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Abstract
We present a method for solving linearly constrained convex optimization problems,
which is based on the application of known algorithms for finding zeros of the sum of
two monotone operators (presented by Eckstein and Svaiter) to the dual problem. We
establish convergence rates for the new method, and we present applications to TV
denoising and compressed sensing problems.
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1 Introduction

A broad class of problems of recent interest in image science and signal processing
can be posed in the framework of convex optimization. Examples include the TV
denoising model [24] for image processing and basis pursuit, which is well known for
playing a central role in the theory of compressed sensing. A general subclass of such
programming problems is:

min
u∈Rm1 ,v∈Rm2

{ f (u) + g(v) : Mu + Cv = d} . (1)

Here f : Rm1 → (−∞,∞] and g : Rm2 → (−∞,∞] are proper closed convex
functions, M : Rm1 → R

n and C : Rm2 → R
n are linear operators, and d ∈ R

n .
A well-known iterative method for solving optimization problems that have a

separable structure as (1) does, is the Alternating Direction Method of Multipliers
(ADMM),whichgoes back to theworks ofGlowinski andMarrocco [13], andofGabay
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and Mercier [12]. ADMM solves the coupled problem (1) performing a sequences of
steps that decouple functions f and g, making it possible to exploit the individual
structure of these functions. It can be interpreted in terms of alternating minimization,
with respect to u and v, of the augmented Lagrangian function associated with prob-
lem (1). The classical ADMM (i.e., with dual steplength 1) can also be viewed as an
instance of the method called Douglas-Rachford splitting applied to the dual problem
of (1), as was shown by Gabay in [11].

Other splitting schemes have been effectively applied to the dual problem of (1),
which is a special case of the problem of finding a zero of the sum of two maximal
monotone operators. For example, the Proximal Forward Backward splittingmethod,
developed by Lions and Mercier [17], and Passty [21], corresponds to the well-known
Tseng’s [25]AlternatingMinimization Algorithm (AMA) for solving (1). This method
has simpler steps than ADMM, in the former one of the minimizations of the aug-
mented Lagrangian is replaced by the minimization of the Lagrangian itself; however,
it requires strong convexity of one of the objective functions.

The goal of ourwork is to construct an optimization scheme for solving (1) applying
a splitting method to its dual problem. Specifically we are interested in the family of
splitting-projective methods proposed in [9] by Eckstein and Svaiter to address inclu-
sion problems given by the sum of two maximal monotone operators. We will apply
a specific instance of these algorithms to solve a reformulation of the dual problem of
(1) as the problem of finding a zero of the sum of two maximal monotone operators,
which allows us to obtain a new algorithm for solving this problem. To the best of our
knowledge, this is the first time that the methods in [9] are applied to the optimization
problem (1). The specific instance we choose to study here is motivated by preliminary
numerical results (illustrated in Sect. 2), which demonstrate the performance of the
method. This iterative method will be referred to as the Projective Method of Mul-
tipliers (PMM). The convergence properties of the PMM will be obtained using the
convergence results already established in [9]. In contrast to [9], which only studies
the global convergence of the family of splitting-projective methods, we also establish
in this work the iteration complexity of the PMM. Using the Karush–Kuhn–Tucker
(KKT) conditions for problem (1) we give convergence rate for the PMM measured
by the pointwise and ergodic iteration-complexities.

The remainder of this paper is organized as follows. Section 2 reviews some defi-
nitions and facts on convex functions that will be used in our subsequent presentation.
It also briefly discusses Lagrangian duality theory for convex optimization, for more
details in this subject we refer the reader to [22]. Section 3 presents the Projective
Method of Multipliers (PMM) for solving the class of linearly constrained optimiza-
tion problems (1). This section also presents global convergence of the PMMusing the
convergence analysis presented in [9]. Section 4 derives iteration-complexity results
for the PMM. Finally, Sect. 5 presents some applications in image restoration and com-
pressed sensing. This section also exhibits preliminary numerical results describing
the performance of the PMM in solving these problems.
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1.1 Notation

Throughout this paper, we let Rn denote an n-dimensional space with inner product
and induced norm denoted by 〈·, ·〉 and ‖·‖, respectively. For a matrix A, AT indicates
its transpose and ‖A‖F = √

trace(AAT ) its Frobenius norm. Given a linear operator
M , we denote by M∗ its adjoint operator. If C is a convex set we indicate by ri (C) its
relative interior.

2 Preliminaries

In this section we describe some basic definitions and facts on convex analysis that
will be needed along this work. We also discuss the Lagrangian formulation and dual
problem of (1). This approach will play an important role in the design of the PMM
for problem (1).

2.1 Generalities on convex functions

Given an extended real valued convex function f : Rn → (−∞,∞], the domain of
f is the set

dom f := {
x ∈ R

n : f (x) < ∞}
.

Since f is a convex function, it is obvious that dom f is convex. We say that function
f is proper if dom f 	= ∅. Furthermore, we say that f is closed if it is a lower
semicontinuous function.

Definition 1 Given a convex function f : Rn → (−∞,∞] a vector v ∈ R
n is called

a subgradient of f at x ∈ R
n if

f (x ′) ≥ f (x) + 〈
v, x ′ − x

〉 ∀x ′ ∈ R
n .

The set of all subgradients of f at x is denoted by ∂ f (x). The operator ∂ f , which
maps each x to ∂ f (x), is called the subdifferential map associated with f .

It can be seen immediately from the definition that x∗ is a global minimizer of f
in Rn if and only if 0 ∈ ∂ f (x∗). If f is differentiable at x , then ∂ f (x) is the singleton
set {∇ f (x)}.

The subdifferential mapping of a convex function f has the followingmonotonicity
property: for any x , x ′, v and v′ ∈ R

n such that v ∈ ∂ f (x) and v′ ∈ ∂ f (x ′), it follows
that 〈

x − x ′, v − v′〉 ≥ 0. (2)

In addition, if f is a proper closed convex function, then ∂ f is a maximal monotone
operator [23]. This is to say that if x, v ∈ R

n are such that inequality (2) holds for all
x ′ ∈ R

n and v′ ∈ ∂ f (x ′), then x ∈ dom f and v ∈ ∂ f (x).
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240 M. P. Machado

Given λ > 0, the resolvent mapping (or proximal mapping) [20] associated with
∂ f is defined as

(I + λ∂ f )−1(z):= arg min
x∈Rn

λ f (x) + 1

2
‖x − z‖2 , ∀z ∈ R

n .

The fact that (I + λ∂ f )−1 is an everywhere well defined function, if f is proper,
closed and convex, is a consequence of a fundamental result due to Minty [18]. For
example, if f (x) = μ ‖x‖1 = μ

∑ |xi | where μ > 0, then

(I + ∂ f )−1(z) = shrink(z, μ),

where
shrink(z, μ)i :=max{|zi | − μ, 0}sign(zi ). (3)

The Fenchel-Legendre conjugate of a convex function f , denoted by f ∗ : Rn →
(−∞,∞], is defined as

f ∗(v):= sup
x∈Rn

〈v, x〉 − f (x) , ∀v ∈ R
n .

It is simple to see that f ∗ is a convex closed function. Furthermore, if f is proper,
closed and convex, then f ∗ is a proper function (see for instance [22, Theorem 12.2]
and [1, Proposition 1.10]).

Definition 2 Given any convex function f : Rn → (−∞,∞] and ε ≥ 0, a vector
v ∈ R

n is called an ε-subgradient of f at x ∈ R
n if

f (x ′) ≥ f (x) + 〈
v, x ′ − x

〉 − ε ∀x ′ ∈ R
n .

The set of all ε-subgradients of f at x is denoted by ∂ε f (x), and ∂ε f is called the
ε-subdifferential mapping.

It is trivial to verify that ∂0 f (x) = ∂ f (x), and ∂ f (x) ⊆ ∂ε f (x) for every x ∈ R
n

and ε ≥ 0. The proposition below lists some useful properties of the ε-subdifferential
that will be needed in our presentation.

Proposition 2.1 If f : R
n → (−∞,∞] is a proper closed convex function, g :

R
n → R is a convex differentiable function in R

n, and M : Rm → R
n is a linear

transformation, then the following statements hold:

(a) v ∈ ∂ε f (x) if and only if x ∈ ∂ε f ∗(v) for all ε ≥ 0;
(b) ∂( f + g)(x) = ∂ f (x) + ∇g(x) for all x ∈ R

n;
(c) ∂( f ◦ M)(x) ⊇ M∗∂ f (Mx) for all x ∈ R

m. In addition, if ri (dom f ) ∩
range M 	= ∅, then ∂( f ◦ M)(x) = M∗∂ f (Mx) for every x ∈ R

m;
(d) if xi , vi ∈ R

n and εi , αi ∈ R+, for i = 1, . . . , k, are such that

vi ∈ ∂εi f (xi ), i = 1, . . . , k,
k∑

i=1

αi = 1,
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Projective method of multipliers for linearly… 241

and we define

x :=
k∑

i=1

αi xi , v:=
k∑

i=1

αivi , ε:=
k∑

i=1

αi (εi + 〈xi − x, vi 〉);

then, we have ε ≥ 0 and v ∈ ∂ε f (x).

Proof Statements (a)–(c) are classical results which can be found, for example, in
[16,22]. For a proof of item (d) see [2] and references therein. ��

2.2 Lagrangian duality

The Lagrangian function L : Rm1 ×R
m2 ×R

n → (−∞,∞] for problem (1) is defined
as

L(u, v, z) := f (u) + g(v) + 〈Mu + Cv − d, z〉 . (4)

The dual function is the concave function ϕ : Rn → [−∞,∞) defined by

ϕ(z):= inf
(u,v)∈Rm1×R

m2
L(u, v, z),

and the dual problem to (1) is
max
z∈Rn

ϕ(z). (5)

Problem (1) will be called the primal problem. Straightforward calculations show that
weak duality holds, i.e. ϕ∗ ≤ p∗, where p∗ and ϕ∗ are the optimal values of (1) and
(5), respectively.

A vector (u∗, v∗, z∗) such that L(u∗, v∗, z∗) is finite and it satisfies

min
(u,v)∈Rm1×R

m2
L(u, v, z∗) = L(u∗, v∗, z∗) = max

z∈Rn
L(u∗, v∗, z) (6)

is called a saddle point of the Lagrangian function L . If (u∗, v∗, z∗) is a saddle point,
then (u∗, v∗) is an optimal primal solution and z∗ is an optimal dual solution [22,
Theorem 28.3]. Furthermore, if a saddle point of L exists, then p∗ = ϕ∗, i.e. there is
no duality gap [22].

Notice that, if (u∗, v∗, z∗) is a saddle point, from the definition of L in (4) and
equalities (6) we deduce that

f (u) + g(v) + 〈
Mu + Cv − d, z∗

〉 ≥ L(u∗, v∗, z∗)
≥ f (u∗) + g(v∗) + 〈

Mu∗ + Cv∗ − d, z
〉

for all u ∈ R
m1 , v ∈ R

m2 , z ∈ R
n . From these relations we can directly derive the

Karush–Kuhn–Tucker (KKT) conditions
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242 M. P. Machado

0 = Mu∗ + Cv∗ − d,

0 ∈ ∂ f (u∗) + M∗z∗,
0 ∈ ∂g(v∗) + C∗z∗,

(7)

which describe an optimal solution of problem (1). Observe that the equality in (7)
implies that the primal variables (u∗, v∗) must be feasible. The inclusions in (7) are
known as the dual feasibility conditions. We also have that the KKT conditions hold
if and only if (u∗, v∗, z∗) is a saddle point of L .

Observe that the dual function ϕ can be written in terms of the Fenchel-Legendre
conjugates of the functions f and g. Specifically,

ϕ(z) = inf
(u,v)∈Rm1×R

m2
f (u) + g(v) + 〈Mu + Cv − d, z〉

= inf
u∈Rm1

f (u) + 〈Mu, z〉 + inf
v∈Rm2

g(v) + 〈Cv, z〉 − 〈d, z〉
= − f ∗(−M∗z) − g∗(−C∗z) − 〈d, z〉 .

Hence, if we define the functions h1(z) = ( f ∗ ◦ −M∗) (z) and h2(z) = (g∗ ◦ −C∗)
(z) + 〈d, z〉, we have that the dual problem (5) is equivalent to minimizing h1 + h2
over Rn . Furthermore, since f ∗ and g∗ are convex and closed, and M∗ and C∗ are
linear operators, it follows that h1 and h2 are convex closed functions [22]. Therefore,
z∗ is a solution of (5) if and only if

0 ∈ ∂(h1 + h2)(z
∗). (8)

Throughout this work, we assume that

(A.1) there exists (u∗, v∗, z∗) a saddle point of L .

Since condition A.1 implies that the KKT conditions hold, we have from the first
inclusion in (7) and Proposition 2.1(a), (c) that z∗ ∈ dom ( f ∗ ◦ −M∗), which implies
that h1 is a proper function. A similar argument shows that h2 is also a proper function.
Therefore, under hypothesis A.1, we have that the subdifferentials ∂h1 and ∂h2 are
maximal monotone operators.

3 The projective method of multipliers

Our proposal in this work is to apply the splitting-projective methods developed in
[9], by Eckstein and Svaiter, to find a solution of problem

0 ∈ ∂h1(z) + ∂h2(z),

and as a consequence a solution of the dual problem (5), since the following inclusion
holds

∂h1(z) + ∂h2(z) ⊆ ∂(h1 + h2)(z) ∀z ∈ R
n
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(see Eq. (8) and the comments above).
The framework presented in [9] reformulates the problem of finding a zero of the

sum of two maximal monotone operators in terms of a convex feasibility problem,
which is defined by a certain closed convex “extended” solution set. To solve the
feasibility problem, the authors introduced successive projection algorithms that use,
on each iteration, independent calculations involving each operator.

Specifically, if we consider the subdifferential mappings ∂h1 and ∂h2, then the
associated extended solution set, defined as in [9], is

Se(∂h1, ∂h2):=
{
(z, w) ∈ R

n × R
n : −w ∈ ∂h1(z) , w ∈ ∂h2(z)

}
. (9)

Since ∂h1 and ∂h2 are maximal monotone operators it can be proven that Se(∂h1, ∂h2)
is a closed convex set in R

n × R
n , see [9, Lemma 2]. It is also easy to verify that if

(z∗, w∗) is a point in Se(∂h1, ∂h2) then z∗ satisfies inclusion (8) and consequently it
is a solution of the dual problem. Furthermore, the following lemma holds.

Lemma 3.1 If (u∗, v∗, z∗) is a saddle point of L, then

(z∗, d − Cv∗) ∈ Se (∂h1, ∂h2) .

Moreover, if we assume the following conditions

(A.2) ri (dom f ∗) ∩ range M∗ 	= ∅;
(A.3) ri (dom g∗) ∩ rangeC∗ 	= ∅.
Then, for all (z∗, w∗) ∈ Se(∂h1, ∂h2) there exist u∗, v∗ ∈ R

n such thatw∗ = d−Cv∗,
w∗ = Mu∗ and (u∗, v∗, z∗) is a saddle point of the Lagrangian function L.

Proof If (u∗, v∗, z∗) is a saddle point of the Lagrangian function, then the KKT opti-
mality conditions hold, and the inclusions in (7), together with Proposition 2.1(a),
imply that

u∗ ∈ ∂ f ∗(−M∗z∗) and v∗ ∈ ∂g∗(−C∗z∗).
Thus, we have

−Mu∗ ∈ −M∂ f ∗(−M∗z∗) ⊆ ∂( f ∗ ◦ −M∗)(z∗) = ∂h1(z
∗) (10)

and

−Cv∗ ∈ −C∂g∗(−C∗z∗) ⊆ ∂(g∗ ◦ −C∗)(z∗); (11)

where the second inclusions in (10) and (11) follow from Proposition 2.1(c). Adding
d to both sides of (11) and using the definition of h2 and Proposition 2.1(b) we have
d − Cv∗ ∈ ∂h2(z∗). Now, adding this last inclusion to (10) we conclude that

−Mu∗ + d − Cv∗ ∈ ∂h1(z
∗) + ∂h2(z

∗).

The first assertion of the lemma follows combining the relation above with the equality
in (7) and the definition of Se (∂h1, ∂h2).
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By (9) we have that if (z∗, w∗) ∈ Se(∂h1, ∂h2) then w∗ ∈ ∂h2(z∗) =
−C∂g∗(−C∗z∗) + d, where the equality follows from condition A.3 and Proposi-
tion 2.1(b), (c). Thus, there exists v∗ ∈ ∂g∗(−C∗z∗) such that w∗ = −Cv∗ + d, and
applying Proposition 2.1(a) we obtain that −C∗z∗ ∈ ∂g(v∗).

Similarly, using −w∗ ∈ ∂h1(z∗), hypothesis A.2 and Proposition 2.1(a), (c), we
deduce that there is a u∗ such that −w∗ = −Mu∗ and −M∗z∗ ∈ ∂ f (u∗). All these
conditions put together imply that (u∗, v∗, z∗) is a saddle point of L . ��

According to Lemma 3.1, we can attempt to find a saddle point of the Lagrangian
function (4), by seeking a point in the extended solution set Se(∂h1, ∂h2).

In order to solve the feasibility problem defined by Se(∂h1, ∂h2), by successive
orthogonal projection methods, the authors of [9] used the resolvent mappings asso-
ciated with the operators to construct affine separating hyperplanes.

In our setting the family of algorithms in [9, Algorithm 2] follows the set of recur-
sions

λkbk + xk = zk−1 + λkwk−1, bk ∈ ∂h2(xk); (12)

μkak + yk = (1 − αk)zk−1 + αk xk − μkwk−1, ak ∈ ∂h1(yk); (13)

γk = 〈zk−1 − xk, bk − wk−1〉 + 〈zk−1 − yk, ak + wk−1〉
‖ak + bk‖2 + ‖xk − yk‖2

, (14)

zk = zk−1 − ρkγk(ak + bk), (15)

wk = wk−1 − ρkγk(xk − yk), (16)

where λk , μk > 0 and αk ∈ R are such that (μk/λk − (αk/2)2) > 0, and ρk ∈ (0, 2).
We observe that relations in (12) and the definition of the resolvent mapping yield

that xk = (I +λk∂h2)−1(zk−1 +λkwk−1) and bk = 1
λk

(zk−1 − xk)+wk−1. Similarly,

(13) implies that yk = (I + μk∂h1)−1((1 − αk)zk−1 + αk xk − μkwk−1)) and ak =
1
μk

((1− αk)zk−1 + αk xk − yk) − wk−1. Hence, steps (12) and (13) are evaluations of
the proximal mappings.

With the view to see that iterations (12)–(16) truly are successive (relaxed) projec-
tion methods for the convex feasibility problem of finding a point in Se(∂h1, ∂h2), we
define, for all integer k ≥ 1, the affine function φk(z, w) : Rn × R

n → R as

φk(z, w):= 〈z − xk, bk − w〉 + 〈z − yk, ak + w〉 , (17)

and its non-positive level set

Hφk := {(z, w) : φk(z, w) ≤ 0} .

Thus, by themonotonicity of the subdifferentialmappingswehave that Se(∂h1, ∂h2) ⊆
Hφk and we can also verify that the following relations hold1

∇φk = (ak + bk, xk − yk), (18)

1 Actually, it can be shown that γk ≥ ck , where ck > 0 (see [9, Proposition 3]).
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γk = φk(zk−1, wk−1)

‖∇φk‖2
and γk ≥ 0 (19)

for all integer k ≥ 1. Therefore, we conclude that if ρk = 1 the point (zk, wk), calcu-
lated by the update rule givenby (15)–(16), is the orthogonal projectionof (zk−1, wk−1)

onto Hφk . Besides, if ρk 	= 1 we have that (zk, wk) is an under relaxed projection of
(zk−1, wk−1).

As was observed in the paragraph after (16), in order to apply algorithm (12)–(16)
it is necessary to calculate the resolvent mappings associated with ∂h1 and ∂h2. The
next result shows how we can invert operators I + λ∂h1 and I + λ∂h2 for any λ > 0.

Lemma 3.2 Consider c ∈ R
n, θ : Rm → (−∞,∞] a proper closed convex function

and A : Rm → R
n a linear operator such that dom θ∗ ∩ range A∗ 	= ∅. Let z ∈ R

n

and λ > 0. Then, if ν̃ ∈ R
m is a solution of problem

min
ν∈Rm

θ(ν) + 〈z, Aν − c〉 + λ

2
‖Aν − c‖2 (20)

it holds that c−Aν̃ ∈ ∂h(ẑ)where h(·) = (θ∗◦−A∗)(·)+〈c, ·〉 and ẑ = z+λ(Aν̃−c).
Hence, ẑ = (I + λ∂h)−1(z). Furthermore, the set of optimal solutions of (20) is
nonempty.

Proof If ν̃ ∈ R
m is a solution of (20), deriving the optimality condition of this mini-

mization problem we have

0 ∈ ∂θ(ν̃) + A∗z + λA∗(Aν̃ − c) = ∂θ(ν̃) + A∗(z + λ(Aν̃ − c)).

From the definition of ẑ and the identity above it follows that

0 ∈ ∂θ(ν̃) + A∗ ẑ.

Now, by equation above and Proposition 2.1(a), (c) we have

− Aν̃ ∈ ∂(θ∗ ◦ −A∗)(ẑ). (21)

Since we are assuming that dom θ∗ ∩ range A∗ 	= ∅, the definition of h and Propo-
sition 2.1(b), (c) yield

∂h(z) = ∂(θ∗ ◦ −A∗)(z) + c = −A∂θ∗(−A∗z) + c, ∀z ∈ R
n . (22)

Therefore, adding c to both sides of (21) and combining with Eq. (22) we deduce that
c − Aν̃ ∈ ∂h(ẑ). The assertion that ẑ = (I + λ∂h)−1(z) is a direct consequence of
this last inclusion and the definition of ẑ.

Next, we notice that, since ∂h is maximal monotone, Minty’s theorem [18] asserts
that for all z ∈ R

n and λ > 0 there exist z̃, w ∈ R
n such that

{
w ∈ ∂h(z̃),

λw + z̃ = z.
(23)
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Therefore, the inclusion above, together with Eq. (22), implies that there exists ν ∈
∂θ∗(−A∗ z̃) such that w = −Aν + c. This last inclusion yields −A∗ z̃ ∈ ∂θ(ν), from
which we deduce that

0 ∈ ∂θ(ν) + A∗ z̃ = ∂θ(ν) + A∗(z − λw),

where the equality above follows from the equality in (23). Finally, replacing w by
c − Aν in the equation above, we obtain

0 ∈ ∂θ(ν) + A∗(z + λ(Aν − c)),

from which follows that ν is an optimal solution of problem (20). ��
In what follows we assume that conditions A.2 and A.3 are satisfied. We can now

introduce the Projective Method of Multipliers.

Algorithm (PMM) Let (z0, w0) ∈ R
n × R

n, λ > 0 and ρ ∈ [0, 1) be given. For
k = 1, 2, . . ..

1. Compute vk ∈ R
m2 as

vk ∈ arg min
v∈Rm2

g(v) + 〈zk−1 + λwk−1,Cv − d〉 + λ

2
‖Cv − d‖2 , (24)

and uk ∈ R
m1 as

uk ∈ arg min
u∈Rm1

f (u) + 〈zk−1 + λ(Cvk − d), Mu〉 + λ

2
‖Mu‖2 . (25)

2. If ‖Muk + Cvk − d‖ + ‖Muk − wk−1‖ = 0 stop. Otherwise, set

γk = λ ‖Cvk − d + wk−1‖2 + λ 〈d − Cvk − Muk, wk−1 − Muk〉
‖Muk + Cvk − d‖2 + λ2 ‖Muk − wk−1‖2

.

3. Choose ρk ∈ [1 − ρ, 1 + ρ] and set

zk = zk−1 + ρkγk(Muk + Cvk − d),

wk = wk−1 − ρkγkλ(wk−1 − Muk).

We observe that condition ‖ak + bk‖ + ‖xk − yk‖ = 0 in algorithms (12)–(16)
implies that xk = yk and bk = −ak , and as a consequence we have (xk, bk) ∈
Se(∂h1, ∂h2). Hence, algorithms (12)–(16) can also be alternatively stated with the
stopping criterion ‖ak + bk‖ + ‖xk − yk‖ = 0, and the following result holds.

Proposition 3.1 The PMM is a special instance of algorithms (12)–(16) (with the
stopping criterion ‖ak + bk‖ + ‖xk − yk‖ = 0) where

λk = μk = λ, αk = 1, (26)
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and

xk = zk−1 + λwk−1 + λ(Cvk − d), bk = d − Cvk ∈ ∂h2(xk),

yk = xk − λ(wk−1 − Muk), ak = −Muk ∈ ∂h1(yk),
(27)

for every integer k ≥ 1.

Proof First we notice that (26) implies

λk

μk
−

(αk

2

)2 = λ

λ
−

(
1

2

)2

= 3

4
, (28)

for all integer k ≥ 1. Next, applying Lemma 3.2 with θ = g, A = C , c = d,
z = zk−1 + λwk−1 and ν̃ = vk we have that xk and bk , defined as in (27), satisfy
bk ∈ ∂h2(xk) and xk = (I + λ∂h2)−1(zk−1 + λwk−1). Therefore, the pair (xk, bk)
satisfies the relations in (12) with λk = λ.

Similarly, applying Lemma 3.2 with θ = f , A = M , c = 0, z = xk − λwk−1 and
ν̃ = uk we have that the points yk and ak , given in (27), satisfy (13) with μk = λ,
αk = 1 and xk defined in (27).

Moreover, identities in (27) yield

bk + ak = d − Cvk − Muk, xk − yk = λ(wk−1 − Muk), (29)

and
zk−1 − yk = λ(d − Muk − Cvk). (30)

Using (29), (30) and the definitions of xk , bk , yk and ak in (27), we can rewrite
γk in step 2 of the PMM as in (19), which is exactly Eq. (14). Also, the identities
in (29) imply that we can restate the stopping criterion in step 2 of the PMM as
‖ak + bk‖ + ‖xk − yk‖ = 0. Finally, (29) and the update rule in step 3 of the PMM
imply that

zk = zk−1 − ρkγk(ak + bk),

wk = wk−1 − ρkγk(xk − yk).

Thus, the proposition is proven. ��
From Proposition 3.1 it follows that if for some k the stopping criterion in step 2

of the PMM holds, then

Muk + Cvk − d = 0 and xk − yk = 0. (31)

Furthermore, by the definitions of xk and yk in (27), and the optimality conditions of
problems (24) and (25), we have

0 ∈ ∂g(vk) + C∗xk and 0 ∈ ∂ f (uk) + M∗yk, (32)
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for all integer k ≥ 1. Combining (31) with (32) we may conclude that if the PMM
stops in step 2, then (uk, vk, xk) satisfies the KKT conditions, and consequently it is
a saddle point of L .

Otherwise, if the PMM generates an infinite sequence, in view of Proposition 3.1,
we are able to establish its global convergence using the convergence results presented
in [9].

Theorem 3.1 Consider the sequences {(uk, vk)}, {(zk, wk)}, {γk} and {ρk} generated
by the PMM. Consider also the sequences {xk}, {bk}, {yk} and {ak} defined in (27).
Then, the following statements hold.

(a) There exist z∗ a solution of the dual problem (5) and w∗ ∈ R
n such that −w∗ ∈

∂h1(z∗), w∗ ∈ ∂h2(z∗), and (xk, bk) → (z∗, w∗), (yk,−ak) → (z∗, w∗) and
(zk, wk) → (z∗, w∗).

(b) Muk + Cvk − d → 0 and xk − yk → 0.
(c) lim

k→∞ f (uk) + g(vk) = p∗.

Proof (a) According to Proposition 3.1 the PMM is an instance of [9, Algorithm 2]
applied to the subdifferential operators ∂h1 and ∂h2, and with generated sequences
{(zk, wk)}, calculated by step 3 of the PMM, and {(xk, bk)}, {(yk, ak)}, which are
defined in (27). From assumption A.1 and Eq. (28) it follows that the hypotheses
of [9, Proposition 3] are satisfied. Thus, invoking this proposition we have that
there exists (z∗, w∗) ∈ Se(∂h1, ∂h2) such that

(zk, wk) → (z∗, w∗), (xk, bk) → (z∗, w∗) and (yk,−ak) → (z∗, w∗).
(33)

Moreover, since (z∗, w∗) ∈ Se(∂h1, ∂h2) we have that −w∗ ∈ ∂h1(z∗), w∗ ∈
∂h2(z∗) and z∗ is a solution of the dual problem (5).

(b) By (33) it trivially follows that xk − yk → 0 and ak + bk → 0. Hence, using the
definition of ak and bk we deduce that Muk + Cvk − d → 0.

(c) Let (u∗, v∗, z∗) be a KKT point of L , which exists from hypothesis A.1, then from
the first equality in (6) we have

L(u∗, v∗, z∗) ≤ L(uk, vk, z
∗), for k = 1, 2, . . . .

From equation above, the definition of the Lagrangian function in (4) and the KKT
conditions (7) it follows that

f (u∗) + g(v∗) ≤ f (uk) + g(vk) + 〈
Muk + Cvk − d, z∗

〉
.

Since p∗ = f (u∗) + g(v∗), combining inequality above with item (b) we deduce
that

p∗ ≤ lim inf
k→∞ f (uk) + g(vk). (34)

Now, we observe that the first inclusion in (32), together with Definition 1, implies

g(v∗) ≥ g(vk) − 〈
C∗xk, v∗ − vk

〉
.
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Equivalently, from the second inclusion in (32) and Definition 1 it follows that

f (u∗) ≥ f (uk) − 〈
M∗yk, u∗ − uk

〉
.

Adding the two equations above we obtain

p∗ ≥ f (uk) + g(vk) − 〈
C∗xk, v∗ − vk

〉 − 〈
M∗yk, u∗ − uk

〉

= f (uk) + g(vk) − 〈
xk,Cv∗ − Cvk

〉 − 〈
yk, Mu∗ − Muk

〉

= f (uk) + g(vk) − 〈
xk − yk,Cv∗ − Cvk

〉 − 〈yk, d − Muk − Cvk〉 ,

where the last equality follows from a simple manipulation and the equality in
(7). Since {bk = d − Cvk} and {yk} are convergent sequences, therefore bounded
sequences, equation above, together with item (b), yields

p∗ ≥ lim sup
k→∞

f (uk) + g(vk).

Combining inequality above with (34) we conclude the proof.
��

4 Complexity results

Our goal in this section is to study the iteration complexity of the PMM for solving
problem (1). In order to develop global convergence bounds for the method we will
examine how well its iterates satisfy the KKT conditions. Observe that the inclusions
in (32) indicate that the quantities ‖Muk + Cvk − d‖ and ‖xk − yk‖ can be used to
measure the accuracy of an iterate (uk, vk, xk) to a saddle point of the Lagrangian
function. More specifically, if we define the primal and dual residuals, associated with
(uk, vk, xk), by

r pk := Muk + Cvk − d,

rdk := xk − yk;
then, from the inclusions in (32) and the KKT conditions it follows that when

∥∥r pk
∥∥ =∥∥rdk

∥∥ = 0, the triplet (uk, vk, xk) is a saddle point of L . Therefore, the size of these
residuals indicates how far the iterates are from a saddle point, and it can be viewed
as an error measurement of the PMM. It is thus reasonable to seek upper bounds for
these quantities for the purpose of investigating the convergence rate of the PMM.

The theorem below estimates the quality of the best iterate among (u1, v1, x1), . . . ,
(uk, vk, xk), in terms of the error measurement given by the primal and dual residuals.
We refer to these estimates as pointwise complexity bounds for the PMM.

Theorem 4.1 Consider the sequences {(uk, vk)}, {(zk, wk)}, {γk} and {ρk} generated
by the PMM. Consider also the sequences {xk}, {bk}, {yk} and {ak} defined in (27). If
d0 is the distance of (z0, w0) to the set Se (∂h1, ∂h2), then for all k = 1, 2, . . . , we
have

0 ∈ ∂g(vk) + C∗xk, 0 ∈ ∂ f (uk) + M∗yk, (35)
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and there exists and index 1 ≤ i ≤ k such that

‖Mui + Cvi − d‖ ≤ 2d0
(1 − ρ)τ

√
k
, ‖xi − yi‖ ≤ 2d0

(1 − ρ)τ
√
k
; (36)

where τ :=min

{
λ,

1

λ

}
.

Proof Inclusions (35) were established in (32). Therefore, what is left is to show
the bounds in (36). Since the point (zk, wk) = (zk−1, wk−1) + ρk((z∗k−1, w

∗
k−1) −

(zk−1, wk−1)), where (z∗k−1, w
∗
k−1) is the orthogonal projection of (zk−1, wk−1) onto

Hφk , and Se(∂h1, ∂h2) ⊆ Hφk , we take an arbitrary (z∗, w∗) ∈ Se(∂h1, ∂h2) and
observe that for k = 1, 2, . . . ,

∥∥(zk, wk) − (z∗, w∗)
∥∥2 = ∥∥(zk−1, wk−1) − (z∗, w∗)

∥∥2

+ ∥∥ρk((z
∗
k−1, w

∗
k−1) − (zk−1, wk−1))

∥∥2

+ 2ρk
〈
(z∗k−1, w

∗
k−1) − (zk−1, wk−1), (zk−1, wk−1) − (z∗, w∗)

〉

≤ ∥∥(zk−1, wk−1) − (z∗, w∗)
∥∥2

+
(
1 − 2

ρk

)
‖(zk, wk) − (zk−1, wk−1)‖2

= ∥∥(zk−1, wk−1) − (z∗, w∗)
∥∥2

− ρk(2 − ρk)γ
2
k ‖(Muk + Cvk − d, λ(wk−1 − Muk))‖2 ,

where the inequality above follows from a well-known property of the orthogonal pro-
jection and the fact that ρk((z∗k−1, w

∗
k−1)− (zk−1, wk−1)) = (zk, wk)− (zk−1, wk−1).

Thus, applying the inequality above recursively, we have

∥∥(zk, wk) − (z∗, w∗)
∥∥2 ≤ ∥∥(z0, w0) − (z∗, w∗)

∥∥2

−
k∑

j=1

ρ j (2 − ρ j )γ
2
j

∥∥(Mu j + Cv j − d, λ(w j−1 − Mu j ))
∥∥2 .

(37)

We rearrange terms in the equation above and notice that λ(w j−1 − Mu j ) = x j − y j ,
which yields

k∑

j=1

ρ j (2 − ρ j )γ
2
j

∥∥(Mu j + Cv j − d, x j − y j )
∥∥2

≤ ∥∥(z0, w0) − (z∗, w∗)
∥∥2 − ∥∥(zk, wk) − (z∗, w∗)

∥∥2

≤ ∥∥(z0, w0) − (z∗, w∗)
∥∥2 . (38)
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Taking (z∗, w∗) to be the orthogonal projection of (z0, w0) onto Se(∂h1, ∂h2) in
inequality (38), we obtain

k∑

j=1

ρ j (2 − ρ j )γ
2
j

∥∥(Mu j + Cv j − d, x j − y j )
∥∥2 ≤ d20 . (39)

Now, for i such that

i ∈ arg min
j=1,...,k

(∥∥(Mu j + Cv j − d, x j − y j )
∥∥2

)
,

we use inequality (39) and the fact that ρ j ∈ [1 − ρ, 1 + ρ] to conclude that

‖Mui + Cvi − d‖2 + ‖xi − yi‖2 ≤ d20

(1 − ρ)2
k∑

j=1
γ 2
j

. (40)

Next, we notice that Proposition 3.1, together with the equality in (19), implies

γ j = φ j (z j−1, w j−1)
∥∥∇φ j

∥∥2
, for j = 1, . . . , k, (41)

where φ j is the affine function given in (17) associated with x j , y j , b j and a j defined
in (27). Moreover, combining Eqs. (17), (27), (29) and (30) we have

φ j (z j−1, w j−1) = λ
∥∥Cv j − d + w j−1

∥∥2 + λ
〈
d − Cv j − Mu j , w j−1 − Mu j

〉

= λ

2

∥∥Cv j − d + w j−1
∥∥2

+ λ

2

(∥∥d − Cv j − Mu j
∥∥2 + ∥∥w j−1 − Mu j

∥∥2
)

.

Hence, we substitute the relation above into (41) to obtain

γ j = λ
∥∥Cv j − d + w j−1

∥∥2

2
∥∥∇φ j

∥∥2
+ λ

∥∥d − Cv j − Mu j
∥∥2 + λ

∥∥w j−1 − Mu j
∥∥2

2
∥∥∇φ j

∥∥2

≥ λ
∥∥d − Cv j − Mu j

∥∥2 + λ
∥∥w j−1 − Mu j

∥∥2

2
∥∥∇φ j

∥∥2
.

(42)

Now, we use the following estimate

λ
∥∥d − Cv j − Mu j

∥∥2 + λ
∥∥w j−1 − Mu j

∥∥2

= λ
∥∥d − Cv j − Mu j

∥∥2 + 1

λ
λ2

∥∥w j−1 − Mu j
∥∥2
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≥ τ(
∥∥d − Cv j − Mu j

∥∥2 + λ2
∥∥w j−1 − Mu j

∥∥2)

= τ
∥∥∇φ j

∥∥2 ,

and the inequality in (42) to deduce that

γ j ≥ τ

2
, for j = 1, . . . , k. (43)

This last inequality, together with (40), implies

‖Mui + Cvi − d‖2 + ‖xi − yi‖2 ≤ 4d20
(1 − ρ)2τ 2k

,

from which the theorem follows. ��
Wenowdevelop alternative complexity bounds for the PMM,whichwe call ergodic

complexity bounds. We define a sequence of ergodic iterates as weighted averages of
the iterates and derive a convergence rate for the PMM, which as before, is obtained
from estimates of the residuals for the KKT conditions associated with these ergodic
sequences.

The idea of considering averages of the iterates in the analysis of the convergence
rate for methods for solving problem (1) has been already used in other works. For
instance, in [15,19] it was shown aworst-caseO(1/k) convergence rate for theADMM
in the ergodic sense.

The sequences of ergodic means {uk}, {vk}, {xk} and {yk} associated with {uk},
{vk}, {xk} and {yk}, respectively, are defined as

uk := 1


k

k∑

j=1

ρ jγ j u j , vk := 1


k

k∑

j=1

ρ jγ jv j ,

xk := 1


k

k∑

j=1

ρ jγ j x j , yk := 1


k

k∑

j=1

ρ jγ j y j ,

where 
k :=
k∑

j=1

ρ jγ j . (44)

Lemma 4.1 For all integer k ≥ 1 define

εuk := 1


k

k∑

j=1

ρ jγ j
〈
u j − uk,−M∗y j

〉
,

εv
k := 1


k

k∑

j=1

ρ jγ j
〈
v j − vk,−C∗x j

〉
.

(45)

Then, εv
k ≥ 0, εuk ≥ 0 and

0 ∈ ∂εv
k
g(vk) + C∗xk, 0 ∈ ∂εuk

f (uk) + M∗yk . (46)
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Proof From inclusions in (35) we have

−C∗xk ∈ ∂g(vk) and − M∗yk ∈ ∂ f (uk).

Thus, the assertion that εv
k ≥ 0 and the first inclusion in (46) are a direct consequence

of the first inclusion in the equation above, the definitions of xk , vk and εv
k , the fact

that C∗ is a linear operator and Proposition 2.1(d).
Similarly, the second inclusion in (46) and the fact that εuk ≥ 0 follow from the

definitions of yk , uk and εuk , linearity of the M∗ operator, the second inclusion in the
relation above and Proposition 2.1(d). ��

According to Lemma 4.1, if
∥∥r pk

∥∥ = ∥∥rdk
∥∥ = 0 and εuk = εv

k = 0, where r pk =
Muk +Cvk − d and rdk = xk − yk ; then it follows that (uk, vk, xk) satisfies the KKT
conditions and, consequently, it is a saddle point of the Lagrangian function. Thus, we
have computable residuals for the sequence of ergodic means, i.e. the residual vector
(r pk , rdk , ε

u
k , ε

v
k ), and we can attempt to construct bounds on its size.

For this purpose, we first prove the following technical result. It establishes an
estimate for the quantity εuk + εv

k .

Lemma 4.2 Let {uk}, {vk}, {zk}, {wk}, {γk} and {ρk} be the sequences generated by the
PMM and {xk}, {yk} be defined in (27). Define also the sequences of ergodic iterates
{uk}, {vk}, {xk}, {yk}, {εuk } and {εv

k } as in (44) and (45). Then, for every integer k ≥ 1,
we have

εuk + εv
k

≤ 1


k

⎡

⎣ 1


k

k∑

j=1

ρ jγ j

(
λ2

∥∥Mu j + Cv j − d
∥∥2 + ∥∥d − Cv j − w j−1

∥∥2
)

+ 4d20

⎤

⎦ . (47)

Proof We first show that

εuk + εv
k = − 1


k

k∑

j=1

ρ jγ jφ j (yk, d − Cvk). (48)

By the definitions of φ j , b j and a j we have

φ j (yk, d − Cvk) = 〈
yk − x j ,Cvk − Cv j

〉 + 〈
yk − y j , d − Cvk − Mu j

〉

= − 〈
yk,Cv j

〉 − 〈
x j ,Cvk − Cv j

〉

+ 〈
yk − y j , d

〉 + 〈
y j ,Cvk

〉 − 〈
yk − y j , Mu j

〉
. (49)
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We use the definitions of yk , vk , 
k and the fact that C is a linear map, to obtain

1


k

k∑

j=1

ρ jγ j
(〈
yk − y j , d

〉 − 〈
yk,Cv j

〉 + 〈
y j ,Cvk

〉)

= 〈
yk − yk, d

〉 − 〈
yk,Cvk

〉 + 〈
yk,Cvk

〉 = 0.

Now, multiplying (49) by ρ jγ j/
k , adding from j = 1 to k and combining with the
relation above, we conclude that

1


k

k∑

j=1

ρ jγ jφ j (yk, d − Cvk)

= − 1


k

k∑

j=1

ρ jγ j
(〈
x j ,Cvk − Cv j

〉 + 〈
yk − y j , Mu j

〉)
. (50)

Next, we observe that

εuk + εv
k = 1


k

k∑

j=1

ρ jγ j
(〈
Muk − Mu j , y j

〉 + 〈
Cvk − Cv j , x j

〉)

= 1


k

k∑

j=1

ρ jγ j
(〈
Mu j , yk − y j

〉 + 〈
Cvk − Cv j , x j

〉)
,

where the last equality above is a consequence of the definitions of yk and Muk . We
deduce formula (48) combining the equation above with (50).

For an arbitrary (z, w) ∈ R
n × R

n and all integer j ≥ 1 we have

1

2

∥∥(z, w) − (z j−1, w j−1)
∥∥2

= 1

2

∥∥(z, w) − (z j , w j )
∥∥2 + 〈

(z, w) − (z j , w j ), (z j , w j ) − (z j−1, w j−1)
〉

+ 1

2

∥∥(z j , w j ) − (z j−1, w j−1)
∥∥2

= 1

2

∥∥(z, w) − (z j , w j )
∥∥2 − ρ jγ j

〈
(z, w) − (z j , w j ),∇φ j

〉 + 1

2
ρ2
j γ

2
j

∥∥∇φ j
∥∥2 ,

(51)

where the second equality follows from the identity (z j , w j ) = (z j−1, w j−1) −
ρ jγ j∇φ j , which is a consequence of step 3 in the PMM, (29) and (18). Now, we
notice that

〈
(z, w) − (z j , w j ),∇φ j

〉

= 〈
(z, w) − (y j , d − Cv j ),∇φ j

〉 + 〈
(y j , d − Cv j ) − (z j , w j ),∇φ j

〉
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= φ j (z, w) − φ j (z j , w j )

= φ j (z, w) − φ j ((z j−1, w j−1) − ρ jγ j∇φ j )

= φ j (z, w) − φ j (z j−1, w j−1) + ρ jγ j
∥∥∇φ j

∥∥2 ,

where the second and fourth equalities are due to (17), (18) and (27). Substituting the
equation above into (51) yields

1

2

∥∥(z, w) − (z j−1, w j−1)
∥∥2

= 1

2

∥∥(z, w) − (z j , w j )
∥∥2 − ρ jγ jφ j (z, w) + ρ jγ jφ j (z j−1, w j−1)

− ρ2
j γ

2
j

∥∥∇φ j
∥∥2 + 1

2
ρ2
j γ

2
j

∥∥∇φ j
∥∥2

= 1

2

∥∥(z, w) − (z j , w j )
∥∥2 − ρ jγ jφ j (z, w) + ρ jγ

2
j

∥∥∇φ j
∥∥2 − 1

2
ρ2
j γ

2
j

∥∥∇φ j
∥∥2 ,

where formula (19) is used for obtaining the last equality. Rearranging terms in the
equation above and adding from j = 1 to k, we obtain

−
k∑

j=1

ρ jγ jφ j (z, w) = 1

2
‖(z, w) − (z0, w0)‖2 − 1

2
‖(z, w) − (zk, wk)‖2

−
k∑

j=1

1

2
ρ j (2 − ρ j )γ

2
j

∥∥∇φ j
∥∥2 .

Consequently, we have

−
k∑

j=1

ρ jγ jφ j (z, w) ≤ 1

2
‖(z, w) − (z0, w0)‖2 , ∀(z, w) ∈ R

n × R
n .

Now, we use inequality above with (z, w) = (yk, d − Cvk), and combine with (48),
to obtain

εuk + εv
k ≤ 1

2
k

∥∥(yk, d − Cvk) − (z0, w0)
∥∥2

≤ 1

2
k

k∑

j=1

ρ jγ j


k

∥∥(y j , d − Cv j ) − (z0, w0)
∥∥2

≤ 1


k

k∑

j=1

ρ jγ j


k

(∥∥(y j , d − Cv j ) − (z j−1, w j−1)
∥∥2

+ ∥∥(z j−1, w j−1) − (z0, w0)
∥∥2

)
,

(52)
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where the second inequality above is due to the definitions of yk , vk , the fact that C
is a linear operator and the convexity of ‖·‖2. Further, the third inequality in equation
above is obtained using the triangle inequality for norms.

Next, we notice that inequality (37) implies

∥∥(z j , w j ) − (z∗, w∗)
∥∥ ≤ ∥∥(z∗, w∗) − (z0, w0)

∥∥ ,

for all integers j ≥ 0 and all (z∗, w∗) ∈ Se(∂h1, ∂h2). Taking (z∗, w∗) to be the
orthogonal projection of (z0, w0) onto Se(∂h1, ∂h2) in the relation above and using
the triangle inequality, we deduce that

∥∥(z j , w j ) − (z0, w0)
∥∥ ≤ ∥∥(z j , w j ) − (z∗, w∗)

∥∥ + ∥∥(z∗, w∗) − (z0, w0)
∥∥ ≤ 2d0.

(53)
Combining (53) with (52) we have

εuk + εv
k ≤ 1


k

⎡

⎣ 1


k

k∑

j=1

ρ jγ j
∥∥(y j , d − Cv j ) − (z j−1, w j−1)

∥∥2 + 4d20

⎤

⎦ .

To end the proof we substitute the identity y j − z j−1 = λ(Mu j + Cv j − d), which
follows from the definition of y j in (27), into the above inequality. ��

The following theorem provides estimates for the quality of the measure of the
ergodic means uk , vk , xk and yk . More specifically, we show that the residuals asso-
ciated with the ergodic sequences are O(1/k).

Theorem 4.2 Assume the hypotheses of Theorem 4.1. Consider also the sequences
{uk}, {vk}, {xk} and {yk} given in (44), and {εuk }, {εv

k } defined in (45). Then, for all
integer k ≥ 1, we have

0 ∈ ∂εv
k
g(vk) + C∗xk, 0 ∈ ∂εuk

f (uk) + M∗yk, (54)

and

‖Muk + Cvk − d‖ ≤ 4d0
k(1 − ρ)τ

,
∥∥xk − yk

∥∥ ≤ 4d0
k(1 − ρ)τ

, (55)

εuk + εv
k ≤ 8d20ϑ

k(1 − ρ)τ
; (56)

where ϑ := 1

τ 2(1 − ρ)2
+ 1.

Proof The inclusions in (54) were proven in Lemma 4.1. To prove the estimates in
(55) we first observe that, since

xk − yk = λ(wk−1 − Muk) for k = 1, 2, . . . ,
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by the update rule in step 3 of the PMM we have

(zk, wk) = (zk−1, wk−1) − ρkγk(d − Cvk − Muk, xk − yk)

= (z0, w0) −
k∑

j=1

ρ jγ j (d − Cv j − Mu j , x j − y j )

= (z0, w0) − 
k(d − Cvk − Muk, xk − yk), (57)

where the last equality above follows from the definitions of 
k , vk , uk , xk and yk in
(44), and the fact that M and C are linear operators. Therefore, from (57) we deduce
that

∥∥(d − Cvk − Muk, xk − yk)
∥∥ = 1


k
‖(z0, w0) − (zk, wk)‖ ,

and combining the identity above with estimate (53) we obtain

∥∥(d − Cvk − Muk, xk − yk)
∥∥ ≤ 2d0


k
. (58)

Next, we notice that Eq. (43) and the fact that ρ j ∈ [1 − ρ, 1 + ρ] imply


k =
k∑

j=1

ρ jγ j ≥
k∑

j=1

(1 − ρ)
τ

2
= (1 − ρ)

τ

2
k. (59)

The inequality above, together with (58), yields

∥∥(d − Cvk − Muk, xk − yk)
∥∥ ≤ 4d0

(1 − ρ)τk
,

from which the bounds in (55) follow directly.
Now, using the equality in (42) we have

γ j ≥ λ
∥∥Cv j − d + w j−1

∥∥2

2
∥∥∇φ j

∥∥2
+ λ

∥∥d − Cv j − Mu j
∥∥2

2
∥∥∇φ j

∥∥2
,

and as a consequence we obtain

∥∥∇φ j
∥∥2 γ j

≥ τ

2

(∥∥Cv j − d + w j−1
∥∥2 + λ2

∥∥d − Cv j − Mu j
∥∥2

)
, for j = 1, . . . , k.

Multiplying the inequality above by ρ jγ j2/τ , adding from j = 1 to k and using
(47), we have
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εuk + εv
k ≤ 1


k

⎡

⎣ 2

τ
k

k∑

j=1

ρ jγ
2
j

∥∥∇φ j
∥∥2 + 4d20

⎤

⎦

= 1


k

⎡

⎣ 2

τ
k

k∑

j=1

1

2 − ρ j
ρ j (2 − ρ j )γ

2
j

∥∥∇φ j
∥∥2 + 4d20

⎤

⎦ .

Finally, relation above, together with (39) and the fact that ρ j ∈ [1−ρ, 1+ρ], yields

εuk + εv
k ≤ 1


k

[
2

τ
k(1 − ρ)
d20 + 4d20

]
.

The bound in (56) is achieved using this last inequality and (59). ��

5 Applications

This section describes some simple, preliminary computational testing of the PMM.
These experiments are notmeant to be exhaustive, but only to provide somepreliminary
indication of the performance of the PMM.

Specifically, we discuss the specialization of the PMM to two common test prob-
lems. First, we consider the total variation model for image denoising (TV denoising).
Then, we consider a compressed sensing problem for Magnetic Resonance Imaging,
and we exhibit some numerical experiments to illustrate the performance of the PMM
when solving these problems.

5.1 TV denoising

Total variation (TV) or ROF model is a common image model developed by Rudin et
al. [24] for the problem of removing noise from an image. If b ∈ R

m×n is an observed
noisy image, the TV problem for image denoising estimates the unknown original
image u ∈ R

m×n by solving the minimization problem

min
u∈Rm×n

ζT V (u) + 1

2
‖u − b‖2F , (60)

where T V is the total variation norm defined as

T V (u) := ‖∇1u‖1 + ‖∇2u‖1 . (61)

Here∇1 : Rm×n → R
m×n and∇2 : Rm×n → R

m×n are the discrete forward gradients
in the first and second direction, respectively, given by

(∇1u)i j = ui+1, j − ui, j , (∇2u)i j = ui, j+1 − ui, j ,

i = 1, . . . ,m, j = 1, . . . , n, u ∈ R
m×n;
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and we assume standard reflexive boundary conditions

um+1, j − um, j = 0, j = 1, . . . , n and ui,n+1 − ui,n = 0, i = 1, . . . ,m.

The regularization parameter ζ > 0 controls the tradeoff between fidelity to measure-
ments and the smoothness term given by the total variation.

To solve the TV problem using the PMM we first have to sate it in the form of a
linearly constrained minimization problem (1). If we define � := R

m×n ×R
m×n , and

the linear map ∇ : Rm×n → � by

∇u := (∇1u,∇2u);

then, taking v = ∇u ∈ �, we have that (60) is equivalent to the optimization problem

min
(u,v)∈Rm×n×�

{
ζ ‖v‖1 + 1

2
‖u − b‖2F : ∇u − v = 0

}
. (62)

Now, we solve (62) by applying the PMM with f (u) = 1

2
‖u − b‖2F , g(v) = ζ ‖v‖1,

M = ∇, C = −I and d = 0.
Given zk−1, wk−1 ∈ �, the PMM requires the solution of problems,

vk = arg min
v∈�

ζ ‖v‖1 − 〈zk−1 + λwk−1, v〉 + λ

2
‖v‖2F , (63)

and

uk = arg min
u∈Rm×n

1

2
‖u − b‖2F + 〈zk−1 − λvk,∇u〉 + λ

2
‖∇u‖2F . (64)

The optimality condition of problem (63), yields

0 ∈ ζ∂ ‖·‖1 (vk) − (zk−1 + λwk−1) + λvk;

hence,

vk =
(
I + ζ

λ
∂ ‖·‖1

)−1 (
1

λ
zk−1 + wk−1

)
.

Therefore, the solution of problem (63) can be computed explicitly as

vk = shrink
(
1

λ
zk−1 + wk−1,

ζ

λ

)
,

where the shrink operator is defined in (3). Deriving the optimality condition for
problem (64) we have that

0 = uk − b + ∇∗(zk−1 − λvk) + λ∇∗∇uk,
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Fig. 1 Test images: Lena (left), Baboon (center) and Man (right)

from which it follows that uk has to be the solution of the system of linear equations

(I + λ∇∗∇)uk = b − ∇∗(zk−1 − λvk).

Thus, the PMM applied to problem (62) produces the iteration:

vk = shrink
(
1

λ
zk−1 + wk−1,

ζ

λ

)
, (65)

(I + λ∇∗∇)uk = b − ∇∗(zk−1 − λvk), (66)

γk = λ ‖wk−1 − vk‖2 + λ 〈vk − ∇uk, wk−1 − ∇uk〉
‖∇uk − vk‖2 + λ2 ‖∇uk − wk−1‖2

, (67)

zk = zk−1 + ρkγk(∇uk − vk), (68)

wk = wk−1 − ρkγkλ(wk−1 − ∇uk). (69)

We used three images to test the PMM in our experiments: the first was “Lena”
image of size 512× 512, the second was “Baboon” image of size 512× 512, and the
third was “Man” image of size 768 × 768, see Fig. 1. All images were contaminated
with Gaussian noise using the Matlab function “imnoise” and it was used several
values of variance (σ ). The PMMwas implemented in Matlab code and it was chosen
λ = 1 in all tests, since we have found that choosing this value for λ was effective for
all the experiments. The variables z0 and w0 were initialized to be zero.

As a way to provide a reference, we also report the results obtained with ADMM,
which is actually equivalent to the Split Bregman (SB) method [10,14] for TV regu-
larized problems. For a fair comparison, we implemented the generalized ADMM [7]
with over and under relaxation factors, see also [6]. For the ADMM, λ was also set to
be 1 in all iterations. Moreover, we took as initial guess the contaminated image and
the multiplier was initialized to be zero. As in [14] iterations for both method were
terminated when condition ‖uk − uk−1‖ / ‖uk‖ ≤ 10−3 was met; since this stopping
criterion is satisfied faster than the stopping condition given by the KKT residuals,
while yielding good denoised images.

In Fig. 2 we present some denoising results. It shows the noise contaminated images
and the reconstructed images with the PMM. Additionally, in Fig. 3 we report the
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(a) σ = 0.02 (b) 12/14, ρ = 1.5 (c) 20/21, ρ = 1

(d) σ = 0.02 (e) 13/18, ρ = 1 (f) 20/21, ρ = 1

(g) σ = 0.06 (h) 13/16, ρ = 1.5 (i)19/21, ρ = 1.5

Fig. 2 Denoising results. Images a, d and g are contaminated with Gaussian noise, the value of variance (σ )
is reported below each image. Images were denoised with ζ = 20 (center) and ζ = 50 (right). The value
of ρ and the number of iterations required to satisfy the stopping criterion, for both the PMM/ADMM, are
listed below each image

primal and dual residuals for the KKT optimality conditions for problem (62) for both
methods, in some specific tests. The primal and dual residuals for the PMM were
defined in Sect. 4. For the ADMM the primal residual is also defined as ∇uk − vk ,
i.e. it is the residual for the equality constraint at iteration k. The dual residual for the
ADMM is defined as the residual for the dual feasibility condition (see Eq. (7) and
the comments below). Since the exact solution of the problems are known, we also
plotted in Fig. 3 the error ‖uk − u∗‖ versus iteration, where u∗ is the exact solution.
In these experiments both methods were stopped at iteration 50. It can be observed
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Fig. 3 Residual curves of the PMM and ADMM for the TV denoising problems. (Top) primal error
‖∇uk − vk‖ versus iteration number k. (Center) dual error ‖xk − yk‖ versus iteration number k. (Bot-
tom) error

∥∥uk − u∗∥∥ versus iteration number k (u∗ is the exact solution). (Left) convergence results are
for the tested image Lena with σ = 0.06, ζ = 50 and ρ = 1.5. (Right) convergence results are for the
tested image Baboon with σ = 0.02, ζ = 20 and ρ = 1

in Fig. 3 that the speed of the PMM and ADMM measured by the residual curves are
very similar; however the residuals for the PMM decay faster, and this difference is
more evident in the dual residual curve.

In Table 1 we present a more detailed comparison between the methods. It reports
the iteration counts and total time, in seconds, required for the PMM and ADMM in
specific experiments. In these tests we used ρk = 1 or ρk = 1.5 for every integer
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k ≥ 1, in both methods, to observe the acceleration performance. We observe that in
the tests the PMMexecuted fewer iterations than ADMM, and the PMMwas generally
faster. We also observe that both methods accelerate when ρ = 1.5.

However, since it is known that the generalized ADMM performs better in general
when ρ is larger than 1.61 (see for instance [5,8]), we make a comparison of the two
methods taking ρ ≥ 1.61. The results of these experiments are reported in Table 2.
It can be seen that for these values of ρ, although the performances of both methods
are very similar in processing time and number of iterations, the PMM continues to
be faster than the ADMM.

The operation of highest computational cost within each iteration of the PMM, and
ADMM, for the TV problem, consists in solving problem (66). In our tests we solved
this step for both algorithms using the Conjugate Gradient (CG)methodwith tolerance
10−5. This strategy consistently yielded convergence in fewer iterations when using
the PMM. Table 3 presents the total number of iteration executed by the CG method
in each algorithm for some specific experiments. In the tests presented both methods
were stopped at iteration 20.

However, the authors of [14] observed that the ADMM (SB method) attained opti-
mal efficiency by executing, at each iteration of the algorithm, just a single iteration
of an iterative method to solve problem (66). Motivated by this, we test the PMM
performing one iteration of the CG method at each step of the algorithm. As Fig. 4
below shows, in this case, the PMM also yields good denoised images.

5.2 Compressed sensing

In many areas of applied mathematics and computer science it is often desirable to
reconstruct a signal from small amount of data. Compressed sensing is a signal process-
ing technique that allow the reconstruction of signals and images from small number
of measurements, provided that they have a sparse representation. This technique has
gained considerable attention in the signal processing community since the works of
Candès et al. [3], and of Donoho [4], and it has had a significant impact in several
applications, for example in imaging, video and medical imaging.

For testing the PMM we consider a particular application of compressed sensing
in Magnetic Resonance Imaging (MRI), which is an essential medical imaging tool.
MRI is based on the reconstruction of an image from a subset of measurements in the
Fourier domain. This imaging problem can be modeled by the optimization problem

min
u

T V (u) + ζ

2
‖RFu − b‖2F , (70)

where T V is the total variation norm (61), F is the Discrete Fourier Transform, R is
a diagonal matrix, b is the known Fourier data and u is the unknown image that we
wish to reconstruct.

The matrix R has a 1 along the diagonal at entries corresponding to the Fourier
coefficients that were measured, and 0 for the unknown coefficients. The second term
in (70) induces the Fourier transform of the reconstructed image to be close to the
measured data, while the TV term in the minimization enforces “smoothness” of the
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Table 3 Total number of
iteration of CG method. Tests
were stopped at iteration 20

Image ζ ρ σ PMM ADMM

Lena 20 1 0.02 108 117

Lena 20 1.5 0.06 101 110

Baboon 20 1.5 0.02 102 110

Baboon 50 1 0.02 121 122

Man 20 1.5 0.06 104 112

Man 50 1 0.06 124 126

(a) σ = 0.06 (b) 20(1.594), ζ = 50, ρ = 1 (c) 22(1.557), ζ = 50, ρ = 1

(d) σ = 0.02 (e)14(2.436), ζ = 20, ρ = 1.5 (f) 16(2.514), ζ = 20, ρ = 1.5

Fig. 4 Denoising with one iteration of CG method per iteration. (Left) noisy images, the value of variance
is reported below each image. (Center) images denoised with PMM. (Right) images denoised with ADMM.
The number of iterations, the total time in seconds (in parenthesis); as well as the used values of ζ and ρ

are displayed below each image

image. The parameter ζ > 0 provides a tradeoff between the fidelity term and the
smoothness term.

Problem (70) can be posed as a linearly constrained minimization problem (1) in
much the same manner as was done for the TV problem in the previous subsection.

Therefore, to apply the PMM to (70) we take f (u) = ζ

2
‖RFu − b‖2F , g(v) = ‖v‖1,

M = ∇, C = −I and d = 0. The resulting minimization problems are

vk = argmin
v

‖v‖1 − 〈zk−1 + λwk−1, v〉 + λ

2
‖v‖2F , (71)
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Fig. 5 (Left) images used in compressed sensing tests. (Right) the images reconstructed with the PMM.
The Shepp–Logan phantom of size 256 × 256 (top) was recovered with 25% sampling and ρ = 1.5. The
CS-Phantom of size 512 × 512 (bottom) was recovered with 50% sampling and ρ = 1.5

and

uk = argmin
u

ζ

2
‖RFu − b‖2F + 〈zk−1 − λvk,∇u〉 + λ

2
‖∇u‖2F . (72)

Problem (71) can be solved explicitly using the shrink operator (3). Indeed, by the
optimality conditions for this problem we have

vk = shrink
(
1

λ
zk−1 + wk−1,

1

λ

)
.

The optimality condition for the minimization problem (72) is

0 = ζ FT RT (RFuk − b) + ∇∗(zk−1 − λvk) + λ∇∗∇uk,
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Fig. 6 Residual curves of the PMM and ADMM for the compressed sensing problems. (Top) primal error
‖∇uk − vk‖ versus iteration number. (Center) dual error ‖xk − yk‖ versus iteration number. (Bottom) error∥∥uk − u∗∥∥ versus iteration number (u∗ is the exact solution). (Left) convergence results are for the Shepp–
Logan phantom of size 256× 256 with 25% sampling and ρ = 1.5. (Right) convergence results are for the
CS-Phantom of size 512 × 512 with 50% sampling and ρ = 1.5

or equivalently

(ζ FT RT RF + λ∇∗∇)uk = ζ FT RT b − ∇∗(zk−1 − λvk).
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Table 4 Iterations and computation times (seconds) in parenthesis required for the CS problem

Image % ρ PMM ADMM

Shepp–Logan 256 × 256 25 1.61 379 (4.048) 380 (4.204)

Shepp–Logan 512 × 512 25 1.61 108 (6.695) 108 (7.154)

Shepp–Logan 768 × 768 50 1.8 40 (5.332) 43 (5.808)

Shepp–Logan 1024 × 1024 25 1.7 47 (11.58) 48 (13.35)

CS-phantom 256 × 256 50 1.7 559 (6.160) 559 (7.079)

CS-phantom 512 × 512 50 1.61 468 (29.06) 468 (32.06)

CS-phantom 768 × 768 75 1.61 137 (18.49) 137 (20.16)

CS-phantom 1024 × 1024 75 1.8 170 (40.91) 171 (45.39)

Thus, we obtain uk , the solution of the system above, by

uk = FT (ζ RT R + λF∇∗∇FT )−1F(ζ FT RT b − ∇∗(zk−1 − λvk)).

We tested the PMM on two synthetic phantom. The first is the digital Shepp–
Logan phantom,whichwas createdwith theMatlab function “phantom”. The second
experiment was done with a CS-Phantom, which was taken from the mathworks web
site. Experiments were conducted with different sizes of the phantoms and measuring
at random25%, 50%or 75%of the Fourier coefficients.As stopping condition for these
problems, it was used the criterion given by the residuals for theKKT conditions.More
specifically, the PMM and ADMM were stopped when the primal and dual residuals,
associated with each method, were less than 10−6(m ∗ n), where m and n are the
dimensions of the image. For all the experiments we used ζ = 500 and λ = 1, since
we found that these choices were effective for both methods.

Figure 5 shows the test images and their reconstructions using the PMM. The
performance of the PMM and ADMM can be seen in Fig. 6, which reports the residual
curves for both methods, as were the error ‖uk − u∗‖, where u∗ is the exact solution.
Observe that the primal curves for both methods are very similar along all iterations.
However, the decay for the dual residual curve for the PMM is much faster than the
dual residual for the ADMM.

Table 4 presents some numerical results for the compressed sensing problem. It
reports the iteration count and total time required for the PMM and ADMM in the
experiments. In these tests, it was used ρ ≥ 1.61. We observe that the PMM solves
all the problems faster than ADMM.

5.3 The dual residual

It was observed in our numerical experiments that, despite the overall rate of decrease
for the PMM and the ADMM are very similar, the dual variable in the PMM sequence
is smaller than the ADMM dual variable. This could be an advantage for the PMM,
and motivates us to study the performance of the method using a stopping criterion
based on the dual residual.

123



270 M. P. Machado

Ta
bl
e
5

Pe
rf
or
m
an
ce

re
su
lts

us
in
g
st
oo

pi
ng

cr
ite

ri
on

(7
3)

PM
M

A
D
M
M

Pr
ob
le
m

#
It

T
im

e
(s
)

re
lt

#
It

T
im

e
(s
)

re
lt

T
V
(M

an
,ζ

=
60

,ρ
=

1.
61

,σ
=

0.
06

)
25

7
24

.6
2

0.
18

47
2

10
00

*
69

.8
6

0.
18

57
4

T
V
(M

an
,ζ

=
40

,ρ
=

1.
7,

σ
=

0.
05

)
14

6
14

.9
1

0.
16

46
8

61
4

41
.1
8

0.
16

46
8

T
V
(M

an
,ζ

=
20

,ρ
=

1.
8,

σ
=

0.
03

)
68

7.
07

7
0.
14

99
2

19
7

14
.3
1

0.
14

99
2

T
V
(L
en
a,

ζ
=

50
,ρ

=
1.
61

,σ
=

0.
05

)
22

1
9.
90

1
0.
09

67
0

75
0

23
.9
4

0.
09

67
1

T
V
(L
en
a,

ζ
=

60
,ρ

=
1.
7,

σ
=

0.
06

)
29

0
12

.4
0

0.
10

52
0

10
00

*
30

.7
9

0.
10

52
1

T
V
(L
en
a,

ζ
=

30
,ρ

=
1.
8,

σ
=

0.
02

)
14

7
6.
29

7
0.
07

45
3

42
7

13
.5
8

0.
07

45
4

T
V
(B

ab
oo

n,
ζ

=
50

,ρ
=

1.
61

,σ
=

0.
03

)
22

2
9.
48

7
0.
17

65
1

67
9

21
.3
3

0.
17

65
1

T
V
(B

ab
oo

n,
ζ

=
30

,ρ
=

1.
7,

σ
=

0.
04

)
86

3.
87

3
0.
15

76
20

6
6.
83

0
0.
15

76

T
V
(B

ab
oo

n,
ζ

=
70

,ρ
=

1.
8,

σ
=

0.
07

)
30

1
13

.7
0

0.
19

10
1

10
00

*
32

.8
2

0.
19

10
2

C
S
(S
he
pp
–L

og
an

25
6

×
25

6,
ζ

=
50

0,
ρ

=
1.
61

,2
5%

)
54

0.
66

1
0.
02

70
1

20
7

2.
08

8
0.
01

69
3

C
S
(S
he
pp
–L

og
an

51
2

×
51

2,
ζ

=
50

0,
ρ

=
1.
8,
75

%
)

29
1.
89

3
0.
00

45
5

31
2.
05

1
0.
00

62
1

C
S
(S
he
pp
–L

og
an

76
8

×
76

8,
ζ

=
50

0,
ρ

=
1.
7,
50

%
)

25
3.
35

7
0.
01

94
3

29
4.
04

6
0.
01

55
4

C
S
(S
he
pp
–L

og
an

10
24

×
10

24
,ζ

=
50

0,
ρ

=
1.
61

,2
5%

)
36

8.
99

0
0.
04

26
3

40
10

.4
3

0.
03

62
1

C
S
(P
ha
nt
om

25
6

×
25

6,
ζ

=
50

0,
ρ

=
1.
7,
50

%
)

78
0.
83

7
0.
11

26
8

46
6

4.
75

1
0.
10

77
8

C
S
(P
ha
nt
om

51
2

×
51

2,
ζ

=
50

0,
ρ

=
1.
61

,7
5%

)
20

1.
24

4
0.
14

15
1

19
2

11
.8
2

0.
07

70
4

C
S
(P
ha
nt
om

76
8

×
76

8,
ζ

=
50

0,
ρ

=
1.
61

,2
5%

)
36

4.
77

7
0.
21

25
4

17
9

24
.7
7

0.
20

00
3

C
S
(P
ha
nt
om

10
24

×
10

24
,ζ

=
50

0,
ρ

=
1.
8,
75

%
)

23
5.
62

3
0.
09

18
3

11
5

28
.3

0.
07

03
4

123



Projective method of multipliers for linearly… 271

Fig. 7 TV problem for the test image Lena, which was contaminated with Gaussian noise with variance
σ = 0.02. (Left) image denoisedwith PMM. (Right) image denoisedwithADMM.The imagewas denoised
using ζ = 30 and ρ = 1.8

Fig. 8 Compressed sensing problem for the test image Shepp–Logan phantom of size 256 × 256 with
25% sampling. (Left) image recovered with the PMM. (Right) image recovered with the ADMM. In the
experiments were used ζ = 500 and ρ = 1.61

In this subsection we present some preliminary computational results considering
a termination condition that only uses information from the dual residual sequences.
We use as test problems the TV (60) and CS (70) problems discussed in the previous
subsections. The algorithms were run until condition

‖dk‖ /(m ∗ n) ≤ 10−6 (73)

was satisfied, where dk is the corresponding dual residual of the sequence at iteration
k, and m and n are the dimensions of the images. In all the experiments we fix λ = 1
and use ρ ≥ 1.61.

Table 5 displays the performance of the PMMandADMMusing criterion (73). The
columns mean: Problem, the considered problem (TV or CS with the corresponding
image, ζ , ρ and noise or sampling); # It, iterations needed to satisfy (73); time (s),
CPU time (s); and relt , the relative error ‖uk − u∗‖ / ‖u∗‖ at the last iterate, which
can be computed since the exact solution u∗ is known.
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We observe that the PMM is faster than the ADMM in all the problems, and in 12
instances it is at least 2 times faster than the ADMM. We also observe that, although
the high speed exhibited by the PMM, the quality of the solution found by it is very
similar to that found by the ADMM,which can be seen by comparing the relt columns
of Table 5. Additionally, we notice that in three experiments the ADMM stops because
it reaches the maximum number of allowed iterations (1000)2, therefore it does not
solve the instance by the required accuracy.

Figures 7 and 8 show the image reconstruction results for some tests. It can be
observed in Fig. 7 that for the TV problem both methods recover good images using
(73). This is not surprising since the stopping criterion used in Sect. 5.1 ismore flexible
than (73), and the restoration results were satisfactory (see Sect. 5.1). It turns out that
for the CS problem, although the termination condition considered in Sect. 5.2 is
more restrictive than (73), the PMM and ADMM can also reconstruct images with
good quality using this last stopping criterion, as can be seen in Fig. 8.
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