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Abstract
Simplex gradients are an essential feature of many derivative free optimization algo-
rithms, and can be employed, for example, as part of the process of defining a direction
of search, or as part of a termination criterion. The calculation of a general simplex
gradient inRn can be computationally expensive, and often requires an overhead oper-
ation count ofO(n3) and in some algorithms a storage overhead ofO(n2). In this work
we demonstrate that the linear algebra overhead and storage costs can be reduced, both
to O(n), when the simplex employed is regular and appropriately aligned. We also
demonstrate that a gradient approximation that is secondorder accurate can be obtained
cheaply from a combination of two, first order accurate (appropriately aligned) regular
simplex gradients. Moreover, we show that, for an arbitrarily aligned regular simplex,
the gradient can be computed in O(n2) operations.

Keywords Positive bases · Numerical optimization · Derivative free optimization ·
Regular simplex · Simplex gradient · Least squares · Well poised

Mathematics Subject Classification 52B12 · 65F20 · 65F35 · 90C56

1 Introduction

Estimating derivatives is important in a wide variety of applications andmany success-
ful numerical optimization algorithms rely on gradient information and/or directional
derivatives.When analytical derivatives are not directly available, it is useful to be able
to obtain gradient estimates, for example, by using difference methods. Furthermore,
simplex gradients are often used in derivative-free optimization as search directions,
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like is the case of the implicit filtering algorithm [4], as descent indicators for reorder-
ing the poll directions in directional direct search [8], or in the definition of stopping
criteria for algorithms [7]. A first comprehensive study on the computation of general
simplex gradients was provided in [22]. In this work we investigate computationally
efficient approaches to estimating the gradient at either the centroid or vertex of an
appropriately aligned regular simplex.

To obtain a first order approximation to the gradient (of the function f at some
point x0) one considers the first order Taylor approximation about x0:

f (x) = f (x0) + (x − x0)
T∇ f (x0) + O

(
‖x − x0‖22

)
.

Consider a set of m + 1 points (m ≥ n), x0, x1, . . . , xm ∈ Rn . Using the notation
g ≈ ∇ f (x0) to denote an approximation to the gradient, f j := f (x j ), and ignoring the
order terms, the previous expression leads to the following system of equations

f j − f0 = (x j − x0)
T g for j = 1, . . . ,m. (1)

Expression (1) is a linear regression model, and determining a least squares solution to
the system (1) results in an approximation to the gradient of the underlying function.
Ifm = n and the n+1 points are affinely independent then (1) is a determined system
with unique solution independent of the ordering of the points. Whenm > n the order
of the points used is important because the least squares solution to the system (1)
depends on which point is labeled x0 [22].

In this work, attention is restricted to the case where m = n + 1 and the points
x1, x2, . . . , xn+1 defining the regression model in (1) are the vertices of an appropri-
ately aligned regular simplex and x0 is its centroid (This will be defined in Sect. 2.).
The main theme here is to determine a least squares solution to the system (1) effi-
ciently, both in terms of the linear algebra costs and in terms of storage requirements,
to determine an appropriately aligned regular simplex gradient.

For the regular simplices discussed in this work, the centroid of the simplex is
denoted by x0, and each vertex x1, x2, . . . , xn+1 is equidistant from the centroid with

h:=‖x j − x0‖2, j = 1, 2, . . . , n + 1, (2)

where the distance h is sometimes referred to as the ‘radius’ or ‘arm length’ of the
regular simplex.

The system in (1) is central to many derivative free optimization algorithms, but
solving it can be a computational challenge. Firstly, usually the vectors x0, . . . , xn+1
(or the differences x1 − x0, . . . , xn+1 − x0) must be explicitly stored, which can be
costly in terms ofmemory requirements, and also poses a limitation in terms of the size
of problems that can be solved using such algorithms. Secondly, the computational
cost (number of floating point operations) of solving such problems can also be high
(e.g., if the problem is unstructured or if a general simplex is used).

Here, the use of regular simplices is investigated. The computation of regular sim-
plex gradients was proposed in the context of derivative-free optimization ofmolecular
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geometries [1]. One advantage of using a regular simplex is that it provides a uniform,
economic ‘tiling’ of n-dimensional space, each n-dimensional tile having only n + 1
vertices compared to 2n vertices for a hypercube tile. A disadvantage is that storing
the vertices of the simplex is usually less efficient than that for a hypercube because
it is possible to align the edges of the hypercube with the coordinate axes. However,
if the orientation of the regular simplex is free to be chosen also, then we will show
that it is possible to generate each vertex from a single vector by simple adjustment of
one component. This enables considerable savings in storage requirements for several
lattice search algorithms for optimization. For example, the multidirectional search
(MDS) method of Torczon [26,27] can be implemented using either a rectangular or
a regular simplex based lattice but the usual construction for the regular simplex lat-
tice requires O(n2) storage (see for example [26]). Similarly, the Hooke and Jeeves
[13] lattice search method, although originally implemented in a rectangular lattice
framework, can also be implemented using a regular simplex lattice (It is anticipated
that each of these methods will benefit, in terms of memory requirements and compu-
tational effort, if the particular simplex construction used in this work is employed.).
The added advantage of being able to compute an aligned regular simplex gradient in
O(n) housekeeping operations using only n+1 function evaluationsmakes it attractive
for many numerical gradient based algorithms for optimization, including the recent
minimal positive basis based direct search conjugate gradient methods described in
[18].

The vertices of a simplex are often explicitly required during the initialization of
simplex based algorithms for optimization, including the algorithms in [19–21,25,26].
Using the technique described later, the vertices of an aligned regular simplex can be
constructed explicitly, whenever required, efficiently. However, it will also be shown
that the vertices of the aligned regular simplex do not have to be stored in order to
calculate the simplex gradient.

In derivative free optimization, one must always be mindful of the cost of function
evaluations. There exist real-world applications for which computing a single function
evaluation can be very costly, and in such cases it is clear that the linear algebra
and memory requirements may be very small in comparison. In this work, we focus
on algebraically efficient methods to compute the simplex gradient after function
evaluations are complete. In most situations, function evaluations will dominate the
overall time to compute a simplex gradient. However, this trend should not be used to
justify performing other portions of the computation inefficiently. It is prudent to be
as economical as possible at every stage of the optimization process.

1.1 Contributions

We state the main contributions of this work (listed in order of appearance).

1. Aligned regular simplex gradient in O(n) operations A simplex gradient is the
(least squares) solution of a system of linear equations, which, in general, comes
with an associated O(n3) computational cost. In this work we show that, if one
employs a regular simplex that is appropriately aligned, then the linear system
simplifies, and the aligned regular simplex gradient can be computed in O(n)
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operations. Indeed, the gradient of the aligned regular simplex is simply aweighted
sumof a vector containing function values (measured at the vertices of the simplex)
and a constant vector. This is an important saving over the O(n3) computational
cost of solving a general unstructured linear system (see Sect. 3).

2. Aligned regular simplex need not be explicitly stored Here, we demonstrate that
the storage needed for the computation of the aligned regular simplex gradient is
O(n), whereas the usual storage requirements for the computation of a general
simplex gradient are at least O(n) vectors [i.e., O(n2)]. In particular, it is simple
and inexpensive to construct the vertices of the aligned regular simplex on-the-fly,
and the simplex need not be stored explicitly at all. This is because all that is
required to uniquely specify (and construct) each simplex vertex is the centroid
x0, the simplex radius h (2) and the problem dimension n. To compute the aligned
regular simplex gradient, the function values at the vertices of the simplex are
required, but once a vertex has been constructed and the function value found, the
vertex can be discarded. Therefore, the storage requirements of this approach are
low (see Sect. 3).

3. Function value f0 is not required The function value f0 at the centroid of the
regular simplex is not required in the calculation of the regular simplex gradient
(at the point x0). Moreover, we extend this result to show that it also applies to any
general simplex, and not just a regular one (see Sect. 3.2).

4. Regular simplex gradient in O(n2) operations In some applications, it may not
be possible to ensure the particular alignment of the regular simplex. In this case,
we show that it is still possible to calculate the regular simplex gradient in O(n2)
floating point operations (see Sect. 4.1).

5. InexpensiveO(h2) gradient approximation One can efficiently compute an accu-
rate (order h2) gradient approximation using a Richardson extrapolation type
approach. Specifically, if two first order accurate aligned regular simplex gradients
are combined in a particularway, then a second order accurate approximation to the
true gradient∇ f (x0) is obtained. That is, anO(h2) gradient approximation is sim-
ply the weighted sum of two O(h) aligned regular simplex gradients. Moreover,
no additional storage is required to generate the O(h2) gradient approximation
(see Sect. 4.3).

1.2 Paper outline

This paper is organised as follows. Section 2 introduces the notation and technical
preliminaries that are necessary to describe and set up the problem of interest. In
particular, the concepts of a minimal positive basis and how a minimal positive basis
is related to a simplex are discussed, and the definition of a simplex gradient is given.
In Sect. 3 the main results of this work are presented, including how to construct the
simplex and how to compute the aligned regular simplex gradient inO(n) operations.
Section 4 describes several extensions to the work presented in Sects. 1– 3, including
a special case of a regular simplex with integer entries, as well as a technique to obtain
an O(h2) gradient approximation from two O(h) aligned regular simplex gradients.
Numerical experiments are presented in Sect. 5 to demonstrate how the aligned regular
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simplex and its gradient can be computed in practice, as well as how to generate an
O(h2) gradient approximation. Finally we make our concluding remarks in Sect. 6,
and we also discuss several ideas for possible future work.

2 Notation and preliminaries

Here the variables that are used in this work are defined, and the notation is fixed.
Several preliminary results that will be used later in this work are also presented.

2.1 Notation

Consider a set of n + 2 points x0, x1, . . . , xn+1 ∈ Rn , where x0 is the centroid of
the n + 1 points x1, . . . , xn+1, and suppose that the function values f1, . . . , fn+1 are
known. The function value f0 also appears in this work, although we will present
results to confirm that it is not used in the computation of the aligned regular simplex
gradient, so it is unnecessary to assume that f0 is known. Let e be the (appropriately
sized) vector of all ones and define the following vectors,

f :=
⎡
⎢⎣
f1
...

fn

⎤
⎥⎦, and δf := f − f0e =

⎡
⎢⎣
f1 − f0

...

fn − f0

⎤
⎥⎦, (3)

along with their ‘extended’ versions,

f+ =
[

f
fn+1

]
, and δf+ := f+ − f0e =

[
δf

fn+1 − f0

]
. (4)

For a general simplex (to be defined precisely in the next section), the internal
‘arms’ of the simplex are ν j = x j − x0 for j = 1, . . . , n + 1. However, this paper
only considers regular simplices. In this case it is convenient to denote the ‘arms’ of
the regular simplex using the vectors v1, . . . , vn+1, which satisfy the relationship

x j = x0 + hv j , for j = 1, . . . , n + 1, (5)

for some (fixed) h ∈ R, with ‖v j‖2 = 1 and ‖x j − x0‖2 = h for j = 1, . . . , n + 1.
Thus h > 0 is the radius of the circumscribing hypersphere of the regular simplex and
each v j denotes a unit vector defining the direction of each vertex from the centroid
of the simplex.

Now we can define the matrix

V = [
v1 . . . vn

] ∈ Rn×n (6)
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and the vector

vn+1 = −
n∑
j=1

v j ≡ −Ve, (7)

along with the ‘extended’ matrix

V+ := [
V −Ve

] ∈ Rn×(n+1). (8)

2.2 Technical preliminaries

Here we outline several technical preliminaries that will be used in this work. These
properties are known but they are stated here for completeness. For further details on
the results discussed here, see, for example, [2], [5, pp. 32–34], [6, Chapter 2].

Definition 1 (Affine independence, pg. 29 in [6]) A set ofm+1 points y1, y2 . . . , ym+1
∈ Rn is called affinely independent if the vectors y2 − y1, . . . , ym+1 − y1 are linearly
independent.

Definition 2 (Definition 2.15 in [6]) Given an affinely independent set of points
{y1, . . . , ym+1}, its convex hull is called a simplex of dimension m.

Definition 3 A regular simplex is a simplex that is also a regular polytope.

A regular simplex has many interesting properties, see for example [11].

Proposition 1 A regular simplex satisfies the following properties.

1. The distance between any two vertices of the simplex is constant.
2. The centroid of a regular simplex is equidistant from each vertex.
3. The angle between the vectors formed by joining the centroid to any two vertices

of the simplex is constant.

Proof The first property is a direct consequence of the definition. The second property
is established in Theorem 10 in [11]. The third property follows from the first and
second properties. �	
Thus, for a regular simplex, using Proposition 1 it can be established (see for example,
[11]) that the centroid of the simplex x0 is equidistant from each vertex of the simplex,
and we will say that each (internal) simplex ‘arm’ (vectors v j for j = 1, . . . , n + 1)
is of equal length, and the angles between any two arms of the simplex are equal.

The positive span of a set of vectors {y1, . . . , ym} in Rn is the convex cone

{y ∈ Rn : y = α1y1 + · · · + αm ym, αi ≥ 0, i = 1, . . . ,m}.

Definition 4 (Definition 2.1 in [6]) A positive spanning set in Rn is a set of vectors
whose positive span is Rn . The set {y1, . . . , ym} is said to be positively dependent if
one of the vectors is in the convex cone positively spanned by the remaining vectors,
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Fig. 1 A regular simplex in R2

generated by a minimal positive
basis with uniform angles.
Points (vertices) x1, x2, x3 are
affinely independent and their
convex hull is the regular
simplex, while x0 is the centroid.
Each ‘arm’ of the simplex
x j − x0, for j = 1, 2, 3 has the
same length h, and the angle
between any two arms is equal

x0

x1x2

x3

h

hh

θθ

θ

i.e., if one of the vectors is a nonnegative combination of the others; otherwise, the set
is positively independent. A positive basis inRn is a positively independent set whose
positive span is Rn .

Remark 1 Definition 4 is taken directly from [6,Definition 2.1].As is stated inFootnote
2 of that work, “strictly speaking we should have written nonnegative instead of
positive, but we decided to follow the notation in [9,17]”.

Lemma 1 (Minimal positive basis, Corollary 2.5 in [6])

(i) [I − e] is a minimal positive basis.
(ii) Let W = [w1 . . . wn] ∈ Rn×n be a nonsingular matrix. Then [W − We] is a

minimal positive basis for Rn.

Proving the existence of a regular simplex in Rn is equivalent to proving the exis-
tence of a minimal positive basis with uniform angles in Rn , which is established
in [1]. Moreover, the work [16] establishes the existence of a regular simplex by an
induction argument.

This work considers the set-up where x0 is the centroid of the regular simplex in
Rn with vertices x1, . . . , xn+1. The arms of the simplex v1, . . . , vn+1 (defined in (5))
form a minimal positive basis (This will be discussed in more detail in the sections
that follow.). To make this more concrete, Fig. 1 shows a regular simplex in R2.

2.3 Simplex gradients

The following defines a simplex gradient.

Definition 5 (Simplex gradient, Sect. 2.6 in [6] and its generalization [7]) When there
are n + 2 (or more) points, y1, . . . , ym ∈ Rn with m ≥ n + 2, containing a proper
subset of affinely independent points, the simplex gradient is defined as the least-
squares solution of the linear system

f (y j ) − f (y1) = (y j − y1)
T g, for j = 2, . . . ,m.
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This definition depends upon whichever point is labeled y1 and as a consequence, it
is sometimes referred to as the simplex gradient at the point y1.

This work considers only n+1 or n+2 points (either with or without the centroid).
When m = n + 1 the aligned regular simplex gradient is independent of the ordering
of the points because the system generated by these points is a determined system.
When m = n + 2, the centroid is explicitly used, but it can be shown that the system
generated by the n + 2 points is equivalent to a determined system (see Sect. 3.4).

Using the results in Sects. 2.1 and 2.2, (1) can be rewritten in matrix notation as

V T+ g = 1
h δf+. (9)

Definition 5 shows that, for the setup used in this work with the n + 2 points
x0, . . . , xn+1 ∈ Rn and centroid x0, g satisfies the normal equations form of (9):

V+V T+ g = 1
h V+δf+. (10)

For further discussion on simplex gradients in a more general setting, see for example
[6,7,22].

3 Constructing the simplex

The central goal of this work is to determine a least squares solution to the system
(10) inO(n) operations/computations, while maintainingO(n) storage for the aligned
regular simplex. One cannot hope to achieve this for a generic simplex. However, if
one is free to choose a regular simplex that is oriented in a particular way, then this
goal can be achieved. This section is devoted to the construction of an aligned regular
simplex that can be stored in O(n) and whose gradient can be evaluated in O(n)

operations.

3.1 Positive basis with uniform angles

Several properties of a positive basis with uniform angles are stated now. The descrip-
tion uses several of the concepts already presented in [6, Chapter 2].

Consider n + 1 normalized vectors v1, . . . , vn+1 ∈ Rn , where the angle θ between
any pair of vectors vi , v j , for i 
= j is equal. It can be shown that (see [6, Exer-
cise 2.7(4)])

cos θ = vTi v j = −1

n
, i, j ∈ {1, . . . , n + 1}, i 
= j . (11)

If (5), (7) and (11) hold, then x1, . . . , xn+1 ∈ Rn are the vertices of a regular simplex
with centroid x0. Thus, we seek to construct a positive basis of n+1 normalized vectors
v1, . . . , vn+1 ∈ Rn such that properties (7) and (11) hold. With (11) in mind, first the
aim is to find a matrix V satisfying (see (2.2) in [6])

123



Efficient calculation of regular simplex gradients 569

A = V T V =

⎡
⎢⎢⎢⎢⎣

1 − 1
n . . . − 1

n

− 1
n 1

...
...

. . . − 1
n− 1

n . . . − 1
n 1

⎤
⎥⎥⎥⎥⎦

. (12)

From (12), one may write

A = V T V = (
1 + 1

n

)
I − 1

n ee
T = α2(I − βeeT ), (13)

where

α :=
√
n + 1

n
and β := 1

n + 1
. (14)

Using (7) and (12), a positive basis with uniform angles exists. In particular, A in
(12) is symmetric and positive definite (see, for example, [6, pg. 20], [12]) so it has a
Cholesky decomposition A = RT R. Taking V = R, which is nonsingular, combined
with (7) and applying Lemma 1, establishes that R+ = [

R −Re
]
is a normalized

minimal positive basis with uniform angles, as pointed out in [6, p. 20]. The particular
structure of A allows the Cholesky factor R to be calculated efficiently.

There is, however, another factorization of A that comes from the fact that any
symmetric positive definite matrix has a unique symmetric positive definite square
root [12, p. 149]. We search for a square-root matrix with similar structure to A. In
particular, let

V = α
(
I − γ eeT

)
, (15)

where we must now specify γ ∈ R. Since A = V T V = V 2 it is clear that γ ∈ R
must satisfy

I − βeeT =
(
I − γ eeT

)2 = I − 2γ eeT + nγ 2eeT .

Equating the coefficients of eeT one sees that γ is a root of the quadratic equation

nγ 2 − 2γ + β = 0, (16)

giving two possible solutions:

γ = 1

n

(
1 ± 1√

n + 1

)
. (17)

Letting γ1, γ2 denote these two solutions and V1, V2 the corresponding matrices
defined in (15) it is easy to show that V1 = HV2 where H = I − 2

n ee
T is an
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elementary Householder reflection matrix (V2 is the reflection of V1 in the hyperplane
through the origin with normal vector e and vice-versa).

Choosing the negative sign for γ in (17) yields the unique positive definite square-
root matrix as the following lemma shows.

Lemma 2 Let α, β and γ be defined in (14) and (17). The matrix V = α(I − γ eeT )

is nonsingular. Moreover, V has n − 1 eigenvalues equal to α and one eigenvalue
satisfying

λn(V ) =
⎧⎨
⎩

1√
n

if γ = 1
n (1 − √

β),

− 1√
n

if γ = 1
n (1 + √

β).

Proof The matrix −αγ eeT has n − 1 zero eigenvalues, and one eigenvalue equal to
−αγ n. Further, adding α I to −αγ eeT simply shifts the spectrum by α. Therefore,

V has n − 1 eigenvalues equal to α, and the remaining eigenvalue is α(1 − γ n)
(17)=

α(1− (1± √
β)) = ∓α

√
β = ∓1/

√
n. Finally, all the eigenvalues are nonzero, so V

is nonsingular. �	
Corollary 1 If γ = 1

n (1 − √
β) then V is positive definite.

Lemma 3 Let α, β and γ be defined in (14) and (17) and let V be defined in (15).
Then

V e =
⎧⎨
⎩

1√
n
e if γ = 1

n (1 − √
β)

− 1√
n
e if γ = 1

n (1 + √
β).

(18)

Moreover,

V eeT V T = 1
n ee

T . (19)

Proof With some abuse of notation, for γ = 1
n (1 ± √

β) we have

Ve
(15)= α(I − γ eeT )e = α(1 − nγ )e = ∓ 1√

n
e,

which proves (18). The result (19) follows immediately. �	
Now we present the main result of this subsection, which shows that the choice V

in (15) leads to a minimal positive basis with uniform angles.

Theorem 1 Let α, β, γ and V be defined in (14), (17) and (15) respectively. Then
V+ = [V − Ve] is a minimal positive basis with uniform angles.

Proof ByLemma2,V is nonsingular, so applyingLemma1 shows thatV+ is aminimal
positive basis.
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It remains to show the uniform angles property. By construction, V defined in (15)
satisfies (12). Then

V T+ V+ =
[

V T

−(Ve)T

][
V −Ve

] =
[

V 2 −V 2e
−(V 2e)T eT V 2e

]
∈ R(n+1)×(n+1).

Furthermore, by (18),

V 2e = V (Ve) = V

(
1√
n
e

)
= 1

n
e,

and eT V 2e = eT e/n = 1 so that

V T+ V+ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − 1
n . . . − 1

n

− 1
n 1

...

...
. . . − 1

n

− 1
n . . . − 1

n 1

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ R(n+1)×(n+1).

Hence, v1, . . . , vn+1 also satisfy (11), so the positive basis has uniform angles. �	
Although not explicitly stated, the positive basis derived from (15) has essentially been
used (with a scaling factor and origin shift), for setting up initial regular simplices by
several authors ([3, p. 267], [10], [14, p. 80]).

Remark 2 Lemma 3 and Theorem 1 explain why the terminology ‘aligned regular
simplex’ is used in this work. Theorem 1 shows that V+ is aminimal positive basis with
uniform angles, so the resulting simplex is regular. Moreover, Lemma 3 demonstrates
that Ve, which is an ‘arm’ of the simplex (recall Fig. 1), is always proportional to e;
one arm of the regular simplex is always aligned with the vector of all ones. Finally,
the choice of γ simply dictates whether the simplex arm is oriented in the ‘+ e’ or
‘− e’ direction.

3.2 Weight attached to centroid

Here we present a general result regarding the weight attached to the centroid when
solving the normal equations defining a least squares solution in linear regression. It
is is well known to linear regression analysts in statistics that a linear (affine) function,
fitted by least squares, passes through the centroid of the data points. Adding an extra
‘observation’ at the centroid does not affect the solution for the normal of the fitted
affine function—it does, of course, affect the offset. This is irrespective of the number
of data points but has important consequences for calculating the simplex gradient at
the centroid when fitting an affine function to n + 2 data points in Rn . The following
result generalises to any least squares system with p > n data points (V need not
be a normalized invertible matrix), however, we avoid introducing extra notation by
focusing on the result relating to simplex gradients.
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In order to define a general simplex the following equations are used:

νn+1 = −
n∑
j=1

ν j , where ν j = x j − x0 for j = 1, . . . , n + 1. (20)

The vertices of the simplex are {xi , i = 1, . . . , n + 1} and its centroid is x0. Here,
it is not assumed that ‖ν j‖2 = 1 for all j , so the simplex is not necessarily a regular
simplex [i.e., (5) need not hold].

Theorem 2 Let δf+ and δf be defined in (3) and (4), respectively, where f0, . . . , fn+1
are the function values at the points x0, . . . , xn+1. Let V and V+ be structured as in
(6) and (8), respectively, but using the vectors ν1, . . . , νn+1 defined in (20). Then the
simplex gradient g in (10) is independent of f0.

Proof Clearly, the term (V+V T+ )−1 in (10) does not involve f0. Now,

V+δf+ = V δf − ( fn+1 − f0)Ve

= V f − f0Ve − fn+1Ve + f0Ve

= V (f − fn+1e). (21)

�	
Theorem 2 shows that, if the relationship (7) holds [equivalently, the summation

property in (20)], and V+ is a minimal positive basis, then the function value at the
centroid x0 is not used when computing the simplex gradient. That is, the weight
attached to f0 is zero when calculating a simplex gradient.

3.3 Aligned regular simplex gradient

Here we state and prove the main result of this work, that the aligned regular simplex
gradient can be computed in O(n) operations. We begin with the following result.

Lemma 4 Let α, β and γ be defined in (14) and (17) and let V be defined in (15).
Then, for V+ defined in (8),

V+V T+ = α2 I .

Proof Note that

V+V T+ = [
V −Ve

] [
V T

−(Ve)T

]

= VV T + VeeT V T

(19)= V 2 + 1
n ee

T

(13)= α2
(
I − βeeT

)
+ 1

n ee
T
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= α2 I −
(
α2β − 1

n

)
eeT

(16)= α2 I .

�	
Our main result follows, which shows that the aligned regular simplex gradient can
be computed in O(n) operations.

Theorem 3 Let α, β and γ be defined in (14) and (17), respectively, let V and V+ be
defined in (15) and (8) respectively, and let

c1 = 1

hα
and c2 = c1

(
(γ n − 1) fn+1 − γ eT f

)
.

Then, the aligned regular simplex gradient g is computed by

g = c1f + c2e, (22)

which is an O(n) computation.

Proof We have

g
(10)= 1

h

(
V+V T+

)−1
V+δf+

Lemma 4= 1

hα2 V+δf+
(21)= 1

hα2 V (f − fn+1e)

(15)= 1

hα
(I − γ eeT )(f − fn+1e)

= 1

hα

(
f − fn+1e − γ (eT f)e + γ fn+1ne

)

= 1

hα

(
f + ((γ n − 1) fn+1 − γ (eT f))e

)
.

Note that the gradient is simply the sum of two (scaled) vectors, which is an O(n)

computation (see, for example [28, p. 3]). �	
Theorem 3 shows that the gradient of the aligned regular simplex can be expressed

very simply as a weighted sum of the function values (measured at the vertices of the
simplex) and a constant vector. Thus, it is very cheap to obtain the simplex gradient
once function values have been calculated.

These results also demonstrate that using this particular simplex leads to efficiencies
in terms ofmemory requirements. Neither the vertices of the simplex x1, . . . , xn+1, nor
the arms of the simplex v1, . . . , vn+1, appear in the calculation of the aligned regular
simplex gradient. All that is needed is the function values computed at the vertices
of the simplex. Note that the vertices of the simplex need not be stored because they
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can be computed easily on-the-fly as follows. Recall that V = α(I − γ eeT ) (15).
Therefore, each arm of the simplex is

v j = α(e j − γ e), (23)

where e j is the j th column of I . The j th vertex of the simplex is recovered via

x j
(5)= x0 + hv j

(23)= x0 + hα(e j − γ e) = (x0 − hαγ e) + hαe j . (24)

Expression (24) shows that x j is simply the sumof a constant vector (x0−hαγ e)whose
j th component has been modified by hα. The only quantities necessary to uniquely
determine each vertex are x0, h and n. To compute the aligned regular simplex gradient,
the j th vertex can be generated [via (24)], the function value f j evaluated and stored
in f , and subsequently, the vertex can be discarded. This confirms that the storage
requirements for the aligned regular simplex gradient are O(n).

3.4 An alternative formulation

In Sect. 3.2 it was shown that the weight attached to the centroid is zero so that
only the function values at the vertices of the simplex feature in the regular simplex
gradient calculation. But n + 1 affinely independent points in Rn define a unique
interpolating affine function with constant gradient and this must, therefore, coincide
with the definition of the simplex gradient defined by the n + 2 points used in the
least-squares solution (10). This means that the regular simplex gradient could also
be calculated as the solution to the square system of equations

(x j − xn+1)
T g = (

f j − fn+1
)
, j = 1, . . . , n. (25)

It is not immediately obvious that this is an equivalent formulation. To show this
equivalence algebraically we use the identity x j − xn+1 = x j − x0 − (xn+1 − x0) =
h(v j − vn+1), and the definition of V (15) and vn+1 (7). The linear system of Eq. (25)
can then be rewritten

h(v j − vn+1)
T g = (

f j − fn+1
)
, j = 1, . . . , n.

or in matrix form (after dividing by h),

(
V + VeeT

)T
g =

(
V + eeT V

)
g = 1

h (f − fn+1e).

Premultiplying by the invertible matrix V then gives

(
V 2 + VeeT V

)
g = 1

h V (f − fn+1e). (26)
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Lemma 4 showed that (V 2 +VeeT V ) = α2 I , and it is then clear that solving Eq. (26)
is equivalent to finding the solution of the normal Eq. (10) by the method described
in the previous section.

Remark 3 We remark that a linear model is being used throughout this work, so an
affine function is fitted through the n+ 1 simplex vertices, and the simplex gradient is
the gradient of the affine function. Furthermore, note that if the centroid x0 is included
in the calculation of the simplex gradient at x0, then the offset of the affine function is
affected, but this does not affect the gradient, i.e., the simplex gradient at the centroid
is the same as the simplex gradient at any vertex when the centroid is not included
(If the simplex gradient is calculated at x j , j 
= 0, using the n + 2 points then the
simplex gradient will be affected.). However, inclusion of the centroid does simplify
the derivation of error bounds as is now shown.

3.5 Error bounds

Here we state explicit bounds on the error in the regular simplex gradient, compared
with the analytic gradient. First we give the following result providing an error bound
for the aligned regular simplex gradient at the centroid x0 and followwith an extension
giving an error bound at any vertex.

Theorem 4 Let x0 be the centroid of the aligned regular simplex with radius h > 0
and vertices x j = x0 + hv j , j = 1, 2, . . . , n + 1. Assume that f is continuously
differentiable in an open domain Ω containing B(x0; h) and ∇ f is Lipschitz contin-
uous in Ω with constant L > 0. Then, g, obtained by solving the system of linear Eq.
(10), satisfies the error bound

‖∇ f (x0) − g‖2 ≤ 1
2 Lh

√
n.

Proof Using the normal Eq. (10) defining g we can write

V+V T+ (g − ∇ f (x0)) = 1
h V+

(
δf+ − hV T+ ∇ f (x0)

)
. (27)

The integral form of the mean value theorem provides the identity

f j − f0 =
∫ 1

0
(x j − x0)

T∇ f
(
x0 + t(x j − x0)

)
dt, j = 1, . . . , n + 1.

Therefore, the j th component of the vector in brackets on the right-hand-side of Eq.
(27) is

(
δf+ − hV T+ ∇ f (x0)

)
j
= f j − f0 − (x j − x0)

T∇ f (x0),

= (x j − xo)
T

∫ 1

0

(∇ f (x0 + t(x j − x0)) − ∇ f (x0)
)
dt,
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≤ ‖x j − x0‖2
∫ 1

0
L‖t(x j − x0)‖dt,

= L‖x j − x0‖22
∫ 1

0
tdt,

= 1
2 Lh

2, j = 1, . . . , n + 1,

which provides the bound

‖δf+ − hV T+ ∇ f (x0)‖2 ≤ 1
2 Lh

2
√
n + 1. (28)

Because V+V T+ = α2 I Eq. (27) and the bound (28) lead to the inequality

α2‖g − ∇ f (x0)‖2 ≤ 1
2 Lh

√
n + 1‖V+‖2.

By Lemma 4, ‖V+‖2 = α, so

‖∇ f (x0) − g‖2 ≤ 1

2α
hL

√
n + 1.

The definition of α in (14) gives the required result. �	
An error bound at any vertex x j , j = 1, . . . , n + 1, of the regular simplex is

then easily derived from the Lipschitz continuity of the gradient of f and the triangle
inequality.

‖∇ f (x j ) − g‖2 ≤ ‖∇ f (x j ) − ∇ f (x0)‖2 + ‖∇ f (x0) − g‖2 ≤ (
1 + 1

2

√
n
)
Lh.

4 Extensions

In this sectionwe describe several extensions of thework presented so far. In particular,
we show that a regular simplex gradient, where the simplex is arbitrarily oriented, can
be computed in O(n2) operations, we show that one can easily construct a regular
simplex with integer entries when n + 1 is a perfect square, and we also show that it
is computationally inexpensive to calculate an O(h2) approximation to the gradient
using a Richardson extrapolation type approach.

4.1 A regular simplex gradient inO(n2)

In practice, it may not be desirable to use the oriented regular simplices discussed so
far. However, any regular simplex is related to that particular simplex formed from
the aligned positive basis V+ by a scale factor, an orientation (orthogonal matrix),
a permutation of the columns, and a shift of origin. In fact the permutation can be
dispensed with because if P is a permutation matrix then

(
I − γ eeT

)
P = P − γ eeT P = P

(
I − γ PT eeT P

)
= P

(
I − γ eeT

)
.
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Thus, if W+ = [W − We] is any normalized minimal positive basis with uniform
angles then,

W = QVP = (QP)V

so that W is linked to V by an orthogonal transformation QP (and hence W+ to any
other normalized minimal positive basis with uniform angles). These observations
enable any regular simplex gradient to be calculated in O(n2) operations.

Theorem 5 Let Z+ = [z1 . . . zn zn+1] = [Z zn+1] ∈ Rn×(n+1) be any regular simplex
with radius h and centroid z0 and let f j = f (z j ), j = 1, . . . , n+1 be known function
values. Further, let

u = 1
α2h2

(f − fn+1e). (29)

Then the simplex gradient is

g = Zu −
(
eT u

)
z0, (30)

which can be calculated in O(n2) floating point operations.

Proof The interpolation conditions for the simplex gradient can be written as

(
(z j − z0) − (zn+1 − z0)

)T
g = f j − fn+1, j = 1, . . . , n. (31)

Let Y+ = [
Y −Ye

]
be the regular simplex with unit radius and with centroid at the

origin defined by

Y = 1
h

(
Z − z0e

T
)

, (32)

and let Q ∈ Rn×n be the orthogonal transformation linking Y+ to the oriented simplex
V+ = [V − Ve] where V = α(I − γ eeT ) so that

Y = QV .

The square system of Eq. (31) can be written in matrix form as

h
(
Y + YeeT

)T
g = f − fn+1e.

Pre-multiplying by the invertible matrix Y and dividing by h we get

(
YYT + YeeT Y T

)
g = 1

h Y (f − fn+1e) . (33)
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Now

YYT = QV2QT

(13)= α2Q
(
I − βeeT

)
QT

= α2
(
I − βQeeT QT

)
.

But Q = YV−1 so Qe = YV−1e. By (18), Ve = ± 1√
n
e, so that V−1e = ±√

ne and
we have

QeeT QT = nYeeT Y T .

Therefore,

YYT = α2 I − α2βnYeeT Y T .

Using the definitions (14), α2βn = 1, so that

YYT = α2 I − YeeT Y T .

Inserting this result in (33) we get

g = 1
α2h

Y (f − fn+1e) ,

which is a simple matrix-vector product costing O(n2) flops. In fact we do not need
to calculate Y . Substituting for Y from Eq. (32) gives

g = 1
α2h2

(
Z − z0e

T
)

(f − fn+1e).

Letting u be as defined in (29) gives the result (30). Finally, note that the dominant
computation in (30) is the matrix-vector product Zu, which has a computational com-
plexity of O(n2) (see for example, [28, p. 2]). �	

In practice, the centroid z0 will often be known but even if it is not given initially,
its calculation is at most O(n2) flops because z0 = 1

n+1

∑n+1
j=1 z j . If a new simplex is

formed by resizing a given simplex but keeping one vertex in common then the new
centroid can be easily calculated from the old centroid and the resizing parameter in
O(n) flops. Finally, we note that if h is unknown it can be calculated as h = ‖z j −z0‖2
for any j , which is an additional cost of O(n) flops.

4.2 Regular simplices with integer entries

The results of Sect. 3 show that one can construct a regular simplex with integer
coordinate vertices in n-space when n + 1 is a perfect square. Simply let x0 = 0 be
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the centroid of the simplex so that x j = hv j , j = 1, . . . , n + 1 are the n + 1 vertices.
Writing X+ = [x1, . . . , xn+1], we choose X+ to be proportional to the rational matrix
1
α
V+. For example, when n = 3, then n + 1 = 4 is a perfect square, so two examples

of regular simplices in R3 with integer coordinates, corresponding to the two choices
for γ in (17), are

X+ =
⎡
⎣

5 −1 −1 −3
−1 5 −1 −3
−1 −1 5 −3

⎤
⎦ ∈ Z3×4

and

X+ =
⎡
⎣

1 −1 −1 1
−1 1 −1 1
−1 −1 1 1

⎤
⎦ ∈ Z3×4.

Schöenberg [24] proved that a regular n-simplex exists inRn with integer coordinates
in the following cases, and no others:

(i) n is even and n + 1 is a square;
(ii) n ≡ 3 (mod 4);
(iii) n ≡ 1 (mod 4) and n + 1 is a sum of two squares.

In particular, the first few values of n forwhich integer coordinate vertices exist are n =
1, 3, 7, 8, 9, 11, 15, 17, 19, . . ., and do not exist for n = 2, 4, 5, 6, 10, 12, 13, 14, 16,
18, 20 . . ..

4.3 OrderO(h2) gradient approximation

At certain stages of an optimization algorithm an accurate gradient may be required.
This is the case, for example, when deciding whether to reduce the mesh/grid size in
mesh/grid based optimization algorithms, or for deciding whether a gradient based
stopping condition has been satisfied. In such cases, an O(h) gradient approximation
may not be sufficient, and a more accurate gradient, say an O(h2) gradient approxi-
mation, may be desired.

The construction proposed in this paper allows one to obtain an inexpensive aligned
regular simplex gradient, which is an O(h) approximation to the true gradient. How-
ever, it is well known in the statistics community that a Richardson’s extrapolation
approach can be used to increase the accuracy of an approximation or iterative method
by (at least) an order of magnitude, see for example [23,29]. Indeed, using the set-up
in this paper, we now demonstrate how to obtain an O(h2) approximation to the true
gradient in O(n) operations and storage, although extra function evaluations will be
required.

The key idea behind Richardson’s extrapolation is to take two approximations that
are O(h), and use these to construct an O(h2) approximation. To this end, fix x0, let
G = ∇2 f (x0) and choose h1 = O(h). Then one can form a regular simplex with
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centroid x0 and diameter h1 with the vertices and ‘arms’ satisfying x j − x0 = h1v j

for j = 1, . . . , n + 1. Now, consider the Taylor series of f about x0:

f j = f0 + (x j − x0)
T∇ f (x0) + 1

2 (x j − x0)
T G(x j − x0) + O(h3)

= f0 + h1v
T
j ∇ f (x0) + h21

2 vTj Gv j + O(h3).

Rearranging the above and dividing by h1 gives

vTj ∇ f (x0) = 1
h1

( f j − f0) − h1
2 vTj Gv j + O(h2). (34)

An expression of the form (34) can be written for each j = 1, . . . , n + 1. Combining
the n + 1 equations, using the notation established previously, gives

V T+ ∇ f (x0) = 1
h1

δf+ − h1
2 diag

(
V T+ GV+

)
e + O(h2), (35)

where diag(V T+ GV+) is a diagonal matrix with (diag(V T+ GV+)) j j = vTj Gv j . Let

C = − 1
2

(
V+V T+

)−1
V+

(
diagV TGV

)
e, (36)

so that (35) becomes

∇ f (x0) = g1 + h1C + O(h2), (37)

where g1 = 1
h1

(V+V T+ )−1V+δf . By (10), g1 is anO(h) approximation to the gradient
at the point x0.

Now, fix the same x0 and direction vectors v1, . . . , vn+1, and choose some h2 =
O(h). Then, constructing a simplex of diameter h2 and following the same arguments
as above, we arrive at the expression

∇ f (x0) = g2 + Ch2 + O(h2), (38)

where C is defined in (36), and g2 = 1
h2

(V+V T+ )−1V+δf is anO(h) approximation to
the gradient at the point x0.

Finally, multiplying (37) by h2, multiplying (38) by h1 and subtracting the second
expression from the first, results in

∇ f (x0) = g12 + O(h2), where g12 = h2g1 − h1g2
h2 − h1

, (39)

i.e., g12 is an order h2 accurate approximation to the true gradient at x0.
Moreover, if h2 is chosen to be a multiple of h1 (i.e., h2 = ηh1) then

g12 = ηh1g1 − h1g2
ηh1 − h1

= η

η − 1
g1 − 1

η − 1
g2. (40)
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To make the previous arguments concrete, an algorithmic description of the proce-
dure to find an O(h2) approximation to the gradient is given in Algorithm 1. Briefly,
the algorithm proceeds as follows. In Steps 2–3, an O(h) aligned regular simplex
gradient is formed via Eq. (22) (i.e., using the procedure developed previously in this
work). To obtain an O(h2) gradient approximation, a second (related) O(h) aligned
regular simplex gradient approximation is also needed, and this is computed in Steps
4–5 of Algorithm 1. Finally, in Step 6, a weighted sum of the two O(h) gradients is
formed, resulting in an O(h2) regular simplex gradient approximation.

Algorithm 1 Forming an O(h2) gradient approximation from two O(h) gradient
approximations via Richardson’s extrapolation.
1: Input: Centroid x0, problem dimension n, scalars h1 ∼ O(h) and h2 ∼ O(h).

2: Input or compute: f (x j )
(24)= f (x0 + h1α(e j − γ e)) for j = 1, . . . , n + 1.

3: Compute g1 via (22) using h1.

4: Input or compute: f (x j )
(24)= f (x0 + h2α(e j − γ e)) for j = 1, . . . , n + 1.

5: Compute g2 via (22) using h2.
6: Compute g12 via (39).

Remark 4 We make the following comments.

1. The O(h2) gradient approximation (40) is simply a weighted sum of two O(h)

gradient approximations. The coefficients of g1 and g2 sum to 1.
2. For Richardson’s extrapolation, the user defined parameter η in (40) can be either

positive or negative, but to avoid division by zero it cannot be set to 1. However,
in this work h1 and h2 denote the radii of simplices, so they ‘should’ be positive
(recall that h2 = ηh1). This apparent anomaly (i.e., η < 0) is no issue in practice,
but η must be interpreted carefully. Geometrically, if η > 0 then the simplex
generated using h2 (see Steps 4–5 in Algorithm 1) is simply a scaled version of the
original simplex defined using h1 (both simplices sharing the common centroid
x0). For the case η < 0, the new simplex radius is |h2|, with the common centroid
x0, but the simplex orientation changes. In this work the simplex is aligned with
the direction ± e. Thus, if the simplex generated using h1 is aligned with e (resp.
−e), then the simplex generated using h2 will be aligned with −e (resp. e) (In
R2, this corresponds to a rotation of 180◦ about x0; see the numerical example in
Sect. 5.2 and Fig. 3).

3. In this section the derivation proceeds by assuming that the simplex gradients g1
and g2 are both computed at the same point x0, and thus g12 is anO(h2) accuracy
approximation to ∇ f (x0) [and by results previously presented in this work, g1,
g2 and g12 all have a computational cost of O(n)]. However, the arguments in
Sect. 4.3 can be generalized to anO(h2) approximation to ∇ f (x), for some other
point x say, so long as both g1 and g2 are O(h) simplex gradients at the common
point x . Of course, the computational cost of obtaining g1 and g2 may be higher
than O(n) for general x .
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5 Numerical example

Here, two numerical examples are presented to make the ideas of the paper concrete,
to highlight the simplicity and economy of the proposed approach, and to demonstrate
how anO(h2) approximation to the gradient can be constructed from twoO(h) aligned
regular simplex gradients. All experiments are performed on Rosenbrock’s function,
and MATLAB (version 2016a) is used for the calculations.

We temporarily depart from our usual notation and let y ∈ R2 with components
y = [y1 y2]T so that Rosenbrock’s function can be written as

f (y1, y2) = (1 − y1)
2 + 100

(
y2 − y21

)2
. (41)

The gradient of (41) can be expressed analytically as

∇ f (y1, y2) =
[−2(1 − y1) − 400y1(y2 − y21 )

200(y2 − y21 )

]
. (42)

Henceforth, we return to our usual notation.

5.1 Inconsistent simplex gradients

The purpose of this example is to highlight a situation that is not uncommon in
derivative free optimization algorithms—that of encountering an iterate where the
true (analytic) gradient and the simplex gradient point in opposite directions—and
how the construction in Sect. 4.3 can be used to determine an accurate gradient direc-
tion from which to make further progress. This situation can arise, for example, when
the gradient of a function at the iterate x (k) is close to flat. Indeed, this is one of the
motivations for considering Rosenbrock’s function, which has a valley floor with a
shallow incline.

To highlight the situation previously described, we have selected a test point that is
close to the ‘floor’ of the valley of Rosenbrock’s function, where a good approximation
to the gradient is required to make progress (Ultimately, descent methods do track this
valley floor, so it is not unexpected that a point of this nature may be encountered.), We
stress that the loss of accuracy is due to the regular simplex gradient being a first order
approximation (O(h)) to the analytic gradient, and is not because of the particular
construction proposed in this work.

The example proceeds as follows. Suppose onewishes to compute a regular simplex
gradient at the point

x0 =
[

1.1
1.12 + 10−5

]
. (43)

123



Efficient calculation of regular simplex gradients 583

Note that, from (42), the true gradient at the point x0 is (to the accuracy displayed)

∇ f (1.1, 1.12 + 10−5) ≈
[
0.195599999999971
0.002000000000013

]
. (44)

The aligned regular simplex is constructed using the approach presented in Sect. 3. In
particular, n = 2 for Rosenbrock’s function so that

α
(14)=

√
3

2
β

(14)= 1

3
γ

(17)= 1

2

(
1 + 1√

3

)
. (45)

Then, recalling that V = α(I − γ eeT ) [see (15)] we have

V+ = [
V −Ve

] ≈
[
0.2588 −0.9659 0.7071

−0.9659 0.2588 0.7071

]
. (46)

Recall that the connection between the arms of the simplex and vertices of the simplex
is given in (5) as x j = x0 + h1v j for j = 1, 2, 3, where we choose h1 = 10−3. The
three vertices of the simplex are the columns of

X+ = [
x1 x2 x3

] ≈
[
1.1003 1.0990 1.1007
1.2090 1.2103 1.2107

]
. (47)

The aligned regular simplex gradient (at the point x0) can be computed inO(n) oper-
ations using Theorem 3 [which requires the function values f1, f2, f3 computed at
the points x1, x2, x3 via (41)], and is as follows:

g1 ≈
[−0.095750884326868
−0.017496117072893

]
. (48)

Notice that the regular simplex gradient is different from the true gradient (44). Not
only are the magnitudes of the numbers different but the regular simplex gradient (48)
even has the opposite sign from the true gradient. This loss of accuracy is inevitable for
any first order numerical method used to approximate a gradient close to a stationary
point and the usual remedy is to switch to a second order method.

However, using the techniques previously presented, another possible approach is
as follows. Construct a second approximation to the gradient, again at the centroid x0
(43), but using a different simplex diameter, h2 = 1

2h1 say, (h1 and h2 are of the same
order). Thus, V+ remains unchanged but the simplex vertices become:

X ′+ = [
x ′
1 x ′

2 x ′
3

] ≈
[
1.1001 1.0995 1.1004
1.2095 1.2101 1.2104

]
. (49)

The function values f ′
1, f ′

2, f ′
3 are computed at the points x ′

1, x
′
2, x

′
3 and then the

aligned regular simplex gradient (at the point x0) can be computed inO(n) operations
via Theorem 3:
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g2 ≈
[
0.049842074409398

−0.007735568480143

]
.

Notice that g2 is different from that given in (44); again, the signs and numbers do
not match. In practice one does not have access to the true gradient so g1 and g2 are
compared instead. Notice the sign of the first component g1 is opposite from that of
g2 (they point in different directions) and the numerical values of the components are
also different.

In this situation it is beneficial to use the ideas from Sect. 4.3 to improve the
accuracy of the simplex gradient at x0. To this end, from (40) one can compute the
O(h2) approximation:

g12 = 2g2 − g1 ≈
[
0.195435033145664
0.002024980112607

]
.

Clearly, g12 is a good approximation to the true gradient (44); the sign of g12 matches
that of ∇ f (x0), and the magnitude of the components aligns well too, agreeing to 3
significant figures.

The experiment described above was repeated for fixed x0 and V+, but for varying
values of h1 (with h2 = 1

2h1 holding for each choice of h1). The results are shown in
Fig. 2. The error is measured as the difference between the true gradient∇ f (x0) stated
in (44) and ‘g’, where g is a notational placeholder for g1 (22), g2 (22) or g12 (39) as
appropriate. The purpose of this experiment is to show that, as h1 shrinks, the error
decreases linearly, as proven in Theorem 4. The upper bound on the error (Theorem 4)
is 1

2 Lh
√
n, and the value 2000 was selected to approximate the Lipschitz constant,

because L ≈ ‖∇2 f (x0)−∇2 f (x1)‖2/‖x0 − x1‖2 ≈ 1.0769×103 ≤ 2000, where x1
was the simplex vertex computed for h1 = 10−3. Theoretically, the error grows at the
rate O(h) for g1 and g2, and at the rate O(h2) for g12. However, in practice the error
grows asO(hm), and the values ‘m’ for g1, g2 and g12 are reported for this experiment
in the legend of Fig. 2. Figure 2 shows that the error in g1, g2 and g12 closely matches
what is predicted in theory.

5.2 High accuracy near the solution

In this example we show how the techniques in Sect. 4.3 can be used to hone in on a
stationary point. Suppose one wishes to compute the regular simplex gradient at the
point

x0 =
[
0.9
0.81

]
, (50)

which is close to the solution x∗ = [1 1]T . Using (42), the analytic gradient at x0 (50)
is

∇ f (0.9, 0.81) ≈
[−0.2000000000000000

0

]
. (51)
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Fig. 2 Plot showing the error in the gradient approximation as the simplex radius varies from h1 = 10−6

(left) to h1 = 10−1 (right). From left to right along the x-axis (corresponding to a growing simplex
radius) the error in the aligned regular simplex gradient increases, as expected by Theorem 4. The slopes
m correspond to the order of the accuracy in the gradient approximations, O(hm1 ). The gradients g1 and
g2 have m values of 0.9899 and 0.99506, which closely match their predicted linear accuracy, while the
theoretical quadratic accuracy of g12 is mirrored in practice by the value m = 2.0301

Now, construct the aligned regular simplex using the approach in Sect. 3. Here, n = 2,
α, β and γ are the same as in (45), V+ is the same as in (46), and h1 = 10−6 was
chosen. The vertices of the simplex are computed as x j = x0 + h1v j for j = 1, 2, 3
[see (5)], and are the columns of

X+ = [
x1 x2 x3

] ≈
[
0.90000026 0.89999903 0.90000071
0.80999903 0.81000026 0.81000071

]
. (52)

The simplex gradient is computed in O(n) operations using Theorem 3 and is

g1 ≈
[−0.200206828472801
−0.000047729764447

]
. (53)

The regular simplex gradient g1 is a good approximation to the true gradient (51). The
first component of (53) has the same sign as the first component of (51), and they
match to 3 significant figures. Also, the second component of (53) is ∼ −5 × 10−5,
which while not exactly zero, is still small.

Now consider computing a second aligned regular simplex gradient, again at the
point x0, but now with h2 = − 1

2h1, recall Remark 4(2) (A negative multiple was
chosen for demonstration purposes only.). The vertices of the simplex are computed
as x j = x0 + h2v j for j = 1, 2, 3 [see (5)], and are the columns of

X+ = [
x1 x2 x3

] ≈
[
0.89999987 0.90000048 0.89999965
0.81000048 0.80999987 0.80999965

]
. (54)

Using Theorem 3, the regular simplex gradient is

g2 ≈
[−0.199896585549141

0.000023864840841

]
. (55)

123



586 I. Coope, R. Tappenden
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Fig. 3 A schematic of the simplices generated in the numerical experiments. The left plot relates to the
experiment in Sect. 5.1, while the right plot relates to the experiment in Sect. 5.2

Again, g2 is a good approximation to the true gradient. The first components of (55)
and (51) are similar, and the second component of (55) is also small. Notice that g1 and
g2 are also similar, although the sign of the second component of g1 is opposite that of
g2. Now (40) can be used to combine g1 and g2 and obtain an O(h2) approximation
to the true gradient:

g12 ≈
[−0.199999999857027
−0.000000000027588

]
.

Clearly, g12 is a good approximation to ∇ f (x0); g12 is accurate to 10 d.p.
These examples make it clear that obtaining a high accuracy aligned regular sim-

plex gradient is cheap (once function evaluations have been computed). Each regular
simplex gradient (i.e., g1 and g2) is obtained in O(n) operations, and the O(h2)
approximation g12 is simply a weighted sum of g1 and g2, so it also costs O(n).

In the above examples the simplices had the same centroid for each first order
gradient calculation but this need not always be the case. Sometimes the new simplex
is obtained by shrinking (or expanding) the current simplex keeping one of the vertices
fixed and/or by rotating the current simplex about a vertex. In such cases the formula
(40) can still be applied and gives a second order estimate at the vertex common to the
two simplices used in the two first order estimates. The so-called ‘centered difference
simplex gradient’ [15, p. 115] is one such example. If the centroid of the simplex is
not used it may also be convenient to replace the ‘arm-length’ h by the edge length s.
These are simply related through the cosine rule (s = √

2αh = h
√
2 + 2/n).

We conclude this sectionwith a schematic of the simplices generated in each of these
numerical experiments. The left plot in Fig. 3 relates to the experiment in Sect. 5.1,
while the right plot relates to the experiment in Sect. 5.2. In the left plot in Fig. 3,
points x1, x2, x3 [see (54)] represent vertices of the simplex with h1 = 10−3. Points
x ′
1, x

′
2, x

′
3 [see (49)] represent vertices of the simplex with h2 = 1

2h1 = 5 × 10−4.
This choice of h2 simply shrinks the regular simplex while maintaining the orientation
of the original simplex. On the other hand, the right plot in Fig. 3 corresponds to the
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experiment in Sect. 5.2. In particular, points x1, x2, x3 represent vertices of the simplex
with h1 = 10−6. However points x ′

1, x
′
2, x

′
3 represent vertices of the simplex with

h2 = − 1
2h1. This choice of h2 shrinks and also rotates the regular simplex. (Because

this is an aligned regular simplex, inR2 this is equivalent to rotating the simplex about
x0 by 180◦).

6 Conclusion

In this work it was shown that a simplex gradient can be obtained efficiently, in terms
of the linear algebra and memory costs, when the simplex is regular and appropriately
aligned.A simplex gradient is the least-squares solution of a systemof linear equations,
which can have a computational cost ofO(n3) for a general and unstructured system.
However, due to the properties of the aligned regular simplex, the linear algebra of
the least squares system simplifies, and the aligned regular simplex gradient can be
expressed as a weighted sum of the function values (measured at the vertices of the
simplex) and a constant vector. Therefore, the computational cost of obtaining an
aligned regular simplex gradient is onlyO(n). Furthermore, the storage costs are low.
Indeed, V+ need not be stored at all; the vertices of the aligned regular simplex can be
constructed on-the-fly using only the centroid x0 and radius h. Moreover, it was shown
that if the regular simplex is arbitrarily oriented, then the regular simplex gradient can
be computed in at most O(n2).

Several extensions were presented, including how to generate a simplex with inte-
ger coordinates when n + 1 is a perfect square. We also showed that Richardson’s
extrapolation can be employed to obtain anO(h2) accuracy approximation to the true
gradient from two regular simplex gradients.

6.1 Future work

The main contribution of this work was to show that a regular simplex gradient can
be determined efficiently in terms of the numerical linear algebra and storage costs.
Simplex gradients are useful in a wide range of contexts and applications, including
using the simplex gradient to determine a search direction, employing the simplex
gradient in an algorithm termination condition, and determining when to shrink the
mesh size in a grid basedmethod. Futurework includes embedding this aligned regular
simplex gradient computation into an optimization routine to investigate how this
gradient approximation affects overall algorithm performance.
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