
Computational Optimization and Applications (2019) 73:411–452
https://doi.org/10.1007/s10589-019-00082-0

An almost cyclic 2-coordinate descent method for singly
linearly constrained problems

Andrea Cristofari1

Received: 15 June 2018 / Published online: 25 February 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
A block decomposition method is proposed for minimizing a (possibly non-convex)
continuously differentiable function subject to one linear equality constraint and
simple bounds on the variables. The proposed method iteratively selects a pair of
coordinates according to an almost cyclic strategy that does not use first-order infor-
mation, allowing us not to compute the whole gradient of the objective function during
the algorithm. Using first-order search directions to update each pair of coordinates,
global convergence to stationary points is established for different choices of the step-
size under an appropriate assumption on the level set. In particular, both inexact and
exact line search strategies are analyzed. Further, linear convergence rate is proved
under standard additional assumptions. Numerical results are finally provided to show
the effectiveness of the proposed method.

Keywords Block coordinate descent methods · Block decomposition methods ·
Linear convergence rate · SVM

Mathematics Subject Classification 90C06 · 90C30 · 65K05

1 Introduction

Block coordinate descent methods, also known as block decomposition methods, are
algorithms that iteratively update a suitably chosen subset of variables, usually referred
to asworking set, trough an appropriate optimization step. Numerous variants of block
coordinate descent methods have been proposed in the literature that essentially differ
from each other in two aspects: the working set selection and the optimization step
(see, e.g., [31] and the references therein for an overview of block coordinate descent
methods in unconstrained optimization). In the last decades, block coordinate descent

B Andrea Cristofari
andrea.cristofari@unipd.it

1 Department of Mathematics, University of Padua, Via Trieste, 63, 35121 Padua, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-019-00082-0&domain=pdf
http://orcid.org/0000-0002-9126-3994


412 A. Cristofari

methods gained great popularity, especially to address large structured problems, such
as those arising inmachine learning, where classical algorithmsmay not be so efficient
and, sometimes, even not applicable for computational reasons.Moreover, block coor-
dinate descent methods are well suited for parallelization, allowing to exploit modern
computer architectures.

In this paper, we are concerned with the minimization of a continuously differ-
entiable function subject to one linear equality constraint and simple bounds on the
variables. Many relevant problems can be formulated in this way, such as, e.g., Sup-
port Vector Machine training, the continuous quadratic knapsack problem, resource
allocation problems, the page rank problem, the Chebyshev center problem and the
coordination of multi-agent systems.

In the literature, most of the block coordinate descent methods proposed for this
class of problems use gradient information to identify a subset of variables that violate
some optimality condition and guarantee, once updated, a certain decrease in the
objective function [1,9,11,13,14,24,26]. Other methods select variables in order to
satisfy an appropriate descent condition with a decreasing tolerance [12], or follow
a Gauss–Seidel (cyclic) strategy [16]. Different working set selection rules, based on
sufficient predicted descent, have also been studied in [30]. Moreover, a Jacobi-type
algorithm has been devised in [15] and a class of parallel decomposition methods for
quadratic objective functions has been proposed in [18].

In addition to the above algorithms, different versions of random coordinate descent
methods have been proposed in [19–21,25,28], characterized by the fact that the work-
ing set is randomly chosen from a given probability distribution. From a theoretical
point of view, random coordinate descent methods have good convergence properties,
given in expectation, and they turn out to be efficient also in practice. In particular,
since random coordinate descent methods do not use first-order information to choose
the working set, the whole gradient of the objective function does not need to be com-
puted during the iterations, leading to good performances when the objective function
has cheap partial derivatives.

In ourmethod, aworking set of two coordinates is iteratively chosen according to the
following almost cyclic strategy: one coordinate is selected in a cyclic manner, while
the other one is obtained by considering the distance of each variable from its nearest
bound in some points produced by the algorithm.We see that this working set selection
rule does not use first-order information. So, similarly as in random coordinate descent
methods, the whole gradient of the objective function does not need to be computed
during the algorithm and high efficiency is still achievedwhen the partial derivatives of
the objective function are cheap. Anyway, differently from random coordinate descent
methods, the proposed algorithm has deterministic convergence properties.

More in detail, once a pair of coordinates is selected in theworking set, our algorithm
performs a minimization step by moving along a first-order search direction with a
certain stepsize. We first give a general condition on the stepsize that guarantees
global convergence to stationary points, under the assumption that every point of the
level set has at least one component strictly between the lower and the upper bound.
Note that this assumption is automatically satisfied in many cases: e.g., when the
feasible set is the unit simplex, or when at least one variable has no bounds. Then, we
describe some practical ways to compute the stepsize, considering different classes

123



An almost cyclic 2-coordinate descent method 413

of objective functions: the Armijo line search can be used for general non-convex
objective functions, overestimates of the Lipschitz constant can be used for objective
functions with Lipschitz continuous gradient, and the exact line search can be used
when the objective function is strictly convex.

Wealso show that the proposedmethod converges linearly under standard additional
assumptions. In particular, two different results are given: asymptotic linear conver-
gence rate is proved when there are finite bounds on some (or all) of the variables,
while non-asymptotic linear convergence rate is proved when there are no bounds on
the variables.

Lastly, experimental simulations performed on different classes of test problems
show promising results of the proposed algorithm in comparison with other block
coordinate descent methods.

The rest of the paper is organized as follows. In Sect. 2, we introduce the notation
and recall some preliminary results. In Sect. 3, we present the algorithm and carry out
the convergence analysis. In Sect. 4, we describe some practical line search strategies.
In Sect. 5, we analyze the convergence rate of the algorithm. In Sect. 6, we show the
numerical results. Finally, we draw some conclusions in Sect. 7.

2 Preliminaries and notation

Let us introduce the notation. Given a vector x ∈ R
n , we indicate by xi the i th entry

of x . We denote by ei ∈ R
n the vector made of all zeros except for the i th entry that is

equal to 1. Given a function f : Rn → R, the gradient of f is indicated by∇ f , the i th
partial derivative of f is indicated by ∇i f and the Hessian matrix of f is indicated by
∇2 f . The derivative of a function f : R → R is denoted by ḟ . The Euclidean norm
of a vector x ∈ R

n is indicated by ‖x‖.
Throughout the paper, we focus on the following singly linearly constrained prob-

lem with lower and upper bounds on the variables:

min f (x)
n∑

i=1

xi = b

li ≤ xi ≤ ui , i = 1, . . . , n,

(1)

where f : Rn → R is a continuously differentiable function, b ∈ R and, for all
i = 1, . . . , n, we have li < ui , with li ∈ R ∪ {−∞} and ui ∈ R ∪ {∞}. By slight
abuse of standard mathematical notation, we allow variable bounds to be infinite.

Note that every problem of the form

min {ω(s) :
n∑

i=1

ai si = b, l̄i ≤ si ≤ ūi , i = 1, . . . , n}

with ω : Rn → R, b ∈ R and ai 	= 0, l̄i < ūi , i = 1, . . . , n, can be rewritten as in (1)
via the following variable transformation: xi = ai si , i = 1, . . . , n, thus considering

123



414 A. Cristofari

the objective function f (x):=ω
(
(x1/a1), . . . , (xn/an)

)
and setting the lower and the

upper bound on x according to the above transformation.
From now on, we denote the feasible set of problem (1) by F . Throughout the

paper, we assume that F 	= ∅. Moreover, the terms variable and coordinate will be
used interchangeably to indicate each xi , i = 1, . . . , n.

Finally, let us recall the following characterization of stationary points of prob-
lem (1), which can be easily derived from KKT conditions.

Proposition 1 A feasible point x∗ of problem (1) is stationary if and only if there exists
λ∗ ∈ R such that, for all i = 1, . . . , n,

∇i f (x
∗)

⎧
⎪⎨

⎪⎩

≥ λ∗, if x∗
i = li ,

= λ∗, if x∗
i ∈ (li , ui ),

≤ λ∗, if x∗
i = ui .

(2)

3 The almost cyclic 2-coordinate descent (AC2CD) method

In this section, we present the algorithm for solving problem (1) and we analyze its
convergence properties to stationary points.

3.1 Description of the algorithm

The proposed almost cyclic 2-coordinate descent (AC2CD) method is a block decom-
positionmethod that iteratively performs aminimization stepwith respect to aworking
set of two coordinates, chosen by an almost cyclic strategy (note that two is the smallest
number of variables that can be updated to maintain feasibility). A remarkable feature
of AC2CD is that the working set selection rule does not use first-order information,
allowing us not to compute the whole gradient of the objective function during the
algorithm.

To describe the proposed method, we have to distinguish between outer iterations,
indicated by the integer k, and inner iterations, indicated by the pair of integers (k, i),
where k = 0, 1, . . . and i = 1, . . . , n. Each outer iteration k starts with a feasible point,
denoted by xk , and has n inner iterations (k, 1), . . . , (k, n). Each inner iteration (k, i)
starts with a feasible point, denoted by zk,i , and produces the successive (feasible)
zk,i+1 by performing a minimization step with respect to a suitably chosen pair of
coordinates. Outer and inner iterations are linked by the following relation:

zk,1 = xk and xk+1 = zk,n+1, ∀ k ≥ 0.

Namely, each cycle of inner iterations (k, 1), . . . , (k, n) starts from xk and returns the
successive xk+1.

To be more specific, given any xk produced by the algorithm, first we choose a
variable index j(k) ∈ {1, . . . , n} (as to be described later). Then, in the cycle of inner
iterations (k, 1), . . . , (k, n), we adopt the following rule to choose the working set:

123



An almost cyclic 2-coordinate descent method 415

one variable index is selected in a cyclic manner, following an arbitrary order with no
repetition, while the second variable index remains fixed and equal to j(k). Since only
one variable index is selected in a cyclic manner, we name this working set selection
rule almost cyclic.

From now on, for every inner iteration (k, i) we denote by pki the variable index
of the working set that is selected in a cyclic manner. So, each minimization step is
performed with respect to the two coordinates zk,i

pki
and zk,ij(k). In this minimization step,

we compute the first-order search direction dk,i = [∇ j(k) f (zk,i )−∇pki
f (zk,i )](epki −

e j(k)). Clearly, we have d
k,i
h = 0 for all h ∈ {1, . . . , n}\{pki , j(k)}. Then, we set

zk,i+1 = zk,i + αk,i dk,i ,

where αk,i ∈ R is a feasible stepsize (which will be described later on).
Now, we explain how to choose the index j(k) at the beginning of an outer iteration

k. Roughly speaking, xkj(k) must be “sufficiently far” from its nearest bound. Formally,
for each index h ∈ {1, . . . , n}, let us define the operator Dh : F → [0,∞)∪ {∞} that
takes as input a feasible point x and returns the distance of xh from its nearest bound:

Dh(x):=min{xh − lh, uh − xh}. (3)

So, for a given xk , we choose j(k) as any index that satisfies

Dj(k)(x
k) ≥ τDk, (4)

where τ ∈ (0, 1] is a fixed parameter and

Dk := max
h=1,...,n

Dh(x
k). (5)

In other words, the distance between xkj(k) and its nearest bound must be greater than
or equal to a certain fraction (equal to τ ) of the maximum distance between each
component of xk and its nearest bound.

In Algorithm 1, we report the scheme of AC2CD. Hereinafter, we indicate

gk,i :=∇ j(k) f (z
k,i ) − ∇pki

f (zk,i ) and dk,i :=gk,i (epki
− e j(k)), (6)

as they are defined at steps 6 and 7 of Algorithm 1. Note that

∇ f (zk,i )T dk,i = −[∇ j(k) f (z
k,i ) − ∇pki

f (zk,i )]2 = −(gk,i )2, (7)

i.e., dk,i is a descent direction at zk,i if gk,i 	= 0 (equivalently, every nonzero dk,i is a
descent direction at zk,i ).

Remark 1 For the sake of simplicity, within each outer iteration k of AC2CD we
consider n inner iterations, but they actually are n − 1, since no pair of coordinates is
updated when pki = j(k).

123



416 A. Cristofari

Algorithm 1 Almost Cyclic 2-Coordinate Descent (AC2CD)
method

0 Given x0 ∈ F and τ ∈ (0, 1]
1 For k = 0, 1, . . .

2 Choose a variable index j(k) ∈ {1, . . . , n} that satisfies (4)
3 Choose a permutation {pk1, . . . , pkn} of {1, . . . , n}
4 Set zk,1 = xk

5 For i = 1, . . . , n

6 Let gk,i = ∇ j(k) f (z
k,i ) − ∇pki

f (zk,i )

7 Compute the search direction dk,i = gk,i (epki
− e j(k))

8 Compute a feasible stepsize αk,i and set zk,i+1 = zk,i + αk,i dk,i

9 End for

10 Set xk+1 = zk,n+1

11 End for

Now, let us focus on the computation of the stepsize αk,i (step 8 of Algorithm 1).
First, for any inner iterate zk,i we define ᾱk,i as the largest feasible stepsize along the
direction dk,i . Since the equality constraint is clearly satisfied by the choice of dk,i ,
by simple calculations we obtain

ᾱk,i =

⎧
⎪⎪⎨

⎪⎪⎩

(1/gk,i ) min{u pki
− zk,i

pki
, zk,ij(k) − l j(k)}, if gk,i > 0,

(1/|gk,i |) min{zk,i
pki

− l pki
, u j(k) − zk,ij(k)}, if gk,i < 0,

0, if gk,i = 0.

(8)

In particular, the choice to define ᾱk,i = 0 when gk,i = 0 is for convenience of
exposition (and without loss of generality), since it implies that ᾱk,i = 0 if dk,i = 0
(equivalently, dk,i 	= 0 if ᾱk,i > 0).

A general rule for the computation of the stepsize αk,i is stated in the following
Stepsize Condition 1 (SC 1). As to be shown, this rule can be easily satisfied in practice
by different line search strategies and guarantees global convergence to stationary
points under an appropriate assumption on the level set.

123



An almost cyclic 2-coordinate descent method 417

SC (Stepsize Condition) 1 It must hold that

(i) f (zk,i+i ) ≤ f (zk,i ), with zk,i+1 ∈ F , for every inner iteration (k, i);
(ii) if { f (xk)} converges, then lim

k→∞‖zk,i+1 − zk,i‖ = 0, i = 1, . . . , n;

(iii) for every pair of indices ı̂, ĵ ∈ {1, . . . , n} and every convergent subsequence
{zk,ı̂ }K⊆{0,1,...} such that pkı̂ is constant for all k ∈ K and j(k) = ĵ for

all k ∈ K, if a real number ξ > 0 exists such that lim inf
k→∞
k∈K

ᾱk,ı̂ = ξ , then

lim
k→∞
k∈K

∇ f (zk,ı̂ )T dk,ı̂ = 0.

Let us spend a few words on the meaning of SC 1. Point (i) requires that every inner
iterate is feasible and does not increase the objective value. Point (ii) is a condition
usually needed for convergence of block decomposition methods, requiring that the
distance of two successive inner iterates goes to zero. Finally, point (iii) requires that
the directional derivatives converge to zero over appropriate subsequences when, for
sufficiently large k, the largest feasible stepsizes are bounded from below by a positive
constant over the same subsequences.

Let us conclude this section by stating the following lemma, which will be useful
in the sequel. It shows that, if points (i)–(ii) of SC 1 are satisfied, then every limit point
of {xk} is a limit point of {zk,i } for every fixed i = 1, . . . , n.

Lemma 1 Let {xk}be a sequence of points produced byAC2CD that satisfies points (i)–
(ii) of SC 1, and let {xk}K⊆{0,1,...} be a subsequence converging to x̄ . Then,

lim
k→∞
k∈K

zk,i = x̄, i = 1, . . . , n.

Proof For i = 1 the result is trivial, since zk,1 = xk for all k. For any i ∈ {2, . . . , n},
we have zk,i − zk,1 = ∑i−1

t=1 z
k,t+1 − zk,t , and then

‖zk,i − xk‖ = ‖zk,i − zk,1‖ ≤
i−1∑

t=1

‖zk,t+1 − zk,t‖. (9)

By continuity of f , we have { f (xk)}K → f (x̄). By point (i) of SC 1, we also
have f (xk+1) = f (zk,n+1) ≤ f (zk,n) ≤ . . . ≤ f (zk,1) = f (xk) for all k ≥ 0,
and then, lim

k→∞ f (xk) = f (x̄). Therefore, using point (ii) of SC 1, we can write

lim
k→∞‖zk,t+1 − zk,t‖ = 0 for all t = 1, . . . , n. Combining this relation with (9),

we get

lim
k→∞‖zk,i − xk‖ = 0. (10)

123



418 A. Cristofari

Moreover, ‖zk,i − x̄‖ = ‖zk,i − xk + xk − x̄‖ ≤ ‖zk,i − xk‖ + ‖xk − x̄‖. Then, the
result is obtained by combining this inequality with (10) and the fact that {xk}K → x̄ .

��

3.2 Convergence to stationary points

In this subsection, we are concerned with the convergence analysis of AC2CD.
For a given starting point x0, let us first define the level set

L0:={x ∈ F : f (x) ≤ f (x0)}.

To prove global convergence of AC2CD to stationary points, we need the following
assumption, which requires that every point of L0 has at least one component strictly
between the lower and the upper bound.

Assumption 1 ∀ x ∈ L0, ∃ i ∈ {1, . . . , n} : xi ∈ (li , ui ).

Let us discuss the role played by this assumption, when combined with SC 1, in
the convergence analysis of AC2CD. First, it guarantees that, for every outer iteration
k ≥ 0, at least one pair of coordinates can be updated if and only if xk is non-stationary.
Indeed, every xk remains in L0 by point (i) of SC 1 and, by the rule used to choose
the index j(k), if Assumption 1 holds we have

l j(k) < xkj(k) < u j(k), ∀ k ≥ 0.

So, from the stationarity conditions (2), it is straightforward to verify that a variable
index pki exists such that ∇ f (zk,i )T dk,i < 0 with ᾱk,i > 0 if and only if xk is non-
stationary, that is, at least one pair of coordinates can be updated during the inner
iterations if and only if xk is non-stationary.

Second, as to be shown in the proof of Theorem 1, if Assumption 1 holds we can
prove that {∇ j(k) f (xk)} converges, over certain subsequences, to the KKT multiplier
λ∗ defined as in (2). So, for sufficiently large k, we can measure the stationarity
violation for each coordinate xkh by ∇h f (xk) − ∇ j(k) f (xk) and guarantee that, at the
limit, each coordinate satisfies (2).

Let us also remark that Assumption 1 is automatically satisfied in many cases, for
example when F is the unit simplex, or when at least one variable has no bounds, that
is, if an index i ∈ {1, . . . , n} exists such that li = −∞ and ui = ∞. Further, in [14],
where the same assumption is used, it is shown that, for the Support Vector Machine
training problem, this assumption is satisfied if the smallest eigenvalue of ∇2 f is
sufficiently large and the starting point x0 is such that f (x0) < 0 (see Appendix B
in [14] for more details).

Now, we are ready to show that, under Assumption 1, AC2CD converges to sta-
tionary points.

Theorem 1 Let Assumption 1 hold and let {xk} be a sequence of points produced by
AC2CD that satisfies SC 1. Then, every limit point of {xk} is stationary for problem (1).

123



An almost cyclic 2-coordinate descent method 419

Proof Let x∗ be a limit point of {xk} and let {xk}K⊆{0,1,...} be a subsequence converging
to x∗. From the instructions of the algorithm, x∗ is a feasible point. Moreover, from
Lemma 1 we can write

lim
k→∞
k∈K

zk,i = x∗, i = 1, . . . , n. (11)

By continuity of f , we have that { f (xk)}K converges to f (x∗). Since { f (xk)} is
monotonically non-increasing (by point (i) of SC 1) we have that { f (xk)} converges
to f (x∗). Therefore, by point (ii) of SC 1 it follows that

lim
k→∞‖zk,i+1 − zk,i‖ = 0, i = 1, . . . , n. (12)

Using the fact that the set of indices {1, . . . , n} is finite, there exist an index ĵ ∈
{1, . . . , n} and a further infinite subsequence, that we still denote by {xk}K without
loss of generality, such that

lim
k→∞
k∈K

xk = x∗ and j(k) = ĵ , ∀ k ∈ K .

We first want to show that a real number ρ > 0 exists such that

min{zk,i
ĵ

− lĵ , u ĵ − zk,i
ĵ

} ≥ ρ, i = 1, . . . , n, ∀ sufficiently large k ∈ K . (13)

To this extent, by Assumption 1 we have that an index h̄ ∈ {1, . . . , n} exists such that
x ∗̄
h

∈ (lh̄, uh̄). So, using the operator Dh defined as in (3), a positive real number ρ

exists such that Dh̄(x
∗) ≥ (4/τ)ρ, where τ ∈ (0, 1] is the parameter defined at step 0

of Algorithm 1, used to compute j(k). Since {xk}K → x∗, by continuity of Dh we
have that Dh̄(x

k) ≥ (2/τ)ρ for all sufficiently large k ∈ K . Using the definition of
Dk given in (5), we obtain

Dk ≥ (2/τ)ρ, ∀ sufficiently large k ∈ K .

By the rule used to choose the index j(k), we can write

Dĵ (z
k,1) = Dĵ (x

k) ≥ τDk ≥ 2ρ, ∀ sufficiently large k ∈ K .

The above relation, combined with (12), implies that Dĵ (z
k,i ) ≥ ρ, i = 1, . . . , n, for

all sufficiently large k ∈ K . Equivalently, (13) holds.
Now, we want to show that the stationarity conditions (2) are satisfied at x∗ with

λ∗ = ∇ĵ f (x
∗). (14)

Reasoning by contradiction, assume that this is not true. Then, there exists an
index t̂ ∈ {1, . . . , n}\{ĵ} that violates (2). Using again the fact that the set of indices

123



420 A. Cristofari

{1, . . . , n} is finite, there also exist an index ı̂ ∈ {1, . . . , n} and a further infinite
subsequence, that we still denote by {xk}K without loss of generality, such that pkı̂ is
constant and equal to t̂ for all k ∈ K . Since also j(k) is constant (and equal to ĵ ) for
all k ∈ K , we thus obtain

pkı̂ = t̂ and j(k) = ĵ , ∀ k ∈ K .

By (11) and the continuity of ∇ f , it follows that {∇ f (zk,i )}K is bounded for all
i = 1, . . . , n. So, a real number T exists such that

‖∇ f (zk,i )‖ ≤ T , i = 1, . . . , n, ∀ k ∈ K .

Therefore,

|gk,ı̂ | = |∇ĵ f (z
k,ı̂ ) − ∇t̂ f (z

k,ı̂ )| ≤ 2T , ∀ k ∈ K . (15)

Since we have assumed t̂ to violate (2) with λ∗ defined as in (14), one of the following
three cases must hold.

(i) x∗
t̂

∈ (lt̂ , ut̂ ) and |∇ĵ f (x
∗) − ∇t̂ f (x

∗)| > 0. Taking into account (11), a real
number ζ > 0 exists such that

min{zk,ı̂
t̂

− lt̂ , ut̂ − zk,ı̂
t̂

} ≥ ζ, ∀ sufficiently large k ∈ K , (16)

|gk,ı̂ | = |∇ĵ f (z
k,ı̂ ) − ∇t̂ f (z

k,ı̂ )| ≥ ζ, ∀ sufficiently large k ∈ K . (17)

From (13), (15), (16), (17) and the definition of ᾱk,i given in (8), we obtain

ᾱk,ı̂ ≥ min
{ ζ

2T
,

ρ

2T

}
> 0, ∀ sufficiently large k ∈ K .

Therefore, by point (iii) of SC 1 we get

0 = lim
k→∞
k∈K

∇ f (zk,ı̂ )T dk,ı̂ = lim
k→∞
k∈K

−[∇ĵ f (z
k,ı̂ ) − ∇t̂ f (z

k,ı̂ )
]2

,

where the second equality follows from (7). We thus obtain a contradiction
with (17).

(ii) x∗
t̂

= lt̂ and ∇t̂ f (x
∗) < ∇ĵ f (x

∗). Taking into account (11), we have

ut̂ − zk,ı̂
t̂

≥ ut̂ − lt̂
2

, ∀ sufficiently large k ∈ K , (18)

and a real number ζ > 0 exists such that

gk,ı̂ = ∇ĵ f (z
k,ı̂ ) − ∇t̂ f (z

k,ı̂ ) ≥ ζ, ∀ sufficiently large k ∈ K . (19)

123



An almost cyclic 2-coordinate descent method 421

From (13), (15), (18), (19) and the definition of ᾱk,i given in (8), we obtain

ᾱk,ı̂ ≥ min
{ut̂ − lt̂

4T
,

ρ

2T

}
> 0, ∀ sufficiently large k ∈ K .

Therefore, by point (iii) of SC 1 we get

0 = lim
k→∞
k∈K

∇ f (zk,ı̂ )T dk,ı̂ = lim
k→∞
k∈K

−[∇ĵ f (z
k,ı̂ ) − ∇t̂ f (z

k,ı̂ )
]2

,

where the second equality follows from (7). We thus obtain a contradiction
with (19).

(iii) x∗
t̂

= ut̂ and ∇t̂ f (x
∗) > ∇ĵ f (x

∗). This is a verbatim repetition of the previous
case, which again leads to a contradiction.

We can thus conclude that x∗ is a stationary point. ��

4 Computation of the stepsize

In this section, we describe some practical ways to compute the stepsize in order to
satisfy SC 1. We consider different classes of objective functions: general non-convex
functions, those with Lipschitz continuous gradient and strictly convex functions.

4.1 General non-convex objective functions

When the objective function is non-convex, a common way to compute the stepsize
is using an inexact line search. Here, we consider the Armijo line search, which is
now described. Given any inner iterate zk,i and the direction dk,i , first we choose a
trial feasible stepsize Δk,i and then we obtain αk,i by a backtracking procedure. In
particular, we set

αk,i = (δ)c Δk,i , (20)

where c is the smallest nonnegative integer such that

f (zk,i + Δk,i (δ)cdk,i ) ≤ f (zk,i ) + γΔk,i (δ)c ∇ f (zk,i )T dk,i (21)

and δ ∈ (0, 1), γ ∈ (0, 1) are fixed parameters.
For what concerns the choice of Δk,i , first it must be feasible, that is, Δk,i ≤ ᾱk,i .

Moreover, as to be shown in the proof of the following proposition, Δk,i must be
bounded from above by a finite positive constant to satisfy point (ii) of SC 1. Namely,
we require that Δk,i ≤ Ak,i , where Ak,i is any scalar satisfying 0 < Al ≤ Ak,i ≤
Au < ∞, with Al and Au being fixed parameters. In conclusion, in the Armijo line
search we set Δk,i = min{ᾱk,i , Ak,i }. In the next proposition, we show that a stepsize
computed in this way satisfies SC 1.

123



422 A. Cristofari

Proposition 2 Let δ ∈ (0, 1), γ ∈ (0, 1) and 0 < Al ≤ Au < ∞. Then, SC 1 is
satisfied by computing, at every inner iteration (k, i), the stepsize αk,i as in (20), where
c is the smallest nonnegative integer such that (21) holds, Δk,i = min{ᾱk,i , Ak,i } and
Ak,i ∈ [Al , Au].
Proof We first observe that, at every inner iteration (k, i), there exists a nonnegative
integer c satisfying (21), since, from (7), we have ∇ f (zk,i )T dk,i < 0 for all dk,i 	= 0.

Point (i) of SC 1 immediately follows from (21) and the fact that αk,i ≤ Δk,i , with
Δk,i feasible. Now, we prove point (ii) of SC 1.We first show that a real number σ > 0
exists such that, for all k ≥ 0, we have

f (zk,i+1) ≤ f (zk,i ) − σ‖zk,i+1 − zk,i‖2, i = 1, . . . , n. (22)

From (20) and (21), for all k ≥ 0 we can write

f (zk,i+1) ≤ f (zk,i ) + γαk,i∇ f (zk,i )T dk,i , i = 1, . . . , n. (23)

Using (7), we obtain

f (zk,i+1) ≤ f (zk,i ) − γαk,i (gk,i )2, i = 1, . . . , n. (24)

Moreover, zk,i+1 − zk,i = αk,i gk,i (epki
− e j(k)), and then, ‖zk,i+1 − zk,i‖2 =

2(αk,i )2(gk,i )2. Using this equality in (24), and recalling that αk,i ≤ Au < ∞, we
have that

f (zk,i+1) ≤ f (zk,i ) − γ

2Au
‖zk,i+1 − zk,i‖2, i = 1, . . . , n.

Therefore, (22) holds with σ = γ /(2Au) for all k ≥ 0. So, point (ii) of SC 1 is
satisfied by combining (22) with the fact that f (xk+1) = f (zk,n+1) ≤ f (zk,n) ≤
· · · ≤ f (zk,1) = f (xk) for all k ≥ 0.

Now, we prove that also point (iii) of SC 1 holds. Let {zk,ı̂ }K , ı̂ , ĵ and ᾱk,ı̂ be
defined as in point (iii) of SC 1. Rearranging the terms in (23), we can write

f (zk,ı̂ ) − f (zk,ı̂+1) ≥ γαk,ı̂ |∇ f (zk,ı̂ )T dk,ı̂ |, ∀ k ∈ K . (25)

Moreover, since {zk,ı̂ }K converges and f (xk+1) = f (zk,n+1) ≤ f (zk,n) ≤ . . . ≤
f (zk,1) = f (xk) for all k ≥ 0, by continuity of f we have that { f (xk)} converges,
implying that

lim
k→∞[ f (zk,i+1) − f (zk,i )] = 0, i = 1, . . . , n. (26)

Combining (25) and (26), we obtain

lim
k→∞
k∈K

αk,ı̂ |∇ f (zk,ı̂ )T dk,ı̂ | = 0. (27)

123



An almost cyclic 2-coordinate descent method 423

Proceeding by contradiction, we assume that it does not hold that

lim
k→∞
k∈K

∇ f (zk,ı̂ )T dk,ı̂ = 0. (28)

Since {zk,ı̂ }K converges, then it is bounded and, by continuity of∇ f and the definition
of the direction dk,i , also

{∇ f (zk,ı̂ )
}
K and {dk,ı̂ }K are bounded. So, if (28) does

not hold, there exist further infinite subsequences, that we still denote by {zk,ı̂ }K ,{∇ f (zk,ı̂ )
}
K and {dk,ı̂ }K without loss of generality, such that

lim
k→∞
k∈K

zk,ı̂ = z̃ ∈ R
n, lim

k→∞
k∈K

dk,ı̂ = d̃ ∈ R
n (29)

and

lim
k→∞
k∈K

∇ f (zk,ı̂ )T dk,ı̂ = ∇ f (z̃)T d̃ = −η ∈ R, (30)

with η > 0. From (27) and (30), we get

lim
k→∞
k∈K

αk,ı̂ = 0. (31)

Since Ak,ı̂ ≥ Al > 0 for all k ≥ 0 and ᾱk,ı̂ ≥ ξ/2 > 0 for all sufficiently large k ∈ K ,
using the definition of Δk,ı̂ we obtain

Δk,ı̂ ≥ min{ξ/2, Al} > 0, ∀ sufficiently large k ∈ K .

Consequently, by (31), an outer iteration k̄ ∈ K exists such that

αk,ı̂ < Δk,ı̂ , ∀ k ≥ k̄, k ∈ K .

The above relation implies that (21) is satisfied with c > 0 for all k ≥ k̄, k ∈ K .
Therefore,

f

(
zk,ı̂ + αk,ı̂

δ
dk,ı̂

)
> f (zk,ı̂ ) + γ

αk,ı̂

δ
∇ f (zk,ı̂ )T dk,ı̂ , ∀ k ≥ k̄, k ∈ K . (32)

By the mean value theorem, we can write

f

(
zk,ı̂ + αk,ı̂

δ
dk,ı̂

)
= f (zk,ı̂ ) + αk,ı̂

δ
∇ f (βk,ı̂ )T dk,ı̂ , (33)

123



424 A. Cristofari

where βk,ı̂ = zk,ı̂ + θk,ı̂
αk,ı̂

δ
dk,ı̂ and θk,ı̂ ∈ (0, 1). Using (32) and (33), we obtain

∇ f (βk,ı̂ )T dk,ı̂ > γ∇ f (zk,ı̂ )T dk,ı̂ , ∀ k ≥ k̄, k ∈ K . (34)

Since θk,ı̂ ∈ (0, 1), and taking into account (29) and (31), it follows that {βk,ı̂ }K → z̃.
So, passing to the limit in (34), we have that ∇ f (z̃)T d̃ ≥ γ∇ f (z̃)T d̃. Using (30), we
obtain −η ≥ −γ η, contradicting the fact that η > 0 and γ ∈ (0, 1). Then, point (iii)
of SC 1 holds. ��

4.2 Objective functions with Lipschitz continuous gradient

In this subsection, we consider the case where ∇ f is Lipschitz continuous over F
with constant L . Namely, we assume that

‖∇ f (y) − ∇ f (x)‖ ≤ L‖y − x‖, ∀ x, y ∈ F .

First, let us recall a result due to Beck [1], which will be useful in the sequel.

Lemma 2 Let us assume that ∇ f is Lipschitz continuous over F with constant L. For
any point z ∈ F and any pair of indices i, j ∈ {1, . . . , n}, define the function

φi, j,z(t):= f
(
z + t(ei − e j )

)
, t ∈ Ii, j,z,

where Ii, j,z is the interval that comprises the feasible stepsizes. Namely,

Ii, j,z :={t ∈ R : z + t(ei − e j ) ∈ F}. (35)

Then, every φ̇i, j,z is Lipschitz continuous over Ii, j,z with constant Li, j ≤ 2L, that
is,

|φ̇i, j,z(t) − φ̇i, j,z(s)| ≤ Li, j |t − s|, ∀ z ∈ F , ∀ t, s ∈ Ii, j,z . (36)

Proof See Sect. 3 in [1]. ��
Now, let L̄i, j be some positive overestimates of Li, j , with Li, j being the Lipschitz

constants defined in Lemma 2. Namely,

L̄i, j ≥ Li, j , such that L̄i, j > 0, i, j = 1, . . . , n. (37)

We will show that these overestimates can be used to compute, in closed form, a
stepsize satisfying SC 1. In particular, for a given fixed parameter γ ∈ (0, 1), at every
inner iteration (k, i) we can set

αk,i = min

{
ᾱk,i ,

2(1 − γ )

L̄ pki , j(k)

}
. (38)

123



An almost cyclic 2-coordinate descent method 425

As to be pointed out in the proof of the following proposition, this stepsize can be
seen as a particular case of the Armijo stepsize defined in Proposition 2. Note also
that, since Li, j ≤ 2L , every positive overestimate of 2L can be used in (38).

Proposition 3 Let us assume that ∇ f is Lipschitz continuous over F with constant L
and let γ ∈ (0, 1). Then, SC 1 is satisfied by computing, at every inner iteration (k, i),
the stepsize αk,i as in (38).

Proof Let i, j ∈ {1, . . . , n} be any pair of indices and consider inequality (36).Observ-
ing that 0 ∈ Ii, j,z for every feasible z, and using known results on functions with
Lipschitz continuous gradient (see, e.g., [23]), we can write

φi, j,z(t) ≤ φi, j,z(0) + t φ̇i, j,z(0) + Li, j

2
t2, ∀ z ∈ F , ∀ t ∈ Ii, j,z .

Since φ̇i, j,z(t) = ∇i f
(
z + t(ei − e j )

) − ∇ j f
(
z + t(ei − e j )

)
, it follows that

f
(
z + t(ei − e j )

) ≤ f (z)+t[∇i f (z) − ∇ j f (z)]+ Li, j

2
t2, ∀ z ∈ F , ∀ t ∈ Ii, j,z .

(39)

To prove the assertion, it is sufficient to show that αk,i , defined as in (38), is a
particular case of the Armijo stepsize defined in Proposition 2. To this extent, we can
set Ak,i = 2(1− γ )/L̄ pki , j(k)

(all these quantities are positive and finite) and, by (38),

we obtain αk,i = Δk,i , with Δk,i defined as in Proposition 2. So, all we need is to
prove that (21) holds with c = 0 for this choice of Δk,i . Namely, we want to show
that

f (zk,i + Δk,i dk,i ) ≤ f (zk,i ) + γΔk,i∇ f (zk,i )T dk,i . (40)

Since Δk,i ≤ ᾱk,i , and taking into account the definition of dk,i given in (6), we have
that

zk,i + Δk,i dk,i = zk,i + Δk,i gk,i (epki
− e j(k)) ∈ F ,

that is, Δk,i gk,i ∈ Ipki , j(k),zk,i
by definition (35). Therefore, using (39) with i and j

replaced by pki and j(k), respectively, z = zk,i and t = Δk,i gk,i , we obtain

f (zk,i + Δk,i dk,i ) ≤ f (zk,i ) − Δk,i (gk,i )2 +
L̄ pki , j(k)

2
(Δk,i )2(gk,i )2

= f (zk,i ) + Δk,i∇ f (zk,i )T dk,i
(
1 −

L̄ pki , j(k)

2
Δk,i

)
,

where the equality follows from (7). Since 0 ≤ Δk,i ≤ 2(1−γ )/L̄ pki , j(k)
, we get (40).

��

123



426 A. Cristofari

Remark 2 As appears from the proof of Proposition 3, the stepsize given in (38)
satisfies SC 1 by using, for every pair of indices i, j ∈ {1, . . . , n}, a positive con-
stant L̄i, j ≥ Li, j , where it is sufficient that Li, j satisfies (39). In particular, a case
of interest is when we have a (possibly non-convex) separable objective function
f (x) = ∑n

i=1 fi (xi ) where each fi : R → R has a Lipschitz continuous derivative
with constant Li . In this case, Proposition 3 holds even with L̄i, j replaced by L̄i + L̄ j

in (38), where L̄i and L̄ j are two positive overestimates of Li and L j , respectively.
This follows from the fact that, in this case, (39) holds even with Li, j replaced by
Li + L j , since, by Lipschitz continuity of ḟ1, . . . , ḟn , we have

f
(
z + t(ei − e j )

) = fi (zi + t) + f j (z j − t) +
∑

h 	=i, j

fh(zh)

≤ f (z) + t[ ḟi (zi ) − ḟ j (z j )] + Li + L j

2
t2

= f (z) + t[∇i f (z) − ∇ j f (z)] + Li + L j

2
t2.

Now, let us analyze the case where the objective function is quadratic of the follow-
ing form: f (x) = 1

2 x
T Qx − qT x , with Q ∈ R

n×n symmetric and q ∈ R
n . Denoting

by Qi, j the element of Q in position (i, j), we have (again from [1])

Li, j = |Qi,i + Q j, j − 2Qi, j |, i, j ∈ {1, . . . , n}.

So, at every inner iteration (k, i), we can easily obtain (a positive overestimate of)
L pki , j(k)

in order to compute the stepsize αk,i as in (38).

Moreover, if (dk,i )T Qdk,i > 0 for a given direction dk,i , we can write

0 <
1

Qpki ,p
k
i
+ Q j(k), j(k) − 2Qpki , j(k)

= −∇ f (zk,i )T dk,i

(dk,i )T Qdk,i
∈ Argmin

α∈R
f (zk,i + αdk,i ).

It follows that, when (dk,i )T Qdk,i > 0, we can set γ = 1/2, L̄ pki , j(k)
= L pki , j(k)

and the stepsize given in (38) is the exact stepsize, i.e., it is the feasible minimizer of
f (zk,i + αdk,i ) with respect to α.
Vice versa, if (dk,i )T Qdk,i ≤ 0 for a given direction dk,i , we can exploit the fact

that the greatest objective decrease along dk,i is achieved by setting αk,i as large as
possible, since

f (zk,i + αdk,i ) = f (zk,i ) + α∇ f (zk,i )T dk,i + 1

2
α2(dk,i )T Qdk,i , ∀α ∈ R.(41)

So, we can set αk,i = min{ᾱk,i , Au}, with 0 < Au < ∞ being a (large) fixed
parameter. Using (41), it is easy to see that also this stepsize is a particular case of the
Armijo stepsize defined in Proposition 2 (indeed, for every nonnegative value of Δk,i ,
the Armijo condition (21) is satisfied by c = 0).

123



An almost cyclic 2-coordinate descent method 427

4.3 Strictly convex objective functions

Let us consider a strictly convex objective function. In this case, we can satisfy SC 1
by computing, at every inner iteration (k, i), the stepsize αk,i by an exact line search,
that is,

αk,i ∈ Argmin { f (zk,i + αdk,i ) : α ∈ [0, ᾱk,i ]}. (42)

To ensure that the above minimization is well defined at every inner iteration, we
assume that L0 is compact.

Proposition 4 Let us assume that f is strictly convex and L0 is compact. Then, SC 1
is satisfied by computing, at every inner iteration (k, i), the stepsize αk,i as in (42).

Proof Point (i) of SC 1 immediately follows from the definition of αk,i . Since
f (xk+1) = f (zk,n+1) ≤ f (zk,n) ≤ · · · ≤ f (zk,1) = f (xk) and each zk,i lies in
the compact set L0, it follows that { f (xk)} converges. So, to prove point (ii) of SC 1
we have to show that lim

k→∞‖zk,i+1 − zk,i‖ = 0, i = 1, . . . , n. Arguing by contra-

diction, assume that this is not true. Then, there exist a real number ρ > 0, an index
ı̂ ∈ {1, . . . , n} and an infinite subsequence {zk,ı̂ }K⊆{0,1,...} such that‖zk,ı̂+1−zk,ı̂‖ ≥ ρ

for all k ∈ K . Since every point zk,i lies in the compact setL0, there also exist a further
infinite subsequence, that we still denote by {zk,ı̂ }K without loss of generality, and
two distinct points z′, z′′ ∈ R

n such that

lim
k→∞
k∈K

zk,ı̂ = z′ and lim
k→∞
k∈K

zk,ı̂+1 = z′′. (43)

As αk,i is obtained by an exact line search, we can write

f (zk,ı̂+1) ≤ f
(
zk,ı̂ + 1

2
αk,ı̂ dk,ı̂

)
= f

( zk,ı̂ + zk,ı̂+1

2

)

≤ 1

2
f (zk,ı̂ ) + 1

2
f (zk,ı̂+1) ≤ f (zk,ı̂ ),

(44)

where the second inequality follows from the convexity of f and the last inequality
follows from the fact that f (zk,ı̂+1) ≤ f (zk,ı̂ ). Moreover, since { f (xk)} converges, a
real number f̄ exists such that

lim
k→∞ f (zk,i ) = f̄ , i = 1, . . . , n. (45)

By continuity of the objective function, we can write

lim
k→∞
k∈K

f (zk,ı̂ ) = f (z′) = f̄ and lim
k→∞
k∈K

f (zk,ı̂+1) = f (z′′) = f̄ .

123



428 A. Cristofari

So, passing to the limit in (44),we obtain f̄ ≤ f
( z′ + z′′

2

)
≤ f̄ , that is, f

( z′ + z′′

2

)
=

f̄ . Adding to the left-hand side of this equality the two quantities
(1
2
f̄ − 1

2
f (z′)

)
and

(1
2
f̄ − 1

2
f (z′′)

)
, that are both equal to zero, we get

f
( z′ + z′′

2

)
= 1

2
f (z′) + 1

2
f (z′′),

contradicting the fact that f is strictly convex and z′ 	= z′′. Then, point (ii) of SC 1
holds.

Finally, point (iii) of SC 1 can be proved by the same arguments used in the proof
of Proposition 2 for the Armijo stepsize, just observing that the objective decrease
achieved by the exact line search is greater than or equal to the one achieved by the
Armijo line search. ��

5 Convergence rate analysis

In this section, we show that the convergence rate of AC2CD is linear under standard
additional assumptions.

The key to prove linear convergence rate ofAC2CD is to showa relation between the
points produced byAC2CDand the points produced by the classical coordinate descent
method applied to an equivalent transformed problem. Then, linear convergence rate
follows from the well known properties of the classical coordinate descent method
proved by Luo and Tseng [17] and by Beck and Tetruashvili [2].

In particular, here we give two results. The first one is more general and states that,
eventually, { f (xk)} converges linearly to the optimal value of problem (1), that is,
C ∈ [0, 1) exists such that f (xk+1) − f (x∗) ≤ C[ f (xk) − f (x∗)] for all sufficiently
large k, with x∗ being the optimal solution of problem (1). The second result is for
the case where there are no bounds on the variables and establishes a non-asymptotic
linear convergence rate, that is, the above inequality holds for every k ≥ 0.

Let us start by showing the general result. First, we need a specific rule to compute
the index j(k) in order to ensure that it remains constant from a certain outer iteration
k̂. In particular, we initialize AC2CD with τ ∈ (0, 1) (step 0 of Algorithm 1) and,
from a certain k ≥ 1, we adopt the following rule: j(k) = j(k − 1) if this choice
satisfies (4), otherwise j(k) is set equal to any index h such that Dh(xk) = Dk , where
Dh and Dk are the operators given in (3) and (5), respectively. Namely,

j(k)

⎧
⎨

⎩
= j(k − 1), if this choice satisfies (4),

∈ Argmax
h=1,...,n

Dh(x
k), otherwise. (46)

We can state the following intermediate lemma.

123



An almost cyclic 2-coordinate descent method 429

Lemma 3 Let Assumption 1 hold and let τ ∈ (0, 1). Let {xk} be a sequence of points
produced by AC2CD, where j(k) is computed as in (46) from a certain k ≥ 1. Let us
also assume that limk→∞{xk} = x∗ ∈ R

n.
Then, there exist a variable index j̄ and an outer iteration k̂ such that j(k) = j̄ for

all k ≥ k̂. Moreover, x ∗̄
j ∈ (lj̄ , u j̄ ).

Proof Let j∗ ∈ Argmaxh=1,...,nDh(x∗). From Assumption 1, we have Dj∗(x∗) > 0.

First, we prove that there exist a variable index j̄ and an outer iteration k̂ such that
j(k) = j̄ for all k ≥ k̂. Arguing by contradiction, assume that this is not true. Since
the set of indices {1, . . . , n} is finite, there exist two indices j1, j2 ∈ {1, . . . , n} and
two infinite subsequences {xk}K1 and {xk}K2 such that

{
j(k − 1) 	= j1,

j(k) = j1,
∀ k ∈ K1, and

{
j(k − 1) = j1,

j(k) = j2,
∀ k ∈ K2.

Since j(k) is computed as in (46) from a certain k ≥ 1, it follows that

Dj1(x
k) = Dk ≥ Dj∗(x

k), ∀ sufficiently large k ∈ K1,

Dj1(x
k) < τDk = τDj2(x

k), ∀ sufficiently large k ∈ K2.

By continuity of the operator Dh , we can write

Dj1(x
∗) = lim

k→∞
k∈K1

Dj1(x
k) ≥ lim

k→∞
k∈K1

Dj∗(x
k) = Dj∗(x

∗),

Dj1(x
∗) = lim

k→∞
k∈K2

Dj1(x
k) ≤ τ lim

k→∞
k∈K2

Dj2(x
k) = τDj2(x

∗).

Combining these two inequalities, and recalling that Dj∗(x∗) > 0, we obtain

0 < Dj∗(x
∗) ≤ τDj2(x

∗).

This is contradiction, since Dj∗(x∗) ≥ Dj2(x
∗) and τ ∈ (0, 1). So, a variable index j̄

and an outer iteration k̂ exist such that j(k) = j̄ for all k ≥ k̂.
To prove that x ∗̄

j ∈ (lj̄ , u j̄ ), assume by contradiction that Dj̄ (x∗) = 0. Since j(k) is

computed as in (46) from a certain k ≥ 1 and j(k) = j̄ for all k ≥ k̂, for all sufficiently
large k we have Dj̄ (xk) ≥ τDk ≥ τDj∗(xk). By continuity of the operator Dh , we
obtain

0 = Dj̄ (x
∗) = lim

k→∞ Dj̄ (x
k) ≥ τ lim

k→∞ Dj∗(x
k) = τDj∗(x

∗),

which leads to a contradiction, since Dj∗(x∗) > 0 and τ ∈ (0, 1). Therefore, x ∗̄
j ∈

(lj̄ , u j̄ ). ��
Now, we are ready to show that, eventually, { f (xk)} converges linearly to f (x∗)

under the following assumption.

123



430 A. Cristofari

Assumption 2 It holds that

– f is strictly convex twice continuously differentiable over Rn ;
– the optimal solution of problem (1), denoted by x∗, exists;
– ∇2 f (x∗) � 0.

Note that Assumption 2 implies thatL0 is compact (see Lemma 9.1 in [29]). There-
fore, if also Assumption 1 holds and SC 1 is satisfied, then {xk} converges to the
optimal solution x∗. As a further consequence, under Assumption 2 we can compute
the stepsize by an exact line search to satisfy SC 1 (see Proposition 4).

Theorem 2 Let Assumption 1 and 2 hold, and let τ ∈ (0, 1). Let {xk} be a sequence of
points produced by AC2CD, where j(k) is computed as in (46) from a certain k ≥ 1
and the stepsize is computed as indicated in Proposition 4.

Then, a real number C ∈ [0, 1) and an outer iteration k̄ exist such that

f (xk+1) − f (x∗) ≤ C[ f (xk) − f (x∗)], ∀ k ≥ k̄.

Proof Without loss of generality, we assume that n > 1 (otherwise the feasible set is
either empty or a singleton). Let j̄ and k̂ be the variable index and the outer iteration
defined in Lemma 3, respectively. Namely, j(k) = j̄ for all k ≥ k̂. To simplify the
notation, without loss of generality we assume that

pkn = j̄ , ∀ k ≥ k̂, and j̄ = n. (47)

Let us consider the following variable transformation:

xi =
⎧
⎨

⎩

yi , i ∈ {1, . . . , n}\{j̄},
b −

∑

h 	=j̄

yh, i = j̄ . (48)

Equivalently, we can write

x = My + w, (49)

where, recalling that j̄ = n,

M =

⎡

⎢⎢⎢⎢⎢⎣

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1
− 1 − 1 . . . − 1

⎤

⎥⎥⎥⎥⎥⎦
∈ R

n×(n−1) and w =

⎡

⎢⎢⎢⎢⎢⎣

0
0
...

0
b

⎤

⎥⎥⎥⎥⎥⎦
∈ R

n . (50)

Note that the columns of M are linearly independent and, for every point x ∈ R
n such

that
∑n

i=1 xi = b, the linear system x = My + w has a unique solution given by
yi = xi , i = 1, . . . , n − 1.

123



An almost cyclic 2-coordinate descent method 431

Now, since x∗
n ∈ (ln, un) (by Lemma 3) and f is strictly convex, in problem (1) we

can remove the bound constraints on the variable xn and x∗ is still the unique optimal
solution. Consequently, by defining the function ψ : Rn−1 → R as ψ(y):= f

(
My +

w
)
, we can recast problem (1) as follows:

min ψ(y)

li ≤ yi ≤ ui , i = 1, . . . , n − 1.
(51)

We observe that, for every feasible point y of problem (51), the corresponding x
obtained by (49) satisfies both the equality constraint

∑n
i=1 xi = b and the bound

constraints li ≤ xi ≤ ui , i = 1, . . . , n − 1 (the bound constraints on xn are ignored
for the reasons explained above).

An optimal solution y∗ of problem (51) exists, is unique and is given by y∗
i = x∗

i ,
i = 1, . . . , n−1. Indeed, this y∗ clearly satisfies x∗ = My∗ +w andψ(y∗) = f (x∗).
So, if a feasible point ỹ 	= y∗ of problem (51) existed such thatψ(ỹ) ≤ ψ(y∗), it would
mean that Mỹ + w 	= My∗ + w (since the columns of M are linearly independent)
and f (Mỹ + w) ≤ f (My∗ + w) = f (x∗). But this is not possible, since Mỹ would
be feasible for problem (1) after removing the bound constraints on xn , and we said
above that x∗ is still the unique optimal solution of problem (1) even if we remove the
bound constraints on xn .

Now, for any k ≥ k̂ and for any i = 1, . . . , n, let us define yk,i as the unique vector
[feasible for problem (51)] satisfying

zk,i = Myk,i + w, (52)

which is given by

yk,ih = zk,ih , h = 1, . . . , n − 1. (53)

For all k ≥ k̂, without loss of generality we can consider only the first n − 1 inner
iterations in AC2CD. Indeed, by (47) we are assuming that pkn = j̄ for all k ≥ k̂, and
then, no pair of coordinates is updated in the inner iteration (k, n) for all k ≥ k̂ (see
Remark 1). Let us consider any inner iteration (k, i), with k ≥ k̂ and i ∈ {1, . . . , n−1}.
We want to show that

zk,i + αdk,i = My

∣∣∣∣∣∣∣∣
y
pki

=yk,i
pki

−α∇
pki

ψ(yk,i )

yh=yk,ih , h=1,...,n−1, h 	=pki

+ w, ∀α ∈ R. (54)

In other words, (54) says that moving zk,i along dk,i with a certain stepsize α corre-
sponds, in the y space, to moving the pki th coordinate of y

k,i along−∇pki
ψ(yk,i )with

the same stepsize α, keeping all the other coordinates of yk,i fixed. To prove that (54)
holds, we use again the fact that, for allα ∈ R, the linear system zk,i +αdk,i = My+w

123



432 A. Cristofari

has a unique solution y given by yh = zk,ih + αdk,ih , h = 1, . . . , n − 1. Then, (54) is
equivalent to writing

zk,i
pki

+ αdk,i
pki

= yk,i
pki

− α∇pki
ψ(yk,i ), (55a)

zk,ih + αdk,ih = yk,ih , h = 1, . . . , n − 1, h 	= pki . (55b)

Since dk,ih = 0 for all h /∈ {pki , j̄}, and we are assuming that j̄ = n, (55b) immediately

follows from (53). To obtain (55a), we use (53) again to write yk,i
pki

= zk,i
pki
. Thus, we

only need to show that dk,i
pki

= −∇pki
ψ(yk,i ). This follows from the relation ∇ψ(y) =

MT∇ f (My + w), that, combined with (52) and the definition of M given in (50),
yields to

∇pki
ψ(yk,i ) = ∇pki

f (Myk,i + w) − ∇j̄ f (Myk,i + w)

= ∇pki
f (zk,i ) − ∇j̄ f (z

k,i ) = −dk,i
pki

.

Therefore, (55) holds, implying that (54) holds too. Using α = αk,i in (55), for all
k ≥ k̂ we can write

zk,i+1
pki

= yk,i
pki

− αk,i∇pki
ψ(yk,i ), i = 1, . . . , n − 1,

zk,i+1
h = yk,ih , h = 1, . . . , n − 1, h 	= pki , i = 1, . . . , n − 1.

Using (53) (with i replaced by i + 1) in the above relations, for all k ≥ k̂ we obtain

yk,i+1
pki

= yk,i
pki

− αk,i∇pki
ψ(yk,i ), i = 1, . . . , n − 1, (56a)

yk,i+1
h = yk,ih , h = 1, . . . , n − 1, h 	= pki , i = 1, . . . , n − 1. (56b)

We see that, for all k ≥ k̂, the vectors yk,1, . . . , yk,n are the same that would be
generated by a coordinate descent algorithm applied to problem (51). In particular, for
all k ≥ k̂, every yk+1,1 is obtained from yk,1 by selecting one coordinate at a time by
a Gauss-Seidel (or cyclic) rule and moving it with a certain stepsize.

Nowwe want to show that, for all sufficiently large k, each stepsize αk,i is the same
that would be obtained by performing an exact line search in the updating scheme (56),
applied to problem (51). First observe that there exists k̃ ≥ k̂ such that zk,ij̄ ∈ (lj̄ , u j̄ ),

i = 1, . . . , n, for all k ≥ k̃, as x ∗̄
j ∈ (lj̄ , u j̄ ) and {zk,i } → x∗, i = 1, . . . , n. Therefore,

since an exact line search is used in AC2CD, for all i = 1, . . . , n we can write

αk,i ∈ Argmin
α∈R

{ f (zk,i + αdk,i ) : zk,i
pki

+ αdk,i
pki

∈ [l pki , u pki
]}, ∀ k ≥ k̃. (57)

In other words, for all k ≥ k̃, the constraints zk,ij̄ + αdk,ij̄ ∈ [lj̄ , u j̄ ] with respect to
α are not necessary for the computation of the stepsize in AC2CD. Combining (57)

123



An almost cyclic 2-coordinate descent method 433

with (54), we get that, for all k ≥ k̃, each αk,i is the optimal solution of the following
one-dimensional problem:

min
α∈R ψ(y)

ypki
= yk,i

pki
− α∇pki

ψ(yk,i )

yh = yk,ih , h = 1, . . . , n − 1, h 	= pki ,

l pki
≤ yk,i

pki
− α∇pki

ψ(yk,i ) ≤ u pki
.

(58)

In particular, the last bound constraints in (58) follow from those in (57), using (55a).
Therefore, for all k ≥ k̃, each αk,i is the stepsize that would be obtained by performing
an exact line search in the coordinate descent scheme (56), applied to problem (51).

So, according to the results established byLuo andTseng [17], eventually {ψ(yk,1)}
converges linearly to the optimal value of problem (51) if the following three conditions
hold: (i) ψ is strictly convex twice continuously differentiable over Rn−1, (ii) the
optimal solution y∗ of problem (51) exists, (iii) ∇2ψ(y∗) � 0. The second point
has already been proved before, while the other two points follow by combining
Assumption 2 with the fact that the columns of M are linearly independent and x∗ =
My∗ + w. We conclude that a real number C ∈ [0, 1) and an outer iteration k̄ ≥ k̃
exist such that

ψ(yk+1,1) − ψ(y∗) ≤ C[ψ(yk,1) − ψ(y∗)], ∀ k ≥ k̄.

Since ψ(y∗) = f (x∗), ψ(yk,1) = f (zk,1) = f (xk) and ψ(yk+1,1) = f (zk+1,1) =
f (xk+1), we get the result. ��
Now,we focus on the casewhere there are no bounds on the variables, i.e., li = −∞

and ui = ∞ for all i = 1, . . . , n. In this case, a non-asymptotic linear convergence
rate can be achieved by using the stepsize defined in Proposition 3 (with γ = 1/2).
To obtain this result, we need the following assumption.

Assumption 3 It holds that

– f is strongly convex over Rn with constant μ;
– ∇ f is Lipschitz continuous over Rn with constant L;
– the optimal solution of problem (1), denoted by x∗, exists.

Also in this case, we need tomaintain the index j(k) fixed throughout the algorithm.
In particular, nowwe require j(k) to be equal to any index j̄ ∈ {1, . . . , n} for all k ≥ 0
(note that any choice of j̄ is acceptable, since there are no bounds on the variables).

Theorem 3 Let us assume that there are no bounds on the variables in problem (1),
i.e., li = −∞ and ui = ∞ for all i = 1, . . . , n, and let Assumption 3 hold. Given any
index j̄ ∈ {1, . . . , n}, let {xk} be a sequence of points produced by AC2CD, where
j(k) = j̄ for all k ≥ 0 and the stepsize is computed as indicated in Proposition 3,
with γ = 1/2.

123



434 A. Cristofari

Then, a real number C ∈ [0, 1) exists such that

f (xk+1) − f (x∗) ≤ C[ f (xk) − f (x∗)], ∀ k ≥ 0. (59)

In particular, considering the constants Li, j defined in Lemma 2 and the constants
L̄i, j used for the stepsize computation, we have

C = 1 − μ

2L̄max
j̄

[
1 + (n − 1)(

∑
i 	=j̄ Li,j̄ )2/(L̄min

j̄ )2
] , (60)

where L̄min
j̄ :=min

i 	=j̄
L̄i,j̄ and L̄max

j̄ :=max
i 	=j̄

L̄i,j̄ .

Proof Following the same line of arguments as in the proof of Theorem 2, without
loss of generality we assume that n > 1 and that (47) holds for all k ≥ 0. Then, we
consider the variable transformation x = My+w given in (48), (49) and (50) to define
the function ψ : Rn−1 → R as ψ(y):= f

(
My + w

)
. We obtain that problem (1) is

equivalent to the following problem (which is now unconstrained since there are no
bounds on the variables):

min
y∈Rn−1

ψ(y). (61)

An optimal solution y∗ of problem (61) exists, is unique and is given by y∗
i = x∗

i ,
i = 1, . . . , n − 1, satisfying x∗ = My∗ + w and ψ(y∗) = f (x∗). Moreover, for any
k ≥ 0 and for any i = 1, . . . , n, let us define yk,i as in (52)–(53). We have that (56)
holds for all k ≥ 0. Namely, for all k ≥ 0, every yk+1,1 is obtained from yk,1 by
selecting one coordinate at a time by a Gauss-Seidel (or cyclic) rule and moving it
with a certain stepsize.

Now, let us consider the stepsize αk,i . By hypothesis, it is computed as described
in Proposition 3, with γ = 1/2, using the constants Li, j and L̄i, j as they are defined
in Lemma 2 and in (37), respectively. Since there are no bounds on the variables, for
every dk,i 	= 0 we have ᾱk,i = ∞. Then,

αk,i =
{
1/L̄ pki ,j̄

if dk,i 	= 0,

0, otherwise.

We want to show that L1,j̄ , . . . , Ln−1,j̄ are the coordinatewise Lipschitz constants of
∇ψ over Rn−1. Namely, for every i = 1, . . . , n − 1 and for all y ∈ R

n−1, we want to
show that

∣∣∇iψ
(
y(α)

) − ∇iψ(y)
∣∣ ≤ Li,j̄ |α|, ∀α ∈ R, (62)

where y(α) ∈ R
n−1 is defined as follows:

y(α)i = yi + α,

y(α)h = yh, h = 1, . . . , n − 1, h 	= i .

123



An almost cyclic 2-coordinate descent method 435

Recalling that j̄ = n and the definition ofM given in (50), first observe that∇iψ(y) =
∇ f

(
My+w

)T
(ei −ej̄ ) and∇iψ

(
y(α)

) = ∇ f
(
My(α)+w

)T
(ei −ej̄ ) = ∇ f

(
My+

w + α(ei − ej̄ )
)T

(ei − ej̄ ). Thus,

∣∣∇iψ
(
y(α)

) − ∇iψ(y)
∣∣

= ∣∣∇ f
(
My + w + α(ei − ej̄ )

)T
(ei − ej̄ ) − ∇ f (My + w)T (ei − ej̄ )

∣∣.

Considering the functionsφi, j,z defined in Lemma 2,we have that φ̇i, j,z(α) = ∇ f
(
z+

α(ei − e j )
)T

(ei − e j ). Therefore, from Lemma 2 we get

∣∣∇iψ
(
y(α)

) − ∇iψ(y)
∣∣ = |φ̇i,j̄ ,My+w(α) − φ̇i,j̄ ,My+w(0)| ≤ Li,j̄ |α|

and then (62) holds.
So, for all k ≥ 0 and all i = 1, . . . , n − 1 such that dk,i 	= 0, each stepsize αk,i

is the reciprocal of an overestimate of L pki ,j̄
, where L pki ,j̄

is the pki th coordinatewise
Lipschitz constant of∇ψ . According to the results stated by Beck and Tetruashvili [2]
(see Theorem 3.9 in [2]), {ψ(yk,1)} has a non-asymptotic linear convergence rate if
the following three conditions hold: (i) ψ is strongly convex over Rn−1, (ii) ∇ψ is
Lipschitz continuous over Rn−1, (iii) the optimal solution y∗ of problem (61) exists.
The third point has already been proved before. The first point follows from Assump-
tion 2 and the fact that the columns of M are linearly independent. The second point
follows from the fact that L1,j̄ , . . . , Ln−1,j̄ are the coordinatewise Lipschitz constants
of ∇ψ over Rn−1. In particular, using known results (see Lemma 2 in [22]) and the
fact that j̄ = n, we can write

‖∇ψ(y′) − ∇ψ(y′′)‖ ≤
n−1∑

i=1

Li,j̄ ‖y′ − y′′‖

=
∑

i 	=j̄

Li,j̄ ‖y′ − y′′‖, ∀ y′, y′′ ∈ R
n−1.

(63)

Therefore, a real number C ∈ [0, 1) exists such that

ψ(yk+1,1) − ψ(y∗) ≤ C[ψ(yk,1) − ψ(y∗)], ∀ k ≥ 0. (64)

Then, we get (59) by using the fact that ψ(y∗) = f (x∗), ψ(yk,1) = f (zk,1) = f (xk)
and ψ(yk+1,1) = f (zk+1,1) = f (xk+1).

Now, we prove (60). First observe that, by Theorem 3.9 in [2], the constant C
appearing in (64) is given by

C = 1 − μψ

2L̄max
j̄

[
1 + (n − 1)(Lψ)2/(L̄min

j̄ )2
] ,

123



436 A. Cristofari

where μψ and Lψ are the strong convexity constant of ψ over Rn−1 and the Lips-
chitz constant of ∇ψ over Rn−1, respectively, while L̄min

j̄ and L̄max
j̄ are defined as in

the assertion of the theorem. Using (63), we can upper bound Lψ with
∑

i 	=j̄ Li,j̄ .
Therefore, to obtain (60), we only have to show that

μψ = μ, (65)

i.e., we have to show that ψ is strongly convex over Rn−1 with constant μ. Using the
fact that f is strongly convex over Rn with constant μ, for any y′, y′′ ∈ R

n−1 and for
all θ ∈ [0, 1] we can write

ψ(θ y′ + (1 − θ)y′′) = f
(
M(θ y′ + (1 − θ)y′′) + w

)

= f
(
θ(My′ + w) + (1 − θ)(My′′ + w)

)

≤ θ f (My′ + w) + (1 − θ) f (My′′ + w)+
− μ

2
θ(1 − θ)‖My′ + w − My′′ − w‖2

= θψ(y′) + (1 − θ)ψ(y′′) − μ

2
θ(1 − θ)‖M(y′ − y′′)‖2.

Denoting by λmin(MT M) the smallest eigenvalue of MT M , we also have ‖M(y′ −
y′′)‖2 = (y′ − y′′)T MT M(y′ − y′′) ≥ λmin(MT M)‖y′ − y′′‖2, and then,

ψ(θ y′ + (1 − θ)y′′) ≤ θψ(y′) + (1 − θ)ψ(y′′)
−μ

2
λmin(M

T M)θ(1 − θ)‖y′ − y′′‖2. (66)

Note that MT M has all entries equal to 1, except for those on the diagonal that are
equal to 2. Namely,

MT M = I(n−1)×(n−1) + 1(n−1)×(n−1),

where I(n−1)×(n−1) is the (n − 1) dimensional identity matrix and 1(n−1)×(n−1) is the
(n − 1) × (n − 1) matrix made of all ones. It follows that λmin(MT M) = 1+ 0 = 1,
that, combined with (66), implies that ψ is strongly convex over Rn−1 with constant
μ. Then, (65) holds and the result is obtained. ��

Let us conclude this section by discussing the relation between AC2CD and the
classical coordinate descent method. As appears from the proofs of Theorem 2 and
Theorem 3, this relation is crucial to obtain linear convergence rate of AC2CD and it
also provides further insight into the proposed method.

Indeed, for every k ≥ 0, a cycle of inner iterations (k, 1), . . . , (k, n) in AC2CD
can be seen as a cycle of iterations of the classical coordinate descent method, with
cyclic selection rule, applied to an equivalent transformed problem. In particular, for
every k ≥ 0 we can use the variable transformation given in (48), (49) and (50), with
j̄ replaced by j(k), to define the function ψ(y):= f

(
My + w

)
and recast (1) as an

123



An almost cyclic 2-coordinate descent method 437

equivalent problem. Note that, in absence of any information on j(k), the resulting
equivalent transformed problem

– can change from k to k + 1, as j(k) can change;
– has bound constraints li ≤ yi ≤ ui , i ∈ {1, . . . , n}\{ j(k)}, plus the constraints
l j(k) ≤ b − ∑

i 	= j(k) yi ≤ u j(k), where the latter follow from the constraints
l j(k) ≤ x j(k) ≤ u j(k) in (1).

Then, in the proofs of Theorems 2 and 3, we obtain a linear convergence rate by
exploiting the rule used to compute j(k) that, togetherwith other standard assumptions,
guarantees that j(k) = j̄ for all k ≥ k̂ and x ∗̄

j ∈ (lj̄ , u j̄ ) (for problems with no bounds

on the variables, we have k̂ = 0). In this way, for all sufficiently large k, the equivalent
transformed problem remains the same and the constraints l j(k) ≤ b − ∑

i 	= j(k) yi ≤
u j(k) can be ignored. It also follows that quickly identifying the index j̄ in problems
with finite bounds on the variables may benefit the algorithm. Then, it may be useful
combining AC2CD with some strategies to predict which variables are at the bounds
in the final solution, such es, e.g., those proposed in [6,8,11,27].

Finally, the approach of transforming (1) into an equivalent simply constrained
problem has some connections with the method proposed by Bertsekas in [3] for
solving problems with linear inequality constraints. In particular, at every iteration,
the algorithm proposed in [3] selects a subset of n indices that comprises all those
corresponding to the binding constraints. Then, assuming linear independence of these
constraints, a linear variable transformation is used to obtain a new problemwith a first
block of box constraints, plus a second block of general linear inequality constraints
which are not binding at the current point and can be ignored for the computation of
the search direction, obtained by a Newton strategy. So, the main difference between
AC2CD and the method proposed in [3] is that, for every k ≥ 0, we perform a cycle
of inner iterations to update one coordinate at a time in the equivalent transformed
problem.

6 Numerical results

In this section, we present the numerical results of AC2CD on some structured prob-
lems where the computation of the partial derivatives of the objective function is cheap
with respect to the computation of the whole gradient. The codes were written in Mat-
lab (versionR2017b) and the experiments were run on an Intel(R) Core(TM) i7-7500U
with 16 GB RAM memory.

First, we considered the Chebyshev center problem and the linear support vector
machine (SVM) training problem, which both can be written as

min f (x) = 1

2
xT QT Qx − qT x,

n∑

i=1

xi = 1

li ≤ xi ≤ ui , i = 1, . . . , n,

(67)

123



438 A. Cristofari

for some Q ∈ R
m×n , q ∈ R

n , li ∈ R ∪ {−∞} and ui ∈ R ∪ {∞}, i = 1, . . . , n.
On these convex quadratic problems, we compared AC2CD with the following block
decomposition methods:

– Random Coordinate Descent (RCD) [21], which, at every iteration, randomly
selects two distinct variables from a given probability distribution and updates
them by minimizing a quadratic model of the objective function;

– Maximal Violating Pair (MVP) [9,26], which, at every iteration, selects the two
variables that most violate the stationarity conditions (2) and moves them by using
an appropriate stepsize that, in our case, is computed by an exact line search.

Note that RCD, like AC2CD, does not need to compute the whole gradient of the
objective function for choosing the working set. On the other hand, MVP exploits
a Gauss-Southwell (or greedy) strategy which requires to calculate the whole vector
∇ f (xk) at each iteration k.

Then, we focused on problems with strongly convex objective function and no
bounds on the variables, for which non-asymptotic linear convergence rate of AC2CD
has been proved in Sect. 5. In this case, we compared our algorithm with two versions
of RCD that were proposed in [20] for problems of the following form:

min f (x) =
n∑

i=1

fi (xi ),

n∑

i=1

xi = 0,

(68)

where each fi : R → R is convex and has a Lipschitz continuous derivative with
constant Li > 0. In our experiments, we considered the same test problems used
in [20,32], which are of the form of (68), with strongly convex fi , i = 1, . . . , n.

Lastly, we considered the following non-convex problems:

min f (x) = 1

2
xT QT DQx − qT x,

n∑

i=1

xi = 1

xi ≥ 0, i = 1, . . . , n,

(69)

for some Q ∈ R
m×n , D ∈ R

m×m and q ∈ R
n , choosing D as a diagonal matrix so

that QT DQ is indefinite. On these problems, AC2CD is still compared with RCD
(whose analysis for the non-convex case can be found in [25]) and MVP with exact
line search (whose analysis for non-convex problems over the unit simplex can be
found in [4], just observing that, for this class of problems, MVP coincides with the
so called pairwise Frank-Wolfe method).

Finally, to have a fair comparison between AC2CD and RCD, in the following
results we consider an outer iteration of RCD as made of n inner iterations, each of
them involving a minimization step with respect to a pair of coordinates.

123



An almost cyclic 2-coordinate descent method 439

6.1 Implementation issues

In this subsection, we describe some implementation details concerning

– the computation of {pk1, . . . , pkn} at step 3 of Algorithm 1,
– the computation of the derivatives of the objective function in each algorithm,
– the termination criterion used in each algorithm.

As regards the first point, a permutation {pk1, . . . , pkn} of {1, . . . , n} was randomly
computed at the beginning of every outer iteration k of AC2CD (it is known that,
in coordinate descent methods with cyclic selection rules, periodically shuffling the
ordering of the variables may speed up convergence in practice [7,31]).

For what concerns the derivatives computation, this operation is straightforward for
problem (68), given the separable structure of the objective function. More attention
is needed for problems (67) and (69), since, due to the possibly excessive dimension
of Q, in these problems the Hessian matrices QT Q and QT DQ were not stored. For
what concerns problems (67), using some ideas from [10,21] we introduced the vector
r(x):=Qx , updating it during the iterations of each considered algorithm, so that

∇i f (x) = Qi
T r(x) − qi , i = 1, . . . , n, (70)

where Qi is the i th column of Q. We see that computing any partial derivative has
a cost O(m) and we have an extra cost O(2m) to update the vector r(x) (since the
considered algorithms can move two variables at a time). These costs can also reduce
when Q is sparse. Similarly, for what concerns problems (69), we introduced the
vector r(x):=DQx and (70) still holds (in this case we have a cost O(3m) to update
r(x), due to the presence of the diagonal matrix D).

It is worth observing that, in AC2CD and RCD, both variables included in the
working set at the beginning of an inner iteration may be at the lower or at the upper
bound. In this case, the minimization step is not performed in practice (since the two
variables cannot be moved), and then, the partial derivatives of the objective function
do not need to be computed. So, by inserting a simple check in the scheme of AC2CD
and RCD, we avoided to compute the partial derivatives of the objective function when
not necessary.

For what concerns the termination criterion used in AC2CD, let us first rewrite the
stationarity conditions (2) in an equivalent form:

min
i : xi<ui

{∇i f (x)} − max
i : xi>li

{∇i f (x)} ≥ 0.

Exploiting some ideas from [10], the termination criterion used in AC2CD tries
to approximately satisfy the above relation without the need of computing the
whole gradient of the objective function, in order to preserve efficiency. To this
extent, at the beginning of every outer iteration k we first set Gk

min = ∞ and
Gk

max = −∞. Then, at every inner iteration (k, i) we update Gk
min and Gk

max as

follows: for each variable zk,ih included in the working set, if zk,ih < uh then we

update Gk
min ← min{Gk

min,∇h f (zk,i )}, and if zk,ih > lh then we update Gk
max ←

123



440 A. Cristofari

max{Gk
max,∇h f (zk,i )}. So, AC2CD was stopped at the end of the first outer iteration

k satisfying

Gk
min − Gk

max ≥ −ε, (71)

where ε is a scalar that was set to 10−1. Since ∇pki
f (zk,i ) and ∇ j(k) f (zk,i ) are not

computed when both zk,i
pki

and zk,ij(k) are at the lower or at the upper bound, for the rea-

sons explained above, we also added a final check after that (71) is satisfied, evaluating
all those components of ∇ f (xk) that were skipped, if any.

For the convex problems considered in our experiments, we used the final objective
value f AC2CD returned by AC2CD as benchmark for termination of RCD and MVP.
Namely, RCD and MVP were stopped when they produced a point xk satisfying

f (xk) − f AC2CD

1 + | f AC2CD| ≤ ν, (72)

where ν is a scalar that was set to 10−6. Clearly, a termination criterion based on (72)
cannot be used when the objective function is non-convex, since the algorithms may
converge to different stationary points. So, for the non-convex problems (69), the
same termination criterion used in AC2CD was also used in RCD (recall that we
consider an outer iteration of RCD as made of n inner iterations), while MVP, that
computes ∇ f (xk) at each iteration k, was stopped when it produced a point xk such
that mini=1,...,n{∇i f (xk)} − maxi : xi>0{∇i f (xk)} ≥ −10−1.

6.2 Chebyshev center

Given afinite set of vectorsv1, . . . , vn ∈ R
m , theChebyshev center problemconsists in

finding the smallest ball that encloses all the given points. It arises in many fields, such
as mechanical engineering, biology, environmental science and computer graphics
(see [33] and the references therein for more details). The Chebyshev center problem
can be formulated as the following convex standard quadratic problem:

min f (x) =
n∑

i=1

n∑

j=1

(vi )T v j xi x j −
n∑

i=1

‖vi‖2xi
n∑

i=1

xi = 1

xi ≥ 0, i = 1, . . . , n.

Nine synthetic data sets were created by randomly generating each compo-
nent of the samples v1, . . . , vn from a standard normal distribution, using n =
40,000, 60,000, 80,000 and m = 0.01n, 0.05n, 0.1n for every fixed n. The nine data
sets are listed below:

(i) n = 40,000, m = 400;

123



An almost cyclic 2-coordinate descent method 441

(ii) n = 40,000, m = 2000;
(iii) n = 40,000, m = 4000;
(iv) n = 60,000, m = 600;
(v) n = 60,000, m = 3000;
(vi) n = 60,000, m = 6000;
(vii) n = 80,000, m = 800;
(viii) n = 80,000, m = 4000;
(ix) n = 80,000, m = 8000.

For each data set, a randomly chosen vertex of the unit simplex was used as starting
point. In AC2CD, for all k ≥ 1 the index j(k) was computed as in (46), with τ = 0.9
(for k = 0 we set j(k) ∈ Argmaxh=1,...,nDh(xk)), and the stepsize was computed as
described in the last part of Sect. 4.2 for quadratic objective functions, with γ = 1/2
and Au = 1012. In RCD, an O(1) procedure was used at each inner iteration to
randomly choose, from a uniform distribution, the pair of distinct variables to be
updated. In particular, this procedure first randomly generates a real number r from a
uniform distribution on (0, n(n−1)

2 ), and then sets i = 1 + ⌊
(
√
1 + 8�r� + 1)/2

⌋
and

j = 1 + ⌊�r� − (i − 2)(i − 1)/2
⌋
, where �·� denotes the floor operation.

In Table 1, we report the results for each algorithm in terms of final objective value,
number of (outer) iterations andCPU time in seconds. To analyze how fast the objective
function decreases in the three considered algorithms, in Fig. 1 we plot the normalized
optimization error Ek versus the CPU time. Coherently with the termination criterion
used in the experiments, Ek is computed as the left-hand side of (72).

We see that, on all the considered data sets, AC2CD outperforms RCD both in CPU
time, by a factor between 2 and 14, and in the number of outer iterations, by a factor
between 60 and 247. Looking at Fig. 1 more in detail, we observe that AC2CD and
RCD are comparable in the first iterations, but AC2CD is able to compute a solution
with higher precision in a smaller amount of time. In comparison with MVP, we
observe that AC2CD is slightly slower on the data sets with m = 0.01n, i.e., data
sets (i), (iv) and (vii) . On all the other data sets, on average AC2CD is more than 2
times faster than MVP in CPU time.

6.3 Linear SVM

Linear Support VectorMachine [5] is a popular technique for data classification, which
aims at separating a given set of samples by a hyperplane. Formally, let v1, . . . , vn ∈
R
m be a finite set of vectors and a1, . . . , an ∈ {−1,+1} be the corresponding labels.

To train a linear SVM, we can solve the following convex quadratic problem:

min f (x) = 1

2

n∑

i=1

n∑

j=1

aia j (vi )T v j xi x j −
n∑

i=1

xi

n∑

i=1

ai xi = 0

0 ≤ xi ≤ C, i = 1, . . . , n,

123



442 A. Cristofari

Ta
bl
e
1

R
es
ul
ts
of

A
C
2C

D
,R

C
D
an
d
M
V
P
on

C
he
by

sh
ev

ce
nt
er

pr
ob

le
m
s

D
at
a
se
t

A
C
2C

D
R
C
D

M
V
P

O
bj

O
ut
er

ite
r

T
im

e
(s
)

O
bj

O
ut
er

ite
r

T
im

e
(s
)

O
bj

It
er

T
im

e
(s
)

(i
)

−
49

2.
77

27
1.
43

−
49

2.
77

45
20

15
.2
6

−
49

2.
77

18
3

0.
98

(i
i)

−
21

91
.4
6

26
2.
65

−
21

91
.4
6

21
03

11
.9
5

−
21

91
.4
6

21
8

4.
95

(i
ii)

−
42

54
.5
2

25
8.
02

−
42

54
.5
2

15
01

24
.7
8

−
42

54
.5
2

28
1

12
.6
2

(i
v)

−
71

6.
28

31
2.
69

−
71

6.
28

61
60

31
.3
1

−
71

6.
28

16
8

1.
92

(v
)

−
32

28
.4
1

26
7.
19

−
32

28
.4
0

22
25

27
.4
5

−
32

28
.4
0

30
8

15
.4
8

(v
i)

−
63

14
.0
2

24
13

.5
9

−
63

14
.0
1

16
02

40
.6
1

−
63

14
.0
1

36
5

36
. 4
2

(v
ii)

−
93

3.
28

30
3.
86

−
93

3.
28

73
91

52
.4
8

−
93

3.
28

20
2

3.
73

(v
iii
)

−
42

67
.8
9

27
16

.8
3

−
42

67
.8
9

25
63

58
.9
9

−
42

67
.8
9

36
8

32
.5
0

(i
x)

−
83

70
.2
5

25
21

.0
0

−
83

70
.2
4

17
43

58
.2
2

−
83

70
.2
4

42
1

75
.9
5

Fo
r
ea
ch

al
go

ri
th
m
,t
he

fir
st
co
lu
m
n
in
di
ca
te
s
th
e
fin

al
ob

je
ct
iv
e
va
lu
e,
th
e
se
co
nd

co
lu
m
n
in
di
ca
te
s
th
e
nu

m
be
r
of

(o
ut
er
)
ite

ra
tio

ns
an
d
th
e
th
ir
d
co
lu
m
n
in
di
ca
te
s
th
e
C
PU

tim
e
in

se
co
nd

s

123



An almost cyclic 2-coordinate descent method 443

0 7 14
10-6

10-4

10-2

100

0 6 12
10-6

10-4

10-2

100

0 12 24
10-6

10-4

10-2

100

0 15 30
10-6

10-4

10-2

100

0 14 28
10-6

10-4

10-2

100

0 20 40
10-6

10-4

10-2

100

0 25 50
10-6

10-4

10-2

100

0 30 60
10-6

10-4

10-2

100

0 35 70
10-6

10-4

10-2

100

Fig. 1 Normalized optimization error (y axis) versus CPU time in seconds (x axis) for AC2CD, RCD
and MVP on Chebyshev center problems. The y axis is in logarithmic scale and, for each algorithm, the
normalized optimization error is computed as the left-hand side of (72)

123



444 A. Cristofari

where C is a positive parameter, set to 1 in our experiments. As mentioned in Sect. 2,
the above problem can be easily rewritten as in (1).

Eight data sets were downloaded from the LIBSVM [6] webpage https://www.csie.
ntu.edu.tw/~cjlin/libsvmtools/datasets. They are listed below:

(i) gisette (n = 6000, m = 5000);
(ii) rcv1 (n = 20,242, m = 47,236);
(iii) a9a (n = 32,561, m = 123);
(iv) w8a (n = 49,749, m = 300);
(v) ijcnn1 (n = 49,990, m = 22);
(vi) real sim (n = 72,309, m = 20,958);
(vii) webspam (n = 350,000, m = 254);
(viii) covtype (n = 581,012, m = 54).

For each data set, we used as starting point a vector made of all zeros except for
two randomly chosen variables that were set strictly between the lower and the upper
bound. In AC2CD, the index j(k) and the stepsize were computed as described before
for the Chebyshev center problem. In RCD, the working set was randomly chosen
at each inner iteration by the same O(1) procedure used for the Chebyshev center
problem.

The results for each algorithm are reported in Table 2 in terms of final objective
value, number of (outer) iterations and CPU time in minutes. On the first six data sets,
which have less than 105 samples, we see that MVP has the lowest CPU time, but
AC2CD still outperforms RCD. In particular, on these problems AC2CD is on average
faster than RCD by a factor of almost 5 in CPU time and by a factor larger than 11
in the number of outer iterations. On the two largest data sets, having more than 105

samples, AC2CD achieves the best performances. In particular, considering the CPU
time, on data set (vii) AC2CD is more than 42 times faster than RCD and more than
4 times faster than MVP, while on data set (viii) AC2CD is about 15 times faster than
RCD and about 13 times faster than MVP.

6.4 Problems with no bounds on the variables

The last convex test problems in our experiments are of the formof (68).We considered
the same class of objective functions used in [20,32], that is,

fi (x) = 1

2
ai (xi − ci )

2 + log
(
1 + exp(bi (xi − di ))

)
, i = 1, . . . , n,

where ai > 0, i = 1, . . . , n, and bi , ci , di ∈ R, i = 1, . . . , n. It is possible to show that
each fi is strongly convex with constant ai and has a Lipschitz continuous derivative
with constant Li = ai + (1/4)b2i (see [20,32]).

Six artificial problems were created. The first three have the following dimension:
(i) n = 5000, (ii) n = 10,000, (iii) n = 20000, with ai randomly generated from
a uniform distribution on (0, 15) and bi , ci , di randomly generated from a uniform
distribution on (− 15, 15). The last three problems have the same dimension as the
previous ones, i.e., (iv) n = 5000, (v) n = 10,000, (vi) n = 20,000, but with ai

123

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets


An almost cyclic 2-coordinate descent method 445

Ta
bl
e
2

R
es
ul
ts
of

A
C
2C

D
,R

C
D
an
d
M
V
P
on

lin
ea
r
SV

M
tr
ai
ni
ng

pr
ob

le
m
s

D
at
as
et

A
C
2C

D
R
C
D

M
V
P

O
bj

O
ut
er

ite
r

T
im

e
(m

in
)

O
bj

O
ut
er

ite
r

T
im

e
(m

in
)

O
bj

It
er

T
im

e
(m

in
)

(i
)

−
0.
67

35
4.
67

−
0.
67

97
9.
54

−
0.
67

31
99

1.
60

(i
i)

−
17

45
.3
7

29
25

.7
9

−
17

45
.3
6

10
1

65
.4
5

−
17

45
.3
6

66
42

0.
87

(i
ii)

−
11

,4
32

.1
8

39
2

3.
63

−
11

,4
32

.1
7

49
61

27
.1
9

−
11

,4
32

.1
7

76
,9
73

1.
44

(i
v)

−
14

86
.5
7

49
1

13
.2
6

−
14

86
.5
7

73
98

31
.9
9

−
14

86
.5
7

40
,9
57

0.
92

(v
)

−
85

89
.4
3

10
1

0.
45

−
85

89
.4
2

26
23

4.
35

−
85

89
.4
2

17
,0
13

0.
36

(v
i)

−
53

44
.9
2

39
86

.0
1

−
53

44
.9
1

28
4

43
6.
74

−
53

44
.9
1

21
,5
05

4.
63

(v
ii)

−
69

,4
48

.6
1

60
9.
79

−
69

,4
48

.5
5

22
98

41
4.
86

−
69

,4
48

.5
5

62
,4
36

41
.5
9

(v
iii
)

−
33

7,
94

2.
88

20
0

25
.2
3

−
33

7,
94

2.
55

30
29

37
8.
62

−
33

7,
94

2.
55

93
6,
10

4
32

8.
81

Fo
r
ea
ch

al
go

ri
th
m
,t
he

fir
st
co
lu
m
n
in
di
ca
te
s
th
e
fin

al
ob

je
ct
iv
e
va
lu
e,
th
e
se
co
nd

co
lu
m
n
in
di
ca
te
s
th
e
nu

m
be
r
of

(o
ut
er
)
ite

ra
tio

ns
an
d
th
e
th
ir
d
co
lu
m
n
in
di
ca
te
s
th
e
C
PU

tim
e
in

m
in
ut
es

123



446 A. Cristofari

randomly generated from a uniform distribution on (0, 2), bi randomly generated
from a uniform distribution on (− 2, 2) and ci , di randomly generated from a uniform
distribution on (− 10, 10).

In all of these problems, the zero vector was used as starting point. In AC2CD, the
index j(k) was maintained fixed for all k ≥ 0 and was chosen as an element of the set
Argmaxi=1,...,n1/Li , while the stepsize was computed as described in Proposition 3,
with γ = 1/2 and L̄i, j replaced by Li + L j , i, j = 1, . . . , n (see Remark 2).

Our algorithm was compared with two versions of RCD proposed in [20], using
blocks made of two variables and different probability distributions (studied in [20]),
which are now described. Denoting by pi j the probability to select a pair of distinct
variable indices (i, j) at any inner iteration of RCD, we first used a uniform distribu-
tion, i.e., all pi j have the same value, and then we used probabilities that depend on the
Lipschitz constants, i.e., each pi j is equal to (L−1

i + L−1
j )/

∑
h,t=1,...,n

h 	=t
(L−1

h + L−1
t ).

We name the two resulting algorithms RCDunif and RCDLips, respectively. More in
detail, to choose the working set at any inner iteration, in RCDunif we used the same
O(1) procedure described before for the Chebyshev center problem, while in RCDLips
we used the random generator proposed byNesterov in [22], adjusted for our purposes.
It requires to randomly generate one real number from a uniform distribution on (0, 1)
and performO(ln( n(n−1)

2 )) operations on some vectors (whose preliminary definition
has a cost that has not been included in the final statistics).

In Table 3, we report the results for each algorithm in terms of final objective
value, number of outer iterations and CPU time in seconds. We see that, on the first
three problems, RCDunif achieves the best performances: in terms of CPU time it is
faster than AC2CD by a factor of about 1.5, but AC2CD is almost 13 times faster than
RCDLips on average. On the last three problems, in terms of CPU time AC2CD outper-
forms both RCDunif and RCDLips by an average factor of about 2 and 15, respectively.
Moreover, we observe that the number of outer iterations of AC2CD and RCDLips is
similar on all the considered problems, but the amount of time needed to converge is
remarkably different, with AC2CD being much faster. This is due to the procedure
used in RCDLips to randomly generate, at each inner iteration, a pair of variable indices
from a Lipschitz-dependent probability distribution.

6.5 Non-convex problems

To test how AC2CD works when the objective function is non-convex, we finally
considered problems of the form of (69). Each problem was created by the following
procedure: first the elements of Q and those of q were randomly generated from a
standard normal distribution and from a uniform distribution on (0, 1), respectively;
then the diagonal elements of Dwere set to 1, except for a prefixed number of them that
were randomly chosen and set to negative values randomly generated from a uniform
distribution on (− 1, 0).

More in detail, we generated three problems by fixing n = m = 7000 and consid-
ering a number of negative diagonal elements of D equal to 0.35m, 0.5m and 0.65m,
respectively. The three problems are summarized below:

123



An almost cyclic 2-coordinate descent method 447

Ta
bl
e
3

R
es
ul
ts
of

A
C
2C

D
,R

C
D
un
if
an
d
R
C
D
L
ip
s
on

si
ng

ly
lin

ea
rl
y
co
ns
tr
ai
ne
d
pr
ob

le
m
s
w
ith

no
bo

un
ds

on
th
e
va
ri
ab
le
s

Pr
ob

le
m

A
C
2C

D
R
C
D
un
if

R
C
D
L
ip
s

O
bj

O
ut
er

ite
r

T
im

e
(s
)

O
bj

O
ut
er

ite
r

T
im

e
(s
)

O
bj

O
ut
er

ite
r

T
im

e
(s
)

(i
)

16
6,
96

6.
56

40
,6
14

87
.4
2

16
6,
96

6.
73

29
,6
25

58
.6
4

16
6,
96

6.
73

40
,1
15

10
01

.0
8

(i
i)

33
6,
59

0.
16

77
38

33
.6
1

33
6,
59

0.
50

59
69

23
.8
4

33
6,
59

0.
50

72
51

41
4.
50

(i
ii)

67
1,
94

4.
75

46
,2
16

38
7.
71

67
1,
94

5.
42

34
,1
81

27
5.
61

67
1,
94

5.
42

43
,7
10

57
11

.3
8

(i
v)

14
,5
10

.9
0

96
0.
19

14
,5
10

.9
1

18
0

0.
37

14
,5
10

.9
2

10
1

2.
57

(v
)

30
,7
92

.4
8

48
4

1.
94

30
,7
92

.5
1

10
11

4.
11

30
,7
92

.5
1

48
1

27
.7
6

(v
i)

58
,8
64

.1
1

88
2

6.
69

58
,8
64

.1
6

15
07

12
.3
1

58
,8
64

.1
6

88
8

11
7.
41

Fo
r
ea
ch

al
go

ri
th
m
,t
he

fir
st
co
lu
m
n
in
di
ca
te
s
th
e
fin

al
ob

je
ct
iv
e
va
lu
e,
th
e
se
co
nd

co
lu
m
n
in
di
ca
te
s
th
e
nu

m
be
r
of

ou
te
r
ite

ra
tio

ns
an
d
th
e
th
ir
d
co
lu
m
n
in
di
ca
te
s
th
e
C
PU

tim
e
in

se
co
nd

s

123



448 A. Cristofari

Ta
bl
e
4

R
es
ul
ts
of

A
C
2C

D
,R

C
D
an
d
M
V
P
on

no
n-
co
nv
ex

pr
ob

le
m
s

Pr
ob

le
m

A
C
2C

D
R
C
D

M
V
P

O
bj

O
ut
er

ite
r

T
im

e
(s
)

O
bj

O
ut
er

ite
r

T
im

e
(s
)

O
bj

It
er

T
im

e
(s
)

(i
)
–
sp

1
−
3.
10

92
5

11
0.
90

−
3.
07

34
73

13
5.
45

−
3.
12

51
,7
68

71
5.
26

(i
)
–
sp

2
−
3.
11

49
3

57
.9
1

−
3.
06

46
70

17
2.
26

−
3.
00

94
96

13
1.
18

(i
)
–
sp

3
−
3.
09

58
2

67
.5
6

−
3.
14

65
85

23
1.
34

−
3.
05

24
,3
64

33
6.
40

(i
)
–
sp

4
−
2.
99

27
8

33
.0
1

−
3.
10

28
96

10
8.
96

−
3.
06

30
,7
12

42
4.
11

(i
)
–
sp

5
−
3.
07

50
7

59
.2
9

−
3.
13

31
39

11
3.
96

−
3.
06

31
,6
79

43
7.
19

(i
)
–
sp

6
−
3.
03

41
1

48
.1
6

−
3.
13

35
63

12
8.
45

−
3.
06

21
,7
13

30
0.
07

(i
)
–
sp

7
−
2.
97

47
2

55
.4
0

−
3.
14

43
25

15
3.
75

−
3.
22

47
,5
42

65
7.
03

(i
)
–
sp

8
−
3.
14

65
0

75
.4
2

−
3.
04

17
76

67
.8
1

−
3.
22

32
,1
63

44
4.
68

(i
)
–
sp

9
−
3.
05

44
4

51
.8
5

−
3.
14

26
06

94
.9
3

−
3.
10

30
,0
57

41
5.
61

(i
)
–
sp

10
−
3.
09

47
4

55
.4
5

−
3.
09

41
99

14
9.
46

−
3.
10

19
,0
97

26
3.
63

(i
)
–
av
g

−
3.
06

52
3.
60

61
.4
9

−
3.
10

37
23

.2
0

13
5.
63

−
3.
10

29
,8
59

.1
0

41
2.
52

(i
i)
–
sp

1
−
7.
91

99
6

94
.3
4

−
8.
19

11
,6
96

12
6.
07

−
7.
46

25
97

35
.3
5

(i
i)
–
sp

2
−
7.
80

73
8

69
.5
5

−
7.
61

93
23

10
0.
88

−
7.
69

42
06

57
.3
8

(i
i)
–
sp

3
−
7.
37

20
2

19
.2
7

−
7.
44

35
33

40
.7
9

−
7.
87

26
98

36
.5
8

(i
i)
–
sp

4
−
7.
69

29
2

27
.8
3

−
7.
56

16
,0
32

16
8.
96

−
7.
41

51
22

69
.6
1

(i
i)
–
sp

5
−
7.
71

44
5

42
.1
5

−
7.
69

12
,0
16

12
6.
37

−
7.
53

83
79

11
4.
22

(i
i)
–
sp

6
−
7.
53

51
2

48
.4
4

−
7.
20

51
40

61
.1
6

−
7.
71

38
04

51
.8
4

123



An almost cyclic 2-coordinate descent method 449

Ta
bl
e
4

co
nt
in
ue
d

Pr
ob

le
m

A
C
2C

D
R
C
D

M
V
P

O
bj

O
ut
er

ite
r

T
im

e
(s
)

O
bj

O
ut
er

ite
r

T
im

e
(s
)

O
bj

It
er

T
im

e
(s
)

(i
i)
–
sp

7
−
7.
87

39
0

36
.9
7

−
8.
07

23
,6
49

25
2.
05

−
7.
71

30
15

40
.8
3

(i
i)
–
sp

8
−
7.
63

28
4

27
.1
1

−
7.
46

66
17

71
.6
5

−
7.
56

11
,5
63

15
7.
08

(i
i)
–
sp

9
−
8.
05

38
9

36
.7
8

−
7.
65

16
,8
83

18
7.
66

−
7.
53

51
12

69
.5
1

(i
i)
–
sp

10
−
7.
58

76
4

72
.0
3

−
7.
80

50
20

59
.1
4

−
7.
61

56
94

77
.4
3

(i
i)
–
av
g

−
7.
72

50
1.
20

47
.4
5

−
7.
67

10
,9
90

.9
0

11
9.
47

−
7.
61

52
19

.0
0

70
.9
8

(i
ii)

–
sp

1
−
56

.6
1

32
2.
54

−
56

.7
7

48
,6
00

65
.3
5

−
44

.9
8

44
0.
59

(i
ii)

–
sp

2
−
51

.0
7

37
3.
02

−
50

.3
8

12
,0
31

26
.9
8

−
54

.0
2

19
0.
25

(i
ii)

–
sp

3
−
72

.1
5

51
4.
30

−
48

.9
7

58
,9
35

12
5.
35

−
55

.1
5

59
0.
78

(i
ii)

–
sp

4
−
53

.0
8

32
2.
57

−
54

.3
4

19
,0
85

41
.0
3

−
48

.5
7

27
0.
37

(i
ii)

–
sp

5
−
53

.3
5

13
8

11
.6
3

−
56

.9
4

19
,7
84

35
.1
1

−
44

.3
5

29
0.
39

(i
ii)

–
sp

6
−
41

.5
5

12
0

10
.1
5

−
47

.7
7

48
,0
53

58
.3
7

−
58

.4
6

10
0

1.
33

(i
ii)

–
sp

7
−
70

.3
3

80
6.
92

−
71

.6
3

17
,6
00

68
.9
6

−
71

.6
3

13
0.
18

(i
ii)

–
sp

8
−
54

.3
0

74
6.
30

−
52

.5
2

26
,1
60

27
.1
8

−
54

.2
0

20
0.
27

(i
ii)

–
sp

9
−
67

.5
1

16
1.
23

−
71

.7
7

15
,1
53

36
.8
7

−
51

.2
4

73
0.
98

(i
ii)

–
sp

10
−
61

.5
2

60
4.
79

−
56

.7
4

82
67

9.
33

−
47

.6
7

57
0.
75

(i
ii)

–
av
g

−
58

.1
5

64
.0
0

5.
34

−
56

.7
8

27
,3
66

.8
0

49
.4
5

−
53

.0
3

44
.1
0

0.
59

Fo
r
ea
ch

al
go

ri
th
m
,t
he

fir
st
co
lu
m
n
in
di
ca
te
s
th
e
fin

al
ob

je
ct
iv
e
va
lu
e,
th
e
se
co
nd

co
lu
m
n
in
di
ca
te
s
th
e
nu

m
be
r
of

(o
ut
er
)
ite

ra
tio

ns
an
d
th
e
th
ir
d
co
lu
m
n
in
di
ca
te
s
th
e
C
PU

tim
e
in

se
co
nd

s

123



450 A. Cristofari

(i) n = m = 7000, nneg = 2450, npos = 4550, λmin = − 9.19 · 103, λmax =
2.18 · 104;

(ii) n = m = 7000, nneg = 3500, npos = 3500, λmin = − 1.13 · 104, λmax =
1.90 · 104;

(iii) n = m = 7000, nneg = 4550, npos = 2450, λmin = − 1.30 · 104, λmax =
1.60 · 104;

where nneg denotes the number of negative eigenvalues of QT DQ, npos denotes the
number of positive eigenvalues of QT DQ, λmin denotes the smallest eigenvalue of
QT DQ and λmax denotes the largest eigenvalue of QT DQ. Since in the non-convex
case the final objective value found by an algorithm can depend on the starting point,
for each problem we considered 10 different starting points, randomly chosen among
the vertices of the unit simplex.

The procedures used to compute the stepsize and the index j(k) in AC2CD, and
that used to choose the working set in RCD, were the same described before for the
Chebyshev center problem.

In Table 4, we report the results for each algorithm in terms of final objective value,
number of (outer) iterations and CPU time in seconds. For each problem, we use the
acronyms sp 1, …, sp 10 to distinguish the results obtained with the 10 considered
starting points, while avg indicates the results averaged over the 10 runs. We first
observe that, for problems (ii) and (iii) , the final objective values found by AC2CD
are on average smaller than those found by RCD and MVP, while we have the oppo-
site situation for problem (i). We also see that there is a notable difference between
AC2CD and RCD in both CPU time and the number of outer iterations, especially on
problem (iii). Finally, in comparison with MVP, we note that AC2CD is on average
faster on problems (i) and (ii) , but it is slower on problem (iii).

7 Conclusions

In this paper, a block coordinate descent method has been presented for minimizing
a continuously differentiable function subject to one linear equality constraint and
simple bounds on the variables. In the proposed method, the working set is chosen
according to an almost cyclic strategy that does not use first-order information. So,
the whole gradient of the objective function does not need to be computed during
the algorithm, leading to high efficiency when the problem dimension is large and the
partial derivatives of the objective function are cheap.Global convergence to stationary
points has been established under an appropriate assumption on the level set, and linear
convergence rate has been proved under standard additional assumptions. Promising
numerical results have been obtained on different classes of test problems.

There are a number of open questions that indicate directions in which this work
can be extended and that can represent challenging tasks for future research. First,
it would be worth investigating if, by suitably modifying the working set selection
rule or adding conditions to the stepsize, global convergence can be obtained without
Assumption 1. Other interesting questions would be how to generalize the proposed
method to problems with more than one linear equality constraint, and how to adjust

123



An almost cyclic 2-coordinate descent method 451

our approach to realize a parallel algorithmic scheme (for example, by a Jacobi-type
approach). We wish to report further results in the future.

References

1. Beck, A.: The 2-coordinate descentmethod for solving double-sided simplex constrainedminimization
problems. J. Optim. Theory Appl. 162(3), 892–919 (2014)

2. Beck, A., Tetruashvili, L.: On the convergence of block coordinate descent type methods. SIAM J.
Optim. 23(4), 2037–2060 (2013)

3. Bertsekas, D.P.: Projected Newton methods for optimization problems with simple constraints. SIAM
J. Control Optim. 20(2), 221–246 (1982)

4. Bomze, I.M., Rinaldi, F., Rota Bulò, S.: First-order methods for the impatient: support identifica-
tion in finite time with convergent Frank-Wolfe variants. Optimization Online (2018). http://www.
optimization-online.org/DB_HTML/2018/07/6694.html

5. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Pro-
ceedings of the Fifth AnnualWorkshop on Computational Learning Theory, pp. 144–152. ACM (1992)

6. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst.
Technol. (TIST) 2(3), 27 (2011)

7. Chang, K.W., Hsieh, C.J., Lin, C.J.: Coordinate descent method for large-scale l2-loss linear support
vector machines. J. Mach. Learn. Res. 9, 1369–1398 (2008)

8. Cristofari, A., De Santis, M., Lucidi, S., Rinaldi, F.: An active-set algorithmic framework for non-
convex optimization problems over the simplex (2018). arXiv preprint arXiv:1703.07761

9. Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using second order information for training
support vector machines. J. Mach. Learn. Res. 6, 1889–1918 (2005)

10. Hsieh, C.J., Chang, K.W., Lin, C.J., Keerthi, S.S., Sundararajan, S.: A dual coordinate descent method
for large-scale linear SVM. In: Proceedings of the 25th International Conference onMachine Learning,
pp. 408–415. ACM (2008)

11. Joachims, T.: Making large-scale support vector machine learning practical. In: Schölkopf, B., Burges,
C.J., Smola, A.J. (eds.) Advances in Kernel Methods—Support Vector Learning, B, pp. 169–184. MIT
Press, Cambridge (1999)

12. Konnov, I.V.: Selective bi-coordinate variations for resource allocation type problems. Comput. Optim.
Appl. 64(3), 821–842 (2016)

13. Lin, C.J.: On the convergence of the decomposition method for support vector machines. IEEE Trans.
Neural Netw. 12(6), 1288–1298 (2001)

14. Lin, C.J., Lucidi, S., Palagi, L., Risi, A., Sciandrone, M.: Decomposition algorithm model for singly
linearly-constrained problems subject to lower and upper bounds. J. Optim. Theory Appl. 141(1),
107–126 (2009)

15. Liuzzi, G., Palagi, L., Piacentini, M.: On the convergence of a Jacobi-type algorithm for singly linearly-
constrained problems subject to simple bounds. Optim. Lett. 5(2), 347–362 (2011)

16. Lucidi, S., Palagi, L., Risi, A., Sciandrone, M.: A convergent decomposition algorithm for support
vector machines. Comput. Optim. Appl. 38(2), 217–234 (2007)

17. Luo, Z.Q., Tseng, P.: On the convergence of the coordinate descent method for convex differentiable
minimization. J. Optim. Theory Appl. 72(1), 7–35 (1992)

18. Manno, A., Palagi, L., Sagratella, S.: Parallel decompositionmethods for linearly constrained problems
subject to simple bound with application to the SVMs training. Comput. Optim. Appl. 71(1), 115–145
(2018)

19. Necoara, I.: Randomcoordinate descent algorithms formulti-agent convex optimization over networks.
IEEE Trans. Autom. Control 58(8), 2001–2012 (2013)

20. Necoara, I., Nesterov, Y., Glineur, F.: Random block coordinate descent methods for linearly con-
strained optimization over networks. J. Optim. Theory Appl. 173(1), 227–254 (2017)

21. Necoara, I., Patrascu, A.: A random coordinate descent algorithm for optimization problems with
composite objective function and linear coupled constraints. Comput. Optim. Appl. 57(2), 307–337
(2014)

22. Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
J. Optim. 22(2), 341–362 (2012)

123

http://www.optimization-online.org/DB_HTML/2018/07/6694.html
http://www.optimization-online.org/DB_HTML/2018/07/6694.html
http://arxiv.org/abs/1703.07761


452 A. Cristofari

23. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, vol. 87. Springer, New
York (2013)

24. Palagi, L., Sciandrone, M.: On the convergence of a modified version of SVM light algorithm. Optim.
Methods Softw. 20(2–3), 317–334 (2005)

25. Patrascu, A., Necoara, I.: Efficient random coordinate descent algorithms for large-scale structured
nonconvex optimization. J. Glob. Optim. 61(1), 19–46 (2015)

26. Platt, J.C.: Sequential minimal optimization: a fast algorithm for training support vector machines.
In: Schölkopf, B., Burges, C.J., Smola, A.J. (eds.) Advances in Kernel Methods—Support Vector
Learning, pp. 185–208. MIT Press, Cambridge (1998)

27. Raj, A., Olbrich, J., Gärtner, B., Schölkopf, B., Jaggi, M.: Screening rules for convex problems (2016).
arXiv preprint arXiv:1609.07478

28. Reddi, S., Hefny, A., Downey, C., Dubey, A., Sra, S.: Large-scale randomized-coordinate descent
methods with non-separable linear constraints (2014). arXiv preprint arXiv:1409.2617

29. Tseng, P.: Descent methods for convex essentially smooth minimization. J. Optim. Theory Appl. 71(3),
425–463 (1991)

30. Tseng, P., Yun, S.: A coordinate gradient descent method for linearly constrained smooth optimization
and support vector machines training. Comput. Optim. Appl. 47(2), 179–206 (2010)

31. Wright, S.J.: Coordinate descent algorithms. Math. Program. 151(1), 3–34 (2015)
32. Xiao, L., Boyd, S.: Optimal scaling of a gradient method for distributed resource allocation. J. Optim.

Theory Appl. 129(3), 469–488 (2006)
33. Xu, S., Freund, R.M., Sun, J.: Solution methodologies for the smallest enclosing circle problem.

Comput. Optim. Appl. 25(1–3), 283–292 (2003)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1609.07478
http://arxiv.org/abs/1409.2617

	An almost cyclic 2-coordinate descent method for singly linearly constrained problems
	Abstract
	1 Introduction
	2 Preliminaries and notation
	3 The almost cyclic 2-coordinate descent (AC2CD) method
	3.1 Description of the algorithm
	3.2 Convergence to stationary points

	4 Computation of the stepsize
	4.1 General non-convex objective functions
	4.2 Objective functions with Lipschitz continuous gradient
	4.3 Strictly convex objective functions

	5 Convergence rate analysis
	6 Numerical results
	6.1 Implementation issues
	6.2 Chebyshev center
	6.3 Linear SVM
	6.4 Problems with no bounds on the variables
	6.5 Non-convex problems

	7 Conclusions
	References




