Computational Optimization and Applications (2019) 73:411-452
https://doi.org/10.1007/s10589-019-00082-0

®

Check for
updates

An almost cyclic 2-coordinate descent method for singly
linearly constrained problems

Andrea Cristofari’

Received: 15 June 2018 / Published online: 25 February 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

A block decomposition method is proposed for minimizing a (possibly non-convex)
continuously differentiable function subject to one linear equality constraint and
simple bounds on the variables. The proposed method iteratively selects a pair of
coordinates according to an almost cyclic strategy that does not use first-order infor-
mation, allowing us not to compute the whole gradient of the objective function during
the algorithm. Using first-order search directions to update each pair of coordinates,
global convergence to stationary points is established for different choices of the step-
size under an appropriate assumption on the level set. In particular, both inexact and
exact line search strategies are analyzed. Further, linear convergence rate is proved
under standard additional assumptions. Numerical results are finally provided to show
the effectiveness of the proposed method.

Keywords Block coordinate descent methods - Block decomposition methods -
Linear convergence rate - SVM

Mathematics Subject Classification 90C06 - 90C30 - 65K05

1 Introduction

Block coordinate descent methods, also known as block decomposition methods, are
algorithms that iteratively update a suitably chosen subset of variables, usually referred
to as working set, trough an appropriate optimization step. Numerous variants of block
coordinate descent methods have been proposed in the literature that essentially differ
from each other in two aspects: the working set selection and the optimization step
(see, e.g., [31] and the references therein for an overview of block coordinate descent
methods in unconstrained optimization). In the last decades, block coordinate descent

B Andrea Cristofari
andrea.cristofari @unipd.it

1 Department of Mathematics, University of Padua, Via Trieste, 63, 35121 Padua, Italy

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-019-00082-0&domain=pdf
http://orcid.org/0000-0002-9126-3994

412 A. Cristofari

methods gained great popularity, especially to address large structured problems, such
as those arising in machine learning, where classical algorithms may not be so efficient
and, sometimes, even not applicable for computational reasons. Moreover, block coor-
dinate descent methods are well suited for parallelization, allowing to exploit modern
computer architectures.

In this paper, we are concerned with the minimization of a continuously differ-
entiable function subject to one linear equality constraint and simple bounds on the
variables. Many relevant problems can be formulated in this way, such as, e.g., Sup-
port Vector Machine training, the continuous quadratic knapsack problem, resource
allocation problems, the page rank problem, the Chebyshev center problem and the
coordination of multi-agent systems.

In the literature, most of the block coordinate descent methods proposed for this
class of problems use gradient information to identify a subset of variables that violate
some optimality condition and guarantee, once updated, a certain decrease in the
objective function [1,9,11,13,14,24,26]. Other methods select variables in order to
satisfy an appropriate descent condition with a decreasing tolerance [12], or follow
a Gauss—Seidel (cyclic) strategy [16]. Different working set selection rules, based on
sufficient predicted descent, have also been studied in [30]. Moreover, a Jacobi-type
algorithm has been devised in [15] and a class of parallel decomposition methods for
quadratic objective functions has been proposed in [18].

In addition to the above algorithms, different versions of random coordinate descent
methods have been proposed in [19-21,25,28], characterized by the fact that the work-
ing set is randomly chosen from a given probability distribution. From a theoretical
point of view, random coordinate descent methods have good convergence properties,
given in expectation, and they turn out to be efficient also in practice. In particular,
since random coordinate descent methods do not use first-order information to choose
the working set, the whole gradient of the objective function does not need to be com-
puted during the iterations, leading to good performances when the objective function
has cheap partial derivatives.

In our method, a working set of two coordinates is iteratively chosen according to the
following almost cyclic strategy: one coordinate is selected in a cyclic manner, while
the other one is obtained by considering the distance of each variable from its nearest
bound in some points produced by the algorithm. We see that this working set selection
rule does not use first-order information. So, similarly as in random coordinate descent
methods, the whole gradient of the objective function does not need to be computed
during the algorithm and high efficiency is still achieved when the partial derivatives of
the objective function are cheap. Anyway, differently from random coordinate descent
methods, the proposed algorithm has deterministic convergence properties.

More in detail, once a pair of coordinates is selected in the working set, our algorithm
performs a minimization step by moving along a first-order search direction with a
certain stepsize. We first give a general condition on the stepsize that guarantees
global convergence to stationary points, under the assumption that every point of the
level set has at least one component strictly between the lower and the upper bound.
Note that this assumption is automatically satisfied in many cases: e.g., when the
feasible set is the unit simplex, or when at least one variable has no bounds. Then, we
describe some practical ways to compute the stepsize, considering different classes

@ Springer



An almost cyclic 2-coordinate descent method 413

of objective functions: the Armijo line search can be used for general non-convex
objective functions, overestimates of the Lipschitz constant can be used for objective
functions with Lipschitz continuous gradient, and the exact line search can be used
when the objective function is strictly convex.

We also show that the proposed method converges linearly under standard additional
assumptions. In particular, two different results are given: asymptotic linear conver-
gence rate is proved when there are finite bounds on some (or all) of the variables,
while non-asymptotic linear convergence rate is proved when there are no bounds on
the variables.

Lastly, experimental simulations performed on different classes of test problems
show promising results of the proposed algorithm in comparison with other block
coordinate descent methods.

The rest of the paper is organized as follows. In Sect. 2, we introduce the notation
and recall some preliminary results. In Sect. 3, we present the algorithm and carry out
the convergence analysis. In Sect. 4, we describe some practical line search strategies.
In Sect. 5, we analyze the convergence rate of the algorithm. In Sect. 6, we show the
numerical results. Finally, we draw some conclusions in Sect. 7.

2 Preliminaries and notation

Let us introduce the notation. Given a vector x € R”, we indicate by x; the ith entry
of x. We denote by ¢; € R" the vector made of all zeros except for the ith entry that is
equal to 1. Given a function f: R" — R, the gradient of f is indicated by V f, the ith
partial derivative of f is indicated by V; f and the Hessian matrix of f is indicated by
V2 f. The derivative of a function f: R — R is denoted by f. The Euclidean norm
of a vector x € R” is indicated by ||x||.

Throughout the paper, we focus on the following singly linearly constrained prob-
lem with lower and upper bounds on the variables:

min f(x)

Swi=b (1)

i=1

i <xi<uw, i=1,...,n,

where f: R" — R is a continuously differentiable function, » € R and, for all
i=1,...,n,wehavel; < u;, withl; € RU {—o0} and u; € R U {co}. By slight
abuse of standard mathematical notation, we allow variable bounds to be infinite.
Note that every problem of the form
n
min {w(s): Zaisi =b, l_, <si<uj,i=1,...,n}

i=1

withw: R" - R,b € Rand a; # O,l_i < uj,i =1,...,n,can be rewritten as in (1)
via the following variable transformation: x; = a;s;,i = 1, ..., n, thus considering

@ Springer



414 A. Cristofari

the objective function f (x)::w((xl /ar), ..., (x, /an)) and setting the lower and the
upper bound on x according to the above transformation.

From now on, we denote the feasible set of problem (1) by F. Throughout the
paper, we assume that 7 # (J. Moreover, the terms variable and coordinate will be
used interchangeably to indicate each x;,i =1, ..., n.

Finally, let us recall the following characterization of stationary points of prob-
lem (1), which can be easily derived from KKT conditions.

Proposition 1 A feasible point x* of problem (1) is stationary if and only if there exists
A* € R such that, foralli =1, ...,n,

Vif(x) =25 ifxf e (i), ()
<A, X =u.

>\ ifx] =1,

3 The almost cyclic 2-coordinate descent (AC2CD) method

In this section, we present the algorithm for solving problem (1) and we analyze its
convergence properties to stationary points.

3.1 Description of the algorithm

The proposed almost cyclic 2-coordinate descent (AC2CD) method is a block decom-
position method that iteratively performs a minimization step with respect to a working
set of two coordinates, chosen by an almost cyclic strategy (note that two is the smallest
number of variables that can be updated to maintain feasibility). A remarkable feature
of AC2CD is that the working set selection rule does not use first-order information,
allowing us not to compute the whole gradient of the objective function during the
algorithm.

To describe the proposed method, we have to distinguish between outer iterations,
indicated by the integer k, and inner iterations, indicated by the pair of integers (k, i),
wherek =0, 1,...andi = 1, ..., n. Each outer iteration k starts with a feasible point,
denoted by x*, and has n inner iterations (k, 1), ..., (k,n). Each inner iteration (k, i)
starts with a feasible point, denoted by z%, and produces the successive (feasible)
7K1 by performing a minimization step with respect to a suitably chosen pair of
coordinates. Outer and inner iterations are linked by the following relation:

Kl —xk and x*t! =t v >o.

Namely, each cycle of inner iterations (k, 1), ..., (k, n) starts from x* and returns the
successive xK 1.

To be more specific, given any x* produced by the algorithm, first we choose a
variable index j(k) € {1, ..., n} (as to be described later). Then, in the cycle of inner
iterations (k, 1), ..., (k, n), we adopt the following rule to choose the working set:

@ Springer



An almost cyclic 2-coordinate descent method 415

one variable index is selected in a cyclic manner, following an arbitrary order with no
repetition, while the second variable index remains fixed and equal to j (k). Since only
one variable index is selected in a cyclic manner, we name this working set selection
rule almost cyclic.

From now on, for every inner iteration (k, i) we denote by pl{‘ the variable index
of the working set that is selected in a cyclic manner. So, each minimization step is
performed with respect to the two coordinates z];’kf and z];(’k) In this minimization step,

we compute the first-order search direction @' = [V ) f (%) — Vi f ZFH](e o
ej(k)). Clearly, we have dZ’i =0forallh e {1,..., n}\{pf, j(k)}. Then, we set

Zk,l+1 — Zk,l + ak,ldk,l’

where of/ € R is a feasible stepsize (which will be described later on).

Now, we explain how to choose the index j (k) at the beginning of an outer iteration
k. Roughly speaking, x;? (k) Must be “sufficiently far” from its nearest bound. Formally,
foreach index h € {1, ..., n}, let us define the operator Dy, : F — [0, co) U {oo} that
takes as input a feasible point x and returns the distance of x; from its nearest bound:

Dy (x):=min{x, — Iy, up — xp}. 3)

k

So, for a given x*, we choose j(k) as any index that satisfies

Dj(k)(xk) > Dk, 4
where 7 € (0, 1] is a fixed parameter and

DF:= max Dy, (xk). (5)

=1,...,n

In other words, the distance between xk.(k) and its nearest bound must be greater than
or equal to a certain fraction (equal to t) of the maximum distance between each
component of x¥ and its nearest bound.

In Algorithm 1, we report the scheme of AC2CD. Hereinafter, we indicate

§E=Via fEN) =V f@D  and d =gt ek —ejw). (O
as they are defined at steps 6 and 7 of Algorithm 1. Note that

VIEEDTdY =~V f @) = Ve fEEDP = = (82, ™

i.e., d®' is a descent direction at z¥ if g £ 0 (equivalently, every nonzero d* is a
descent direction at zK7).

Remark 1 For the sake of simplicity, within each outer iteration k of AC2CD we
consider n inner iterations, but they actually are n — 1, since no pair of coordinates is
updated when pf = j(k).

@ Springer



416 A. Cristofari

Algorithm 1 Almost Cyclic 2-Coordinate Descent (AC2CD)

method

0 Givenx? e Fandt € (0, 1]

1 Fork=0,1,...

2 Choose a variable index j(k) € {1, ..., n} that satisfies (4)
3 Chooseapermutation{plf,...,p,’i}of{l,...,n}

4 Set 7K1 = xk

5 Fori=1,..., n

6 Let ghi = v, (01 — v,k Jacal!

7 Compute the search direction aki = gk’i (epl;_( —€j(k))
8 Compute a feasible stepsize okl and set ZK it = ki gkl gk
9 End for

10 Set xk+1 — Zk,n+1

11 End for

Now, let us focus on the computation of the stepsize a*" (step 8 of Algorithm 1).
First, for any inner iterate z5/ we define @*-! as the largest feasible stepsize along the
direction d*. Since the equality constraint is clearly satisfied by the choice of d*,
by simple calculations we obtain

o ki ki . 4
(1/8%") min{u  — zp;, 2w —Limw),  ifght >0,
— ki i . ki ki . i
ot = (1/1g5) min{zd =L uja) — 2j) g <0, ®)
0, if g5 = 0.
In particular, the choice to define @/ = 0 when g/ = 0 is for convenience of
exposition (and without loss of generality), since it implies that @' = 0 if 4%/ = 0

(equivalently, d*7 # 0 if @57 > 0).

A general rule for the computation of the stepsize «*/ is stated in the following
Stepsize Condition 1 (SC 1). As to be shown, this rule can be easily satisfied in practice
by different line search strategies and guarantees global convergence to stationary
points under an appropriate assumption on the level set.

@ Springer



An almost cyclic 2-coordinate descent method 417

SC (Stepsize Condition) 1 I must hold that

(i) f(ZHithy < f(zk*i), with 251 e F, for every inner iteration (k, i);

(ii) if { f(x*)} converges, then lim 1250 — R =0,i =1
(iii) for every pair of indices 1, ] e {l , n} and every convergent subsequence
{~ "Ykcio,1,..) such that pA is constantfor all k € K and j(k) = ] for

all k € K, if a real number & > 0 exists such that hkm inf &% = &, then
lim V£ (&HTdk = o.

k— 00

keK

Let us spend a few words on the meaning of SC 1. Point (i) requires that every inner
iterate is feasible and does not increase the objective value. Point (ii) is a condition
usually needed for convergence of block decomposition methods, requiring that the
distance of two successive inner iterates goes to zero. Finally, point (iii) requires that
the directional derivatives converge to zero over appropriate subsequences when, for
sufficiently large k, the largest feasible stepsizes are bounded from below by a positive
constant over the same subsequences.

Let us conclude this section by stating the following lemma, which will be useful
in the sequel. It shows that, if points (i)—(ii) of SC 1 are satisfied, then every limit point
of {x*} is a limit point of {z51} for every fixedi = 1,...,n.

Lemma 1 Let {x*} be a sequence of points produced by AC2CD that satisfies points (i)—
(ii) of SC 1, and let {xk}Kg{o,lw} be a subsequence converging to x. Then,

lim % =% i=1,...,n.
k—o00
keK
Proof For i = 1 the result is trivial, since z©! = x* for all k. Forany i € {2,...,n},

we have 75/ — 81 = Zl_{ Kt _ kit and then
k,i k k k 1 k41 _ k t
1250 = X = 1 = 2 <Z||z * I ©)

By continuity of f, we have {f(xk)}K — f(x). By point (i) of SC 1, we also

have f(xktl) = FEF"th < P < ... < (Y = f@F) forall k > 0,

and then, klim f (xk) = f(x). Therefore, using point (ii) of SC 1, we can write
—00

Jim |25 — 25 = 0 for all + = 1,...,n. Combining this relation with (9),
—00
we get
lim |57 — xK|| = 0. (10
k—00

@ Springer



418 A. Cristofari

Moreover, ||zZ57 — || = ||25F — xF 4+ xK — X|| < |287 — x¥|| + ||xF — X||. Then, the
result is obtained by combining this inequality with (10) and the fact that {x*}x — .
O

3.2 Convergence to stationary points

In this subsection, we are concerned with the convergence analysis of AC2CD.
For a given starting point x°, let us first define the level set

LO={x e F: f(x) < FO).

To prove global convergence of AC2CD to stationary points, we need the following
assumption, which requires that every point of £° has at least one component strictly
between the lower and the upper bound.

Assumption1 Vx € £°0, 3i e {1,...,n}: x; € (I, u;).

Let us discuss the role played by this assumption, when combined with SC 1, in
the convergence analysis of AC2CD. First, it guarantees that, for every outer iteration
k > 0, at least one pair of coordinates can be updated if and only if x* is non-stationary.
Indeed, every x* remains in £° by point (i) of SC 1 and, by the rule used to choose
the index j (k), if Assumption 1 holds we have

k
lj(k) < xj(k) < Ujk), Vk=>0.

So, from the stationarity conditions (2), it is straightforward to verify that a variable
index pf exists such that V £ (z51)Td* < 0 with @7 > 0 if and only if x* is non-
stationary, that is, at least one pair of coordinates can be updated during the inner
iterations if and only if x* is non-stationary.

Second, as to be shown in the proof of Theorem 1, if Assumption 1 holds we can
prove that {V) f (x%)} converges, over certain subsequences, to the KKT multiplier
A* defined as in (2). So, for sufficiently large k, we can measure the stationarity
violation for each coordinate x;l‘ by Vi, f @k —v oS (x¥) and guarantee that, at the
limit, each coordinate satisfies (2).

Let us also remark that Assumption 1 is automatically satisfied in many cases, for
example when F is the unit simplex, or when at least one variable has no bounds, that
is,if anindex i € {1, ..., n} exists such that /; = —oo and u; = oco. Further, in [14],
where the same assumption is used, it is shown that, for the Support Vector Machine
training problem, this assumption is satisfied if the smallest eigenvalue of V2 f is
sufficiently large and the starting point x° is such that f(x%) < 0 (see Appendix B
in [14] for more details).

Now, we are ready to show that, under Assumption 1, AC2CD converges to sta-
tionary points.

Theorem 1 Let Assumption 1 hold and let {x*} be a sequence of points produced by
AC2CD that satisfies SC 1. Then, every limit point of {x*} is stationary for problem (1).

@ Springer



An almost cyclic 2-coordinate descent method 419

Proof Letx* be alimit point of {xk} and let {xk} Kci0,1,...} be asubsequence converging
to x*. From the instructions of the algorithm, x* is a feasible point. Moreover, from
Lemma 1 we can write

k

lim 5 =x* i=1,...,n. (11)

k—o00
keK

By continuity of f, we have that {f(x*)}x converges to f(x*). Since {f(x*)} is
monotonically non-increasing (by point (i) of SC 1) we have that { f (xk)} converges
to f(x*). Therefore, by point (ii) of SC 1 it follows that

lim |5 =K =0, i=1,...,n. (12)

k— o0
Using the fact that the set of indices {1, ..., n} is finite, there exist an index j €
{1, ..., n} and a further infinite subsequence, that we still denote by {xk} x Without

loss of generality, such that

k

lim x*=x* and jk)=j], VkeKk.

k—o00
keK

We first want to show that a real number p > 0 exists such that

min{z]]f’i =l u; — z]]f’i} >p, i=1,...,n, Vsufficiently large k € K. (13)

To this extent, by Assumption 1 we have that an index he {1, ..., n} exists such that
x; € (I, uj). So, using the operator Dy, defined as in (3), a positive real number p
exists such that Dj (x*) > (4/7)p, where t € (0, 1] is the parameter defined at step O
of Algorithm 1, used to compute j(k). Since {xk}K — x™, by continuity of Dy, we
have that Dj, x5 > /T)p for all sufficiently large k € K. Using the definition of
D given in (5), we obtain

D > (2/t)p, Vsufficiently large k € K.
By the rule used to choose the index j(k), we can write
Dj(zk’l) = Dj(xk) > 7 D¥ > 2p, Vsufficiently large k € K.
The above relation, combined with (12), implies that D j(zk’i) >p,i=1,...,n,for
all sufficiently large k € K. Equivalently, (13) holds.
Now, we want to show that the stationarity conditions (2) are satisfied at x* with

AT =V f(x). (14)

Reasoning by contradiction, assume that this is not true. Then, there exists an
index f € {1,...,n}\{j} that violates (2). Using again the fact that the set of indices

@ Springer



420 A. Cristofari

{1,...,n} is finite, there also exist an index 1 € {l1,...,n} and a further infinite
subsequence, that we still denote by {x¥}x without loss of generality, such that plf‘ is

constant and equal to 7 for all k € K. Since also Jj (k) is constant (and equal to J) for
all k € K, we thus obtain

pf=1 and j(k)=j, VkeKk.

By (11) and the continuity of V f, it follows that {V f (%1 )}k is bounded for all
i =1,...,n. S0, areal number T exists such that

IVFGD<T, i=1,....,n, YkeK.
Therefore,
1§57 = |V; f @) = Vi fR) < 2T, VEkeK. (15)

Since we have assumed 7 to violate (2) with A* defined as in (14), one of the following
three cases must hold.

@) xtik € (l;,up) and |V; f(x*) — V; f(x*)| > 0. Taking into account (11), a real
number ¢ > 0 exists such that

min{zif’i — Il up — zif’i} > ¢, Vsufficiently large k € K, (16)
1§57 = IV, £(*) = Vi F(5D) = ¢, Vsufficiently large k € K. (17)

From (13), (15), (16), (17) and the definition of &~ given in (8), we obtain

& > min {ﬁ T } > (0, Vsufficiently large k € K.

Therefore, by point (iii) of SC 1 we get
0= lim VfEHTdb = tim —[v; f(*) = v; DT,
k— 00 k— 00
keK keK
where the second equality follows from (7). We thus obtain a contradiction

with (17).
(ii) xtik =[; and V; f (x*) < V; f(x*). Taking into account (11), we have

~ ur— I
ki o Xt {

up—z" = 7 V sufficiently large k € K, (18)

and a real number ¢ > 0 exists such that
=V — v (M) > ¢, Vsufficiently large k € K. (19)

@ Springer



An almost cyclic 2-coordinate descent method 421

From (13), (15), (18), (19) and the definition of &~ given in (8), we obtain

- lf, £}> 0, Vsufficiently large k € K.
AT 2T

&k,i

> min{
Therefore, by point (iii) of SC 1 we get

0= lim V /() Tad% = tim —[V; [ () — vif D]
k— 00 k—00
keK keK

where the second equality follows from (7). We thus obtain a contradiction
with (19).

(iii) xti" = u; and V; f(x*) > V; f(x™). This is a verbatim repetition of the previous
case, which again leads to a contradiction.

We can thus conclude that x* is a stationary point. O

4 Computation of the stepsize

In this section, we describe some practical ways to compute the stepsize in order to
satisfy SC 1. We consider different classes of objective functions: general non-convex
functions, those with Lipschitz continuous gradient and strictly convex functions.

4.1 General non-convex objective functions

When the objective function is non-convex, a common way to compute the stepsize
is using an inexact line search. Here, we consider the Armijo line search, which is
now described. Given any inner iterate 7% and the direction d%!, first we choose a
trial feasible stepsize A%! and then we obtain ! by a backtracking procedure. In
particular, we set

ak,i — (8)‘ Ak,i’ (20)
where c is the smallest nonnegative integer such that
FE 4 AR @)d) < fE 4y AR ) v F DT a @1

and § € (0, 1), y € (0, 1) are fixed parameters.

For what concerns the choice of A%, first it must be feasible, that is, AF < gk-t.
Moreover, as to be shown in the proof of the following proposition, A must be
bounded from above by a finite positive constant to satisfy point (ii) of SC 1. Namely,
we require that AR < AR where AR s any scalar satisfying 0 < A; < Akl <
A, < oo, with A; and A, being fixed parameters. In conclusion, in the Armijo line
search we set A©' = min{a®?, A%'}. In the next proposition, we show that a stepsize
computed in this way satisfies SC 1.

@ Springer



422 A. Cristofari

Proposition2 Ler § € (0,1), y € (0,1) and 0 < A} < A, < oo. Then, SC 1 is
satisfied by computing, at every inner iteration (k, i), the stepsize o« as in (20), where
c is the smallest nonnegative integer such that (21) holds, A = min{a*!, AX'} and
AR e [A}, Ayl

Proof We first observe that, at every inner iteration (k, i), there exists a nonnegative
integer ¢ satisfying (21), since, from (7), we have V f (z5)Td%? < 0 for all d% £ 0.

Point (i) of SC 1 immediately follows from (21) and the fact that a*! < A%, with
Ak feasible. Now, we prove point (ii) of SC 1. We first show that a real number o > 0
exists such that, for all k > 0, we have

S < fEED = ol =R =1, 22)
From (20) and (21), for all k > 0 we can write
FETY < FEED +ydbiv DTN =1, (23)
Using (7), we obtain

FETY = FEH —yati@h? =1, @4

k,i+1 k

— k= ak*igk’i(epl(c — €j()), and then, | R+ — i 12 =

Moreover, z

2(ak1)%(g51)%. Using this equality in (24), and recalling that «®' < A, < oo, we
have that

FERY = pE = ST =P i =1,

u

Therefore, (22) holds with 0 = y/(2A,) for all k > 0. So, point (ii) of SC 1 is
satisfied by combining (22) with the fact that f(x**t!) = ") < fbn) <
c< fZEY = F(xb) forall k > 0.
Now, we prove that also point (iii) of SC 1 holds. Let {51k, 7, 7 and @ be
defined as in point (iii) of SC 1. Rearranging the terms in (23), we can write

FEH = fEY =y VDTN, Ve k. (25)
Moreover, since {zX}x converges and f(x¥t1) = f(Fnth) < f(Fn) < ... <
fZ¢Y = F(x%) forall k > 0, by continuity of f we have that {f (k) converges,
implying that
lim [f () — fFH1=0, i=1,...,n. (26)
k—o00

Combining (25) and (26), we obtain

lim o®1|V £ (DT a5 = 0. (27)
k—00
keK

@ Springer



An almost cyclic 2-coordinate descent method 423

Proceeding by contradiction, we assume that it does not hold that

Jlim V F(ZEHTgki = 0. (28)
keK

Since {57} converges, then it is bounded and, by continuity of V f and the definition
of the direction d*!, also {Vf(zk’f)}K and {dk’i}K are bounded. So, if (28) does
not hold, there exist further infinite subsequences, that we still denote by {zk’i 1k,
{V f e )} x and {d*T} k¢ without loss of generality, such that

lim 2" =7 eR", lim d*' =d eR" (29)
k— 00 k— o0
keK keK
and
lim VfHTabt = v @) Td =—neR, (30)
R

with n > 0. From (27) and (30), we get

Jim okl = 0. 31)
kek

Since A% > A; > Oforallk > Oand &@* > £/2 > 0 for all sufficiently large k € K,
using the definition of AK? we obtain

AR > min{£/2, Aj} > 0, Vsufficiently large k € K.
Consequently, by (31), an outer iteration k € K exists such that
ofl < Ak”A, Vk>k, keK.

The above relation implies that (21) is satisfied with ¢ > 0 for all k > k, k € K.
Therefore,

k.7

PO
f(zk’l + —

A A~ k’i ~ ~ —_
; d"”) > f(8h + yaTVf(zk")Tdk”, Vk>k keK. (32

By the mean value theorem, we can write
k.7 k.7
~ a )
f (zk” +—

- d“) = FED + VT aM, (33)

@ Springer



424 A. Cristofari

~ A ~ k” ~ ~
where gl = o0 4 g “Td’“ and 67 € (0, 1). Using (32) and (33), we obtain
ViBEHTa > yv (i EHTdR, Yk >k, ke K. (34)
Since 6% € (0, 1), and taking into account (29) and (31), it follows that {ﬁk’i}K — Z.
So, passing to the limit in (34), we have that V £ (2)Td > yV f ()T d. Using (30), we

obtain —n > —yn, contradicting the fact that n > 0 and y € (0, 1). Then, point (iii)
of SC 1 holds. O

4.2 Objective functions with Lipschitz continuous gradient

In this subsection, we consider the case where V f is Lipschitz continuous over F
with constant L. Namely, we assume that

IVf) = Vil <Llly—xl, Vx,yeZF.

First, let us recall a result due to Beck [1], which will be useful in the sequel.

Lemma 2 Let us assume that V f is Lipschitz continuous over F with constant L. For
any point z € F and any pair of indices i, j € {1, ..., n}, define the function

bij(D):=f(z+1(ei —e)), t€lj.,
where 1; j , is the interval that comprises the feasible stepsizes. Namely,
Iij =t e R: z+1(e; —ej) € F}. (35)

Then, every q'bl-!j,z is Lipschitz continuous over 1I; j , with constant L; j < 2L, that
is,

gi j:(t) — @i j ()| < Lijlt —s|, YzeF, Vi, sel.. (36)

Proof See Sect. 3 in [1]. O

Now, let L; ;j be some positive overestimates of L; ;, with L; ; being the Lipschitz
constants defined in Lemma 2. Namely,

L; j > L; ;, such that I:i,j > 0, i,j=1,...,n. 37

We will show that these overestimates can be used to compute, in closed form, a
stepsize satisfying SC 1. In particular, for a given fixed parameter y € (0, 1), at every
inner iteration (k, i) we can set

ki

ol = min{&k’

i 202y ”)}. (38)

Lok jw

@ Springer



An almost cyclic 2-coordinate descent method 425

As to be pointed out in the proof of the following proposition, this stepsize can be
seen as a particular case of the Armijo stepsize defined in Proposition 2. Note also
that, since L; ; < 2L, every positive overestimate of 2L can be used in (38).

Proposition 3 Let us assume that V f is Lipschitz continuous over F with constant L
andlety € (0, 1). Then, SC 1 is satisfied by computing, at every inner iteration (k, i),
the stepsize o' as in (38).

Proof Leti, j € {1,...,n}beany pairof indices and consider inequality (36). Observ-
ing that 0 € I; ; . for every feasible z, and using known results on functions with
Lipschitz continuous gradient (see, e.g., [23]), we can write

. L: :
Gij:() < 6ij 0+ 0+ =402 VZeF, Vi€l ..

Since ¢ j . (t) = V; f(z + t(e; —ej)) — V; f(z + t(e; — e})), it follows that
Li
flz+tlei—ep) < fF@+1IVif(z) — ij(z)]+7’1t2, VeeF, Vielj..
(39

To prove the assertion, it is sufficient to show that ak’i, defined as in (38), is a
particular case of the Armijo stepsize defined in Proposition 2. To this extent, we can
set AR =2(1—y)/L R (all these quantities are positive and finite) and, by (38),

we obtain afi = AR with AK defined as in Proposiﬁon 2. So, all we need is to
prove that (21) holds with ¢ = 0 for this choice of A%/, Namely, we want to show
that

FE 4 Aty < fR 4y ARV p T (40)

Since A% < ki and taking into account the definition of dki given in (6), we have
that

ki Ak ghi ki Ak,igk,i(eplk —ej) € F,

that is, AKighi ¢ L jay.cxi by definition (35). Therefore, using (39) with i and j
replaced by pl/.‘ and j(k), respectively, z = z57 and t = AR/ gk we obtain
ki ki ki kiy _ akig o kiy2 Ll’f"j(k) kin2( kiin2
fEH AT < f@) — AR (gT)T+ —— (A7)
L.,
k.i ki KinT ki IOV
— 5 ALy s ar 1 — AR ,
f@) + S@) ( 2 )

where the equality follows from (7). Since 0 < AR < 2(1— J/)/Zplc,j(k), we get (40).
' m]

@ Springer



426 A. Cristofari

Remark2 As appears from the proof of Proposition 3, the stepsize given in (38)
satisfies SC 1 by using, for every pair of indices i, j € {1, ..., n}, a positive con-
stant l_‘,; j = L; j, where it is sufficient that L; ; satisfies (39). In particular, a case
of interest is when we have a (possibly non-convex) separable objective function
f(x) =>"", fi(xi) where each f;: R — R has a Lipschitz continuous derivative
with constant L;. In this case, Proposition 3 holds even with L;, j replaced by Li+L j
in (38), where L; and L j are two positive overestimates of L; and L ;, respectively.
This follows from the fact that, in this case, 39) hplds even with L; ; replaced by
L; + L, since, by Lipschitz continuity of f1, ..., f,, we have

flattei—e))=fii+0+ filzj =D+ > fulzn)

h;ti/
< fQ@ + i) — fi@] + ; 2
L;+L;

= @+ 1V [ = Vi @1+~

Now, let us analyze the case where the objective function is quadratic of the follow-
ing form: f(x) = %xTQx —g"x, with Q € R™" symmetric and ¢ € R". Denoting
by Q;,; the element of Q in position (7, j), we have (again from [1])

Lij=10ii+Qj,;—20i;l, i,je{l,...,n}.

So, at every inner iteration (k, i), we can easily obtain (a positive overestimate of)
L Pk k) in order to compute the stepsize o/ as in (38).

Moreover, if (dk nHr Qdk I~ 0fora given direction d* ', we can write

1 V £ (50T ghoi . .
= S € Argmin f (5 + ad®?).

0< = TGk T Ogki
Ql’xl'(*/’l,'c + Qj(k),j(k) _QQ[,’/_f’j(k) (d*H*Qd* aeR

It follows that, when (dk’i)TQdk'i > 0, we can set y = 1/2, Zpg’](k) = L k k)
and the stepsize given in (38) is the exact stepsize, i.e., it is the feasible mlmmlzer of
£ (&5 + ad®?) with respect to a.

Vice versa, if (dk’i)T Qdk’i < 0 for a given direction dk’i, we can exploit the fact
that the greatest objective decrease along 4/ is achieved by setting o*! as large as

possible, since
f(Zk,l + Oldk"l) — f(Zk,l) + avf(zk,l)Tdk,l + _a2(dk,l)T Qdk,l7 Vo € R(41)
2

So, we can set o' = min{&®!, A,}, with 0 < A, < 00 being a (large) fixed
parameter. Using (41), it is easy to see that also this stepsize is a particular case of the
Armijo stepsize defined in Proposition 2 (indeed, for every nonnegative value of A%,
the Armijo condition (21) is satisfied by ¢ = 0).

@ Springer



An almost cyclic 2-coordinate descent method 427

4.3 Strictly convex objective functions

Let us consider a strictly convex objective function. In this case, we can satisfy SC 1
by computing, at every inner iteration (k, i), the stepsize @ by an exact line search,
that is,

o e Argmin { f (257 4+ ad®T): « € [0, @571} (42)

To ensure that the above minimization is well defined at every inner iteration, we
assume that £ is compact.

Proposition 4 Let us assume that f is strictly convex and L0 is compact. Then, SC 1
is satisfied by computing, at every inner iteration (k, i), the stepsize o*' as in (42).

Proof Point (i) of SC 1 immediately follows from the definition of ok, Since

FOEEY = Ry < fEm << fERY) = F(xF) and each 25 lies in

the compact set £°, it follows that { f (x¥)} converges. So, to prove point (ii) of SC 1

we have to show that klim ||zk’i+1 — zk’i|| =0,i = 1,...,n. Arguing by contra-
— 00

diction, assume that this is not true. Then, there exist a real number p > 0, an index
1 € {l,..., n}andaninfinite subsequence {Zk’i}Kg{O,l,_,,} such that ||zk~i+1—zk’i|| >p
forall k € K. Since every point z57 lies in the compact set £, there also exist a further
infinite subsequence, that we still denote by {z"1}x without loss of generality, and
two distinct points z’, 7 € R” such that

lim 2 =7 and lim o =7, 43)
k— 00 k— 00
keK keK

As o*+ is obtained by an exact line search, we can write

. 1 o Zk,?+zk,i+l

k.1 k.l gk,

il *d'): ( )
f(z T3¢ ! 2

1 | . .
SFED + 2T < £,

IA

(44)

IA

where the second inequality follows from the convexity of f and the last inequality
follows from the fact that f (&t < £(5F). Moreover, since { f (x%)} converges, a
real number f exists such that

lim f(*) =7, i=1,....n. (45)
k— o0
By continuity of the objective function, we can write

Jim fZ = f(Z)=Ff and Jim Y = £ = f.
(e R Yok

@ Springer



428 A. Cristofari

2

/ 4 / "
So, passing to the limit in (44), we obtain f < f(z -; < ) < f,thatis, f(z te ) =
_ 11
7. Adding to the left-hand side of this equality the two quantities (5 F-3 f(z’)) and

1 - 1
(5 f— 3 [ )), that are both equal to zero, we get

7 +7" L., 1,
F(557) = 3@ + 5@,

contradicting the fact that f is strictly convex and z’ # z”. Then, point (ii) of SC 1
holds.

Finally, point (iii) of SC 1 can be proved by the same arguments used in the proof
of Proposition 2 for the Armijo stepsize, just observing that the objective decrease

achieved by the exact line search is greater than or equal to the one achieved by the
Armijo line search. O

5 Convergence rate analysis

In this section, we show that the convergence rate of AC2CD is linear under standard
additional assumptions.

The key to prove linear convergence rate of AC2CD is to show arelation between the
points produced by AC2CD and the points produced by the classical coordinate descent
method applied to an equivalent transformed problem. Then, linear convergence rate
follows from the well known properties of the classical coordinate descent method
proved by Luo and Tseng [17] and by Beck and Tetruashvili [2].

In particular, here we give two results. The first one is more general and states that,
eventually, {f (xF)} converges linearly to the optimal value of problem (1), that is,
C € [0, 1) exists such that f(x¥*t1) — f(x*) < C[f(x%) — £ (x*)] for all sufficiently
large k, with x™ being the optimal solution of problem (1). The second result is for
the case where there are no bounds on the variables and establishes a non-asymptotic
linear convergence rate, that is, the above inequality holds for every £ > 0.

Let us start by showing the general result. First, we need a specific rule to compute
the index j (k) in order to ensure that it remains constant from a certain outer iteration
k. In particular, we initialize AC2CD with 7 € (0, 1) (step O of Algorithm 1) and,
from a certain £ > 1, we adopt the following rule: j(k) = j(k — 1) if this choice
satisfies (4), otherwise j (k) is set equal to any index £ such that Dj, (xk ) = DX, where
Dy, and D¥ are the operators given in (3) and (5), respectively. Namely,

=jk—-1), if this choice satisfies (4),
JK) ¢ Argmax Dy (x¥),  otherwise. (46)
h=1,...n

We can state the following intermediate lemma.

@ Springer



An almost cyclic 2-coordinate descent method 429

Lemma 3 Let Assumption 1 hold and let T € (0, 1). Let {x*} be a sequence of points
produced by AC2CD, where j(k) is computed as in (46) from a certain k > 1. Let us
also assume that limg_, o {x¥} = x* € R".

Then, there exist a variable index ] and an outer iteration k such that jk)y = j for
all k > k. Moreover, x}f € (5, uy).

Proof Let j* € Argmax;_; _,D;(x*). From Assumption 1, we have D «(x*) > 0.

First, we prove that there exist a variable index j and an outer iteration k such that
j(k)y = jforall k > k. Arguing by contradiction, assume that this is not true. Since
the set of indices {1, ..., n} is finite, there exist two indices ji, j» € {1, ..., n} and
two infinite subsequences {x*} k, and (xKy K, such that

j k - 1 ] ) j k — 1 =7 ,

JE=D#J ek, and JE=D=Jt ek,
Jk)y = j1, Jk) = ja,

Since j (k) is computed as in (46) from a certain k > 1, it follows that

Dj, (xk) = DF > Dj*(xk), V sufficiently large k € K7,
Dj, (x*) <Dk = tDj, (x5, V sufficiently large k € K».

By continuity of the operator Dj,, we can write

Dj, () = lim Dj,(x") = lim Dju(x*) = Dje(x"),

kekKy keK

D (x*) = lim D;,(x*) <7 lim D;,(x*) = tD;,(x").
k— 00 k— o0
keKy keK>

Combining these two inequalities, and recalling that D+ (x*) > 0, we obtain
0< DJ*(X*) < ‘L'Djz(x*).

This is contradiction, since D+ (x*) > D, (x*) and T € (0, 1). So, a variable index j
and an outer iteration k exist such that j(k) = jforall k > k.
To prove that x;f € (I, uj), assume by contradiction that D;(x*) = 0. Since j (k) is

computed as in (46) from a certaink > 1 and j(k) = jforallk > k, forall sufficiently
large k we have D(,—(xk) > tDF > tDj*(xk). By continuity of the operator Dj,, we
obtain

0=D;(x*) = lim D;(x*) > lim Dj(x*) = tDjx(x"),
k— 00 k— 00

which leads to a contradiction, since Dj=(x*) > 0 and v € (0, 1). Therefore, x}f €
(lj, uj). O

Now, we are ready to show that, eventually, { f (x¥)} converges linearly to f(x*)
under the following assumption.

@ Springer



430 A. Cristofari

Assumption 2 It holds that

— f is strictly convex twice continuously differentiable over R”;
— the optimal solution of problem (1), denoted by x*, exists;
- V2f(x*) > 0.

Note that Assumption 2 implies that £ is compact (see Lemma 9.1 in [29]). There-
fore, if also Assumption 1 holds and SC 1 is satisfied, then {x¥} converges to the
optimal solution x*. As a further consequence, under Assumption 2 we can compute
the stepsize by an exact line search to satisfy SC 1 (see Proposition 4).

Theorem 2 Let Assumption 1 and 2 hold, and let T € (0, 1). Let {x*} be a sequence of
points produced by AC2CD, where j(k) is computed as in (46) from a certain k > 1
and the stepsize is computed as indicated in Proposition 4.

Then, a real number C € [0, 1) and an outer iteration k exist such that

FEEY — ft < CLFGR - £, Vi >k

Proof Without loss of generality, we assume that n > 1 (otherwise the feasible set is
either empty or a singleton). Let j and k be the variable index and the outer iteration
defined in Lemma 3, respectively. Namely, j(k) = j for all k > k. To simplify the
notation, without loss of generality we assume that

pk=7j, Vk=k, and J=n (47)
Let us consider the following variable transformation:
Vi, ie{l,....n\{J},
Xj = b_Zth i=7. (48)
h#]
Equivalently, we can write
x=My+w, (49)
where, recalling that j = n,
1 0 0
0 1 ... 0 0
M=|: ¢ . |eR”CD and w=|:|eR". (50

o
o -
o

-1 -1 ...-1

S

Note that the columns of M are linearly independent and, for every point x € R" such
that >/, x; = b, the linear system x = My + w has a unique solution given by
vi=xi,i=1,...,n— 1.

@ Springer



An almost cyclic 2-coordinate descent method 431

Now, since x;; € (I, u,) (by Lemma 3) and f is strictly convex, in problem (1) we
can remove the bound constraints on the variable x, and x* is still the unique optimal
solution. Consequently, by defining the function ¥ : R"~! — Ras ¢ (y):=f(My +
w), we can recast problem (1) as follows:

min ¥ (y) . 51)
li<yi<uwuy, i=1,...,n—1.
We observe that, for every feasible point y of problem (51), the corresponding x
obtained by (49) satisfies both the equality constraint ) »_; x; = b and the bound
constraints [; < x; < u;,i = 1,...,n — 1 (the bound constraints on x, are ignored
for the reasons explained above).
An optimal solution y* of problem (51) exists, is unique and is given by y/ = x/,
i =1,...,n—1.Indeed, this y* clearly satisfies x* = My* 4+ w and ¥ (y*) = f(x¥).
So, if afeasible point y # y* of problem (51) existed such that ¥ () < ¥ (y*), it would
mean that My + w #= My* + w (since the columns of M are linearly independent)
and f(My +w) < f(My* + w) = f(x*). But this is not possible, since My would
be feasible for problem (1) after removing the bound constraints on x,, and we said
above that x* is still the unique optimal solution of problem (1) even if we remove the
bound constraints on x;,.
Now, for any k > k and for anyi = 1,...,n,letus define yk’i as the unique vector
[feasible for problem (51)] satisfying

= MyR 4w, (52)
which is given by
ywhi=2 h=1,...,n—1. (53)

For all k > k, without loss of generality we can consider only the first n — 1 inner
iterations in AC2CD. Indeed, by (47) we are assuming that p,’j = jforall k > 12, and
then, no pair of coordinates is updated in the inner iteration (k, n) for all k > k (see
Remark 1). Let us consider any inner iteration (k, i), withk > kandi € {1,...,n—1}.
We want to show that

K g gkl — My +w, Va € R. (54)

ki ki
PR v4 .
Yk )p‘;f o pfgw() )

i

ki
yh=y" h=1,..n—1, h#p}

In other words, (54) says that moving zX7 along % with a certain stepsize « corre-
sponds, in the y space, to moving the pf th coordinate of y*/ along —Vp_k ¥ (y*!) with

the same stepsize «, keeping all the other coordinates of y*-! fixed. To prove that (54)
holds, we use again the fact that, forall o € R, the linear system z5! +ad®’ = My+w

@ Springer



432 A. Cristofari

has a unique solution y given by y, = zlz’i + ad}]f’i, h=1,...,n—1.Then, (54) is
equivalent to writing
k,i k,i k,i ki
s [La— 1 aV
ZP,{‘ + Otdpi P,-k o kw(y ), (55a)
ditadtt =y h=1,...,n—=1, h#pk. (55b)

Since d}kl’i =O0forall i ¢ { pf.‘, J}, and we are assuming that j = n, (55b) immediately
follows from (53). To obtain (55a), we use (53) again to write yk}f = zk’k’. Thus, we

only need to show that d}lj’{f =-V ok W ( yk’i ). This follows from the relation Vi (y) =
MTV f(My + w), that, combined with (52) and the definition of M given in (50),
yields to
Vb (08 = Vo f(MyS 4 w) = Vi f (MY + w)
=V f @D = Vi =~y

Thergfore, (55) holds, implying that (54) holds too. Using o = o® in (55), for all
k > k we can write

k,i+1 k,i k,i ki :

T =y —attV o "), i=1....n—1,
ok Yk VO

Zz,z-i-l:y;lc,z’ h=1,....n—1, h#plk, i=1,...,n—1.

Using (53) (with i replaced by i + 1) in the above relations, for all k£ > k we obtain

y";“ yfj — oMV g (R, i=1,...,n—1, (56a)
y’,;’+‘=y’,§”’, h=1,....,n—1, h#pk i=1,...,n—1.  (56b)
We see that, for all £ > 12, the vectors yk’l, e, yk’” are the same that would be

generated by a coordinate descent algorithm applied to problem (51). In particular, for
allk > k, every y*T1.1 is obtained from yX'! by selecting one coordinate at a time by
a Gauss-Seidel (or cyclic) rule and moving it with a certain stepsize.

Now we want to show that, for all sufficiently large &, each stepsize «™' is the same
that would be obtained by performing an exact line search in the updatlng scheme (56),
applied to problem (51). First observe that there exists k > k such that z >te (5 7o uj),

ki

i=1,...,n,forallk > k,asxj € (Ij,uj)and {57} — x*,i = 1,...,n.Theref0re,
since an exact line search is used in AC2CD, foralli = 1, ..., n we can write

o' e Argmin { £ (25 + ad®?) : 2 2 —i—adkk €l uyl), V= k. (57

aeR

In other words, for all kK > k, the constraints zl]f’i + ad;f'i € [I3, uy] with respect to
« are not necessary for the computation of the stepsize in AC2CD. Combining (57)

@ Springer



An almost cyclic 2-coordinate descent method 433

with (54), we get that, for all k > 12, each o®7 is the optimal solution of the following
one-dimensional problem:

min
min (y)
_ ki ki
Ypk =V —aVpr(yT)
i
yi=y' h=1,...,n—1, h#pf,

k,i k,i
<y — 1y <
lptg( _ypl,_c othtuﬂ(y )_upl/;.

(58)

In particular, the last bound constraints in (58) follow from those in (57), using (55a).
Therefore, for all k > k, each ¥/ is the stepsize that would be obtained by performing
an exact line search in the coordinate descent scheme (56), applied to problem (51).

So, according to the results established by Luo and Tseng [17], eventually {y (y*-1)}
converges linearly to the optimal value of problem (51) if the following three conditions
hold: (i) ¥ is strictly convex twice continuously differentiable over R"1 (ii) the
optimal solution y* of problem (51) exists, (iii) V2 (y*) > 0. The second point
has already been proved before, while the other two points follow by combining
Assumption 2 with the fact that the columns of M are linearly independent and x* =
My* + w. We conclude that a real number C € [0, 1) and an outer iteration k> k
exist such that

I//(yk+1’l) _ w(y*) < C[w(yk’l) — 1//())*)]’ Vk > /E

Since ¥ (y*) = f(x*), v (O = fFY) = (x5 and ¢y KL = FFL =

£, we get the result. m]
Now, we focus on the case where there are no bounds on the variables, i.e.,/; = —00
and u; = oo foralli = 1, ..., n. In this case, a non-asymptotic linear convergence

rate can be achieved by using the stepsize defined in Proposition 3 (with y = 1/2).
To obtain this result, we need the following assumption.

Assumption 3 It holds that

— f is strongly convex over R" with constant ju;
— V f is Lipschitz continuous over R” with constant L;
— the optimal solution of problem (1), denoted by x*, exists.

Alsoin this case, we need to maintain the index j (k) fixed throughout the algorithm.
In particular, now we require j (k) to be equal to any index j € {1, ...,n}forallk > 0
(note that any choice of j is acceptable, since there are no bounds on the variables).

Theorem 3 Let us assume that there are no bounds on the variables in problem (1),
ie,li =—occandu; = ooforalli =1, ...,n, and let Assumption 3 hold. Given any
index J € {1,...,n}, let {x*} be a sequence of points produced by AC2CD, where
j(k) = j for all k > 0 and the stepsize is computed as indicated in Proposition 3,
withy = 1/2.

@ Springer



434 A. Cristofari

Then, a real number C € [0, 1) exists such that

FOEY — f*) < CLFER) — F(e™)1, Ve >0, (59)

In particular, considering the constants L; ; defined in Lemma 2 and the constants
L;.j used for the stepsize computation, we have
m

C=1-— — ,
2L 14 (0= (T L2/ (L5

(60)

LM% = max L; i

i#]

Proof Following the same line of arguments as in the proof of Theorem 2, without
loss of generality we assume that n > 1 and that (47) holds for all k > 0. Then, we
consider the variable transformation x = My +w given in (48), (49) and (50) to define
the function ¥: R"~! — R as y(y):=f(My + w). We obtain that problem (1) is
equivalent to the following problem (which is now unconstrained since there are no
bounds on the variables):

where L™ :=min L; ; and

min ¥ (y). (61)

yeR” 1

An optimal solution y* of problem (61) exists, is unique and is given by y/ = x,
i=1,...,n— 1,satisfying x* = My* 4+ w and ¥ (y*) = f(x*). Moreover, for any
k> 0andforanyi = 1,...,n,let us define yk’i as in (52)—(53). We have that (56)
holds for all k > 0. Namely, for all k¥ > 0, every ka'l is obtained from yk’1 by
selecting one coordinate at a time by a Gauss-Seidel (or cyclic) rule and moving it
with a certain stepsize.

Now, let us consider the stepsize /. By hypothesis, it is computed as described
in Proposition 3, with y = 1/2, using the constants L; ; and Li, ; as they are defined
in Lemma 2 and in (37), respectively. Since there are no bounds on the variables, for
every dki # 0 we have @k = 0o, Then,

T e gk,i
ohi — 1/Lp:_c’j— if d*' £0,
0, otherwise.
We want to show that Ly 7, ..., L,_1,; are the coordinatewise Lipschitz constants of

Vi over RrL Namely, foreveryi =1,...,n—landforall y € R"~! we want to
show that

|Vivr (y(@) = Vivr(»)| < Lijlel, Ve €R, (62)
where y(«) € R"~! is defined as follows:

y(@)i =yi +a,
yr=yn, h=1,...,n—1, h#i.

@ Springer



An almost cyclic 2-coordinate descent method 435

Recalling that j = n and the definition of M given in (50), first observe that V; ¥ (y) =
T T

Vf(My+w) (ej—ej)and Vi (y(@) = Vf(My(@) +w) (e;—ej) = Vf(My+

w+a(e; — ;) (¢ — ej). Thus,

|Vivr (y(@) = Vi ()]
= |Vf(My+w + a(e; —e]-))T(ei —ep) = Vf(My+ w)T(e,- —e]-)‘.

Considering the functions ¢;_; , defined in Lemma 2, we have that bi. jz)y=Vf (z +

ale; —e j))T(ei — ej). Therefore, from Lemma 2 we get

Viv (y(@) = Viv D] = 191, 7. My+w (@) — 1.7 my+w(0)] < Li jlet]

and then (62) holds.

So, forallk > Oandall i = 1,...,n — 1 such that d~% # 0, each stepsize o
is the reciprocal of an overestimate of L PN where L Pk is the pkth coordinatewise
Lipschitz constant of V. According to the results stated by Beck and Tetruashvili [2]
(see Theorem 3.9 in [2]), {W(yk 1} has a non- asymptotic linear convergence rate if
the following three conditions hold: (i) ¥ is strongly convex over R"~!, (ii) Vi is
Lipschitz continuous over R”~!, (iii) the optimal solution y* of problem (61) exists.
The third point has already been proved before. The first point follows from Assump-
tion 2 and the fact that the columns of M are linearly independent. The second point
follows from the factthat Ly 7, ..., L,_1,j are the coordinatewise Lipschitz constants
of Vi over R"~!. In particular, using known results (see Lemma 2 in [22]) and the
fact that j = n, we can write

n—1
VY () = VeI <Y Ligly =yl
i=1 (63)
= ZLi,j Iy =y"lI, Vy,y" eR"L
i#]

Therefore, a real number C € [0, 1) exists such that

YO =y < Cly 08D =y ML Yk =o0. 64

Then, we get (59) by using the fact that ¥ (y*) = f(x*), v 1) = f(F1) = f(x5)

and 1/j(yk—t—l,l) — f(Zk+1’1) — f(xk+1).
Now, we prove (60). First observe that, by Theorem 3.9 in [2], the constant C
appearing in (64) is given by

v
2DJPﬁX[1 +(n— 1)(L‘/f)2/(DJPi“)2] ’

C=1-

@ Springer



436 A. Cristofari

where ¥ and LY are the strong convexity constant of ¢ over R"~! and the Lips-
chitz constant of Vi over R"~!, respectively, while L‘jpm and LjIpax are defined as in

the assertion of the theorem. Using (63), we can upper bound LY with > 27 Lij-
Therefore, to obtain (60), we only have to show that

w’ =p, (65)

i.e., we have to show that ¥ is strongly convex over R"~! with constant j. Using the
fact that f is strongly convex over R” with constant s, for any y’, y” € R?~! and for
all 6 € [0, 1] we can write

YOy + 1 —0)y") = f(MOY + (1 —-0)y") +w)
= f(OMY +w)+ (1 — )My +w))
<O0f(My +w)+ (1 —0)fF(My" +w)+

- %9(1 —0)IMy +w — My — w]|?

=0y () + 1 =0y (") — %9(1 —OIMG =y

Denoting by Amin(M T M) the smallest eigenvalue of M T M, we also have | M (' —
YONP = =y MM = y") = dnin(MT M)y’ — y"||?, and then,

YOy + 1 —0)y") <o)+ 1 -0y
—%xmin<MTM>e(1 0y — "I (66)

Note that M7 M has all entries equal to 1, except for those on the diagonal that are
equal to 2. Namely,

MM = I 1yx-1) + Ln—1)xm—1)»

where 1(;,—1)x(—1) is the (n — 1) dimensional identity matrix and 1(,—1)x (»—1) is the
(n — 1) x (n — 1) matrix made of all ones. It follows that Amin(MT M) =14+0=1,
that, combined with (66), implies that 1 is strongly convex over R”~! with constant
. Then, (65) holds and the result is obtained. O

Let us conclude this section by discussing the relation between AC2CD and the
classical coordinate descent method. As appears from the proofs of Theorem 2 and
Theorem 3, this relation is crucial to obtain linear convergence rate of AC2CD and it
also provides further insight into the proposed method.

Indeed, for every k& > 0, a cycle of inner iterations (k, 1), ..., (k,n) in AC2CD
can be seen as a cycle of iterations of the classical coordinate descent method, with
cyclic selection rule, applied to an equivalent transformed problem. In particular, for
every k > 0 we can use the variable transformation given in (48), (49) and (50), with
J replaced by j(k), to define the function ¥ (y):=f (M y+ w) and recast (1) as an

@ Springer



An almost cyclic 2-coordinate descent method 437

equivalent problem. Note that, in absence of any information on j(k), the resulting
equivalent transformed problem

— can change from k to k + 1, as j (k) can change;

— has bound constraints [; < y; < u;, i € {1,...,n}\{j(k)}, plus the constraints
ligy < b =3, iy Vi = Uik where the latter follow from the constraints
Liy < Xy < ujey in (1)

Then, in the proofs of Theorems 2 and 3, we obtain a linear convergence rate by
exploiting the rule used to compute j (k) that, together with other standard assumptions,
guarantees that j (k) = jforall k > k and x}f € (I7, uj) (for problems with no bounds

on the variables, we have k = 0). In this way, for all sufficiently large k, the equivalent
transformed problem remains the same and the constraints /) < b — Zi# i Vi =
u jky can be ignored. It also follows that quickly identifying the index j in problems
with finite bounds on the variables may benefit the algorithm. Then, it may be useful
combining AC2CD with some strategies to predict which variables are at the bounds
in the final solution, such es, e.g., those proposed in [6,8,11,27].

Finally, the approach of transforming (1) into an equivalent simply constrained
problem has some connections with the method proposed by Bertsekas in [3] for
solving problems with linear inequality constraints. In particular, at every iteration,
the algorithm proposed in [3] selects a subset of n indices that comprises all those
corresponding to the binding constraints. Then, assuming linear independence of these
constraints, a linear variable transformation is used to obtain a new problem with a first
block of box constraints, plus a second block of general linear inequality constraints
which are not binding at the current point and can be ignored for the computation of
the search direction, obtained by a Newton strategy. So, the main difference between
AC2CD and the method proposed in [3] is that, for every k > 0, we perform a cycle
of inner iterations to update one coordinate at a time in the equivalent transformed
problem.

6 Numerical results

In this section, we present the numerical results of AC2CD on some structured prob-
lems where the computation of the partial derivatives of the objective function is cheap
with respect to the computation of the whole gradient. The codes were written in Mat-
lab (version R2017b) and the experiments were run on an Intel(R) Core(TM) 17-7500U
with 16 GB RAM memory.

First, we considered the Chebyshev center problem and the linear support vector
machine (SVM) training problem, which both can be written as

min () = 247 07 0x —¢"x,

Skt (67)
i=1

i <xi<w, i=1,...,n,

@ Springer



438 A. Cristofari

for some Q € R"*", g e R",[; e RU{—oo}andu; € RU{o0},i = 1,...,n.
On these convex quadratic problems, we compared AC2CD with the following block
decomposition methods:

— Random Coordinate Descent (RCD) [21], which, at every iteration, randomly
selects two distinct variables from a given probability distribution and updates
them by minimizing a quadratic model of the objective function;

— Maximal Violating Pair (MVP) [9,26], which, at every iteration, selects the two
variables that most violate the stationarity conditions (2) and moves them by using
an appropriate stepsize that, in our case, is computed by an exact line search.

Note that RCD, like AC2CD, does not need to compute the whole gradient of the
objective function for choosing the working set. On the other hand, MVP exploits
a Gauss-Southwell (or greedy) strategy which requires to calculate the whole vector
V £ (x¥) at each iteration k.

Then, we focused on problems with strongly convex objective function and no
bounds on the variables, for which non-asymptotic linear convergence rate of AC2CD
has been proved in Sect. 5. In this case, we compared our algorithm with two versions
of RCD that were proposed in [20] for problems of the following form:

min f(x) =Y fi(x),
i=1

n
2% =0,
i=1

(68)

where each f;: R — R is convex and has a Lipschitz continuous derivative with

constant L; > 0. In our experiments, we considered the same test problems used

in [20,32], which are of the form of (68), with strongly convex f;,i =1, ..., n.
Lastly, we considered the following non-convex problems:

1
min f(x) = ExTQTDQx — qTx,

S k=1 (69)
i=1

x>0, i=1,...,n,

for some Q € R™*", D € R™ and ¢ € R", choosing D as a diagonal matrix so
that Q7 DQ is indefinite. On these problems, AC2CD is still compared with RCD
(whose analysis for the non-convex case can be found in [25]) and MVP with exact
line search (whose analysis for non-convex problems over the unit simplex can be
found in [4], just observing that, for this class of problems, MVP coincides with the
so called pairwise Frank-Wolfe method).

Finally, to have a fair comparison between AC2CD and RCD, in the following
results we consider an outer iteration of RCD as made of n inner iterations, each of
them involving a minimization step with respect to a pair of coordinates.

@ Springer



An almost cyclic 2-coordinate descent method 439

6.1 Implementation issues

In this subsection, we describe some implementation details concerning

— the computation of { p’l‘, ceey pﬁ} at step 3 of Algorithm 1,
— the computation of the derivatives of the objective function in each algorithm,
— the termination criterion used in each algorithm.

As regards the first point, a permutation { p’f, ey pﬁ} of {1, ..., n} was randomly
computed at the beginning of every outer iteration k£ of AC2CD (it is known that,
in coordinate descent methods with cyclic selection rules, periodically shuffling the
ordering of the variables may speed up convergence in practice [7,31]).

For what concerns the derivatives computation, this operation is straightforward for
problem (68), given the separable structure of the objective function. More attention
is needed for problems (67) and (69), since, due to the possibly excessive dimension
of Q, in these problems the Hessian matrices Q7 Q and QT D Q were not stored. For
what concerns problems (67), using some ideas from [10,21] we introduced the vector
r(x):=Qx, updating it during the iterations of each considered algorithm, so that

Vifx)=0iTr(x)—gqi, i=1,...,n, (70)

where Q; is the ith column of Q. We see that computing any partial derivative has
a cost O(m) and we have an extra cost O(2m) to update the vector r(x) (since the
considered algorithms can move two variables at a time). These costs can also reduce
when Q is sparse. Similarly, for what concerns problems (69), we introduced the
vector r(x):=D Qx and (70) still holds (in this case we have a cost O(3m) to update
r(x), due to the presence of the diagonal matrix D).

It is worth observing that, in AC2CD and RCD, both variables included in the
working set at the beginning of an inner iteration may be at the lower or at the upper
bound. In this case, the minimization step is not performed in practice (since the two
variables cannot be moved), and then, the partial derivatives of the objective function
do not need to be computed. So, by inserting a simple check in the scheme of AC2CD
and RCD, we avoided to compute the partial derivatives of the objective function when
not necessary.

For what concerns the termination criterion used in AC2CD, let us first rewrite the
stationarity conditions (2) in an equivalent form:

min {Vi f(x)} — max {Vif(x)} = 0.

itxp<u;

Exploiting some ideas from [10], the termination criterion used in AC2CD tries
to approximately satisfy the above relation without the need of computing the
whole gradient of the objective function, in order to preserve efficiency. To this

extent, at the beginning of every outer iteration k we first set G’I‘nin = oo and
Gk .« = —oo. Then, at every inner iteration (k,i) we update G];nin and Gk as

follows: for each variable z];’i included in the working set, if z];l’l < uyj then we
update Gk, « min{Gk Vhf(zk’i)}, and if zlfl” > [, then we update Gk«

min min’ max

@ Springer



440 A. Cristofari

max{anaX, Vi f (z51)}. So, AC2CD was stopped at the end of the first outer iteration
k satisfying
Gho— Gl = e an

min max

where € is a scalar that was set to 10~!. Since Vp[_kf(zk'i) and Vj(k)f(zk’i) are not

computed when both z];’; and z];('k) are at the lower or at the upper bound, for the rea-

sons explained above, wle also added a final check after that (71) is satisfied, evaluating
all those components of V f (x¥) that were skipped, if any.

For the convex problems considered in our experiments, we used the final objective
value fAC?CP returned by AC2CD as benchmark for termination of RCD and MVP.
Namely, RCD and MVP were stopped when they produced a point x* satisfying

f(xk) _ fACZCD
T =Y Y

where v is a scalar that was set to 107°. Clearly, a termination criterion based on (72)
cannot be used when the objective function is non-convex, since the algorithms may
converge to different stationary points. So, for the non-convex problems (69), the
same termination criterion used in AC2CD was also used in RCD (recall that we
consider an outer iteration of RCD as made of n inner iterations), while MVP, that
computes V f(x¥) at each iteration k, was stopped when it produced a point x* such
that minj—y,___{Vi f(x*)} = max;. ~0fVi f (xF)} = =107".

.....

6.2 Chebyshev center

Givena finite setof vectors v!, ..., v" € R™, the Chebyshev center problem consists in
finding the smallest ball that encloses all the given points. It arises in many fields, such
as mechanical engineering, biology, environmental science and computer graphics
(see [33] and the references therein for more details). The Chebyshev center problem
can be formulated as the following convex standard quadratic problem:

n n n
min f(x) =Y Y @) v xix; = Y 0w
i=1 j=1 i=1
n
in =1
i=1

x>0, i=1,...,n.

Nine synthetic data sets were created by randomly generating each compo-
nent of the samples v, ..., v" from a standard normal distribution, using n =
40,000, 60,000, 80,000 and m = 0.01n, 0.051, 0.1n for every fixed n. The nine data
sets are listed below:

(1) n = 40,000, m = 400;

@ Springer



An almost cyclic 2-coordinate descent method 441

(i) n = 40,000, m = 2000;
(iii) n = 40,000, m = 4000;
(iv) n = 60,000, m = 600;
(v) n = 60,000, m = 3000;
(vi) n = 60,000, m = 6000;
(vii) n = 80,000, m = 800;
(viii) n = 80,000, m = 4000;
(ix) n = 80,000, m = 8000.

For each data set, a randomly chosen vertex of the unit simplex was used as starting
point. In AC2CD, for all k£ > 1 the index j(k) was computed as in (46), with T = 0.9
(for k = 0 we set j(k) € Argmax,_; _,Dp (x%), and the stepsize was computed as
described in the last part of Sect. 4.2 for quadratic objective functions, with y = 1/2
and A, = 10'2. In RCD, an O(1) procedure was used at each inner iteration to
randomly choose, from a uniform distribution, the pair of distinct variables to be
updated. In particular, this procedure first randomly generates a real number r from a
uniform distribution on (0, 2 (”2_ D) and then sets i = 1 + | (VT+8[r]+1)/2] and
j=1+ |_|_rj -0 —-2)i— 1)/2J, where |-| denotes the floor operation.

In Table 1, we report the results for each algorithm in terms of final objective value,
number of (outer) iterations and CPU time in seconds. To analyze how fast the objective
function decreases in the three considered algorithms, in Fig. 1 we plot the normalized
optimization error EX versus the CPU time. Coherently with the termination criterion
used in the experiments, E¥ is computed as the left-hand side of (72).

We see that, on all the considered data sets, AC2CD outperforms RCD both in CPU
time, by a factor between 2 and 14, and in the number of outer iterations, by a factor
between 60 and 247. Looking at Fig. 1 more in detail, we observe that AC2CD and
RCD are comparable in the first iterations, but AC2CD is able to compute a solution
with higher precision in a smaller amount of time. In comparison with MVP, we
observe that AC2CD is slightly slower on the data sets with m = 0.01n, i.e., data
sets (i), (iv) and (vii) . On all the other data sets, on average AC2CD is more than 2
times faster than MVP in CPU time.

6.3 Linear SVM

Linear Support Vector Machine [5] is a popular technique for data classification, which
aims at separating a given set of samples by a hyperplane. Formally, let v', ..., v" €
R™ be a finite set of vectors and a?, ..., a" € {—1, +1} be the corresponding labels.
To train a linear SVM, we can solve the following convex quadratic problem:

1 n
min f(x) = 5 ZZa’a](v’)vaxixj — in
i=1

i=1 j=1
n
Za"x,:o
i=1
0<x;<C, i=1,...,n,

@ Springer



A. Cristofari

442

SPU0dIS UT AWM}

NdD Y} SeILJIPUI UWN[OD PITY} Y} PUE SUONBINI (ISINO) JO JOqUINU ) SJLIIPUT UWN[OD PUOIAS dY) ‘An[eA ANIA[QO [BUY dY) SAIBIIPUI UWN[OD ISIY ) ‘WYILIOF[E YO I0,]

S6'SL |§47 YT OLES — TT8S EPLI YT OLES — 0012 ST ST0LE8 — (x)
0S°T€ 89¢ 68°L9TY — 66'8S €96T 68°L9TY — €891 LT 68°L9TY — (TIa)
€Le 70T 8T'€€6 — 8%'CS 16€L 8T'€€6 — 98°¢ 0€ 8T°€€6 — (1)
ot So¢ 104169 — 19°0t 2091 1071€9 — 65°€l ¥T 0H1€9 — (1A)
87°G1 80¢ 0t'8TTE — S¥'LT sTee 0t'8TTE — 61'L 9C 1¥'87C€ — (»)
61 891 8CTOIL— e1e 0919 8CTOIL— 69'C 63 8CTOIL— (AD
9Tl 18¢C TSHSTh — 8L'%C 1081 SYSTh — 708 ST SYSTh — (1)
S6'¥ 81¢ o' 161 — S6'TI €01¢ o161 — S9'C 9T o' 161 — ()
86°0 €81 LL'T6Y — 9T'ST 0TSy LL'T6Y — vl LT LL'T6Y — O}
(s) uuny, 11 lao (s) w1y, 1110 Qo (s) uury, I 19O Qo
dAIN anyd anwov 198 BIR(

swoqoid 19Juad AYsAqay)) uo JAIN PUB DY ‘ADTIV JO SINSAY | 3|qel

pringer

As



An almost cyclic 2-coordinate descent method 443

data set (i) data set (ii)

100

Fig. T Normalized optimization error (y axis) versus CPU time in seconds (x axis) for AC2CD, RCD
and MVP on Chebyshev center problems. The y axis is in logarithmic scale and, for each algorithm, the
normalized optimization error is computed as the left-hand side of (72)

@ Springer



444 A. Cristofari

where C is a positive parameter, set to 1 in our experiments. As mentioned in Sect. 2,
the above problem can be easily rewritten as in (1).

Eight data sets were downloaded from the LIBSVM [6] webpage https://www.csie.
ntu.edu.tw/~cjlin/libsvmtools/datasets. They are listed below:

(1) gisette (n = 6000, m = 5000);

(i) rcvl (n = 20,242, m = 47,236);
(iii) a9a (n = 32,561, m = 123);

(iv) w8a (n = 49,749, m = 300);

(v) ijennl (n = 49,990, m = 22);

(vi) real sim (n = 72,309, m = 20,958);
(vii) webspam (n = 350,000, m = 254);
(viii) covtype (n = 581,012, m = 54).

For each data set, we used as starting point a vector made of all zeros except for
two randomly chosen variables that were set strictly between the lower and the upper
bound. In AC2CD, the index j (k) and the stepsize were computed as described before
for the Chebyshev center problem. In RCD, the working set was randomly chosen
at each inner iteration by the same (O(1) procedure used for the Chebyshev center
problem.

The results for each algorithm are reported in Table 2 in terms of final objective
value, number of (outer) iterations and CPU time in minutes. On the first six data sets,
which have less than 10° samples, we see that MVP has the lowest CPU time, but
AC2CD still outperforms RCD. In particular, on these problems AC2CD is on average
faster than RCD by a factor of almost 5 in CPU time and by a factor larger than 11
in the number of outer iterations. On the two largest data sets, having more than 103
samples, AC2CD achieves the best performances. In particular, considering the CPU
time, on data set (vii) AC2CD is more than 42 times faster than RCD and more than
4 times faster than MVP, while on data set (viii) AC2CD is about 15 times faster than
RCD and about 13 times faster than MVP.

6.4 Problems with no bounds on the variables

The last convex test problems in our experiments are of the form of (68). We considered
the same class of objective functions used in [20,32], that is,

1
fite) = 5ai(xi — ¢i)? +log(1 +exp(b;(x; — dy))), i=1,...,n,

wherea; > 0,i =1,...,n,and b;,c;,d; € R,i =1, ..., n.Itis possible to show that
each f; is strongly convex with constant @; and has a Lipschitz continuous derivative
with constant L; = a; + (1/4)b? (see [20,32]).

Six artificial problems were created. The first three have the following dimension:
(i) n = 5000, (ii)) n = 10,000, (iii) n = 20000, with a; randomly generated from
a uniform distribution on (0, 15) and b;, ¢;, d; randomly generated from a uniform
distribution on (— 15, 15). The last three problems have the same dimension as the
previous ones, i.e., (iv) n = 5000, (v) n = 10,000, (vi) n = 20,000, but with a;

@ Springer


https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

445

An almost cyclic 2-coordinate descent method

So)NUIW UT dW)
NdD 2y} SeILJIPUT UWN[OD PITY} AY} PUE SUONEINI (ISIN0) JO JOqUINU ) SJLIIPUT UWN[OD PUOIAS dY) ‘An[eA ANIA(QO [BUY 9 SAIBIIPUT UWN[OD ISIY ) ‘WYILIOF[E YO 10,

18°87¢ ¥01°9¢6 SSTH6'LEE — 79'8LE 620€ SSTH6 LEE — €T°ST 002 88'TH6°LEE — (T1a)
6S'1¥ 9€¥'29 SS'8HP 69 — 98V 867C SS'8P 69 — 6L'6 09 19°8%1°69 — (1)
€9'Y S0S°1¢T 16'7ES — vL'9EY 8¢ 16'77ES — 1098 6¢ 6 7ES — (18)
9¢'0 €I0°LI 76858 — se'y €79¢ 7’6858 — St°0 101 £7'6858 — (»)
60 LS6°0F LS'98%T — 66'1¢€ 86€L LS98%T — 9T€l 6% LS'98%1 — (AD)
2! €L6°9L LUTEY TT — 61'LT 1961 LUTEY TT — €9°¢ 26¢€ 8I'CEY T — (m
L8°0 99 9E'SLT — S¥'S9 101 9¢'SLT — 6L'ST 6C LESYLT — ()
091 661¢ L9°0— ¥$'6 L6 L9°0— L9Y 93 L90— ®
(uru) ouy, 1] a0 (uru) suuty, I 19O lao (uruwr) oy, 1L 190 Qo
dAIN anyd adwov Jesele(

swo[qoid Sururen WAS Teaur] uo JAIN Pue ¥ ‘AOTIV JO SINSaY z3|qel

pringer

As



446 A. Cristofari

randomly generated from a uniform distribution on (0, 2), b; randomly generated
from a uniform distribution on (— 2, 2) and ¢;, d; randomly generated from a uniform
distribution on (— 10, 10).

In all of these problems, the zero vector was used as starting point. In AC2CD, the
index j (k) was maintained fixed for all £k > 0 and was chosen as an element of the set
Argmax;_; ,1/L;, while the stepsize was computed as described in Proposition 3,
with y = 1/2 and I:l-,j replaced by L; + L;,i, j =1,..., n (see Remark 2).

Our algorithm was compared with two versions of RCD proposed in [20], using
blocks made of two variables and different probability distributions (studied in [20]),
which are now described. Denoting by p;; the probability to select a pair of distinct
variable indices (i, j) at any inner iteration of RCD, we first used a uniform distribu-
tion, i.e., all p;; have the same value, and then we used probabilities that depend on the

.....

We name the two resulting algorithms RCDypit and RCDyps, respectively. More in
detail, to choose the working set at any inner iteration, in RCDyir we used the same
O(1) procedure described before for the Chebyshev center problem, while in RCDpjps
we used the random generator proposed by Nesterov in [22], adjusted for our purposes.
It requires to randomly generate one real number from a uniform distribution on (0, 1)
and perform O(ln(@)) operations on some vectors (whose preliminary definition
has a cost that has not been included in the final statistics).

In Table 3, we report the results for each algorithm in terms of final objective
value, number of outer iterations and CPU time in seconds. We see that, on the first
three problems, RCDyyir achieves the best performances: in terms of CPU time it is
faster than AC2CD by a factor of about 1.5, but AC2CD is almost 13 times faster than
RCDyps on average. On the last three problems, in terms of CPU time AC2CD outper-
forms both RCDypif and RCDLips by an average factor of about 2 and 15, respectively.
Moreover, we observe that the number of outer iterations of AC2CD and RCDyjps is
similar on all the considered problems, but the amount of time needed to converge is
remarkably different, with AC2CD being much faster. This is due to the procedure
used in RCDy jps to randomly generate, at each inner iteration, a pair of variable indices
from a Lipschitz-dependent probability distribution.

6.5 Non-convex problems

To test how AC2CD works when the objective function is non-convex, we finally
considered problems of the form of (69). Each problem was created by the following
procedure: first the elements of Q and those of g were randomly generated from a
standard normal distribution and from a uniform distribution on (0, 1), respectively;
then the diagonal elements of D were set to 1, except for a prefixed number of them that
were randomly chosen and set to negative values randomly generated from a uniform
distribution on (— 1, 0).

More in detail, we generated three problems by fixing n = m = 7000 and consid-
ering a number of negative diagonal elements of D equal to 0.35m, 0.5m and 0.65m,
respectively. The three problems are summarized below:

@ Springer



447

An almost cyclic 2-coordinate descent method

SPU0d?S UT AW

NdD 9y} SALDIPUT UWN[OD PITY) dY) PUL SUOTIEINI JANO JO IOqUINU Y} SAIBIIPUT UWNJOD PUOIAS A} ‘ON[eA 9ATIO2[QO [RUT ) SOILIIPUT UWN[OD ISI Y} ‘WPHOS[E YOBd 10

I7LTT 888 91'%98°8S 1e¢l LOST 91'+98°8S 699 788 11'%98°8S (18)
9L'LT 181 1$°T6L°0€ Iy 1101 1S°T6L°0€ ¥6'l 8% 8%°T6L°0€ (»)
LST 101 601871 LEO 081 16°01S¥1 61°0 96 06°01S¥1 (AD)
8ETILS OIL'EY TrSY6' 1LY 19°6LT 181°%¢€ TSY6 1LY IL°L8€ 91T'9% SL'YY6° L9 ()
0S¥1¥ 1S2L 05°06S ‘9€€ ¥8'€C 6965 05°06S 9€€ 19°¢g 8ELL 91°06S ‘9€€ ()
80'100T SIT0F €L'996°991 ¥9'8S §79°6C €L°996°991 L8 ¥19°0% 957996991 ®
(s) ouuny, I 190 fao (s) ouuty, 1 1IN0 lao (s) ouury, I 190 a0

STaoy TNy adeov wo[qoIg

SOIQRIIRA A1) UO SpPUNOQ ou s swafqoid paurensuod Apeaury ASurs uo STy pue FUNGHY ‘qDTOV JO NNSIY € 3|qel

pringer

As



A. Cristofari

448

¥8°1¢ #08¢ 1L'L— 91'19 ovis 0T'L— 8% 419 €¢'L— 9ds—(m)
il 6L€8 €S'L— LE9TI 910°CI 69°L— SIey St ILL— ¢ds—(m)
1969 TTis wL— 96°891 T€0°91 9L — €8°LT 62 69°L— yds—(m)
86°9¢ 869¢C L8'L— 6L°0% €e6e YL — LT61 702 LEL— ¢ds— ()
8€'LS 90Tt 69°L— 88°001 €7€6 19L— 6569 8¢€L 08'L— zds—(m
Sese L6ST 9L — LO9TI 969°11 61'8— €76 966 16'L— [ds—(m)
STy 01°658°6C ore— €9°GEl 0T €TLE ore— 61'19 09°€TS 90°¢ — Sae — (1)
£€9°€9¢C L6061 0r'e— 9 671 661+ 60°€ — SAYY YLy 60°€ — 01 ds—(
19°S1¥ LSO0€ 0re— £6'76 909¢C vIe— S8'I¢ iy S0~ 6ds—(
89 vt €91°C¢ e 18°L9 9LLI ¥0'€ — TwsL 059 y1e— g ds—(n
€0°LS9 TS'LYy e SLEST STey vIe— 0t'ss Ly L6'T— Lds—(
L0°00€ €IL1T 90°¢ — SH'8TI £96¢ ere— 91°8% [28% €0°€— 9ds—(
61°LEY 6L9°1¢ 90°¢ — 96°¢I1 6€1¢ ere— 62°6S LOS LOE— ¢ds—(
11Ty TIL0¢E 90°¢ — 96'801 968C ore— 10°€€ 8LC 66'C— pds—(»
0t'9¢€ Y9€YT S0'e— YE1ET G869 yre— 95°L9 8¢ 60°¢ — ¢ds—(n
8I° 1€l 9616 00°€— 9TTLY 0L9Y 90°¢ — 16'LS €61 Ire— zds—(n
9T'SIL 89L°TS re— SPSEl €LYE LOE— 06°0T1 6 ore— [ds—(n
(s) oy, T Qo (s) oy, o) 10O a0 (s) ouury, I 10 lao
dAIN any aneov woa[qoid

swo[qoid XaAu0d-uou uo JAN pue DY ‘ADTIV JO SINSAY ¥ 3|qel

pringer

as



449

An almost cyclic 2-coordinate descent method

SPU0dJS UI AW

NdD 2y} SOILIIPUT UWNJOD PITY) Y} PUB SUONEIANT (I2IN0) JO IOqUINY ) SALIIPUT UWN[OD PUOIIS ) ‘AN[eA ANI[qO [eUT o) SAJBIIPUT UWN[OD ISI ) ‘WIYILIOT[E YO 10,

650 0¥t €0°€S — SY'6t 08'99€¢°LT 8L°9S — ¥E'S 00'%9 SI'8S — 3ae — (1p)
SL0 LS L'y — €€'6 L9T8 ¥L9S — 6L 09 19— 01 ds— (1)
860 €L YT IS — L8°9¢ €ST°GI LLTL— €Tl 91 1629~ 6 ds — (1m)
LT0 0T 0T+S — 81'LT 091°9C TS — 0£'9 YL 0€HS — g ds — (1)
81°0 €1 €9°1L— 96'89 009°LT €9'1L— 69 08 €€°0L— L ds — (tm)
€e'l 001 918G — LE'SS £50°81 LLLY — S1ot 0Tt SS Iy — 9 ds — (rm)
6£°0 6T SEvy — 11°s¢ ¥8L61 $6'9S — €9°11 8¢l Sees — ¢ ds— (1)
LEO LT LS8y — €0'TY S80°61 PEYS — LST [43 80°€S — ¥ ds — (1m)
8L°0 6 SI'SS — SesTl SE6°8S L6'8Y — 0y IS SI'eL— ¢ ds— (1)
ST0 61 0'tS — 86'9C 1€0°CI 8€°0S — ¢ LE LO'TS — 7 ds— (i)
650 a4 867 — SE'S9 009°8% LL'9S — ¥$'C 4 1996 — [ ds— ()
86°0L 00612 19°L— LY'611 06'066°01 LYL— SY'Ly 0T'10S wL— Sae — (1)
EYLL 7695 19°L— Y168 020$ 08'L— €0°TL 9L 8L — 01 ds— ()
15769 4819 €5L— 99°L81 €88°91 S9'L— 8L°9¢ 68¢ 508 — 6ds—(m
80°LST €961 96'L— S9'IL L199 9'L— 11'LT 8T €9°L— g ds— (1)
€8°0% S10€ ILL— S0°TST 6¥9°€T LO'8— L6°9€ 06€ L8'L— Lds—(m)
(s) oy, 1S | a0 (s) Quuyy, I IO a0 (s) Qg I IO a0
dAIN any aneov wo[qoid

panunuod { 3jqe]

pringer

As



450 A. Cristofari

() n = m = 7000, npeg = 2450, npos = 4550, Amin = —9.19 - 10%, Ay, =

2.18 - 10%;

(i) n = m = 7000, npeg = 3500, n1pos = 3500, Amin = — 1.13 - 10*, Amax =
1.90 - 10%;

(ili) n = m = 7000, npeg = 4550, npos = 2450, Amin = — 1.30 - 10%, Amax =
1.60 - 10*;

where ny,e, denotes the number of negative eigenvalues of 0'Do, npos denotes the
number of positive eigenvalues of QTDQ, Amin denotes the smallest eigenvalue of
0T DQ and Ay denotes the largest eigenvalue of 0T DQ. Since in the non-convex
case the final objective value found by an algorithm can depend on the starting point,
for each problem we considered 10 different starting points, randomly chosen among
the vertices of the unit simplex.

The procedures used to compute the stepsize and the index j(k) in AC2CD, and
that used to choose the working set in RCD, were the same described before for the
Chebyshev center problem.

In Table 4, we report the results for each algorithm in terms of final objective value,
number of (outer) iterations and CPU time in seconds. For each problem, we use the
acronyms sp I, ..., sp 10 to distinguish the results obtained with the 10 considered
starting points, while avg indicates the results averaged over the 10 runs. We first
observe that, for problems (ii) and (iii) , the final objective values found by AC2CD
are on average smaller than those found by RCD and MVP, while we have the oppo-
site situation for problem (i). We also see that there is a notable difference between
AC2CD and RCD in both CPU time and the number of outer iterations, especially on
problem (iii). Finally, in comparison with MVP, we note that AC2CD is on average
faster on problems (i) and (ii) , but it is slower on problem (iii).

7 Conclusions

In this paper, a block coordinate descent method has been presented for minimizing
a continuously differentiable function subject to one linear equality constraint and
simple bounds on the variables. In the proposed method, the working set is chosen
according to an almost cyclic strategy that does not use first-order information. So,
the whole gradient of the objective function does not need to be computed during
the algorithm, leading to high efficiency when the problem dimension is large and the
partial derivatives of the objective function are cheap. Global convergence to stationary
points has been established under an appropriate assumption on the level set, and linear
convergence rate has been proved under standard additional assumptions. Promising
numerical results have been obtained on different classes of test problems.

There are a number of open questions that indicate directions in which this work
can be extended and that can represent challenging tasks for future research. First,
it would be worth investigating if, by suitably modifying the working set selection
rule or adding conditions to the stepsize, global convergence can be obtained without
Assumption 1. Other interesting questions would be how to generalize the proposed
method to problems with more than one linear equality constraint, and how to adjust

@ Springer



An almost cyclic 2-coordinate descent method 451

our approach to realize a parallel algorithmic scheme (for example, by a Jacobi-type
approach). We wish to report further results in the future.

References

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Beck, A.: The 2-coordinate descent method for solving double-sided simplex constrained minimization

problems. J. Optim. Theory Appl. 162(3), 892-919 (2014)

. Beck, A., Tetruashvili, L.: On the convergence of block coordinate descent type methods. SIAM J.

Optim. 23(4), 2037-2060 (2013)

. Bertsekas, D.P.: Projected Newton methods for optimization problems with simple constraints. SIAM

J. Control Optim. 20(2), 221-246 (1982)

. Bomze, .M., Rinaldi, F., Rota Bulo, S.: First-order methods for the impatient: support identifica-

tion in finite time with convergent Frank-Wolfe variants. Optimization Online (2018). http://www.
optimization-online.org/DB_HTML/2018/07/6694.html

. Boser, B.E., Guyon, .M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Pro-

ceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144—-152. ACM (1992)

. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst.

Technol. (TIST) 2(3), 27 (2011)

. Chang, K.W., Hsieh, C.J., Lin, C.J.: Coordinate descent method for large-scale 12-loss linear support

vector machines. J. Mach. Learn. Res. 9, 1369-1398 (2008)

. Cristofari, A., De Santis, M., Lucidi, S., Rinaldi, F.: An active-set algorithmic framework for non-

convex optimization problems over the simplex (2018). arXiv preprint arXiv:1703.07761

. Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using second order information for training

support vector machines. J. Mach. Learn. Res. 6, 1889-1918 (2005)

. Hsieh, C.J., Chang, K.W., Lin, C.J., Keerthi, S.S., Sundararajan, S.: A dual coordinate descent method

for large-scale linear SVM. In: Proceedings of the 25th International Conference on Machine Learning,
pp. 408-415. ACM (2008)

Joachims, T.: Making large-scale support vector machine learning practical. In: Scholkopf, B., Burges,
C.J., Smola, A.J. (eds.) Advances in Kernel Methods—Support Vector Learning, B, pp. 169-184. MIT
Press, Cambridge (1999)

Konnov, I.V.: Selective bi-coordinate variations for resource allocation type problems. Comput. Optim.
Appl. 64(3), 821-842 (2016)

Lin, C.J.: On the convergence of the decomposition method for support vector machines. IEEE Trans.
Neural Netw. 12(6), 1288-1298 (2001)

Lin, C.J., Lucidi, S., Palagi, L., Risi, A., Sciandrone, M.: Decomposition algorithm model for singly
linearly-constrained problems subject to lower and upper bounds. J. Optim. Theory Appl. 141(1),
107-126 (2009)

Liuzzi, G., Palagi, L., Piacentini, M.: On the convergence of a Jacobi-type algorithm for singly linearly-
constrained problems subject to simple bounds. Optim. Lett. 5(2), 347-362 (2011)

Lucidi, S., Palagi, L., Risi, A., Sciandrone, M.: A convergent decomposition algorithm for support
vector machines. Comput. Optim. Appl. 38(2), 217-234 (2007)

Luo, Z.Q., Tseng, P.: On the convergence of the coordinate descent method for convex differentiable
minimization. J. Optim. Theory Appl. 72(1), 7-35 (1992)

Manno, A., Palagi, L., Sagratella, S.: Parallel decomposition methods for linearly constrained problems
subject to simple bound with application to the SVMs training. Comput. Optim. Appl. 71(1), 115-145
(2018)

Necoara, I.: Random coordinate descent algorithms for multi-agent convex optimization over networks.
IEEE Trans. Autom. Control 58(8), 2001-2012 (2013)

Necoara, 1., Nesterov, Y., Glineur, F.: Random block coordinate descent methods for linearly con-
strained optimization over networks. J. Optim. Theory Appl. 173(1), 227-254 (2017)

Necoara, I., Patrascu, A.: A random coordinate descent algorithm for optimization problems with
composite objective function and linear coupled constraints. Comput. Optim. Appl. 57(2), 307-337
(2014)

Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
J. Optim. 22(2), 341-362 (2012)

@ Springer


http://www.optimization-online.org/DB_HTML/2018/07/6694.html
http://www.optimization-online.org/DB_HTML/2018/07/6694.html
http://arxiv.org/abs/1703.07761

452

A. Cristofari

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, vol. 87. Springer, New
York (2013)

Palagi, L., Sciandrone, M.: On the convergence of a modified version of SVM light algorithm. Optim.
Methods Softw. 20(2-3), 317-334 (2005)

Patrascu, A., Necoara, I.: Efficient random coordinate descent algorithms for large-scale structured
nonconvex optimization. J. Glob. Optim. 61(1), 19-46 (2015)

Platt, J.C.: Sequential minimal optimization: a fast algorithm for training support vector machines.
In: Scholkopf, B., Burges, C.J., Smola, A.J. (eds.) Advances in Kernel Methods—Support Vector
Learning, pp. 185-208. MIT Press, Cambridge (1998)

Raj, A., Olbrich, J., Gértner, B., Scholkopf, B., Jaggi, M.: Screening rules for convex problems (2016).
arXiv preprint arXiv:1609.07478

Reddi, S., Hefny, A., Downey, C., Dubey, A., Sra, S.: Large-scale randomized-coordinate descent
methods with non-separable linear constraints (2014). arXiv preprint arXiv:1409.2617

Tseng, P.: Descent methods for convex essentially smooth minimization. J. Optim. Theory Appl. 71(3),
425-463 (1991)

Tseng, P., Yun, S.: A coordinate gradient descent method for linearly constrained smooth optimization
and support vector machines training. Comput. Optim. Appl. 47(2), 179-206 (2010)

Wright, S.J.: Coordinate descent algorithms. Math. Program. 151(1), 3-34 (2015)

Xiao, L., Boyd, S.: Optimal scaling of a gradient method for distributed resource allocation. J. Optim.
Theory Appl. 129(3), 469-488 (2006)

Xu, S., Freund, R.M., Sun, J.: Solution methodologies for the smallest enclosing circle problem.
Comput. Optim. Appl. 25(1-3), 283-292 (2003)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


http://arxiv.org/abs/1609.07478
http://arxiv.org/abs/1409.2617

	An almost cyclic 2-coordinate descent method for singly linearly constrained problems
	Abstract
	1 Introduction
	2 Preliminaries and notation
	3 The almost cyclic 2-coordinate descent (AC2CD) method
	3.1 Description of the algorithm
	3.2 Convergence to stationary points

	4 Computation of the stepsize
	4.1 General non-convex objective functions
	4.2 Objective functions with Lipschitz continuous gradient
	4.3 Strictly convex objective functions

	5 Convergence rate analysis
	6 Numerical results
	6.1 Implementation issues
	6.2 Chebyshev center
	6.3 Linear SVM
	6.4 Problems with no bounds on the variables
	6.5 Non-convex problems

	7 Conclusions
	References




