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Abstract
We propose a family of spectral gradient methods, whose stepsize is determined by
a convex combination of the long Barzilai–Borwein (BB) stepsize and the short BB
stepsize. Each member of the family is shown to share certain quasi-Newton property
in the sense of least squares. The family also includes some other gradient methods as
its special cases. We prove that the family of methods is R-superlinearly convergent
for two-dimensional strictly convex quadratics. Moreover, the family is R-linearly
convergent in the any-dimensional case. Numerical results of the family with different
settings are presented, which demonstrate that the proposed family is promising.

Keywords Unconstrained optimization · Steepest descent method · Spectral gradient
method · R-linear convergence · R-superlinear convergence

1 Introduction

Consider the unconstrained optimization problem

min
x∈Rn

f (x), (1)

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11631013,
11701137, 11671116) and the National 973 Program of China (Grant No. 2015CB856002).

B Yakui Huang
huangyakui2006@gmail.com

Yu-Hong Dai
dyh@lsec.cc.ac.cn

Xin-Wei Liu
mathlxw@hebut.edu.cn

1 LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing 100190, China

2 Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3 Institute of Mathematics, Hebei University of Technology, Tianjin 300401, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-019-00107-8&domain=pdf
http://orcid.org/0000-0001-6149-3222


44 Y.-H. Dai et al.

where f (x) : Rn → R is a continuously differentiable function. The gradient method
solves problem (1) by updating iterates as

xk+1 = xk − αkgk, (2)

where gk = ∇ f (xk) and αk > 0 is the stepsize. Different gradient methods use
different formulae for stepsizes.

The simplest gradient method is the steepest descent (SD) method due to Cauchy
[6], which computes the stepsize by exact line search,

αSD
k = argmin

α∈R f (xk − αgk).

As is well known, every two consecutive gradients generated by the SD method are
perpendicular to each other. Moreover, if f (x) is a strictly convex quadratic function,
i.e.,

f (x) = 1

2
xT Ax − bT x, (3)

where A ∈ R
n×n is symmetric positive definite and b ∈ R

n , it can be shown that
the gradients will asymptotically reduce to a two-dimensional subspace spanned by
the two eigenvectors corresponding to the largest and smallest eigenvalues of the
matrix A and hence zigzag occurs, see [1,32] for more details. This property seriously
deteriorates the performance of the SDmethod, especially when the condition number
of A is large.

An important approach that changes our perspectives on the effectiveness of gradi-
ent methods is proposed by Barzilai and Borwein [2]. They viewed the updating rule
(2) as

xk+1 = xk − Dkgk, (4)

where Dk = αk I . Similar to the quasi-Newton method [19], D−1
k is required to satisfy

the secant equation

Bksk−1 = yk−1 (5)

to approximate the Hessian as possible as it can. Here, sk−1 = xk − xk−1 and yk−1 =
gk − gk−1. However, since Dk is diagonal with identical diagonal elements, it is
usually impossible to find an αk such that D−1

k fulfills (5) if the dimension n > 1.
Thus, Barzilai and Borwein required D−1

k to meet the secant equation in the sense of
least squares,

Dk = arg min
D=α I

‖D−1sk−1 − yk−1‖, (6)
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which yields

αBB1
k = sTk−1sk−1

sTk−1yk−1
. (7)

Here and below, ‖ · ‖ means the Euclidean norm. On the other hand, one can also
calculate the stepsize by requiring Dk to satisfy

Hk yk−1 = sk−1. (8)

That is,

Dk = arg min
D=α I

‖sk−1 − Dyk−1‖, (9)

which gives

αBB2
k = sTk−1yk−1

yTk−1yk−1
. (10)

Apparently, when sTk−1yk−1 > 0, there holds αBB1
k ≥ αBB2

k . In other words, αBB1
k is

a long stepsize while αBB2
k is a short one, which implies that αBB1

k is more aggressive
than αBB2

k in decreasing the objective value. Extensive numerical experiments show
that the long stepsize is superior to the short one in many cases, see [4,22,34] for
example. In what follows we will refer to the gradient method with the long stepsize
αBB1
k as the BB method without specification.
Barzilai and Borwein [2] proved their methodwith the short BB stepsize αBB2

k is R-
superlinearly convergent for two-dimensional strictly convex quadratics. An improved
R-superlinear convergence result for the BBmethod was given by Dai [8]. Global and
R-linear convergence of the BB method for general n-dimensional strictly convex
quadratics were established by Raydan [33] and Dai and Liao [14], respectively. The
BB method has also been extended to solve general nonlinear optimization problems.
By incorporating the nonmontone line search proposed by Grippo et al. [26], Ray-
dan [34] developed the global BB method for general unconstrained problems. Later,
Birgin et al. [3] proposed the so-called spectral projected gradient method which
extends Raydan’s method to smooth convex constrained problems. Dai and Fletcher
[11] designed projected BB methods for large-scale box-constrained quadratic pro-
gramming. Recently, by resorting to the smoothing techniques, Huang and Liu [27]
generalized the projected BB method with modifications to solve non-Lipschitz opti-
mization problems.

The relationship between the stepsizes in BB-like methods and the spectrum of the
Hessian of the objective function has been explored in several studies. Frassoldati et al.
[23] tried to exploit the long BB stepsize close to the reciprocal of the smallest eigen-
value of the Hessian, yielding the ABBmin1 and ABBmin2 methods. De Asmundis et
al. [18] developed the so-called SDA method which employs a short stepsize approx-
imates the reciprocal of the largest eigenvalue of the Hessian. Following the line of
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[18], Gonzaga and Schneider [25] suggested a monotone method for quadratics where
the stepsizes are obtained in a way similar to the SD method. De Asmundis et al. [17]
proposed the SDC method which exploits the spectral property of Yuan’s stepsize
[16]. Kalousek [30] considered the SD method with random stepsizes lying between
the reciprocal of the largest eigenvalue and the smallest eigenvalue of the Hessian and
analysed the optimal distribution of random stepsizes that guarantees the maximum
asymptotic convergence rate.

Applications of the BB method and its variants have largely been developed for
problems arising in various different areas including image restoration [37], signal pro-
cessing [31], eigenvalue problems [29], nonnegative matrix factorization [28], sparse
reconstruction [38],machine learning [36], etc.We refer the reader to [4,7,13,20,22,39]
and references therein for more spectral gradient methods and extensions.

The success of the BB method and its variants motivates us to consider spectral
gradient methods. Our goal is to present a family of spectral gradient methods for
optimization. Notice that the Broyden class of quasi-Newtonmethods [5] approximate
the inverse of the Hessian by

H τ
k = τHBFGS

k + (1 − τ)HDFP
k , (11)

where τ ∈ [0, 1] is a scalar parameter and HBFGS
k and HDFP

k are the BFGS and DFP
matrices, respectively, that satisfy the secant equation (8), which further implies that

τHBFGS
k yk−1 + (1 − τ)HDFP

k yk−1 = sk−1,

i.e.,

τ(HBFGS
k yk−1 − sk−1) + (1 − τ)(HDFP

k yk−1 − sk−1) = 0. (12)

Since the inverse of HBFGS
k , say BBFGS

k , satisfies (5), we can modify (12) as

τ(BBFGS
k sk−1 − yk−1) + (1 − τ)(sk−1 − HDFP

k yk−1) = 0. (13)

Motivated by the above observation, we employ the idea of the BB method to approx-
imate the Hessian and its inverse by diagonal matrices. Particularly, we require the
matrix D = α I to be the solution of

min
D=α I

‖τ(D−1sk−1 − yk−1) + (1 − τ)(sk−1 − Dyk−1)‖. (14)

In the next section, we will show that the stepsize given by the convex combination
of the long BB stepsize αBB1

k and the short BB stepsize αBB2
k , i.e.,

αk = γkα
BB1
k + (1 − γk)α

BB2
k , (15)

where γk ∈ [0, 1], is a solution to (14). Clearly, this is a one-parametric family of
stepsizes, which include the two BB stepsizes as special instances. Moreover, any
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stepsize lies in the interval [αBB2
k , αBB1

k ] is a special case of the family. For example,
the positive stepsize given by the geometrical mean of αBB1

k and αBB2
k [9],

αP
k =

√
αBB1
k αBB2

k = ‖sk−1‖
‖yk−1‖ . (16)

We further prove that the family of spectral gradient methods (15) is R-superlinearly
convergent for two-dimensional strictly convexquadratics. For then-dimensional case,
the family is proved to be R-linearly convergent. Numerical results of the family (15)
with different settings of γk are presented and compared with other gradient methods,
including the BB method [2], the alternate BB method (ALBB) [11], the adaptive BB
method (ABB) [40], the cyclic BBmethod with stepsize αBB1

k (CBB1) [12], the cyclic
BB method with stepsize αBB2

k (CBB2), the cyclic method with stepsize αP
k (CP), the

Dai-Yuanmethod (DY) [16], the ABBmin1 and ABBmin2methods [23], and the SDC
method [17]. The comparisons demonstrate that the proposed family is promising.

The paper is organized as follows. In Sect. 2, we show that each stepsize in the
family (15) solves some least squares problem (14) and hence possesses certain quasi-
Newton property. In Sect. 3, we establish R-superlinear convergence of the family
(15) for two-dimensional strictly convex quadratics and R-linear convergence for the
n-dimensional case, respectively. In Sect. 4, we discuss different selection rules for
the parameter γk . In Sect. 5, we conduct some numerical comparisons of our approach
and other gradient methods. Finally, some conclusions are drawn in Sect. 6.

2 Quasi-Newton property of the family (15)

In this section, we show that each stepsize in the family (15) enjoys certain quasi-
Newton property.

For the sake of simplicity, we discard the subscript of sk−1 and yk−1 in the following
part of this section, i.e., s = sk−1, y = yk−1. Let

φτ (α) : =
∥∥∥∥τ

(
1

α
s−y

)
+(1−τ)(s−αy)

∥∥∥∥
2

.

Then, the derivative of φτ (α) with respect to α is

φ′
τ (α) = 2[τ + (1 − τ)α]

{(
− τ

α3

)
sT s −

[
(1 − τ)

1

α
+

(
− τ

α2

)]
sT y + (1 − τ)yT y

}
.

Proposition 1 If sT y > 0 and τ ∈ [0, 1], the equation φ′
τ (α) = 0 has a unique root

in [αBB2
k , αBB1

k ].
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Proof We only need to consider the case τ ∈ (0, 1). Notice that

ψ(τ, α) : = 1

2

α3

τ + (1 − τ)α
φ′

τ (α)

= −τ sT s − [(1 − τ)α2 − τα]sT y + (1 − τ)α3yT y

= (1 − τ)(α3yT y − α2sT y) + τ(αsT y − sT s)

= (1 − τ)yT y(α3 − α2αBB2
k ) + τ sT y(α − αBB1

k ). (17)

If sT y > 0, we have y �= 0 and yT y > 0. This implies that ψ(τ, αBB2
k ) < 0 and

ψ(τ, αBB1
k ) > 0. Thus, ψ(τ, α) = 0 has a root in (αBB2

k , αBB1
k ). Since α > 0, we

know that the equation φ′
τ (α) = 0 has a root in [αBB2

k , αBB1
k ].

Nowwe show the uniqueness of such a root by contradiction. Suppose that α1 < α2
and α1, α2 ∈ [αBB2

k , αBB1
k ] such that φ′

τ (α1) = 0 and φ′
τ (α2) = 0. It follows from

(17) that

(1 − τ)yT y(α3
1 − α2

1α
BB2
k ) + τ sT y(α1 − αBB1

k )

= (1 − τ)yT y(α3
2 − α2

2α
BB2
k ) + τ sT y(α2 − αBB1

k ).

By rearranging terms, we obtain

(1 − τ)yT y[(α1 − α2)(α
2
1 + α1α2 + α2

2) − (α1 − α2)(α1 + α2)α
BB2
k ]

= τ sT y(α2 − α1).

Since α1 �= α2, it follows that

(1 − τ)yT y[(α2
1 + α1α2 + α2

2) − (α1 + α2)α
BB2
k ] = −τ sT y,

which gives (α2
1 + α1α2 + α2

2) − (α1 + α2)α
BB2
k < 0. This is not possible since

αBB2
k ≤ α1 < α2. This completes the proof. 
�

Proposition 2 If sT y > 0 and τ ∈ [0, 1], the root of φ′
τ (α) = 0 in [αBB2

k , αBB1
k ] is

monotone with respect to τ .

Proof It suffices to show the statement holds for τ ∈ (0, 1). By the proof of Propo-
sition 1, α is an implicit function of τ determined by the equation ψ(τ, α) = 0. The
derivative of ψ(τ, α) with respect to τ is

∂ψ(τ, α)

∂τ
= − yT y(α3 − α2αBB2

k ) + (1 − τ)yT y(3α2 · α′ − 2αBB2
k α · α′)

+ sT y(α − αBB1
k ) + τ sT yα′.
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Let ∂ψ(τ,α)
∂τ

= 0. By simple calculations, we obtain

α′ = yT y(α3 − α2αBB2
k ) − sT y(α − αBB1

k )

(1 − τ)yT y(3α2 − 2αBB2
k α) + τ sT y

.

For α ∈ (αBB2
k , αBB1

k ), α′ > 0. This completes the proof. 
�
Theorem 1 For each γk ∈ [0, 1], the stepsize αk defined by (15) is a solution of (14).

Proof We only need to show that, for γk ∈ (0, 1), φ′
τ (αk) vanishes at some τ̃ ∈ (0, 1).

From (17) and (15), we have

ψ(τ, αk) = (1 − τ)α2
k y

T y(αk − αBB2
k ) + τ sT y(αk − αBB1

k )

= (1 − τ)γkα
2
k y

T y(αBB1
k − αBB2

k ) + τ(γk − 1)sT y(αBB1
k − αBB2

k )

= yT y[(1 − τ)γkα
2
k + τ(γk − 1)αBB2

k ](αBB1
k − αBB2

k ).

Clearly,

τ̃ = γkα
2
k

γkα
2
k + (1 − γk)α

BB2
k

∈ (0, 1)

is a root of ψ(τ, αk) = 0. This completes the proof. 
�

3 Convergence analysis

In this section, we analyze the convergence properties of the family (15) for the
quadratic function (3). Since the gradient method (2) is invariant under translations
and rotations when applying to problem (3), we assume that the matrix A is diagonal,
i.e.,

A = diag{λ1, λ2, · · · , λn}, (18)

where 0 < λ1 ≤ λ2 ≤ · · · ≤ λn .

3.1 Two-dimensional case

In this subsection, based on the techniques in [9], we establish the R-superlinear
convergence of the family (15) for two-dimensional quadratic functions.

Without loss of generality, we assume that

A =
(
1 0
0 λ

)
, b = 0,
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where λ ≥ 1. Furthermore, assume that x1 and x2 are such that

g(i)
1 �= 0, g(i)

2 �= 0, i = 1, 2. (19)

Let

qk = (g(1)
k )2

(g(2)
k )2

.

Then it follows that

αBB1
k = gTk−1gk−1

gTk−1Agk−1
= 1 + qk−1

λ + qk−1
,

αBB2
k = gTk−1Agk−1

gTk−1A
2gk−1

= λ + qk−1

λ2 + qk−1
.

Thus, the stepsize (15) can be written as

αk = γk
1 + qk−1

λ + qk−1
+ (1 − γk)

λ + qk−1

λ2 + qk−1

= γk(1 + qk−1)(λ
2 + qk−1) + (1 − γk)(λ + qk−1)

2

(λ + qk−1)(λ2 + qk−1)
. (20)

By the update rule (2) and gk = Axk , we have

gk+1 = (I − αk A)gk .

Thus,

(g(1)
k+1)

2 = (1 − αk)
2(g(1)

k )2

= (λ − 1)2
[
γk(λ

2 + qk−1) + (1 − γk)λ(λ + qk−1)
]2

(λ + qk−1)2(λ2 + qk−1)2
(g(1)

k )2, (21)

(g(2)
k+1)

2 = (1 − λαk)
2(g(2)

k )2

= q2k−1(1 − λ)2
[
γk(λ

2 + qk−1) + (1 − γk)(λ + qk−1)
]2

(λ + qk−1)2(λ2 + qk−1)2
(g(2)

k )2. (22)

From (21), (22) and the definition of qk , we get

qk+1 = (g(1)
k+1)

2

(g(2)
k+1)

2
=

(
γk(λ

2 + qk−1) + (1 − γk)λ(λ + qk−1)

γk(λ2 + qk−1) + (1 − γk)(λ + qk−1)

)2
qk
q2k−1

. (23)
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Let

hk(w) = γk(λ
2 + w) + (1 − γk)λ(λ + w)

γk(λ2 + w) + (1 − γk)(λ + w)
.

Then we have

hk(0) = γkλ
2 + (1 − γk)λ

2

γkλ2 + (1 − γk)λ
= λ

γkλ + 1 − γk
,

lim
w→∞ hk(w) = γk + (1 − γk)λ

γk + 1 − γk
= γk + (1 − γk)λ.

Since

h′
k(w) = γk(1 − γk)λ(λ − 1)2

(γk(λ2 + w) + (1 − γk)(λ + w))2
, (24)

we obtain h′(w) > 0 for γk ∈ (0, 1). Thus,

hk(w) ∈
(

λ

γkλ + 1 − γk
, γk + (1 − γk)λ

)
. (25)

Denoting Mk = log qk . By (23), we have

Mk+1 = Mk − 2Mk−1 + 2 log hk(qk−1). (26)

Let θ such that θ2 − θ + 2 = 0. Then, θ = 1±√
7i

2 . Denote by

ξk = Mk + (θ − 1)Mk−1. (27)

We have the following result.

Lemma 1 If γk ∈ (0, 1) and

|ξ2| > 8 log λ, (28)

there exists c1 > 0 such that

|ξk | ≥
(√

2 − 1
)
2

k
2 c1, k ≥ 2. (29)

Proof It follows from (26), the definition of θ , and (27) that

ξk+1 = θMk − 2Mk−1 + 2 log hk(qk−1) = θξk + 2 log hk(qk−1). (30)

By (25), we know that

0 < log hk(qk−1) < log(γk + (1 − γk)λ) < log λ.
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Since |θ | = √
2, we get by (30) that

|ξk+1| ≥ √
2 |ξk | − c1,

where c1 = 2 log λ. From (28), we have

|ξk+1| ≥ 2
k−1
2 |ξ2| − 2

k
2 − 1√
2 − 1

c1 ≥
(
2

k+3
2 − 2

k
2 − 1√
2 − 1

)
c1

=
[(√

2 − 1
) (

2
k
2 + 1

)
+ 2

]
c1 > (

√
2 − 1)2

k
2 c1.

This completes the proof. 
�
Since |θ − 1| = √

2, we obtain by (27) that

|ξk | ≤ |Mk | + |θ − 1||Mk−1| = |Mk | + √
2|Mk−1|

≤ (
√
2 + 1)max{|Mk |, |Mk−1|},

which, together with (29), gives

max{|Mk |, |Mk−1|} ≥ 1√
2 + 1

(√
2 − 1

)
2

k
2 c1 = (

√
2 − 1)22

k
2 c1. (31)

Lemma 2 Under the conditions of Lemma 1, for k ≥ 2, the following inequalities
hold:

max−1≤i≤3
Mk+i ≥ (

√
2 − 1)22

k
2 c1 − 2c1, (32)

min−1≤i≤3
Mk+i ≤ −(

√
2 − 1)22

k
2 c1 + 2c1. (33)

Proof The inequality (32) holds true if

Mk−1 ≥ (
√
2 − 1)22

k
2 c1

or

Mk ≥ (
√
2 − 1)22

k
2 c1.

Suppose that the above two inequalities are false. By (31), we know that either

Mk−1 ≤ −(
√
2 − 1)22

k
2 c1

or

Mk ≤ −(
√
2 − 1)22

k
2 c1.
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From (26), we have

Mk+2 = Mk+1 − 2Mk + 2 log h(qk)

= −Mk − 2Mk−1 + 2 log h(qk) + 2 log hk(qk−1). (34)

(i) Mk−1 ≤ −(
√
2 − 1)22

k
2 c1. If Mk < 0, it follows from (34) that

Mk+2 ≥ −2Mk−1 + 2 log hk(qk−1) ≥ (
√
2 − 1)22

k
2 c1 − 2c1.

Otherwise, if Mk ≥ 0, by (26), we get

Mk+1 ≥ −2Mk−1 + 2 log hk(qk−1) ≥ (
√
2 − 1)22

k
2 c1 − 2c1.

(ii) Mk ≤ −(
√
2 − 1)22

k
2 c1. Similar to (i), we can show that

Mk+3 ≥ (
√
2 − 1)22

k
2 c1 − 2c1

or

Mk+2 ≥ (
√
2 − 1)22

k
2 c1 − 2c1.

Thus, the inequality (32) is valid. The inequality (33) can be established in a similar
way. 
�
Theorem 2 If γk ∈ (0, 1), (19) and (28) hold, the sequence {‖gk‖} converges to zero
R-superlinearly.

Proof From (22), we have

|g(2)
k+1| = qk−1(λ − 1)

[
γk(λ

2 + qk−1) + (1 − γk)(λ + qk−1)
]

(λ + qk−1)(λ2 + qk−1)
|g(2)

k |

≤ qk−1(λ − 1)(λ2 + qk−1)

(λ + qk−1)(λ2 + qk−1)
|g(2)

k |

≤ (λ − 1)qk−1|g(2)
k |. (35)

Since αk ∈ (λ−1, 1), we have

|g(i)
k+1| ≤ (λ − 1)|g(i)

k |, i = 1, 2, (36)

which gives

|g(i)
k+5| ≤ (λ − 1)(5− j)|g(i)

k+ j |, i = 1, 2, j = 1, . . . , 5. (37)
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It follows from (35), (36) and (37) that

|g(2)
k+5| ≤ (λ − 1)(5− j+1)qk+ j−2|g(2)

k+ j−1|
≤ (λ − 1)5qk+ j−2|g(2)

k |, i = 1, 2, j = 1, . . . , 5, (38)

which indicates that

|g(2)
k+5| ≤ (λ − 1)5

(
min−1≤i≤3

qk+i

)
|g(2)

k |. (39)

As Mk = log qk , we know by Lemma 2 and (39) that

|g(2)
k+5| ≤ (λ − 1)5 exp

(
−(

√
2 − 1)22

k
2 c1 + 2c1

)
|g(2)

k |.

Similarly to (35), we have

|g(1)
k+1| = (λ − 1)

[
γk(λ

2 + qk−1) + (1 − γk)λ(λ + qk−1)
]

(λ + qk−1)(λ2 + qk−1)
|g(1)

k |

≤ λ(λ − 1)(λ + qk−1)

(λ + qk−1)(λ2 + qk−1)
|g(1)

k |

< λ(λ − 1)
1

qk−1
|g(1)

k |,

which together with (37) yields that

|g(1)
k+5| ≤ λ(λ − 1)5

1

max−1≤i≤3
qk+i

|g(1)
k |

≤ λ(λ − 1)5 exp
(
−(

√
2 − 1)22

k
2 c1 + 2c1

)
|g(1)

k |. (40)

By (35) and (40), for any k, we have

‖gk+5‖ ≤ λ(λ − 1)5 exp
(
−(

√
2 − 1)22

k
2 c1 + 2c1

)
‖gk‖.

That is, {‖gk‖} converges to zero R-superlinearly. 
�
Theorem 2, together with the analysis for the BB method in [2,8], shows that, for

any γk ∈ [0, 1], the family (15) is R-superlinearly convergent.

3.2 n-dimensional case

In this subsection, we show R-linear convergence of the family (15) for n-dimensional
quadratics.
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Dai [7] has proved that if A has the form (18) with 1 = λ1 ≤ λ2 ≤ · · · ≤ λn and the
stepsizes of gradient method (2) have the following Property (A), then either gk = 0
for some finite k or the sequence {‖gk‖} converges to zero R-linearly.

Property (A) [7] Suppose that there exist an integer m and positive constants M1 ≥ λ1
and M2 such that

(i) λ1 ≤ α−1
k ≤ M1;

(ii) for any integer l ∈ [1, n−1] and ε > 0, if G(k− j, l) ≤ ε and (g(l+1)
k− j )2 ≥ M2ε

hold for j ∈ [0,min{k,m} − 1], then α−1
k ≥ 2

3λl+1.

Here,

G(k, l) =
l∑

i=1

(g(i)
k )2.

Now we show R-linear convergence of the proposed family by proving that the
stepsize (15) satisfies Property (A).

Theorem 3 Suppose that the sequence {‖gk‖} is generated by the family (15) applied
to n-dimensional quadratics with the matrix A has the form (18) and 1 = λ1 ≤ λ2 ≤
· · · ≤ λn. Then either gk = 0 for some finite k or the sequence {‖gk‖} converges to
zero R-linearly.

Proof Let M1 = λn and M2 = 2. We have by (15) and the fact γk ∈ [0, 1] that

αBB2
k ≤ αk ≤ αBB1

k .

Thus, (i) of Property (A) holds. If G(k − j, l) ≤ ε and (g(l+1)
k− j )2 ≥ M2ε hold for

j ∈ [0,min{k,m} − 1], we have

α−1
k ≥ 1

αBB1
k

= 1

αSD
k−1

=
∑n

i=1 λi (g
(i)
k−1)

2

∑n
i=1(g

(i)
k−1)

2

≥ λl+1
∑n

i=l+1(g
(i)
k−1)

2

ε‖gk−1‖2 + ∑n
i=l+1(g

(i)
k−1)

2

≥ M2

M2 + 1
λl+1 = 2

3
λl+1.

That is, (ii) of Property (A) holds. This completes the proof. 
�

4 Selecting �k

In this section, we present three different selection rules for the parameter γk of the
family (15).
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The simplest scheme for choosing γk is to fix it for all iterations. For example,
we can set γk = 0.1, 0.2, etc. However, since the information carried by the two BB
stepsizes changes as the iteration process going on such a fixed schememay deteriorate
the performance because it fixes the ratios of the long BB stepsize αBB1

k and the short
BB stepsize αBB2

k contributed to the stepsize αk . Thus, it is better to vary γk at each
iteration.

One direct way for modifying γk is, as the randomly relaxed Cauchy method [35],
randomly choose it in the interval (0, 1). But this scheme determines the value of γk
without using any information at the current and former iterations.

The next strategy borrows the idea of cyclic gradient methods [7,10,12,35], where
a stepsize is reused for m iterations. Such a cyclic scheme is superior to its noncyclic
counterpart in both theory and practice. Dai and Fletcher [10] showed that if the cyclic
lengthm is greater than n/2, the cyclic SDmethod is likely to be R-superlinearly con-
vergent. Similar numerical convergence evidences were also observed for the CBB1
method in [12]. Motivated by those advantages of the cyclic scheme, for the family
(15), we choose γk such that the current stepsize approximates the former one as much
as possible. That is,

γk = arg min
γ∈[0,1]

∣∣∣γαBB1
k + (1 − γ )αBB2

k − αk−1

∣∣∣ ,

which yields

γ C
k = min

{
1,max

{
0,

αk−1 − αBB2
k

αBB1
k − αBB2

k

}}
. (41)

Clearly, γ C
k = 0 when αk−1 ≤ αBB2

k ; γ C
k = 1 when αk−1 ≥ αBB1

k . This gives the
following stepsize:

α̃k =

⎧
⎪⎪⎨
⎪⎪⎩

αBB2
k , if αk−1 ≤ αBB2

k ;
αBB1
k , if αk−1 ≥ αBB1

k ;
αk−1, otherwise.

(42)

Recall that, for quadratics, αBB1
k = αSD

k−1 and αBB2
k = αMG

k−1 , where

αMG
k = argmin

α∈R ‖g(xk − αgk)‖ = gTk Agk

gTk A2gk
,

which is a short stepsize and satisfies αMG
k ≤ αSD

k . We refer the reader to [15] for
additional details on αMG

k . It follows from (42) that α̃k is adaptively selected and
truncated by making use of the information of the former iteration. In particular, the
stepsize is increased if the former one is too short (i.e., αk−1 ≤ αMG

k−1) while it is
decreased if the former one is too long (i.e., αk−1 ≥ αSD

k−1). Moreover, the former
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stepsize will be reused if it lies in [αBB2
k , αBB1

k ]. Thus, (42) is an adaptive truncated
cyclic scheme and we will call it ATC for short.

As cyclic methods, we need to update the stepsize everym iterations to avoid using
a stepsize for too many iterations. Many different stepsizes can be employed. Here,
we suggest three candidates. The first is the long BB stepsize αBB1

k , i.e.,

αATC1
k =

{
αBB1
k , if mod(k,m) = 0;

α̃k, otherwise.
(43)

The second is the short BB stepsize αBB2
k , i.e.,

αATC2
k =

{
αBB2
k , if mod(k,m) = 0;

α̃k, otherwise.
(44)

The last is αP
k given by (16), which is a special case of the family (15). That is,

αATC3
k =

{
αP
k , if mod(k,m) = 0;

α̃k, otherwise.
(45)

In what follows we shall refer (43), (44) and (45) to as ATC1, ATC2 and ATC3,
respectively.

We tested the family (15) with fixed γk on quadratic problems to see how the values
of γk affect the performance. In particular, γk is set to 0.1, 0.3, 0.5, 0.7 and 0.9 for all
k, respectively. The examples in [15,24,40] were employed, where A = QV QT with

Q = (I − 2w3w
T
3 )(I − 2w2w

T
2 )(I − 2w1w

T
1 ),

and w1, w2, and w3 are unitary random vectors, V = diag(v1, . . . , vn) is a diagonal
matrix where v1 = 1, vn = κ , and v j , j = 2, . . . , n − 1, are randomly generated
between 1 and κ . We stopped the iteration if the number of iteration exceeds 20,000
or

‖gk‖ ≤ ε‖g1‖ (46)

is satisfied for some given ε.
Four values of the condition number κ: 103, 104, 105, 106 as well as three values of

ε: 10−6, 10−9, 10−12 were used. For each value of κ and ε, 10 instances with v j evenly
distributed in [1, κ] were generated. For each instance, the entries of b were randomly
generated in [−10, 10] and the vector e = (1, . . . , 1)T was used as the starting point.

The BB method was also run for comparison, i.e. γk = 1. We compared the perfor-
mance of the algorithms by the required number of iterations, as described in [21]. In
other words, for each method, we plot the ratio of problems for which the method is
within a factor ρ of the least iterations. For the 100-dimensional case, we can see from
Fig. 1 that the performance of the family improves as γk becomes larger. However,
for the 1000-dimensional case, Fig. 2 shows that the family (15) with γk = 0.7 or 0.9
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Fig. 1 Performance profile of
the family (15) with fixed γk
based on number of iterations
for 100-dimensional problems
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Fig. 2 Performance profile of
the family (15) with fixed γk
based on number of iterations
for 1000-dimensional problems
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can outperform the BB method for some ρ around 1.5. That is, for some problems,
the long BB stepsize αBB1

k may not be the best choice in the family.
Then, we applied ATC1, ATC2 and ATC3 to the above problem with n = 1000

and different v j distributions. Particularly, two sets were generated: (1) v j are evenly
distributed in [1, κ] as the former example; (2) 20% of v j are evenly distributed
in [1, 100] and others are in [ κ

2 , κ]. We used three values of the condition number
κ = 104, 105, 106 and also three values of ε as the above problem. Other settings
were same as the former example.

We tested the three methods with differentm. The average number of iterations are
presented in Table 1.We can see that, for each κ andm, ATC1 often outperformsATC2
and ATC3. The performances of the three methods do not improve as m increases.
For the first set of problems, ATC1 with m = 30 performs better than other values.
For the second set of problems, ATC1 withm = 8 dominates others. Thus, in the next
section we only run ATC1 using these settings.

We close this section by mentioning that there are many other different rules for
computing the parameter γk . For example, as the alternate gradient method [7,11], we
can choose γk to alternate short stepsizes and long stepsizes. In addition, we can also
use sophisticated random schemes for γk , see [30] and references therein.
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Table 1 Number of iterations of ATC1, ATC2 and ATC3 with different m on problems with different
spectrum distributions

Set Method κ m

5 8 10 20 30 40 50 60 80 100

1 ATC1 104 397.8 435.9 391.5 381.6 356.7 350.7 416.4 406.4 412.2 407.0

105 3051.4 3486.2 2266.2 1767.7 1550.9 1681.1 1646.3 1591.4 1483.9 1414.5

106 5864.8 6297.0 4467.8 3096.0 2608.8 2532.9 3154.8 2520.5 2853.3 2334.8

ATC2 104 449.4 484.2 435.8 407.2 371.1 403.9 423.6 384.3 419.9 414.8

105 4708.2 3334.5 3050.5 2406.1 2102.4 2218.7 1853.5 1816.3 1691.3 1887.8

106 7846.2 6356.6 5762.5 4562.8 3643.1 3587.5 3426.5 2852.6 2687.7 2862.2

ATC3 104 683.8 620.7 535.9 454.4 438.7 444.0 426.7 414.3 412.7 427.5

105 9232.9 4798.6 8648.4 2899.5 2248.0 2469.1 2269.3 2123.8 1960.4 2347.2

106 11526.5 8062.5 9560.1 6122.4 4625.7 4272.6 3786.8 3621.4 3304.6 3613.7

2 ATC1 104 266.8 215.9 272.5 273.3 309.6 330.3 357.2 334.7 374.4 354.8

105 827.8 794.9 927.9 1057.2 1173.0 1188.5 1330.6 1308.6 1353.1 1403.0

106 1322.8 1283.3 1553.0 1736.2 1875.8 2062.4 2165.7 2110.3 2239.3 2273.7

ATC2 104 385.5 331.1 360.3 350.5 320.3 345.2 348.2 336.0 361.1 376.8

105 1891.4 1382.2 1403.8 1454.3 1417.2 1402.1 1321.9 1354.0 1392.7 1446.4

106 3070.3 2367.5 2484.9 2320.7 2232.1 2227.2 2225.4 2255.6 2359.4 2330.5

ATC3 104 671.1 410.7 483.9 371.5 352.6 359.7 350.6 359.1 376.1 382.6

105 4213.2 1720.5 2317.3 1866.7 1519.2 1489.2 1498.3 1488.5 1490.3 1517.8

106 8135.7 2895.5 4255.8 3046.8 2655.6 2534.6 2539.4 2393.4 2425.7 2552.0

5 Numerical results

In this section, we present numerical results of the family (15) with different settings of
the parameter γk .We compare the performance of theATC1methodwith the following
methods: the family (15) with γk randomly chose in (0, 1) (RAND), BB [2], ALBB
[11], ABB [40], CBB1 [12], CBB2, CP,Dai-Yuan (DY) [16], ABBmin1 andABBmin2
[23], SDC [17], and the family (15) with basic adaptive truncated cyclic scheme (42)
(ATC). Since the SDCmethod performs better than its monotone counterpart for most
problems, we only run SDC.

All methods were implemented in MATLAB (v.9.0-R2016a). All the runs were
carried out on a PC with an Intel Core i7, 2.9 GHz processor and 8 GB of RAM
running Windows 10 system. Moreover, we stopped the iteration if the number of
iteration exceeds 20,000 or (46) is satisfied for some given ε.

Firstly, we considered randomly generated problems in the former section with
different v j distributions as shown in Table 2. The first two sets are same as the former
section. For the third set, half of v j are in [1, 100] and the other half in [ κ

2 , κ]; for
the fourth set, 80% of v j are evenly distributed in [1, 100] and others are in [ κ

2 , κ].
The fifth set has 20% of v j are in [1, 100], 20% of v j are in [100, κ

2 ] and the others

123



60 Y.-H. Dai et al.

Table 2 Distributions of v j Set Spectrum

1 {v2, . . . , vn−1} ⊂ (1, κ)

2 {v2, . . . , vn/5} ⊂ (1, 100)

{vn/5+1, . . . , vn−1} ⊂ ( κ
2 , κ)

3 {v2, . . . , vn/2} ⊂ (1, 100)

{vn/2+1, . . . , vn−1} ⊂ ( κ
2 , κ)

4 {v2, . . . , v4n/5} ⊂ (1, 100)

{v4n/5+1, . . . , vn−1} ⊂ ( κ
2 , κ)

5 {v2, . . . , vn/5} ⊂ (1, 100)

{vn/5+1, . . . , v4n/5} ⊂ (100, κ
2 )

{v4n/5+1, . . . , vn−1} ⊂ ( κ
2 , κ)

6 {v2, . . . , v10} ⊂ (1, 100)

{v11, . . . , vn−1} ⊂ ( κ
2 , κ)

7 {v2, . . . , vn−10} ⊂ (1, 100)

{vn−9, . . . , vn−1} ⊂ ( κ
2 , κ)

in [ κ
2 , κ]. The last two sets only has either 10 small v j or 10 large v j . Other settings

were also same as the former section.
For the three cyclicmethods: CBB1, CBB2 andCP, the bestm among {3, 4, . . . , 10}

was chosen. In particular, m = 3 for CBB1 and m = 4 for CBB2 and CP. As in [23],
the parameters used by the ABBmin1 and ABBmin2 methods are set to τ = 0.8,
m = 9 and τ = 0.9, respectively. While τ = 0.1 was used for the ABBmethod which
is better than 0.15 and 0.2 in our test. The pair (h,m) of the SDC method was set to
(8, 6) which is better than other choices. As for our ATC1 method, we set m = 30 for
the first and fifth sets of problems and m = 8 for other sets.

It can be observed from Table 3 that, the rand scheme performs worse than the fixed
scheme with γk = 1, i.e., the BBmethod. The ATCmethod is competitive with the BB
method and dominates the ALBB and CP methods for most test problems. The CBB2
method clearly outperforms the other two cyclic methods: CBB1 and CP. Moreover,
the CBB2 method performs much better than the ATC and ABB methods except the
first and fifth sets of problems. The CBB2 method is even faster than the DY method.
Although the ABBmin2 method is the fastest one for solving the first and sixth sets of
problems, it is worse than the ABBmin1, SDC and ATC1 methods for the other five
sets of problems. Our ATC1 method is faster than the CBB2 method except the last
set of problems. In addition, the ATC1 method is much better than the ABBmin1 and
SDC methods on the first set of problems and comparable to them on the other sets of
problems. Furthermore, for each tolerance, our ATC1 method is the fastest one in the
sense of total number of iterations.

Then, the compared methods were applied to the non-rand quadratic minimization
problem in [17] which is more difficult than its rand counterpart. In particular, A is
diagonal whose elements are given by
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Table 4 Number of iterations of compared methods on non-rand quadratic problems

ε κ Method

ABB CBB2 DY ABBmin1 ABBmin2 SDC ATC ATC1

10−6 104 531.3 670.7 517.4 531.1 510.4 547.3 574.4 558.8

105 938.1 1167.5 996.0 974.6 872.0 990.6 1097.2 1011.6

106 1368.4 1550.6 1452.4 1362.9 1299.4 1430.8 1511.0 1408.7

10−9 104 1235.2 1581.8 1243.7 1277.2 1284.5 1203.7 1340.2 1289.9

105 2593.3 3443.5 3081.4 2846.5 2826.8 2694.9 3155.9 2719.7

106 3873.3 4718.3 4807.9 4192.1 3869.5 4102.6 4439.5 4004.9

10−12 104 2365.6 2839.0 2132.7 2083.7 3042.0 1891.7 2546.6 2092.9

105 7331.1 9015.1 9696.2 7916.3 7491.7 7304.3 8844.2 7238.1

106 12124.9 14050.5 17329.3 12792.4 11653.1 11775.5 15157.7 11600.6

Total 32361.2 39037.0 41257.0 33976.8 32849.4 31941.4 38666.7 31925.2

A j j = 10
ncond
n−1 (n− j), j = 1, . . . , n, (47)

where ncond = log10 κ , and the vector b is null. We tested 10,000-dimensional
problems with three different condition numbers: κ = 104, 105, 106. The stopping
condition (46) was employed with ε = 10−6, 10−9, 10−12 for all methods. For each
value of κ or ε, 10 different starting points with entries in [−10, 10] were randomly
generated.

Due to the performances of these compared methods on the above problems, only
fast methods were tested, i.e., ABB, CBB2, DY, ABBmin1, ABBmin2, SDC, ATC and
ATC1. The numbers of iterations averaged over those starting points of each method
are listed in Table 4. Here, the results of the SDC method were obtained with the best
choice of parameter setting in [17], i.e., h = 30 and m = 2.

From Table 4 we can see that the ATC method is slightly better than the CBB2
method and comparable to the DY method for most problems. The ABB method
performs better than the ABBmin1 method. Although the ABB method is slower than
the ABBmin2 method when the tolerance is low, it wins if a tight tolerance is required.
Our ATC1 method is competitive with other methods especially for a tight tolerance.
Moreover, our ATC1method takes least total number of iterations to meet the required
tolerance.

6 Conclusions

We have proposed a family of spectral gradient methods which calculates the step-
size by the convex combination of the long BB stepsize and the short BB stepsize,
i.e., αk = γkα

BB1
k + (1 − γk)α

BB2
k . Similar to the two BB stepsizes, each step-

size in the family possesses certain quasi-Newton property. In addition, R-superlinear
and R-linear convergence of the family were established for two-dimensional and
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n-dimensional strictly convex quadratics, respectively. Furthermore, with different
choices of the parameter γk , we obtain different stepsizes and gradient methods. The
family provides us an alternative for the stepsize of gradient methods which can be
easily extended to general problems by incorporating some line searches.

Since the parameter γk affects the value of αk and hence the efficiency of the
method, it is interesting to investigate how to choose a proper γk to achieve satisfactory
performance.We have proposed and tested three different selection rules for γk , among
which the adaptive truncated cyclic scheme with the long BB stepsize αBB1

k , i.e., the
ATC1method performs best. In addition, our ATC1method is comparable to the state-
of-the-art gradient methods including the Dai-Yuan, ABBmin1, ABBmin2 and SDC
methods. One interesting question is how to design an efficient scheme to choose m
adaptively for the proposed method. This will be our future work.
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