ gD A%+ gr-1)
AA =D+ gr-1) V]
T (At g 1)(?»2-!—%71) k

<A0.—D_—lg ),

1
12t

which together with (37) yields that
gt sl < A1 — 1>5;| gl
m
<A( = 1DSexp (—(ﬁ — 1225 + 261> 15,
By (35) and (40), for any k, we have
lgissl < 20— D exp (—(vV2 = 221 +2¢1 ) gl

That is, {||g« ||} converges to zero R-superlinearly.

(38)

(39)

(40)

m}

Theorem 2, together with the analysis for the BB method in [2,8], shows that, for

any ¥, € [0, 1], the family (15) is R-superlinearly convergent.

3.2 n-dimensional case

In this subsection, we show R-linear convergence of the family (15) for n-dimensional

quadratics.
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Dai [7] has proved that if A has the form (18) with 1 = Ay < A < ... < X, and the
stepsizes of gradient method (2) have the following Property (A), then either g = 0
for some finite k or the sequence {|| gk ||} converges to zero R-linearly.

Property (A) [7] Suppose that there exist an integer m and positive constants M1 > A1
and M> such that

() M <o <My
(i) for anyintegerl € [1,n—1]ande > 0,ifG(k—j,l) < € and (glglj_l-l))2 > Mje
hold for j € [0, min{k, m} — 1], then o " > 3151

Here,

I
Gk, = (g2

i=1
Now we show R-linear convergence of the proposed family by proving that the

stepsize (15) satisfies Property (A).

Theorem 3 Suppose that the sequence {|| gk ||} is generated by the family (15) applied
to n-dimensional quadratics with the matrix A has the form (18) and 1 = A1 < Xy <

- < An. Then either g = 0 for some finite k or the sequence {||gk||} converges to
zero R-linearly.

Proof Let M| = A, and M, = 2. We have by (15) and the fact y; € [0, 1] that

afB? < o < PPl

Thus, (i) of Property (A) holds. If G(k — j,I) < € and (g,ﬁljj”)Z > Mse hold for
j € [0, min{k, m} — 1], we have

o = 3131 = SlD = i Ai(flgill)z
o Q] D i (gklll)z
M+1 Z?=z+1(g,fll)2
T ellget I+ i (g2 )2

> M, 22
=M+ 1 41 = 3 A4
That is, (ii) of Property (A) holds. This completes the proof. O

4 Selecting i

In this section, we present three different selection rules for the parameter y; of the
family (15).
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56 Y.-H. Dai et al.

The simplest scheme for choosing y is to fix it for all iterations. For example,
we can set y, = 0.1, 0.2, etc. However, since the information carried by the two BB
stepsizes changes as the iteration process going on such a fixed scheme may deteriorate
the performance because it fixes the ratios of the long BB stepsize af B1 and the short
BB stepsize oz,f B2 contributed to the stepsize . Thus, it is better to vary y; at each
iteration.

One direct way for modifying yy is, as the randomly relaxed Cauchy method [35],
randomly choose it in the interval (0, 1). But this scheme determines the value of yj
without using any information at the current and former iterations.

The next strategy borrows the idea of cyclic gradient methods [7,10,12,35], where
a stepsize is reused for m iterations. Such a cyclic scheme is superior to its noncyclic
counterpart in both theory and practice. Dai and Fletcher [10] showed that if the cyclic
length m is greater than n /2, the cyclic SD method is likely to be R-superlinearly con-
vergent. Similar numerical convergence evidences were also observed for the CBB1
method in [12]. Motivated by those advantages of the cyclic scheme, for the family
(15), we choose y; such that the current stepsize approximates the former one as much
as possible. That is,

yx = arg min ‘yot,fBl + (1 — y)oc,fBz —op—1],
y€l0,1]
which yields
BB2
. Oj—1 — o
ka:mm{l,max {O’QBBT(XICBBZ}} (4])
k k

Clearly, ¥ = 0 when o1 < P82 yC = 1 when a_; > oPBL. This gives the

following stepsize:

oszz, ifop_ < othz;
&k = oz]?Bl, ifop_1 > Othl; (42)

or_1, otherwise.

Recall that, for quadratics, oa,fBl = oc,ffl and afBz = a,?{(f, where
A
MG . 8k A8k
a7 =argmin || g(xx —agr)ll = T
aeR 8x Asgy

which is a short stepsize and satisfies ozf(” G < oz,fD . We refer the reader to [15] for

additional details on a,ﬁ” G 1t follows from (42) that & is adaptively selected and
truncated by making use of the information of the former iteration. In particular, the
stepsize is increased if the former one is too short (i.e., ap—1 < a,’{"i Gl) while it is
decreased if the former one is too long (i.e., ox—1 > oz,f f)l). Moreover, the former
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A family of spectral gradient methods for optimization 57

stepsize will be reused if it lies in [¢? 52, «fB1]. Thus, (42) is an adaptive truncated

cyclic scheme and we will call it ATC for short.
As cyclic methods, we need to update the stepsize every m iterations to avoid using
a stepsize for too many iterations. Many different stepsizes can be employed. Here,

we suggest three candidates. The first is the long BB stepsize af Bl je.,

BBl _ 0
QATCl _ {‘fk , if mod{k, m) = 0; (43)
o, otherwise.
The second is the short BB stepsize o252 i.e.,
BB2 - —_ 0
a,?TCZ _ {(izk , if mod(k, m) = 0; (44)
o, otherwise.
The last is a,f given by (16), which is a special case of the family (15). That is,
P — 0
a;:xTC3 _ {‘ilk , 1fm0d.(k, m) = 0; 45)
oy, otherwise.

In what follows we shall refer (43), (44) and (45) to as ATC1, ATC2 and ATC3,
respectively.

We tested the family (15) with fixed y; on quadratic problems to see how the values
of yy affect the performance. In particular, y; is set to 0.1, 0.3, 0.5, 0.7 and 0.9 for all
k, respectively. The examples in [15,24,40] were employed, where A = QV Q7 with

0 = (I —2wswd)(I = 2wowl)(I —2wyw),

and w1, wy, and w3 are unitary random vectors, V = diag(vy, ..., v,) is a diagonal
matrix where vi = 1, v, = k, and vj, j = 2,...,n — 1, are randomly generated
between 1 and k. We stopped the iteration if the number of iteration exceeds 20,000
or

gkl = €llgll (40)

is satisfied for some given €.

Four values of the condition number «: 103, 104, 105, 10° as well as three values of
€:107°, 1072, 10~ !2 were used. For each value of  and ¢, 10 instances with v;j evenly
distributed in [1, «] were generated. For each instance, the entries of b were randomly
generated in [—10, 10] and the vectore = (1, ..., 7T was used as the starting point.

The BB method was also run for comparison, i.e. yx = 1. We compared the perfor-
mance of the algorithms by the required number of iterations, as described in [21]. In
other words, for each method, we plot the ratio of problems for which the method is
within a factor p of the least iterations. For the 100-dimensional case, we can see from
Fig. 1 that the performance of the family improves as yx becomes larger. However,
for the 1000-dimensional case, Fig. 2 shows that the family (15) with y, = 0.7 or 0.9
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Fig.1 Performance profile of
the family (15) with fixed yj

based on number of iterations
for 100-dimensional problems

Fig.2 Performance profile of
the family (15) with fixed yy
based on number of iterations
for 1000-dimensional problems

1 15 2 2.5°

can outperform the BB method for some p around 1.5. That is, for some problems,
the long BB stepsize o f Bl may not be the best choice in the family.

Then, we applied ATC1, ATC2 and ATC3 to the above problem with n = 1000
and different v; distributions. Particularly, two sets were generated: (1) v; are evenly
distributed in [1, ] as the former example; (2) 20% of v; are evenly distributed

in [1, 100] and others are in [5, k]. We used three values of the condition number
k = 10%, 10°, 10% and also three values of € as the above problem. Other settings
were same as the former example.

We tested the three methods with different m. The average number of iterations are
presented in Table 1. We can see that, for each « and m, ATC1 often outperforms ATC2
and ATC3. The performances of the three methods do not improve as m increases.
For the first set of problems, ATC1 with m = 30 performs better than other values.
For the second set of problems, ATC1 with m = 8 dominates others. Thus, in the next
section we only run ATCI using these settings.

We close this section by mentioning that there are many other different rules for
computing the parameter y,. For example, as the alternate gradient method [7,11], we
can choose yj to alternate short stepsizes and long stepsizes. In addition, we can also
use sophisticated random schemes for yj, see [30] and references therein.
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Table 1 Number of iterations of ATC1, ATC2 and ATC3 with different m on problems with different
spectrum distributions

Set Method « m

5 8 10 20 30 40 50 60 80 100

1 ATCI 10* 3978 4359 391.5 381.6 3567 350.7 4164 4064 4122 407.0
10° 3051.4 3486.2 22662 1767.7 1550.9 1681.1 1646.3 1591.4 1483.9 1414.5

10 5864.8 6297.0 4467.8 3096.0 2608.8 2532.9 3154.8 2520.5 2853.3 2334.8

ATC2  10% 4494 4842 4358 407.2 371.1 4039 423.6 3843 4199 414.8
10° 4708.2 3334.5 3050.5 2406.1 2102.4 22187 1853.5 1816.3 1691.3 1887.8

10% 7846.2 6356.6 5762.5 4562.8 3643.1 3587.5 3426.5 2852.6 2687.7 2862.2

ATC3 10% 683.8 6207 5359 454.4 4387 4440 4267 4143 4127 4275
109 9232.9 4798.6 8648.4 2899.5 2248.0 2469.1 2269.3 2123.8 1960.4 2347.2

10° 11526.5 8062.5 9560.1 6122.4 4625.7 4272.6 3786.8 3621.4 3304.6 3613.7

2 ATCI 10* 2668 2159 2725 2733 309.6 330.3 357.2 3347 3744 354.8
100 827.8 7949 9279 10572 1173.0 1188.5 1330.6 1308.6 1353.1 1403.0

10 1322.8 1283.3 1553.0 1736.2 1875.8 2062.4 2165.7 2110.3 2239.3 2273.7

ATC2  10* 3855 331.1 3603 350.5 320.3 3452 3482 3360 361.1 376.8
10 1891.4 13822 1403.8 14543 14172 1402.1 1321.9 1354.0 1392.7 1446.4

10 3070.3 2367.5 2484.9 2320.7 2232.1 2227.2 22254 2255.6 2359.4 2330.5

ATC3 10% 671.1 4107 4839 3715 352.6 3597 350.6 359.1 376.1 382.6
109 4213.2 1720.5 2317.3 1866.7 1519.2 1489.2 14983 1488.5 1490.3 1517.8

10° 8135.7 2895.5 4255.8 3046.8 2655.6 2534.6 2539.4 2393.4 2425.7 2552.0

5 Numerical results

In this section, we present numerical results of the family (15) with different settings of
the parameter y;. We compare the performance of the ATC1 method with the following
methods: the family (15) with y, randomly chose in (0, 1) (RAND), BB [2], ALBB
[11], ABB [40],CBB1[12],CBB2, CP, Dai-Yuan (DY) [16], ABBminl and ABBmin2
[23], SDC [17], and the family (15) with basic adaptive truncated cyclic scheme (42)
(ATC). Since the SDC method performs better than its monotone counterpart for most
problems, we only run SDC.

All methods were implemented in MATLAB (v.9.0-R2016a). All the runs were
carried out on a PC with an Intel Core i7, 2.9 GHz processor and 8 GB of RAM
running Windows 10 system. Moreover, we stopped the iteration if the number of
iteration exceeds 20,000 or (46) is satisfied for some given €.

Firstly, we considered randomly generated problems in the former section with
different v; distributions as shown in Table 2. The first two sets are same as the former
section. For the third set, half of v; are in [1, 100] and the other half in [%, k]; for
the fourth set, 80% of v; are evenly distributed in [1, 100] and others are in [%, K].
The fifth set has 20% of v; are in [1, 100], 20% of v; are in [100, ’%] and the others
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Table 2 Distributions of v;

Set Spectrum

1 {va,..., vp—1} C (L)

2 {va, ..., vy/s5} C (1, 100)
{Un/s41s -+, vn—1} C (5,4)

3 {v2, ..., a2} C (1, 100)
{vn/241,-- -, vp—1} C (5, %)

4 {va, ..., v4n/5} C (1, 100)
{van/s+1.-- - Up—1} C (5, %)

5 {2, ..., 05} C (1, 100)
{Vn/5415-- -, v4p/5) C (100, 5)
{van/s+1.-- -+ vp—1} C (5, %)

6 {v2, ..., vi0} C (1, 100)
{vr1, .-y vu—1} C (5,%)

7 {va, ..., v,—10} C (1, 100)
{vn—9..... vp—1} C (%:K)

in [5, «]. The last two sets only has either 10 small v; or 10 large v;. Other settings
were also same as the former section.

For the three cyclic methods: CBB1, CBB2 and CP, the best m among {3, 4, ..., 10}
was chosen. In particular, m = 3 for CBB1 and m = 4 for CBB2 and CP. As in [23],
the parameters used by the ABBminl and ABBmin2 methods are set to t = 0.8,
m = 9and t = 0.9, respectively. While t = 0.1 was used for the ABB method which
is better than 0.15 and 0.2 in our test. The pair (k, m) of the SDC method was set to
(8, 6) which is better than other choices. As for our ATC1 method, we set m = 30 for
the first and fifth sets of problems and m = 8 for other sets.

It can be observed from Table 3 that, the rand scheme performs worse than the fixed
scheme with y, = 1,1i.e., the BB method. The ATC method is competitive with the BB
method and dominates the ALBB and CP methods for most test problems. The CBB2
method clearly outperforms the other two cyclic methods: CBB1 and CP. Moreover,
the CBB2 method performs much better than the ATC and ABB methods except the
first and fifth sets of problems. The CBB2 method is even faster than the DY method.
Although the ABBmin2 method is the fastest one for solving the first and sixth sets of
problems, it is worse than the ABBminl, SDC and ATC1 methods for the other five
sets of problems. Our ATC1 method is faster than the CBB2 method except the last
set of problems. In addition, the ATC1 method is much better than the ABBminl and
SDC methods on the first set of problems and comparable to them on the other sets of
problems. Furthermore, for each tolerance, our ATC1 method is the fastest one in the
sense of total number of iterations.

Then, the compared methods were applied to the non-rand quadratic minimization
problem in [17] which is more difficult than its rand counterpart. In particular, A is
diagonal whose elements are given by

@ Springer



61

A family of spectral gradient methods for optimization

€Psel £759¢C 0'L6E] 9°L9YC 0°¢scl L S¥6C L1vCe 0°SLOT 1"¢v0c 6'760¢ 6'VLLE 9°0Ice 0991+ 2101
L'vE6 CTCLLY 9796 L LOLT 9°LEY L9681 9°0¥0C 9°¢IL ¥'80¢1 ¢9llcC TE6LT L91CC 19T 601
L'81¥ 9818 1'891 €'LO6L £776¢ ¥'96L I've8 8Cee 7019 6’898 S 8v01 G'eeo 1'8601 901 L
0001 17299¢ eecl £vle €801 S IPeT 8°¢IS8 VLITT 0'¥L¥C 6°6591 co6sle 991¢6¢C ¥'888¢ 2101
Lv09 L8SST £v0L V'LEY 6°'LE9 Tsyel S €60S Svv9 06111 €9¢01 GTssl T'LLST 9°680C 601
0sel 8'CLT L91 el £vel 7681 0 Ilv L1yl 6'1¢C 1e8l L'CIC 8°69¢C 1"s6¢ 901 9
9VLYS 78606 £TCLY L'TELS 7'50€9 L €08L 9'LyEll  990¢8 L90T6 8'vvoy 6°¢EL0l  TISY8 €€L86 2101
I'ecee LS819 Levly 1'6L9¢ T'Ce6e 6881+ 6°¢lto 1"c06v T'Ss¥09 L'L8I¢ 8°CL06 L'TTCS 6°9¢59 601
0°106 §Te9l 8°6C6 9°CLOT 8'8¥6 6’178 S6v0C 6'vCI1 VLTl T0L8 7 19¢l S6IlIl 1'8¥Cl1 901 S
6°C9¢l TY6SE 0°08v1 TCTL9T 6°'11¢l 0°966C 7'8688 145! V' 1L6C 8'vC0¢ 0°seor [ AR €LLYY 21-01
1'988 CC8¢ET 8°¢I6 9°9¢L1 7'1L8 €PvI8I Tyel9 L0€6 9'LLLY S LT8I L'SIET 8°090C ¥'299¢C 601
8'LCE VyIL 9°¢6¢e 9°¢S9 L'Cle £09¢ 1'6801 9vre 0SS £66S 8°LT9 Y89 T06L 9—01 14
S'86¢1 L0yee 6°0v¥1 6'1CST L0eCl €16LC £07s8 14994 L¥06C 6'LYLT 8y 9°081¢ V'LSTY 2101
L0¢8 6°601C 1'1€6 S09¢s1 1'esL 8 1L91 L9tys L'888 1"29L1 L€TLl L'SIET 0'8I61 6°6677C 601
¥'CLT £65S 0'10¢ £60S 9°0S¢ 8°09% S'006 TYLe 1Ly 9o 0°¢IS 6°LCS L'T19 901 €
£€8¢C1 8°9S¢ 1'86¢1 1'sece 14919! 8'68LC €°LTS8 6°S9v1 ¥'CSLT 9°6C9¢C 7'0L6E 8°11¢Ce Vyecy 2101
6'V6L 01861 9'LEB 9°L6E] GT8L 1°69¢1 67109 0°698 86091 L*8SS1 9°EEre 9'8¢61 9°08¢C 601
6'SIC £evy ¥'¥ee Ieve §e0c I'eLe 6'119 TSYe 1'cee I'vee v Ooly veey 128y 901 4
8'809¢C [csey 9°98LE €099 G'S69Y L9L99 09SITT  €00€S L'16€8 ['9Sv1 00901  ¥'I¥CL L'8C¢E6 21-01
6°0SS1 ['€€LT ¢'g9ce £60S TYere [720ce L6106 L998¢C 6'SILY 80201 6'C0S8 9'ILYE V'LITS 601
L'9S¢ SvLy 9°68¢ L19¢ S eoy 0°cse SeoL £'8¢S G'86¢ 9°C6C £1es 9’16t 8'L8Y 901 I
101V N4 ods cuugdy  [uiuggyv Ad dD [4:tc) 149D agav ad1v dad aNVvy
POYIRIN 2 1S

7 9IqeL, ur swapqoid uo spoyiouwr paredwod Jo SUOTIEIN JO IoquINN € d|qe)

pringer

as



Y.-H. Dai et al.

62

vOSPPI  bOSI6C  €8SPLT  T'VOTLL  TO90LL  LYPEST  64TT09  00VTOT  OFPLOE  0'8SSS61  TOOVOY  S'LY60E  S'STIOF 701
11468 $°STLST 99901 TSTTII  6'SETOI  I'H8SST  S'€pOSy  €TISIT 088981  GOLPTI  +'9868T  S'SOPSI  0'STOVT 401
§LT9T  ¥SI6Y  TETsT 6'6LLE LVE9T  LELSE  9F6S9  L100S  9T66E  FOVOE  1'S69F  6SShb  I'€L6Y  o-01  [WOL
DLV oLV oas  cunuggy  [uuggy Ad D  ggd 199D agv  gg1v ad  aNvd
POWON > RS

panunuod ¢ 3jqe]

-
I
50
=)
ke
a,
7
Al



A family of spectral gradient methods for optimization 63

Table 4 Number of iterations of compared methods on non-rand quadratic problems

€ K Method
ABB CBB2 DY ABBminl ABBmin2 SDC ATC ATCl1
106 104 531.3 670.7 517.4 531.1 510.4 547.3 574.4 558.8
109 938.1 1167.5 996.0 974.6 872.0 990.6 1097.2 1011.6

10 13684  1550.6 14524 13629 1299.4 1430.8  1511.0  1408.7
107°  10* 12352  1581.8 12437 12772 1284.5 1203.7  1340.2  1289.9
100 25933 34435 30814  2846.5 2826.8 2694.9 31559  2719.7
10° 38733 47183 48079 41921 3869.5 4102.6 44395  4004.9
10712 10*  2365.6 2839.0 21327  2083.7 3042.0 1891.7  2546.6  2092.9
100 73311 9015.1 96962  7916.3 7491.7 7304.3 88442  7238.1

10 12124.9 14050.5 17329.3 12792.4 11653.1 11775.5 15157.7 11600.6

Total 32361.2 39037.0 41257.0 33976.8 32849.4 31941.4 38666.7 31925.2
ncond (- .

Ajj=10107D =1, n, (47)

where ncond = logjyk, and the vector b is null. We tested 10,000-dimensional

problems with three different condition numbers: k = 10*, 10°, 10°. The stopping
condition (46) was employed with € = 10%, 1072, 10712 for all methods. For each
value of k or €, 10 different starting points with entries in [—10, 10] were randomly
generated.

Due to the performances of these compared methods on the above problems, only
fast methods were tested, i.e., ABB, CBB2, DY, ABBminl, ABBmin2, SDC, ATC and
ATC1. The numbers of iterations averaged over those starting points of each method
are listed in Table 4. Here, the results of the SDC method were obtained with the best
choice of parameter setting in [17], i.e., h =30 and m = 2.

From Table 4 we can see that the ATC method is slightly better than the CBB2
method and comparable to the DY method for most problems. The ABB method
performs better than the ABBmin1 method. Although the ABB method is slower than
the ABBmin2 method when the tolerance is low, it wins if a tight tolerance is required.
Our ATC1 method is competitive with other methods especially for a tight tolerance.
Moreover, our ATC1 method takes least total number of iterations to meet the required
tolerance.

6 Conclusions

We have proposed a family of spectral gradient methods which calculates the step-
size by the convex combination of the long BB stepsize and the short BB stepsize,
ie, ax = yafBl + (1 — y)afB?. Similar to the two BB stepsizes, each step-
size in the family possesses certain quasi-Newton property. In addition, R-superlinear
and R-linear convergence of the family were established for two-dimensional and
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n-dimensional strictly convex quadratics, respectively. Furthermore, with different
choices of the parameter y,, we obtain different stepsizes and gradient methods. The
family provides us an alternative for the stepsize of gradient methods which can be
easily extended to general problems by incorporating some line searches.

Since the parameter y; affects the value of a; and hence the efficiency of the
method, it is interesting to investigate how to choose a proper yj to achieve satisfactory

performance. We have proposed and tested three different selection rules for y;, among

which the adaptive truncated cyclic scheme with the long BB stepsize oz,f B1 je., the

ATC1 method performs best. In addition, our ATC1 method is comparable to the state-
of-the-art gradient methods including the Dai-Yuan, ABBminl, ABBmin2 and SDC
methods. One interesting question is how to design an efficient scheme to choose m
adaptively for the proposed method. This will be our future work.
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