
Computational Optimization and Applications (2019) 73:871–901
https://doi.org/10.1007/s10589-019-00091-z

On relaxation of some customized proximal point
algorithms for convex minimization: from variational
inequality perspective

Feng Ma1

Received: 26 March 2017 / Published online: 2 April 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Theproximal point algorithm (PPA) is a fundamentalmethod for convexprogramming.
When applying the PPA to solve linearly constrained convex problems, we may prefer
to choose an appropriatemetricmatrix to define the proximal regularization, so that the
computational burden of the resulted PPA can be reduced, and sometimes even admit
closed form or efficient solutions. This idea results in the so-called customized PPA
(also known as preconditioned PPA), and it covers the linearized ALM, the primal-
dual hybrid gradient algorithm, ADMM as special cases. Since each customized PPA
owes special structures and has popular applications, it is interesting to ask wether
we can design a simple relaxation strategy for these algorithms. In this paper we
treat these customized PPA algorithms uniformly by a mixed variational inequality
approach, and propose a new relaxation strategy for these customized PPA algorithms.
Our idea is based on correcting the dual variables individually and does not rely
on relaxing the primal variables. This is very different from previous works. From
variational inequality perspective, we prove the global convergence and establish a
worst-case convergence rate for these relaxed PPA algorithms. Finally, we demonstrate
the performance improvements by some numerical results.

Keywords Convex minimization · Proximal point algorithm · Relaxation ·
Augmented Lagrangian method

1 Introduction

The problem concerned in this paper is the following convex minimization model

min{θ(x) | Ax = b, x ∈ X }, (1.1)

B Feng Ma
mafengnju@gmail.com

1 High-Tech Institute of Xi’an, Xi’an 710025, Shaanxi, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-019-00091-z&domain=pdf
http://orcid.org/0000-0002-8047-426X

872 F. Ma

where A ∈ �m×n , b ∈ �m , X ⊂ �n is a closed convex set, θ : �n → � is a generic
convex but not necessarily smooth function. Throughout, the solution set of (1.1) is
assumed to be nonempty. Problems of this form arise in many applications such as
compressed sensing, statistical estimation, machine learning, and image processing,
see e.g., [2,8,17,33] for some examples.

Wefirst reformulate (1.1) as a variational inequality form, sowe can take a brief look
at the algorithms to solve this problem. The Lagrangian function of the optimization
problem (1.1) is

L(x, λ) = θ(x) − λT (Ax − b),

which is defined on X × �m . Let (x∗, λ∗) be a saddle point of the Lagrange function.
Then we have

Lλ∈�m (x∗, λ) ≤ L(x∗, λ∗) ≤ Lx∈X (x, λ∗).

By rearranging the above saddle point inequalities, we have the following optimal
conditions:

{
x∗ ∈ X , θ(x) − θ(x∗) + (x − x∗)T (−AT λ∗) ≥ 0, ∀ x ∈ X ,

λ∗ ∈ �m, (λ − λ∗)T (Ax∗ − b) ≥ 0, ∀ λ ∈ �m .
(1.2)

More compactly, the inequalities (1.2) can be characterized as a monotone variational
inequality (VI):

VI(�, F, θ) w∗ ∈ �, θ(x) − θ(x∗) + (w − w∗)T F(w∗) ≥ 0, ∀w ∈ �,

(1.3a)

where

w =
(
x
λ

)
, F(w) =

(−AT λ

Ax − b

)
and � = X × �m . (1.3b)

It is easily verified that (w1−w2)
T
(
F(w1)−F(w2)

) ≥ 0 for anyw1, w2 ∈ �, thus the
operator F(·) defined in (1.3b) is monotone. Since the solution set of (1.1) is assumed
to be nonempty, the solution set of VI (1.3), denoted by �∗, is also nonempty.

As we have mentioned, our analysis will be conducted in the variational inequality
context, so the VI reformulation (1.3) serves as the starting point for further analysis.
The algorithms used to solve the model (1.1) amount to finding a solution point of VI
(1.3). We now briefly revisit some relevant algorithms in VI form.

The classical proximal point algorithm (PPA) [29,31] is a popular method to solve
the VI. Starting from an initial point w0, the PPA iterates as follows

wk+1 ∈ �, θ(x) − θ(xk+1) + (w − wk+1)T {F(wk+1)

+ r(wk+1 − wk)} ≥ 0, ∀ w ∈ �, (1.4)

123

On relaxation of some customized proximal point algorithms… 873

where r > 0 is a regularization parameter. The PPA is fundamental both theoretically
and algorithmically in the area of the optimization. Indeed, the augmented Lagrangian
method (ALM) [27,30] can be interpreted as applying the PPA to the dual of (1.1)
[31]. We now verify the interpretation by revisiting the ALM (1.5) in the VI context.
For (1.1), the ALM reads as

⎧⎨
⎩

xk+1 = argmin{θ(x) − (λk)T (Ax − b) + β

2
‖Ax − b‖2 | x ∈ X }, (1.5a)

λk+1 = λk − β(Axk+1 − b), (1.5b)

where λ is the Lagrange multiplier and β > 0 is a penalty parameter for the linear
constraints. Note that the first-order optimality condition of the x-subproblem (1.5a)
is

θ(x) − θ(xk+1) + (x − xk+1)T {−AT λk + βAT (Axk+1 − b)} ≥ 0,∀x ∈ X .

Substituting (1.5b) into the above equality yields

θ(x) − θ(xk+1) + (x − xk+1)T {−AT λk+1} ≥ 0, ∀x ∈ X . (1.6)

Next, (1.5b) can be written as

(λ − λk+1)T {Axk+1 − b + 1

β
(λk+1 − λk)} ≥ 0, ∀λ ∈ �m . (1.7)

Combining (1.6) and (1.7), we have

θ(x) − θ(xk+1) +
(
x − xk+1

λ − λk+1

)T {(−AT λk+1

Axk+1 − b

)

+
(

0
1
β
(λk+1 − λk)

)}
≥ 0, ∀ (x, λ) ∈ �. (1.8)

By using the notations in (1.3), the compact form is

wk+1 ∈ �, θ(x) − θ(xk+1) + (w − wk+1)T {F(wk+1)

+Q(wk+1 − wk)} ≥ 0, ∀w ∈ �, (1.9a)

with

Q =
(
0

1
β
Im

)
. (1.9b)

Compared with the PPA scheme (1.4), it is easy to see that only the dual term is
proximally regularized by the coefficient 1

β
. Thus, applying the PPA to the dual of

(1.1), we get the ALM scheme (1.5).

123

874 F. Ma

ALM is a benchmark method that has been successfully used in many important
areas (e.g., linear inverse problems in image processing [1,10]). At each iteration,
the computational effort of ALM is dominated by evaluating the operator (AT A +
1
β
∂θ)−1(·) in X . When AT A is not an identity matrix, or even large and dense, such

evaluation usually does not have easy or closed form solutions.
On the other hand,wehave encountered some concrete applications arising in sparse

or low-rank optimization problems modeled by (1.1), in which the convex functions
have some special structures to utilize. An important structure we often encountered
in practice is that the proximal mapping related to the objective θ(·) defined by

Proxτθ (a) := argmin

{
θ(x) + 1

2τ
‖x − a‖2

}
, (1.10)

with parameter τ > 0, can be computed easily. Here “easy” means a closed-form
solution exists or efficient solvers are available. Examples of such structure exist in
linear and quadratic programming, basis pursuit, nuclear norm minimization, and
model fitting problems, etc. Let us briefly review two typical algorithms developed
for employing this structure.

The first is the primal-dual hybrid gradient (PDHG) algorithm, which is used for
total variation image restoration problems in [39], and subsequently improved by
Chambolle and Pock in [5,6]. For solving (1.1), the PDHG iterates as

(PDHG)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xk+1 = argmin{L(x, λk) + r

2
‖x − xk‖2 | x ∈ X }, (1.11a)

x̄ k = xk+1 + (xk+1 − xk), (1.11b)

λk+1 = argmax
{
L
(
x̄ k, λ

) − s

2

∥∥λ − λk
∥∥2}, (1.11c)

where r and s are required to satisfy r > 0, s > 0, rs > ‖AT A‖.
Similar to the derivation of ALM, by using the notations in (1.3), the VI form of

PDHG is

wk+1 ∈ �, θ(x) − θ(xk+1) + (w − wk+1)T {F(wk+1)

+Q(wk+1 − wk)} ≥ 0, ∀w ∈ �, (1.12a)

where

Q =
(
r In AT

A s Im

)
. (1.12b)

Since rs > ‖AT A‖, Q is symmetric positive definite, and can be used to define Q-
norm by ‖w‖Q := √

wT Qw. With the VI characterization (1.12), we now can easily
derive the contraction property of PDHG. Here we briefly discuss below.

123

On relaxation of some customized proximal point algorithms… 875

Setting w = w∗ in (1.12), we have

(wk+1 − w∗)T Q(wk − wk+1) ≥ θ(xk+1) − θ(x∗) + (wk+1 − w∗)T F(wk+1).

Recall F(·) is monotone (see (1.3b)), we have

θ(xk+1) − θ(x∗) + (wk+1 − w∗)T F(wk+1) ≥ θ(xk+1) − θ(x∗)
+(wk+1 − w∗)T F(w∗) ≥ 0.

Then, we obtain

(wk+1 − w∗)T Q(wk − wk+1) ≥ 0.

Using the above inequality, we get

‖wk − w∗‖2Q = ‖(wk+1 − w∗) + (wk − wk+1)‖2Q
≥ ‖wk+1 − w∗‖2Q + ‖wk − wk+1‖2Q,

and thus the sequence generated by PDHG (1.12) obeys

‖wk+1 − w∗‖2Q ≤ ‖wk − w∗‖2Q − ‖wk − wk+1‖2Q . (1.13)

The above inequality implies that the sequence {wk} is strictly contractive to the solu-
tion set in Q-norm. Recall that the proximal parameter in the original PPA is a scalar
r , means that all the coordinates of w are proximally regularized with equivalent
weights. While for the VI form of PDHG (1.12), the proximal parameter is a positive
definite matrix Q, and the coordinates of w are proximally regularized with differ-
ent weights. Using this judicious choice of Q, the resulting subproblems are simple
under the assumption (1.10) and the convergence is also guaranteed by noting that the
distance to the solution point decreases at each step (see (1.13)). Further, we observe
that the algorithm (1.12) owes a similar structure with the PPA (1.12). In this sense,
it is essentially a customized application of PPA. The VI revisit (1.12) and PPA inter-
pretation of PDHG is first shown in [24], and used in [7] to simplify the convergence
analysis.

Since the PDHG (1.11) takes an algorithmic structure analogous to that of the
generic PPA, the existing relaxation strategies for the PPA in the literature can be
naturally used for these customized PPA algorithms. One popular relaxation scheme
is to combine a computationally trivial relaxation step with the PPA [19]. Specially, let
w̃k = (x̃ k, λ̃k) be the output of the customized PPA. The new iterate wk+1 generated
by the relaxation step in [19,20] is given by

123

876 F. Ma

VI framework of relaxed PPA for (1.3)

1. PPA step: generate w̃k via solving

w̃k ∈ �, θ(x) − θ(x̃ k) + (w − w̃k)T F(w̃k) ≥ (w − w̃k)T Q(wk − w̃k),

∀w ∈ �, (1.14a)

where Q is a symmetric positive definite matrix.
2. Relaxation step: generate the new iterate wk+1 via

wk+1 = wk − γ (wk − w̃k), (1.14b)

where the relaxation factor γ ∈ (0, 2).

As demonstrated in many cases, the relaxation step (1.14b) with γ ∈ (1, 2) can
speed up the convergence of the customized PPA, see, e.g. [23,24]. However, this
relaxation strategy has some issues that would be overlooked: the point wk+1 is a
combination of wk and w̃k . It may not be in the set � or owes the structure that w̃k

has. To address these limitations, one can first use the relaxation term (1.14b) in the
iteration loops; when the specified stop criterion is achieved, one should perform an
extra iteration without the relaxation step.

On the other hand, observe that each customized PPA owes special structure and
has popular applications, it is interesting to ask wether there exists another simple
relaxation strategy for these algorithms based on their structures and can also have
good improvements. In this paper we treat these customized PPA algorithms uniformly
by a mixed variational inequality approach, and propose a new relaxation strategy for
these customized PPA algorithms. Now, we specify our relaxed customized PPA as
follows

The new VI framework of relaxed PPA for (1.3)

1. PPA step: generate w̃k via solving

w̃k ∈ �, θ(x) − θ(x̃ k) + (w − w̃k)T F(w̃k) ≥ (w − w̃k)T Q(wk − w̃k),

∀w ∈ �, (1.15a)

where Q is a symmetric positive definite matrix.
2. Relaxation step: set xk+1 = x̃ k , and generate the dual iterate λk+1 via

λk+1 = λk − A(γ)(wk − w̃k), (1.15b)

where γ ∈ (0, 2) and A(γ) is a linear operator regarding of γ .

The paper is organized as follows. In Sect. 2, we introduce our relaxation steps
for some customized PPA algorithms. In Sect. 3, we discuss the relaxation strategy
for the ADMM. We then analyze the convergence of these methods in Sect. 4, and
further establish their convergence rate in both the non-ergodic and ergodic sense in
Sect. 5. After that, we present some numerical results to demonstrate the improved

123

On relaxation of some customized proximal point algorithms… 877

performance of the relaxation strategy in Sect. 6. Finally, some conclusions are made
in Sect. 7.

2 Relaxed customized PPA

In this section, we show how to relax the customized PPA via correcting the dual vari-
able. To make our illustration more clear, the output variable wk+1 of the customized
PPA is relabeled as w̃k below.

Note that the relaxation falls into the category of prediction-correction methods.
We use the prototype algorithm framework proposed in [22] to unify our analysis.
This algorithm framework is also used in [26] for analyzing the PDHG.

Prediction-correction method for the VI problem (1.3):

[Prediction Step.] With given wk , find a vector w̃k ∈ � and a matrix Q satisfying

w̃k ∈ �, θ(x) − θ(x̃ k) + (w − w̃k)T F(w̃k) ≥ (w − w̃k)T Q(wk − w̃k),

∀w ∈ �, (2.1a)

where the matrix Q has the property: QT + Q is positive definite.

[Correction Step.] Determine a nonsingular matrix M ; and generate the new iterate
wk+1 via

wk+1 = wk − M(wk − w̃k). (2.1b)

Then, the convergence of the prototype algorithm (2.1) can be guaranteed if the
following conditions are fulfilled.

Convergence conditions:
For the matrices Q and M in (2.1), the matrices

H := QM−1 � 0 (2.2a)

and

G := QT + Q − MT HM � 0. (2.2b)

In the following, we show that each PPA with the correction step falls into the
prototype algorithm (2.1). Then we demonstrate the conditions specified in (2.2) are
fulfilled.

2.1 Relaxed PDHG

Recall that the PDHG in variational form is (1.15a) with metric

Q =
(
r In AT

A s Im

)
. (2.3)

123

878 F. Ma

Then we judiciously correct the dual variable via

λk+1 = λk − γ − 1

s
A(xk − x̃ k) − γ (λk − λ̃k), (2.4)

where the relaxation factor γ ∈ (0, 2). Since we always have xk+1 = x̃ k , using the
notations in (1.3), we get the correction step as

wk+1 = wk − M(wk − w̃k), (2.5a)

where

M =
(

In 0
γ−1
s A γ Im

)
. (2.5b)

Now,we check the positive definiteness of H andG to verifywhether the conditions
in (2.2) are fulfilled. First, we need to deduce the expression of H and G. Recall M
(see (2.5b)), we have

M−1 =
(

In 0
− γ−1

sγ A 1
γ
Im

)
.

Then

H = QM−1 =
(
r In AT

A s Im

)(
In 0

− γ−1
sγ A 1

γ
Im

)

=
(
r In − γ−1

sγ AT A 1
γ
AT

1
γ
A s

γ
Im

)
.

(2.6)

According to the Schur complement, we have

H =
(
I 1

s A
T

0 I

)(
r I − 1

s A
T A 0

0 s
γ
I

) (
I 0
1
s A I

)
.

Since rs > ‖AT A‖, H is positive definite.
The matrix G is symmetric by QT = Q, we next deduce the expression of G.

G = QT + Q − MT HM = 2Q − MT Q

= 2 ·
(
r In AT

A s Im

)
−

(
In

γ−1
s AT

0 γ Im

) (
r In AT

A s Im

)

=
(
2r In 2AT

2A 2s Im

)
−

(
r In + γ−1

s AT A γ AT

γ A γ s Im

)

=
(
r In − γ−1

s AT A (2 − γ)AT

(2 − γ)A (2 − γ)s Im

)
.

(2.7)

123

On relaxation of some customized proximal point algorithms… 879

According to the Schur complement,

G =
(
I 1

s A
T

0 I

) (
r I − 1

s A
T A 0

0 (2 − γ)s I

) (
I 0
1
s A I

)
. (2.8)

Since r I � 1
s A

T A and 0 < γ < 2, G is positive definite. The relaxed PDHG scheme
is a special case of the prototype algorithm (2.2).

The relaxation step (2.4) looks somehow complicated. However, combining PDHG
and (2.4), the update steps of the relaxed PDHG can be simple. By straightforward
manipulations, the PDHG can be rewritten as a prediction step, which gives

⎧⎪⎨
⎪⎩

x̃ k = argmin{θ(x) + r

2
‖x − xk − 1

r
AT λk‖2 | x ∈ X }, (2.9a)

λ̃k = λk − 1

s
(A(2x̃ k − xk) − b). (2.9b)

Together with (2.4) and noting xk+1 = x̃ k , we obtain:

Relaxed PDHG for (1.1)

⎧⎪⎨
⎪⎩

xk+1 = argmin{θ(x) + r

2
‖x − xk − 1

r
AT λk‖2 | x ∈ X }, (2.10a)

λk+1 = λk − 1

s
{A(

(1 + γ)xk+1 − xk
) − γ b}, (2.10b)

where r > 0, s > 0, rs > ‖AT A‖, and γ ∈ (0, 2).

2.2 Relaxed linearized ALM

In this section,we show that the linearizedALM(L-ALM) [35,38] is also a special case
of customized PPA, and it can be relaxed by (1.15b). The main idea of L-ALM is to
linearize the augmented Lagrangian function (1.5a) in the ALMvia adding a quadratic
term 1

2‖x − xk‖2
(r I−βAT A)

. Ignoring some constant terms in the x-subproblem, the
iterate scheme of L-ALM is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xk+1 = argmin

{
θ(x) + r

2
‖x − xk − 1

r
AT (λk − β(Axk

−b))‖2 | x ∈ X
}

, (2.11a)

λk+1 = λk − β(Axk+1 − b). (2.11b)

Note that the quadratic term should be positive, we have r > β‖AT A‖. Now, we
revisit L-ALM (2.11) in VI form.

123

880 F. Ma

The first-order optimality condition of the x-subproblem of (2.11a) is

θ(x) − θ(x̃ k) + (x − x̃ k)T {−AT λk + βAT (Ax̃k − b)

+ (r I − βAT A)(x̃ k − xk)} ≥ 0, ∀x ∈ X ,

and it can be written as

θ(x)− θ(x̃ k)+ (x − x̃ k)T {−AT λ̃k + (r I −βAT A)(x̃ k − xk)} ≥ 0, ∀x ∈ X . (2.12)

Next, we rewrite λ̃k = λk − β(Ax̃k − b) (see (2.11b)) as

(λ − λ̃k)T
{
Ax̃k − b + 1

β
(λ̃k − λk)

}
≥ 0, ∀λ ∈ �m . (2.13)

Combining (2.12) and (2.13), we have

∀w ∈ �, θ(x) − θ(x̃ k)+(
x − x̃ k

λ − λ̃k

)T {(−AT λ̃k

Ax̃k − b

)
+

(
(r In − βAT A)(x̃ k − xk)

1
β
(λ̃k − λk)

)}
≥ 0.

(2.14)

Recall the notations in (1.3), the L-ALM (2.11) can thus be interpreted as a customized
PPA (1.15a) with Q given by

Q =
(
r In − βAT A 0

0 1
β
Im

)
. (2.15)

To accelerate the L-ALM, we suggest to relax the dual variable by

λk+1 = λk − γ (λk − λ̃k), (2.16)

where the relaxation factor γ ∈ (0, 2). Note that xk+1 always amounts to x̃ k , we have

wk+1 = wk − M(wk − w̃k), (2.17a)

where

M =
(
In 0
0 γ Im

)
. (2.17b)

Next, we show that the condition (2.2) is fulfilled by the relaxed L-ALM scheme.
We have

H = QM−1 =
(
r In − βAT A 0

0 1
β
Im

) (
In 0
0 1

γ
Im

)

=
(
r In − βAT A 0

0 1
γβ

Im

)
,

(2.18)

123

On relaxation of some customized proximal point algorithms… 881

and

G = QT + Q − MT HM = 2Q − MT Q

=
(
2(r In − βAT A) 0

0 2
β
Im

)
−

(
In 0
0 γ Im

) (
r In − βAT A 0

0 1
β
Im

)

=
(
2(r In − βAT A) 0

0 2
β
Im

)
−

(
r In − βAT A 0

0 γ
β
Im

)

=
(
r In − βAT A 0

0 2−γ
β

Im

)
.

(2.19)

Under the condition that r > 0, β > 0, r > β‖AT A‖ and the relaxation factor
γ ∈ (0, 2), the matrix H and G are both symmetric and positive definite. Thus, the
relaxed L-ALM scheme is a special case of the prototype algorithm (2.2) and the
conditions in (2.2) are fulfilled. We refer to [32] for the relaxed L-ALM with (1.14b).

Now, the relaxed L-ALM scheme is:

Relaxed L-ALM for (1.1)

⎧⎪⎪⎨
⎪⎪⎩

xk+1 = argmin{θ(x) + r

2
‖x − xk − 1

r
AT (λk − β(Axk

−b))‖2 | x ∈ X }, (2.20a)

λk+1 = λk − γβ(Axk+1 − b), (2.20b)

where r > 0, β > 0, r > β‖AT A‖, and γ ∈ (0, 2).

3 Relaxed ADMM for separable case

Motivated by recent popular applications, we also discuss a separable case of (1.1),
in which the objective function θ(x) can be decomposed as a sum of two individual
convex functions without coupled variables:

min{θ1(x1) + θ2(x2) | A1x1 + A2x2 = b, x1 ∈ X1, x2 ∈ X2}, (3.1)

where θ1 : �n1 → �, θ2 : �n2 → � are both closed convex (not necessarily smooth)
functions; A1 ∈ �m×n1 , A2 ∈ �m×n2 ; X1 ⊂ �n1 , X2 ⊂ �n2 are closed convex sets.

The optimality condition of the problem (3.1) can be analogously written as the
following variational inequality:

VI(�, F, θ) w∗ ∈ �, θ(x) − θ(x∗) + (w − w∗)T F(w∗) ≥ 0, ∀w ∈ �,

(3.2a)

123

882 F. Ma

where

x =
(
x1
x2

)
, w =

⎛
⎝ x1
x2
λ

⎞
⎠ , F(w) =

⎛
⎝ −AT

1 λ

−AT
2 λ

A1x1 + A2x2 − b

⎞
⎠ ,

θ(x) = θ1(x1) + θ2(x2), and � = X1 × X2 × �m .

(3.2b)

Note that the mapping F(w) defined in (3.2b) also satifies (w1 − w2)
T
(
F(w1) −

F(w2)
) ≥ 0 for any w1, w2 ∈ �, thus it is monotone.

The classical alternating directions method of multipliers (ADMM) originates in
[9,16] is suitable for solving (3.1). Starting with an initial iterate (x02 , λ

0) ∈ X2 ×�m ,
the ADMM iterates via the scheme

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = argmin

{
θ1(x1) − (λk)T A1x1 + β

2
‖A1x1 + A2x

k
2

−b‖2 ∣∣ x1 ∈ X1

}
, (3.3a)

xk+1
2 = argmin

{
θ2(x2) − (λk)T A2x2 + β

2
‖A1x

k+1
1 + A2x2

−b‖2 ∣∣ x2 ∈ X2

}
, (3.3b)

λk+1 = λk − β(A1x
k+1
1 + A2x

k+1
2 − b). (3.3c)

In [13], it was shown that ADMM is actually equivalent to the Douglas-Rachford
splitting method (DRSM) applied to the dual of (3.1). We also refer to [21] for the
primal application of DRSM. In this section, to make our analysis more general, we
consider the proximalADMMwhere each subproblem is regularizedwith an additional
quadratic proximal term. Note that the original ADMM produces the new iterate in
the forward order x1 → x2 → λ. In cyclical sense, it can also be written as the
x1 → λ → x2 order, which gives

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = argmin

{
θ1(x1) − (λk)T A1x1 + β

2
‖A1x1 + A2x

k
2 − b‖2 + ‖x1

−xk1‖2D1

∣∣ x1 ∈ X1

}
, (3.4a)

λk+1 = λk − β(A1x
k+1
1 + A2x

k
2 − b), (3.4b)

xk+1
2 = argmin

{
θ2(x2) − (λk+1)T A2x2 + β

2
‖A1x

k+1
1 + A2x2 − b‖2 + ‖x2

−xk2‖2D2

∣∣ x2 ∈ X2

}
, (3.4c)

where D1 and D2 are two positive definite matrices. Obviously, the proximal ADMM
contains ADMM as a special case. When D1 = r I − βAT

1 A1 (r > β‖AT
1 A1‖) or

D2 = s I − βAT
2 A2 (s > β‖AT

2 A2‖), the so-called split inexact Uzawa method

123

On relaxation of some customized proximal point algorithms… 883

[37,38] is recovered. In this case, the resulting subproblem is in form of (1.10) (when
Xi = �ni , i = 1, 2), which is simple under the assumption (1.10). We refer the reader
to see [11] for more different choices of D1 and D2.

In our relaxation, the output of (3.4) serves as a predictor, we here relabel it as
w̃k = (x̃ k1 , x̃

k
2 , λ̃

k) as before. Now, we first follow [4] to revisit the proximal ADMM
(3.4) in VI form.

Lemma 3.1 For given wk = (xk1 , x
k
2 , λ

k), let w̃k be generated by (3.4). Then, we have

w̃k ∈ �, θ(x) − θ(x̃ k) + (w − w̃k)T F(w̃k)

≥ (w − w̃k)T Q(wk − w̃k), ∀w ∈ �, (3.5a)

where

Q =
⎛
⎝ D1 0 0

0 D2 + βAT
2 A2 −AT

2
0 −A2

1
β
Im

⎞
⎠ . (3.5b)

Proof The optimality condition of the x1-subproblem in (3.4) is

x̃ k1 ∈ X1, θ1(x1) − θ1(x̃
k
1) + (x1 − x̃ k1)

T {−AT
1 λk + βAT

1 (A1 x̃
k
1

+A2x
k
2 − b) + D1(x̃

k
1 − xk1)} ≥ 0, ∀ x1 ∈ X1,

and it can be written as (using λ̃k generated by (3.4b))

x̃ k1 ∈ X1, θ1(x1) − θ1(x̃
k
1) + (x1 − x̃ k1)

T (−AT
1 λ̃k

+D1(x̃
k
1 − xk1)) ≥ 0, ∀ x1 ∈ X1. (3.6a)

The optimality condition of the x2-subproblem of (3.4) is

x̃ k2 ∈ X2, θ2(x2) − θ2(x̃
k
2) + (x2 − x̃ k2)

T {−AT
2 λ̃k + βAT

2 (A1 x̃
k
1

+A2 x̃
k
2 − b) + D2(x̃

k
2 − xk2)

} ≥ 0, ∀x2 ∈ X2.

Now, we treat the {·} term in the last inequality. Using β(A1 x̃ k1 + A2xk2 − b) =
−(λ̃k − λk) (see (3.4b)), we obtain

−AT
2 λ̃k + βAT

2 (A1 x̃
k
1 + A2 x̃

k
2 − b) + D2(x̃

k
2 − xk2)

= −AT
2 λ̃k + βAT

2 A2(x̃
k
2 − xk2) − AT

2 (λ̃k − λk) + D2(x̃
k
2 − xk2)

= −AT
2 λ̃k + (D2 + βAT

2 A2)(x̃
k
2 − xk2) − AT

2 (λ̃k − λk).

Then the optimality condition of the x2-subproblem can be written as

x̃ k2 ∈ X2, θ2(x2) − θ2(x̃
k
2) + (x2 − x̃ k2)

T {−AT
2 λ̃k

+(D2 + βAT
2 A2)(x̃

k
2 − xk2) − AT

2 (λ̃k − λk)
} ≥ 0, ∀x2 ∈ X2. (3.6b)

123

884 F. Ma

From (3.4b), we have

(A1 x̃
k
1 + A2 x̃

k
2 − b) − A2(x̃

k
2 − xk2) + (1/β)(λ̃k − λk) = 0,

and it can be written as

λ̃k ∈ �m, (λ − λ̃k)T
{
(A1 x̃

k
1 + A2 x̃

k
2 − b) − A2(x̃

k
2 − xk2)

+(1/β)(λ̃k − λk)
} ≥ 0, ∀ λ ∈ �m . (3.6c)

Combining (3.6a), (3.6b) and (3.6c), and using the notations of (3.2b), the assertion
of this lemma is proved. �
Remark 3.2 The matrix Q (3.5b) is symmetric positive definite. Thus, the proximal
ADMM (3.4) is a customized PPA.

To accelerate the ADMM (3.4), we suggest to relax the dual variable by

λk+1 = λk + (γ − 1)βA2(x
k
2 − x̃ k2) − γ (λk − λ̃k), (3.7)

where the relaxation factor γ ∈ (0, 2). Note that xk+1
1 always amounts to x̃ k1 and x

k+1
2

always amounts to x̃ k2 , we have

wk+1 = wk − M(wk − w̃k), (3.8a)

where

M =
⎛
⎝ In1 0 0

0 In2 0
0 −(γ − 1)βA2 γ Im

⎞
⎠ . (3.8b)

Then, we check the positive definiteness of H andG to verify whether the condition
(2.2) is fulfilled for the relaxed ADMM scheme. First, recall M (see (3.8b)), we have

M−1 =
⎛
⎝ In1 0 0

0 In2 0
0 γ−1

γ
βA2

1
γ
Im

⎞
⎠ ,

and

H = QM−1 =
⎛
⎝ D1 0 0

0 D2 + βAT
2 A2 −AT

2
0 −A2

1
β
Im

⎞
⎠

⎛
⎝ In1 0 0

0 In2 0
0 γ−1

γ
βA2

1
γ
Im

⎞
⎠

=
⎛
⎜⎝

D1 0 0
0 D2 + 1

γ
βAT

2 A2 − 1
γ
AT
2

0 − 1
γ
A2

1
γβ

Im

⎞
⎟⎠ .

(3.9)

123

On relaxation of some customized proximal point algorithms… 885

Thus H is positive definite. Next, we check the positive definiteness of G. We first
deduce the expression of G:

G = QT + Q − MT HM = 2Q − MT Q

=
⎛
⎝ 2D1 0 0

0 2(D2 + βAT
2 A2) −2AT

2
0 −2A2

2
β
Im

⎞
⎠

−
⎛
⎝ In1 0 0

0 In2 −(γ − 1)βAT
2

0 0 γ Im

⎞
⎠

⎛
⎝ D1 0 0

0 D2 + βAT
2 A2 −AT

2
0 −A2

1
β
Im

⎞
⎠

=
⎛
⎝ 2D1 0 0

0 2(D2 + βAT
2 A2) −2AT

2
0 −2A2

2
β
Im

⎞
⎠ −

⎛
⎝ D1 0 0

0 D2 + γβAT
2 A2 −γ AT

2
0 −γ A2

γ
β
Im

⎞
⎠

=
⎛
⎝ D1 0 0

0 D2 + (2 − γ)βAT
2 A2 −(2 − γ)AT

2
0 −(2 − γ)A2

2−γ
β

Im

⎞
⎠ .

(3.10)
From (3.10), G is positive definite with 0 < γ < 2. The relaxed ADMM scheme is
thus a special case of the prototype algorithm (2.2). Note that

λk+1 = λ̃k + (γ − 1)βA2(x
k
2 − x̃ k2) − (γ − 1)(λk − λ̃k)

= λ̃k + (γ − 1)βA2(x
k
2 − x̃ k2) − (γ − 1)β(A1 x̃

k
1 + A2x

k
2 − b)

= λ̃k − (
γ − 1)β(A1 x̃

k
1 + A2 x̃

k
2 − b).

Write (3.4) and (3.7) together in a compact form and recall xk+1
1 = x̃ k1 and x

k+1
2 = x̃ k2 ,

the relaxed ADMM is

Relaxed ADMM for (3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = argmin

{
θ1(x1) − (λk)T A1x1+ β

2
‖A1x1 + A2x

k
2 − b‖2 + ‖x1

−xk1‖2D1

∣∣ x1 ∈ X1
}
, (3.11a)

λ̃k = λk − β(A1x
k+1
1 + A2x

k
2 − b), (3.11b)

xk+1
2 =argmin

{
θ2(x2)−(λ̃k)T A2x2+ β

2
‖A1x

k+1
1 + A2x2 − b‖2+‖x2

−xk2‖2D2

∣∣ x2 ∈ X2
}
, (3.11c)

λk+1 = λ̃k − (
γ − 1)β(A1x

k+1
1 + A2x

k+1
2 − b), (3.11d)

where γ ∈ (0, 2).

123

886 F. Ma

4 Global convergence

We have characterized the relaxed PDHG, relaxed L-ALM, relaxed ADMM as special
cases of the Prototype Framework (2.1). Using the Prototype Framework (2.1), we
can easily analyze their convergence property in a unified way.

Under the condition that H and G are positive definite, we now characterize the
right hand side of (2.1a) in terms of ‖w − wk‖H and ‖w − wk+1‖H . This is given in
the following lemma.

Lemma 4.1 Let w̃k be generated by the step (2.1a) and {wk} be generated by (2.1b).
We have

θ(x) − θ(x̃ k) + (w − w̃k)T F(w̃k) ≥ 1

2
(‖w − wk+1‖2H − ‖w − wk‖2H)

+1

2
‖wk − w̃k‖2G , ∀w ∈ �, (4.1)

where H and G are defined in (2.2a) and (2.2b), respectively.

Proof Observe that M(wk − w̃k) = (wk − wk+1) (see (2.1b)) and Q = HM , (2.1a)
can be written as

θ(x) − θ(x̃ k) + (w − w̃k)T F(w̃k) ≥ (w − w̃k)T H(wk − wk+1), ∀w ∈ �. (4.2)

Applying the identity

(a − b)T H(c − d) = 1

2
(‖a − d‖2H − ‖a − c‖2H) + 1

2
(‖c − b‖2H − ‖d − b‖2H),

with a = w, b = w̃k, c = wk, d = wk+1 to the right hand side of (4.2), we have

(w − w̃k)T H(wk − wk+1) = 1

2
(‖w − wk+1‖2H − ‖w − wk‖2H)

+1

2
(‖wk − w̃k‖2H − ‖wk+1 − w̃k‖2H). (4.3)

For the last term of (4.3), we have

‖wk − w̃k‖2H − ‖wk+1 − w̃k‖2H
= ‖wk − w̃k‖2H − ‖(wk − w̃k) − (wk − wk+1)‖2H
(2.1b)= ‖wk − w̃k‖2H − ‖(wk − w̃k) − M(wk − w̃k)‖2H
= 2(wk − w̃k)T HM(wk − w̃k) − (wk − w̃k)T MT HM(wk − w̃k)

(2.2)= (wk − w̃k)T (QT + Q − MT HM)(wk − w̃k)

(2.2b)= (wk − w̃k)T G(wk − w̃k).

(4.4)

Combining (4.2), (4.3) and (4.4), the lemma is proved. �

123

On relaxation of some customized proximal point algorithms… 887

Theorem 4.2 Let w̃k be generated by the step (2.1a) and {wk} be generated by (2.1b).
Then we have

‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H − ‖wk − w̃k‖2G , ∀w∗ ∈ �∗. (4.5)

Proof Setting w = w∗ in (4.1), we get

‖wk − w∗‖2H − ‖wk+1 − w∗‖2H ≥ ‖wk − w̃k‖2G
+2{θ(x̃ k) − θ(x∗) + (w̃k − w∗)T F(w̃k)}.

By using the optimality of w∗ and the monotonicity of F(w), we have

θ(x̃ k) − θ(x∗) + (w̃k − w∗)T F(w̃k) ≥ θ(x̃ k) − θ(x∗) + (w̃k − w∗)T F(w∗) ≥ 0,

and thus

‖wk − w∗‖2H − ‖wk+1 − w∗‖2H ≥ ‖wk − w̃k‖2G .

The assertion (4.5) follows directly. �
Since both H and G are positive definite, Theorem 4.2 implies that the sequence

{wk} generated by (2.1) is strictly contractive with respect to the solution set�∗. Thus
the global convergence of these relaxed PPA algorithms can be easily established. This
is given by the following theorem.

Theorem 4.3 Let {wk} be a sequence generated by (2.1). Then it globally converges
to a point w∞ which belongs to �∗.

Proof From (4.5), we can see that {wk} is bounded, and

lim
k→∞ ‖wk − w̃k‖ = 0. (4.6)

Thus, the sequence {w̃k} is also bounded. Let w∞ be a cluster point of the sequence
{w̃k}. Since the sequence {w̃k} is bounded, it has a subsequence {w̃k j } that converges
to w∞. From (2.1a), we have

w̃k j ∈�, θ(x)−θ(x̃ k j)+(w−w̃k j)T F(w̃k j)≥(w−w̃k j)T Q(wk j −w̃k j), ∀w∈�.

Using the continuity of θ(x) and F(w), we have

w∞ ∈ �, θ(x) − θ(x∞) + (w − w∞)T F(w∞) ≥ 0, ∀w ∈ �.

The above variational inequality implies that w∞ is a solution point of VI(�; F; θ).
By using (4.6) and lim j→∞ w̃k j = w∞, we get lim j→∞ wk j = w∞. Recall (4.5), we
have

‖wk+1 − w∞‖H ≤ ‖wk − w∞‖H .

123

888 F. Ma

Thus the sequence {wk} converges to w∞. The proof is completed. �

5 Convergence rate

In this section, we analyze the iteration complexity in both the non-ergodic and ergodic
sense for the sequence generated by these relaxed customized PPA algorithms. Note
that by letting the matrix M = I , our analysis is also applicable for the original
customized PPA.

5.1 Worse-case convergence rate in the non-ergodic sense

In this subsection, we establish the O(1/
√
t) non-ergodic convergence rate of these

relaxed PPA.

Lemma 5.1 Let w̃k be generated by the step (2.1a) and {wk} be generated by (2.1b).
Then we have

(w̃k − w̃k+1)T Q{(wk − w̃k) − (wk+1 − w̃k+1)} ≥ 0. (5.1)

Proof Setting w = w̃k+1 in (2.1a), we get

θ(x̃ k+1) − θ(x̃ k) + (w̃k+1 − w̃k)T F(w̃k) ≥ (w̃k+1 − w̃k)T Q(wk − w̃k). (5.2)

Notice that (2.1a) is also suitable for k := k + 1, thus

θ(x)−θ(x̃ k+1)+(w−w̃k+1)T F(w̃k+1) ≥ (w−w̃k+1)T Q(wk+1−w̃k+1), ∀w ∈ �.

(5.3)
Let w = w̃k in the above inequality, we get

θ(x̃ k)−θ(x̃ k+1)+(w̃k −w̃k+1)T F(w̃k+1) ≥ (w̃k −w̃k+1)T Q(wk+1−w̃k+1). (5.4)

Summing (5.2) and (5.4) together and using the monotonicity of F , the assertion (5.1)
is proved. �
Lemma 5.2 Let w̃k be generated by the step (2.1a) and {wk} be generated by (2.1b).
Then we have

(wk−w̃k)T MT HM{(wk−w̃k)−(wk+1−w̃k+1)} ≥ ‖(wk−w̃k)−(wk+1−w̃k+1)‖2Q .

(5.5)

Proof Note that Q is positive definite. By adding the equation

{(wk − w̃k) − (wk+1 − w̃k+1)}T Q{(wk − w̃k) − (wk+1 − w̃k+1)}
= ‖(wk − w̃k) − (wk+1 − w̃k+1)‖2Q

123

On relaxation of some customized proximal point algorithms… 889

to the both sides of (5.1), we get

(wk − wk+1)T Q{(wk − w̃k) − (wk+1 − w̃k+1)} ≥ ‖(wk − w̃k) − (wk+1 − w̃k+1)‖2Q .

(5.6)
Substituting the terms

M(wk − w̃k) = wk − wk+1 and Q = HM

into (5.6), we obtain

(wk − w̃k)T MT HM{(wk − w̃k) − (wk+1 − w̃k+1)}
≥ ‖(wk − w̃k) − (wk+1 − w̃k+1)‖2Q .

This completes the proof. �
Theorem 5.3 Let {wk} be a sequence generated by (2.1). Then we have

‖wk+1 − wk+2‖2H ≤ ‖wk − wk+1‖2H , (5.7)

where H is defined in (2.2a).

Proof Let a = M(wk − w̃k) and b = M(wk+1 − w̃k+1) be in the following identity

‖a‖2H − ‖b‖2H = 2aT H(a − b) − ‖a − b‖2H ,

we get

‖M(wk − w̃k)‖2H − ‖M(wk+1 − w̃k+1)‖2H
= 2(wk − w̃k)T MT HM{(wk − w̃k) − (wk+1 − w̃k+1)} − ‖(wk − w̃k)

− (wk+1 − w̃k+1)‖2MT HM .

(5.8)

Substitute (5.5) into the right hand side of above equality, we get

‖M(wk − w̃k)‖2H − ‖M(wk+1 − w̃k+1)‖2H
≥ ‖(wk − w̃k) − (wk+1 − w̃k+1)‖2

(QT +Q−MT HM)
.

Note that

M(wk − w̃k) = wk − wk+1 and M(wk+1 − w̃k+1) = wk+1 − wk+2.

Combining with G = QT + Q − MT HM � 0 (see (2.2b)), the assertion is proved. �
Theorem 5.3 implies that the sequences {‖wk − wk+1‖2H } is monotonically non-

increasing, which is crucial for our proof. Next, we need to establish the connection
between ‖wk − w̃k‖2G and ‖wk − wk+1‖2H .

123

890 F. Ma

Lemma 5.4 For each relaxed customized PPA, there exists a constant c := 2−γ
4 , such

that
c‖wk − wk+1‖2H ≺ ‖wk − w̃k‖2G . (5.9)

Proof From wk − wk+1 = M(wk − w̃k) (see (2.1b)), we have

‖wk − wk+1‖2H = ‖wk − w̃k‖2MT HM .

The remaining task is to find a constant c, such that

G � cMT HM,

for each G, H pair emerged in these algorithms. Note that from (2.2b), we have
MT HM ≺ 2Q. From (2.3) and (2.7), we have G � 2−γ

2 Q for the relaxed PDHG.

From (2.19) and (2.15), G � 2−γ
2 Q for the relaxed L-ALM. From (3.5b) and (3.10),

G � 2−γ
2 Q for the relaxed ADMM. The assertion is thus proved. �

Theorem 5.5 Let {wk} be a sequence generated by (2.1). Then we have

‖wk − wk+1‖2H ≤ 1

c(k + 1)
‖w0 − w∗‖2H , ∀w∗ ∈ �∗, (5.10)

where the matrix H is defined as (2.2a).

Proof Inserting (5.9) into (4.5), we get

‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H − c‖wk − wk+1‖2H , ∀w∗ ∈ �∗.

Summing this inequality over t = 0, 1, . . . ,∞, we have

c
∞∑
t=0

‖wt − wt+1‖2H ≤ ‖w0 − w∗‖2H , ∀w∗ ∈ �∗. (5.11)

Now observe that the sequences {‖wk − wk+1‖2H } is monotonically nonincreasing in
Theorem 5.3, we have

(k + 1)‖wk − wk+1‖2H ≤
k∑

t=0

‖wt − wt+1‖2H . (5.12)

Using the above two inequalities (5.11) and (5.12), we obtain (5.10). �
From (1.15a), we know that if ‖wk − wk+1‖H = 0, then wk is the solution point

of VI(�; F; θ). This allows us to use ‖wk − wk+1‖H as an error measurement in
terms of the distance to the solution set of VI(�; F; θ) for the t-th iteration of the
algorithm. Let d := inf{‖w0 − w∗‖H | w∗ ∈ �∗}. Then, for any given ε > 0,

123

On relaxation of some customized proximal point algorithms… 891

Theorem 5.5 implies that these relaxed PPA needs at most � d2

cε2
� iterations to ensure

that ‖wk − wk+1‖H ≤ ε. Therefore, a worse-case O(1/
√
t) convergence rate in the

non-ergodic sense for these relaxed PPA is established.

5.2 Worse-case convergence rate in ergodic sense

In this section, we establishO(1/t) worse-case convergence rate in the ergodic sense
for these relaxed customized PPA algorithms. First, we introduce the following lemma,
which is convenient for analyzing the ergodic iteration complexity of the algorithm.
Its proof can be found in [24] or Theorem 2.3.5 in [15].

Theorem 5.6 The solution set of VI(�; F; θ) ((1.3), (3.2)) is closed and convex, and
can be characterized via

�∗ :=
⋂
w∈�

{w̃ ∈ � : θ(x) − θ(x̃) + (w − w̃)T F(w) ≥ 0}.

Computing exactly a primal-dual solution w∗ is impractical, but we can find an
approximate solution w̃ ∈ �. With the Theorem 5.6, we define an ε-approximation
solution of VI(�; F; θ) as follows: Given an accuracy ε > 0, w̃ is said to be an
ε-approximation solution of VI(�; F; θ), if it satisfies

sup{θ(x̃) − θ(x) + (w̃ − w)T F(w)} ≤ ε, ∀w ∈ D,

where D ∈ � is a defined compact set, e.g., D = {w | ‖w − w̃‖ ≤ 1}. Next, our
purpose is to prove that we can find an ε-solution after t iterations.

Theorem 5.7 Let w̃k be generated by the step (2.1a) and {wk} be generated by (2.1b).
For any integer number t > 0, define

w̃t = 1

t + 1

t∑
k=0

w̃k, (5.13)

then we have w̃t ∈ � and

θ(x̃t) − θ(x) + (w̃t − w)T F(w) ≤ 1

2(t + 1)
‖w − w0‖2H , ∀w ∈ �, (5.14)

where H is defined in (2.2a).

Proof First, because of w̃k ∈ �, it holds that w̃t ∈ � for all integer t .
Next, by using the definitions of F (see (1.3b) and (3.2b)), we obtain,

(w − w̃k)T F(w) ≥ (w − w̃k)T F(w̃k).

123

892 F. Ma

Also, using the positive definiteness of G and (4.1), we get

θ(x)−θ(x̃ k)+(w−w̃k)T F(w)+1

2
‖w−wk‖2H ≥ 1

2
‖w−wk+1‖2H , ∀w∈�. (5.15)

Summing inequality (5.15) from k = 0 to k = t , we derive

(t + 1)θ(x) −
t∑

k=0

θ(x̃ k)

+(
(t + 1)w −

t∑
k=0

w̃k)T F(w) + 1

2
‖w − w0‖2H ≥ 0, ∀w ∈ �.

From the definition of w̃t (5.13), we can write above inequality as

1

t + 1

t∑
k=0

θ(x̃ k)−θ(x)+(w̃t−w)T F(w) ≤ 1

2(t + 1)
‖w−w0‖2H , ∀w ∈ �. (5.16)

Noticing the fact that θ(x) is convex, for w̃t , we have

θ(x̃t) ≤ 1

t + 1

t∑
k=0

θ(x̃ k). (5.17)

Substituting (5.17) into (5.16), we obtain (5.14). �
Let d = sup {‖w − w0‖H , w ∈ D}. Theorem 5.7 implies that, after t iterations of

(2.1), w̃t defined in (5.13) satisfies

sup
w∈D

{θ(x̃t) − θ(x) + (w̃t − w)T F(w)} ≤ d2

2(t + 1)
.

Thus, we obtained computational complexity estimates for the average of w̃k , which
is of order O(1/t) to get an approximation solution for VI(�, F, θ).

6 Numerical results

In this section, we report some numerical results of the proposed algorithms. Note that
the numerical comparisons with related methods for the customized PPA have already
been conducted in the literatures, see, e.g., [6,35,38]. Thus they are omitted in our
tests and we focus on showing the advantages of the relaxed methods to the original
customized PPA algorithms, and verify the improvements in the computational sense.
All codes were written in Matlab 2015b and all experiments were conducted on a
laptop with Intel Core (TM) CPU 2.40GHz and 8G memory.

123

On relaxation of some customized proximal point algorithms… 893

Fig. 1 Comparison results of PDHG and relaxed PDHG with different r (ra = 8, OS = 5)

6.1 Matrix completion problem

Thematrix completion problemconsists of reconstructing an unknown low rankmatrix
from a given subset of observed entries [3]. Specifically, let M ∈ �m×n be a low rank
matrix, � be a subset of the indices of entries {1, · · · ,m} × {1, · · · , n}. The convex
model is

min{‖X‖∗ | Xi j = Mi j ,∀{i, j} ∈ �}, (6.1)

where ‖ · ‖∗ denotes the nuclear norm of a matrix. Note that the constraints can also
be viewed as a projection equation P�(X) = P�(M), thus we have ‖AT A‖ = 1.

In our implementations, for the SVD decomposition, we resort to the widely rec-
ommended PROPACK package [28]. We generate the rank-ra matrix M as a product
MLMT

R , where ML and MR are independent n×ra matrices who have i.i.d. Gaussian
entries. The set of observations � is sampled uniformly at random among all sets
of cardinality |�|. The degrees of freedom of the matrix is dra = ra(2n − ra), then
the oversampling factor |�|/dra is the ratio of the number of samples to the degrees
of freedom. The primal variable X0 and the dual variable
0 were all initialized as
zeros(n). The stopping criteria is set to be

‖Xk − M‖F
‖M‖F ≤ 10−4. (6.2)

For each instance, we randomly generated ten cases, so the results reported were
averaged over ten runs.

Nowwe show how to choose the parameters. Note that the PDHG requires multiple
stepsize parameters, and it seems impossible to give a best choice of step sizes. We
already know from (1.11) that 1/r and 1/s essentially play the role of proximal step

123

894 F. Ma

Table 1 Performance comparison of PDHG, Relaxed PDHG with r = 0.008

n × n matrix PDHG Relaxed PDHG(γ = 1.7)

n rank(ra) |�|/dra |�|/n2 RelErr No. it Time RelErr No. it Time

100 5 4 0.39 9.59e−05 139 0.30 9.99e−05 79 0.18

100 5 5 0.49 9.50e−05 79 0.20 9.62e−05 44 0.11

100 5 6 0.58 8.72e−05 51 0.13 9.28e−05 27 0.07

100 10 3 0.57 9.59e−05 87 0.22 9.43e−05 49 0.12

100 10 4 0.76 9.58e−05 43 0.11 7.72e−05 24 0.06

100 15 3 0.83 8.94e−05 42 0.11 8.95e−05 22 0.07

300 5 5 0.17 9.93e−05 94 1.06 9.09e−05 58 0.61

300 5 6 0.20 9.45e−05 73 0.61 7.64e−05 53 0.46

300 10 4 0.26 8.97e−05 51 0.84 8.70e−05 39 0.72

300 10 5 0.33 7.89e−05 39 0.57 8.79e−05 33 0.55

300 15 3 0.29 9.19e−05 58 1.11 8.29e−05 41 0.74

300 20 3 0.39 9.29e−05 41 0.78 9.35e−05 35 0.65

500 5 6 0.12 8.76e−05 93 3.27 9.23e−05 73 2.63

500 5 8 0.16 9.87e−05 73 1.74 9.45e−05 61 1.50

500 10 4 0.16 9.50e−05 73 2.37 9.97e−05 62 2.30

500 10 5 0.20 9.10e−05 58 2.52 9.77e−05 53 2.13

500 20 3 0.24 9.12e−05 61 3.30 8.99e−05 58 4.14

500 25 3 0.29 9.68e−05 54 3.51 9.19e−05 52 3.76

1000 10 6 0.12 9.78e−05 97 20.07 9.33e−05 95 25.37

1000 20 3 0.12 9.49e−05 116 63.47 9.96e−05 108 58.33

1000 20 6 0.24 9.23e−05 69 22.52 9.02e−05 66 22.86

1000 50 6 0.58 7.01e−05 34 11.66 9.78e−05 33 11.32

1000 50 3 0.29 9.64e−05 76 52.02 9.40e−05 69 49.17

1000 60 3 0.35 9.30e−05 68 46.74 9.34e−05 62 36.68

sizes, and it may be preferable to choose r and s such that r · s is close to the lower
bound of ‖AT A‖ by considering the convergence condition rs > ‖AT A‖. Thus, in
our experiments, we always set s = 1.01/r . However, the choice of r still lacks
of theoretical analysis, and as far as we know, it is usually selected by numerical
experiments. Since the condition varies for different problem size, or even different
iteration step, it seems that adjusting the PDHG parameters adaptively at each iteration
is a better way is to achieve faster convergence, see, e.g., [18] for a simple adaptive
strategy. In this paper, our main goal is to illustrate the advantages of the relaxation
steps, so the parameters are kept fixed in all our experiments. To choose a suitable value
of r , We first run PDHG and relaxed PDHG (γ = 1.7) for several different values of r
and record the resulting iteration numbers. In particular, r varies from 0.002 to 1.024.
The results are reported in Fig. 1.We can see that the relaxed PDHGwith γ = 1.7 took
fewer iterations than the PDHG for almost all cases. We observe that both algorithms
are sensitive to the choice of r . As a result, for different dimension of n, the proper

123

On relaxation of some customized proximal point algorithms… 895

Fig. 2 Comparison results of L-ALM and relaxed L-ALM with different r (ra = 8, OS = 5)

choice of r is different and there does not exist fixed and best parameters for PDHG
throughout the implementation.

We further compare the two algorithms with specified values of the parameters.
From Fig. 1, we see that when r is chosen in the interval (0.008, 0.0032), the perfor-
mance is efficient and robust. Here, we set the parameters r and s to be r = 0.008,
s = 1.01/r , respectively. We point out that the values of r and s are determined
based on the experiments and may be far from optimal. For each setting, we report
the number of iterations (“No. it”), the relative error (“RelErr”), the time in Table 1,
respectively. As shown in the figure, the relaxed PDHG took much fewer iterations
and is much faster than the PDHG for the cases n < 300. When n becomes larger, the
relaxed PDHG also needs less number of iterations than PDHG, although they both
perform well. We remark that, we can further improve the performance of the relaxed
PDHG by judiciously choosing a proper value of γ in the interval (1, 2). But this is
trivial and beyond the scope of this paper.

Next, we test the performance of L-ALM. Similarly with PDHG, the parameters r
and β would be properly chosen so that r/β is close to the lower bound of ‖AT A‖.
Thus, in our experiments, we always set β = r/1.01. Since the condition is similar
to PDHG, we illustrate the performance with different values of r in Fig. 2. We can
see that the relaxed L-ALM with γ = 1.7 took fewer iterations than the L-ALM for
almost all cases. When n < 500 and r ∈ (0.008, 0.032), the two algorithms cost
less iterations and perform robust and efficient. When r > 0.032, the two algorithms
require more iterations to achieve the same stopping criteria, and the relaxation step
seems less effective to reduce the iteration numbers. We can note that the performance
is remarkably similar to the PDHG. This phenomenon is not difficult to be understood:
L-ALM can be explained as the linearized ADMM algorithm, and is closely related to
the PDHG [14]. Here, we also set the parameters r and β to be r = 0.008, β = r/1.01,
respectively. In Table 2, we report the performance of the relaxed L-ALM algorithm
for different settings of the dimensions. We can see that the relaxed L-ALM is more

123

896 F. Ma

Table 2 Performance comparison of L-ALM, Relaxed L-ALM with r = 0.008

n × n matrix L-ALM Relaxed L-ALM(γ = 1.7)

n rank(ra) |�|/dra |�|/n2 RelErr No. it Time RelErr No. it Time

100 5 4 0.39 9.63e−05 130 0.30 9.23e−05 75 0.17

100 5 5 0.49 9.75e−05 101 0.24 9.82e−05 57 0.13

100 5 6 0.58 9.78e−05 57 0.14 8.35e−05 32 0.08

100 10 3 0.57 9.98e−05 97 0.23 9.53e−05 55 0.13

100 10 4 0.76 8.91e−05 46 0.12 9.22e−05 25 0.07

100 15 3 0.83 8.86e−05 42 0.11 7.69e−05 22 0.06

300 5 5 0.17 9.83e−05 109 0.86 9.18e−05 61 0.52

300 5 6 0.20 9.12e−05 64 0.51 8.34e−05 52 0.42

300 10 4 0.26 9.02e−05 54 0.69 9.40e−05 39 0.48

300 10 5 0.33 7.85e−05 38 0.53 9.42e−05 33 0.45

300 15 3 0.29 9.87e−05 65 1.01 8.99e−05 40 0.56

300 20 3 0.39 9.91e−05 42 0.76 8.82e−05 34 0.61

500 5 6 0.12 9.90e−05 91 2.79 9.55e−05 72 2.22

500 5 8 0.16 9.82e−05 77 2.46 9.21e−05 64 2.06

500 10 4 0.16 9.98e−05 66 2.84 9.97e−05 63 3.01

500 10 5 0.20 8.42e−05 58 2.73 9.78e−05 54 1.87

500 20 3 0.24 9.77e−05 59 3.91 8.74e−05 57 3.81

500 25 3 0.29 8.95e−05 53 2.47 9.33e−05 51 2.94

1000 10 6 0.12 9.63e−05 96 19.75 9.43e−05 94 21.35

1000 20 3 0.12 9.66e−05 114 56.54 9.73e−05 107 67.97

1000 20 6 0.24 9.14e−05 67 22.08 9.66e−05 64 19.46

1000 50 6 0.58 9.25e−05 32 15.52 8.98e−05 30 14.92

1000 50 3 0.29 9.75e−05 77 59.54 9.87e−05 74 54.71

1000 60 3 0.35 9.10e−05 69 44.23 9.50e−05 66 49.97

effective than the L-ALM when n < 300. For large problem dimension, the results
also demonstrate that the relaxation took less iterations, and can reduce 10% iterations
numbers.

6.2 Robust principal component analysis

In this subsection, we test the robust principal component analysis (RPCA) which has
the form

minL,S ‖L‖∗ + τ‖S‖1,
s.t. L + S = M .

(6.3)

where M is a known matrix. Note that the problem (6.3) is a standard model of (3.1),
and thus can be solved by ADMM. We refer to [36] for the strategies to solve the

123

On relaxation of some customized proximal point algorithms… 897

Fig. 3 Comparison results of ADMM and relaxed ADMM with different β = k ∗ τ

subproblems. We now demonstrate the efficiency of the relaxed ADMM for solving
(6.3). In the experiments, we generated the data similar to [36]. More specially, we
generate the rank-ra matrix L∗ as a product LL LT

R , where LL and LR are independent
n× ra matrices who have i.i.d. Gaussian entries. For S∗, we first generate a n×n zero
matrix S, and let the numbers of the nonzero entries amount to the nearest integer of
sr×n×n, where sr denotes the sparsity ratio.We then set the locations of the nonzero
entries of the underlying sparse matrix S∗ randomly, where the nonzero elements are
generated by standard Gaussian distribution. We use L∗ + S∗ to generate the matrix
M . The model parameter τ is always set to be 1/

√
n, and the stopping criteria is set

to be

max

{‖L − L∗‖F
‖L∗‖F ,

‖S − S∗‖F
‖S∗‖F

}
≤ 10−6. (6.4)

We also randomly generated ten cases for each instance, and the results reported were
averaged over ten runs.

It is well-known that, the numerical performance of ADMM is highly dependent on
the value of β, and how to determine the optimal value of β is a theoretically unknown
question. To select a reasonably good value of β, we first conduct some experiments to
evaluate the performance of ADMMwith different values of β. In the experiments, we
test a set of values β = k ∗ τ with k = 0.02, 0.08, . . . , 5.12 on different dimensions
from n = 100 to n = 500. The initial point is set to be zero. For simplicity, we
always set ra = 0.1 ∗ n and the sparsity ratio sr = 0.1. For the relaxed ADMM, the
relaxation factor is set to be γ = 1.3. The number of iterations of ADMM and the
relaxed ADMMwith respect to different values of β (β = k ∗ τ) are plotted in Fig. 3,
respectively. According to the plots, the ADMM methods are very sensitive to the
value of β. For various dimensions of the problem, we can see that the optimal value
of β could be different and there does not exist an optimal choice of β that is data-
dependent. We can also find that the relaxed ADMM performs better than ADMM for
most cases. In Fig. 3, we found that when k ∈ (0.08, 0.32), i.e., β ∈ (0.08τ, 0.32τ),

123

898 F. Ma

Table 3 Performance comparison of ADMM and relaxed ADMM with β = 0.3 ∗ τ

n × n matrix ADMM Relaxed ADMM

n rank(ra) sr RelErr No. it Time RelErr No. it Time

100 5 0.05 4.91e−07 19 0.06 5.67e−07 16 0.05

100 5 0.10 6.60e−07 21 0.07 4.23e−07 19 0.06

100 10 0.05 8.35e−07 23 0.07 5.00e−07 20 0.06

100 10 0.10 8.93e−07 26 0.08 7.76e−07 23 0.07

100 15 0.05 9.26e−07 30 0.09 5.51e−07 24 0.07

100 15 0.10 8.08e−07 34 0.10 7.93e−07 27 0.08

200 10 0.05 7.94e−07 19 0.22 9.77e−07 17 0.19

200 10 0.10 4.64e−07 25 0.27 8.11e−07 21 0.22

200 20 0.05 7.30e−07 24 0.27 9.15e−07 21 0.23

200 20 0.10 6.70e−07 32 0.33 6.46e−07 27 0.29

200 30 0.05 8.57e−07 29 0.31 8.85e−07 25 0.26

200 30 0.10 7.06e−07 36 0.39 8.75e−07 30 0.32

500 25 0.05 8.51e−07 19 1.57 7.47e−07 19 1.58

500 25 0.10 6.05e−07 25 2.03 7.89e−07 23 1.77

500 50 0.05 6.74e−07 26 2.04 8.67e−07 24 1.81

500 50 0.10 9.38e−07 33 2.48 8.48e−07 30 2.30

500 75 0.05 7.35e−07 32 2.45 9.68e−07 28 2.17

500 75 0.10 9.25e−07 42 3.23 8.74e−07 37 2.86

1000 50 0.05 4.58e−07 21 9.79 7.77e−07 20 9.31

1000 50 0.10 4.89e−07 27 12.85 5.35e−07 26 12.53

1000 100 0.05 6.83e−07 27 13.08 8.62e−07 26 12.01

1000 100 0.10 9.56e−07 38 17.96 9.20e−07 34 16.05

1000 150 0.05 6.95e−07 36 18.87 9.72e−07 32 16.65

1000 150 0.10 7.05e−07 48 24.35 8.89e−07 42 20.82

2000 100 0.05 9.41e−07 22 109.76 6.26e−07 22 106.19

2000 100 0.10 5.16e−07 30 139.17 8.84e−07 28 132.05

2000 200 0.05 8.04e−07 30 138.48 5.98e−07 29 128.76

2000 200 0.10 5.21e−07 44 205.96 9.45e−07 39 187.31

2000 300 0.05 5.06e−07 40 172.60 7.80e−07 36 153.15

2000 300 0.10 8.99e−07 57 247.06 7.50e−07 51 219.14

the ADMM peforms more robust and efficient, and the two algorithms all cost less
iterations compared with other choices. When β > 0.32τ , both algorithms need more
iterations for the same problem, and their performances are almost same.

Next, we report the experimental results of ADMM and the relaxed ADMM for
more cases. For comparisons, we just set β = 0.3 ∗ τ for the two methods, since it
demonstrates a good performance and is robust for different dimensions. The results of
these algorithms are reported in Table 3. From these tests, we can see that the relaxed
ADMM requires less iterations and computing time than ADMM to produce the same

123

On relaxation of some customized proximal point algorithms… 899

accurate solutions. For these tested instances, we can further improve the performance
of relaxed ADMM by choosing the best relaxation factor. However, to simplify the
demonstration, we used a fixed factor for all cases.

7 Conclusions

In the literature, it is well known that the proximal point algorithm (PPA) can be accel-
erated by using the relaxation strategy proposed in [19]. For many cases, the relaxed
PPA with γ ∈ [1.5, 1.8] can obtain a guaranteed improvement of the convergence.
In this paper, different from most previous works, we suggest to relax the PPA by
correcting the dual variables individually. For the PDHG proposed in [5,6], the lin-
earized augmented Lagrangian method (L-ALM) and the alternating direction method
of multipliers (ADMM), which are special cases of the customized PPA, we studied
their relaxed schemes and observed the corresponding speedup. With the guidance
of the variational inequality, we established the global convergence of these relaxed
algorithms and the worst-case convergence rate in both ergodic and nonergodic sense.
In conclusion, our results theoretically provide a newway of relaxing PPA algorithms.

It should bementioned that this paper only discussed the customizedPPAalgorithms
for the convex problems less than two blocks. In many real applications, the problems
may be modeled in the form of (1.1) with the objective function consisting of multiple
block components, and it is often more challenging to directly handle them. For the
multi-block cases, we can also formulate them as variational inequality problems, and
then design some customized PPA algorithms to solve them. In fact, the multi-block
JacobianADMM[12,34] and its linearized version, the partial parallelADMM[25] are
all designed for this purpose and can be viewed as PPA algorithms. Consequently, the
relaxation strategy proposed in this paper can be further extended to these customized
PPA algorithms, and therefore, gives to the relaxed versions. On the other hand, the
stepsize parameters of the PPA algorithms discussed in this paper can all be tuned at
each iteration by some self-adaptive rules, and the resulting performance would be
further improved. So it would be interesting to investigate the self-adaptive rule for
the relaxation factor when these algorithms are dynamically adjusted. We leave these
as potential directions of future work.

Acknowledgements The author is grateful to the associate editor and two anonymous reviewers for their
valuable comments and suggestions that have helped improve the presentation of this paper greatly. This
work was supported by the NSFC Grants 11701564 and 11871029.

References

1. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sci. 2, 183–202 (2009)

2. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning
via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2010)

3. Cai, J.F., Candès, E.J., Shen, Z.W.: A singular value thresholding algorithm for matrix completion.
SIAM J. Optim. 20, 1956–1982 (2010)

123

900 F. Ma

4. Cai,X.J., Gu,G.Y.,He,B.S., Yuan,X.M.:Aproximal point algorithm revisit on the alternating direction
method of multipliers. Sci. China Math. 56, 2179–2186 (2013)

5. Chambolle, A., Pock, T.: Diagonal preconditioning for first order primal-dual algorithms in convex
optimization. In: IEEE International Conference on Computer Vision (ICCV), pp. 1762–1769 (2011)

6. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to
imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

7. Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal-dual algorithm.Math.
Program. 159, 253–287 (2016)

8. Chambolle, A., Pock, T.: An introduction to continuous optimization for imaging. Acta Numer. 25,
161–319 (2016)

9. Chan, T.F., Glowinski, R.: Finite Element Approximation and Iterative Solution of a Class of Mildly
Nonlinear Elliptic Equations, Technical Report STAN-CS-78-674. Stanford University, Computer Sci-
ence Department (1978)

10. Daubechies, I., Defrise, M., Mol, C.D.: An iterative thresholding algorithm for linear inverse problems
with a sparsity constraint. Commun. Pure Appl. Math. 57, 1413–1457 (2004)

11. Deng, W., Yin, W.T.: On the global and linear convergence of the generalized alternating direction
method of multipliers. J. Sci. Comput. 66, 889–916 (2016)

12. Deng, W., Lai, M.J., Peng, Z.M., Yin, W.T.: Parallel multi-block ADMM with o(1/k) convergence. J.
Sci. Comput. 71, 712–736 (2017)

13. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algo-
rithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

14. Esser, E.: Primal Dual Algorithms for Convex Models and Applications to Image Restoration, Regis-
tration and Nonlocal Inpainting. University of California, Los Angeles (2010)

15. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems.
Springer, New York (2003)

16. Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par
pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. Revue Fr. Autom. Inform.
Rech. Opér. Anal. Numér. 2, 41–76 (1975)

17. Glowinski, R., Osher, S.J., Yin, W. (eds.): Splitting Methods in Communication, Imaging, Science,
and Engineering. Springer, New York (2016)

18. Goldstein, T., Li, M., Yuan, X.M.: Adaptive primal-dual splitting methods for statistical learning and
image processing. In: Advances in Neural Information Processing Systems, pp. 2089–2097 (2015)

19. Gol’shtein, E.G., Tret’yakov, N.V.: Modified Lagrangians in convex programming and their general-
izations. Math. Program. Stud. 10, 86–97 (1979)

20. Gu, G.Y., He, B.S., Yuan, X.M.: Customized proximal point algorithms for linearly constrained convex
minimization and saddle-point problems: a unified approach. Comput. Optim. Appl. 59, 135–161
(2014)

21. Han, D.R., He, H.J., Yang, H., Yuan, X.M.: A customized Douglas–Rachford splitting algorithm for
separable convex minimization with linear constraints. Numer. Math. 127, 167–200 (2014)

22. He, B.S., Yuan, X.M.: A class of ADMM-based algorithms for three-block separable convex program-
ming. Comput. Optim. Appl. 70, 791–826 (2018)

23. He, B.S.: PPA-Like contraction methods for convex optimization: a framework using variational
inequality approach. J. Oper. Res. Soc. China 3, 391–420 (2015)

24. He, B.S., Yuan, X.M.: Convergence analysis of primal-dual algorithms for a saddle-point problem:
from contraction perspective. SIAM J. Imaging Sci. 5, 119–149 (2012)

25. He, B.S., Yuan,X.M.: Block-wise alternating directionmethod ofmultipliers formultiple-block convex
programming and beyond. SMAI J Comput. Math. 1, 145–174 (2015)

26. He, B.S., Ma, F., Yuan, X.M.: An algorithmic gramework of heneralized primal-dual hybrid gradient
methods for saddle point problems. J. Math. Imaging Vis. 58, 279–293 (2017)

27. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)
28. Larsen, R.M.: PROPACK Software for large and sparse SVD calculations. Stanford University. http://

sun.stanford.edu/~rmunk/PROPACK/ (1969)
29. Martinet, B.: Regularisation, d’inéquations variationelles par approximations succesives. Rev. Fr.

d’Inform. Rech. Oper. 4, 154–159 (1970)
30. Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.)

Optimization, pp. 283–298. Academic Press, New York (1969)

123

http://sun.stanford.edu/~rmunk/PROPACK/
http://sun.stanford.edu/~rmunk/PROPACK/

On relaxation of some customized proximal point algorithms… 901

31. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14,
877–898 (1976)

32. Shen, Y., Wang, H.Y.: New augmented Lagrangian-based proximal point algorithm for convex opti-
mization with equality constraints. J. Optim. Theory Appl. 171, 251–261 (2016)

33. Sra, S., Nowozin, S., Wright, S.J.: Optimization for Machine Learning. MIT Press, Cambridge (2012)
34. Wang, X.F., Hong, M.Y., Ma, S.Q., Luo, Z.Q.: Solving multiple-block separable convex minimization

problems using two-block alternating direction method of multipliers. Pac. J. Optim. 11, 645–667
(2015)

35. Yang, J.F.,Yuan,X.M.: Linearized augmentedLagrangian and alternating directionmethods for nuclear
norm minimization. Math. Comput. 82, 301–329 (2013)

36. Yuan, X.M., Yang, J.F.: Sparse and low-rank matrix decomposition via alternating direction methods.
Pac. J. Optim. 9, 167–180 (2013)

37. Zhang, X.Q., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolu-
tion and sparse reconstruction. SIAM J. Imaging Sci. 3, 253–276 (2010)

38. Zhang, X.Q., Burger, M., Osher, S.: A unified primal-dual algorithm framework based on Bregman
iteration. J. Sci. Comput. 46, 20–46 (2010)

39. Zhu, M., Chan, T.F.: An efficient primal-dual hybrid gradient algorithm for total variation image
restoration, CAM Report 08-34. UCLA, USA (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	On relaxation of some customized proximal point algorithms for convex minimization: from variational inequality perspective
	Abstract
	1 Introduction
	2 Relaxed customized PPA
	2.1 Relaxed PDHG
	2.2 Relaxed linearized ALM

	3 Relaxed ADMM for separable case
	4 Global convergence
	5 Convergence rate
	5.1 Worse-case convergence rate in the non-ergodic sense
	5.2 Worse-case convergence rate in ergodic sense

	6 Numerical results
	6.1 Matrix completion problem
	6.2 Robust principal component analysis

	7 Conclusions
	Acknowledgements
	References

