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Abstract
Direct search is a methodology for derivative-free optimization whose iterations are
characterized by evaluating the objective function using a set of polling directions. In
deterministic direct search applied to smooth objectives, these directions must some-
how conform to the geometry of the feasible region, and typically consist of positive
generators of approximate tangent cones (which then renders the corresponding meth-
ods globally convergent in the linearly constrained case). One knows however from
the unconstrained case that randomly generating the polling directions leads to better
complexity bounds as well as to gains in numerical efficiency, and it becomes then nat-
ural to consider random generation also in the presence of constraints. In this paper, we
study a class of direct-search methods based on sufficient decrease for solving smooth
linearly constrained problems where the polling directions are randomly generated (in
approximate tangent cones). The random polling directions must satisfy probabilistic
feasible descent, a concept which reduces to probabilistic descent in the absence of
constraints. Such a property is instrumental in establishing almost-sure global conver-
gence and worst-case complexity bounds with overwhelming probability. Numerical
results show that the randomization of the polling directions can be beneficial over
standard approaches with deterministic guarantees, as it is suggested by the respective
worst-case complexity bounds.
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1 Introduction

In various practical scenarios, derivative-free algorithms are the single way to solve
optimization problems forwhich noderivative information can be computed or approx-
imated. Among the various classes of such schemes, direct search is one of the most
popular, due to its simplicity, robustness, and ease of parallelization. Direct-search
methods [2,10,22] explore the objective function along suitably chosen sets of direc-
tions, called polling directions.When there are no constraints on the problem variables
and the objective function is smooth, those directions must provide a suitable angle
approximation to the unknown negative gradient, and this is guaranteed by assuming
that the polling vectors positively span the whole space (by means of nonnegative
linear combinations). In the presence of constraints, such directions must conform to
the shape of the feasible region in the vicinity of the current feasible point, and are
typically given by the positive generators of some approximate tangent cone identified
by nearby active constraints. When the feasible region is polyhedral, it is possible to
decrease a smooth objective function value along such directions without violating
the constraints, provided a sufficiently small step is taken.

Bound constraints are a classical example of such a polyhedral setting.Direct-search
methods tailored to these constraints have been introduced by Lewis and Torczon [26],
where polling directions can (and must) be chosen among the coordinate directions
and their negatives, which naturally conform to the geometry of such a feasible region.
A number of other methods have been proposed and analyzed based on these polling
directions (see [15,17,30] and [21, Chapter 4]).

In the general linearly constrained case, polling directions have to be computed as
positive generators of cones tangent to a set of constraints that are nearly active (see
[23,27]). The identification of the nearly active constraints can be tightened to the size
of the step taken along the directions [23], and global convergence is guaranteed to
a true stationary point as the step size goes to zero. In the presence of constraint lin-
ear dependence, the computation of these positive generators is problematic and may
require enumerative techniques [1,25,34], although the practical performance of the
corresponding methods does not seem much affected. Direct-search methods for lin-
early constrained problems have been successfully combined with global exploration
strategies by means of a search step [11,37,38].

Several strategies for the specific treatment of linear equality constraints have also
been proposed. For example, one can remove these constraints through a change of
variables [3,14]. Another possibility is to design an algorithm that explores the null
space of the linear equality constraints, which is also equivalent to solving the problem
in a lower-dimensional, unconstrained subspace [25,29]. Such techniques may lead to
a less separable problem, possibly harder to solve.

All aforementioned strategies involve the deterministic generation of the polling
directions. Recently, it has been shown in [19] that the random generation of the
polling directions outperforms the classical choice of deterministic positive spanning
sets for unconstrained optimization (whose cardinality is at least n + 1, where n is
the dimension of the problem). Inspired by the concept of probabilistic trust-region
models [6], the authors in [19] introduced the concept of probabilistic descent, which
essentially imposes on the random polling directions the existence of a direction that
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makes an acute angle with the negative gradient with a probability sufficiently large
conditioning on the history of the iterations. This approach has been proved globally
convergent with probability one. Moreover, a complexity bound of the order nε−2

has been shown (with overwhelmingly high probability) for the number of function
evaluations needed to reach a gradient of norm below a positive threshold ε, which
contrasts with the n2ε−2 bound of the deterministic case [39] (for which the factor
of n2 cannot be improved [12]). A numerical comparison between deterministic and
random generation of the polling directions also showed a substantial advantage for
the latter: using only two directions led to the best observed performance, as well as
an improved complexity bound [19].

In this paper, motivated by these results for unconstrained optimization, we intro-
duce the notions of deterministic and probabilistic feasible descent for the linearly
constrained setting, essentially by considering the projection of the negative gradi-
ent on an approximate tangent cone identified by nearby active constraints. For the
deterministic case, we establish a complexity bound for direct search (with sufficient
decrease) applied to linearly constrained problems with smooth objectives—left open
in the literature until now. We then prove that direct search based on probabilistic
feasible descent enjoys global convergence with probability one, and derive a com-
plexity bound with overwhelmingly high probability. In the spirit of [19], we aim at
identifying randomized polling techniques for which the evaluation complexity bound
improves over the deterministic setting. To this end, two strategies are investigated: one
where the directions are a random subset of the positive generators of the approximate
tangent cone; and another where one first decomposes the approximate tangent cone
into a subspace and a cone orthogonal to the subspace. In the latter case, the subspace
component (if nonzero) is handled by generating random directions in it, and the cone
component is treated by considering a random subset of its positive generators. From
a general complexity point of view, both techniques can be as expensive as the deter-
ministic choices in the general case. However, our numerical experiments reveal that
direct-search schemes based on the aforementioned techniques can outperform rele-
vant instances of deterministic direct search. Throughout the paper, we particularize
our results for the cases where there are only bounds on the variables or there are only
linear equality constraints: in these cases, the good practical behavior of probabilistic
descent is predicted by the complexity analysis.

We organize our paper as follows. In Sect. 2, we describe the problem at hand as
well as the direct-search framework under consideration. In Sect. 3, we motivate the
concept of feasible descent and use this notion to derive the already known global
convergence of [23]—although not providing a new result, such an analysis is crucial
for the rest of the paper. It allows us to establish right away (see Sect. 4) the complexity
of a class of direct-searchmethods based on sufficient decrease for linearly constrained
optimization, establishing bounds for the worst-case effort when measured in terms
of number of iterations and function evaluations. In Sect. 5, we introduce the concept
of probabilistic feasible descent and prove almost-sure global convergence for direct-
search methods based on it. The corresponding worst-case complexity bounds are
established in Sect. 6. In Sect. 7, we discuss how to take advantage of subspace
information in the random generation of the polling directions. Then, we report in
Sect. 8 a numerical comparison between direct-search schemes based on probabilistic
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and deterministic feasible descent, which enlightens the potential of random polling
directions. Finally, conclusions are drawn in Sect. 9.

We will use the following notation. Throughout the document, any set of vectors
V = {v1, . . . , vm} ⊂ R

n will be identified with the matrix [v1 · · · vm] ∈ R
n×m . We

will thus allow ourselves towrite v ∈ V even thoughwemaymanipulate V as amatrix.
Cone(V ) will denote the conic hull of V , i.e., the set of nonnegative combinations of
vectors in V . Given a closed convex cone K in R

n , PK [x] will denote the uniquely
defined projection of the vector x onto the cone K (with the convention P∅[x] = 0
for all x). The polar cone of K is the set {x : y�x ≤ 0,∀y ∈ K }, and will be denoted
by K ◦. For every space considered, the norm ‖ · ‖ will be the Euclidean one. The
notationO(A) will stand for a scalar times A, with this scalar depending solely on the
problem considered or constants from the algorithm. The dependence on the problem
dimension n will explicitly appear in A when considered appropriate.

2 Direct search for linearly constrained problems

In this paper, we consider optimization problems given in the following form:

min
x∈Rn

f (x)

s.t. Ax = b,
� ≤ AIx ≤ u,

(2.1)

where f : R
n → R is a continuously differentiable function, A ∈ R

m×n , AI ∈
R
mI×n , b ∈ R

m , and (�, u) ∈ (R ∪ {−∞,∞})mI , with � < u. We consider that the
matrix A can be empty (i.e., m can be zero), in order to encompass unconstrained
and bound-constrained problems into this general formulation (when mI = n and
AI = In). Whenever m ≥ 1, we consider that the matrix A is of full row rank.

We define the feasible region as

F = {
x ∈ R

n : Ax = b, � ≤ AIx ≤ u
}
.

The algorithmic analysis in this paper requires a measure of first-order criticality
for Problem (2.1). Given x ∈ F , we will work with

χ(x)
def= max

x+d∈F‖d‖≤1

d� [−∇ f (x)] . (2.2)

The criticality measure χ (·) is a non-negative, continuous function. For any x ∈ F ,
χ(x) equals zero if and only if x is a KKT first-order stationary point of Problem (2.1)
(see [40]). It has been successfully used to derive convergence analyses of direct-
search schemes applied to linearly constrained problems [22]. Given an orthonormal
basis W ∈ R

n×(n−m) for the null space of A, this measure can be reformulated as
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χ(x) = max
x+Wd̃∈F∥∥∥Wd̃

∥∥∥≤1

d̃�[−W�∇ f (x)] = max
x+Wd̃∈F

‖d̃‖≤1

d̃�[−W�∇ f (x)] (2.3)

for any x ∈ F .
Algorithm 2.1 presents the basic direct-search method under analysis in this paper,

which is inspired by the unconstrained case [19, Algorithm 2.1]. The main difference,
due to the presence of constraints, is that we enforce feasibility of the iterates. We
suppose that a feasible initial point is provided by the user. At every iteration, using a
finite number of polling directions, the algorithm attempts to compute a new feasible
iterate that reduces the objective function value by a sufficient amount (measured by
the value of a forcing function ρ on the step size αk).

Algorithm 2.1: Feasible Direct Search based on sufficient decrease.

Inputs: x0 ∈ F , αmax ∈ (0, ∞], α0 ∈ (0, αmax), θ ∈ (0, 1), γ ∈ [1, ∞), and a forcing function
ρ : (0, ∞) → (0, ∞).
for k = 0, 1, . . . do

Poll Step
Choose a finite set Dk of non-zero polling directions. Evaluate f at the polling points
{xk + αkd : d ∈ Dk } following a chosen order. If a feasible poll point xk + αkdk is found such
that f (xk + αkdk ) < f (xk ) − ρ(αk ) then stop polling, set xk+1 = xk + αkdk , and declare the
iteration successful. Otherwise declare the iteration unsuccessful and set xk+1 = xk .
Step Size Update
If the iteration is successful, (possibly) increase the step size by setting
αk+1 = min {γαk , αmax};
Otherwise, decrease the step size by setting αk+1 = θαk .

end

We consider that the method runs under the following assumptions, as we did for
the unconstrained setting (see [19, Assumptions 2.2, 2.3 and 4.1]).

Assumption 2.1 For each k ≥ 0, Dk is a finite set of normalized vectors.

Similarly to the unconstrained case [19], Assumption 2.1 aims at simplifying the
constants in the derivation of the complexity bounds. However, all global conver-
gence limits and worst-case complexity orders remain true when the norms of polling
directions are only assumed to be above and below certain positive constants.

Assumption 2.2 The forcing function ρ is positive, non-decreasing, and ρ(α) = o(α)

when α → 0+. There exist constants θ̄ and γ̄ satisfying 0 < θ̄ < 1 ≤ γ̄ such that,
for each α > 0, ρ(θα) ≤ θ̄ρ(α) and ρ(γ α) ≤ γ̄ ρ(α), where θ and γ are given in
Algorithm 2.1.

Typical examples of forcing functions satisfying Assumption 2.2 include monomi-
als of the form ρ(α) = c αq , with c > 0 and q > 1. The case q = 2 gives rise to
optimal worst-case complexity bounds [39].

The directions used by the algorithm should promote feasible displacements. As the
feasible region is polyhedral, this can be achieved by selecting polling directions from
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cones tangent to the feasible set. However, our algorithm is not of active-set type, and
thus the iterates may get very close to the boundary but never lie at the boundary. In
such a case, when no constraint is active, tangent cones promote all directions equally,
not reflecting the proximity to the boundary. A possible fix is then to consider tangent
cones corresponding to nearby active constraints, as in [23,25].

In this paper, we will make use of concepts and properties from [23,27], where
the problem has been stated using a linear inequality formulation. To be able to apply
them to Problem (2.1), where the variables are also subject to the equality constraints
Ax = b, we first consider the feasible regionF reduced to the nullspace of A, denoted
by F̃ . By writing x = x̄ + Wx̃ for a fix x̄ such that Ax̄ = b, one has

F̃ = {
x̃ ∈ R

n−m : � − AI x̄ ≤ AIWx̃ ≤ u − AI x̄
}
, (2.4)

where, again, W is an orthonormal basis for null(A). Then, we define two index sets
corresponding to approximate active inequality constraints/bounds, namely

∀x = x̄ + Wx̃,

⎧
⎨

⎩

Iu(x, α)={
i : |ui − [AI x̄]i − [AIWx̃]i |≤α‖W�A�

I ei‖
}

I�(x, α)={
i : |�i − [AI x̄]i − [AIWx̃]i |≤α‖W�A�

I ei‖
}
,

(2.5)

where e1, . . . , emI are the coordinate vectors in R
mI and α is the step size in the

algorithm. The indices in these sets contain the inequality constraints/bounds such
that the Euclidean distance from x to the corresponding boundary is less than or equal
to α. Note that one can assume without loss of generality that ‖W�A�

I ei‖ �= 0,
otherwise given that we assume thatF is nonempty, the inequality constraints/bounds
�i ≤ [AIx]i ≤ ui would be redundant.

We can now consider an approximate tangent cone T (x, α) as if the inequality
constraints/ bounds in Iu(x, α)∪ Il(x, α)were active. This corresponds to considering
a normal cone N (x, α) defined as

N (x, α) = Cone

({
W�A�

I ei
}

i∈Iu(x,α)
∪
{
−W�A�

I ei
}

i∈I�(x,α)

)
. (2.6)

We then choose T (x, α) = N (x, α)◦.1
The feasible directions we are looking for are given by Wd̃ with d̃ ∈ T (x, α), as

supported by the lemma below.

Lemma 2.1 Let x ∈ F , α > 0, and d̃ ∈ T (x, α). If ‖d̃‖ ≤ α, then x + Wd̃ ∈ F .

1 When developing the convergence theory in the deterministic case, mostly in [27], then in [23], the authors
have considered a formulation only involving linear inequality constraints. In [25], they have suggested to
include linear equality constraints by adding to the positive generators of the approximate normal cone the
transposed rows of A and their negatives, which in turn implies that the tangent cone lies in the null space
of A. In this paper, we take an equivalent approach by explicitly considering the iterates in null(A). Not
only does this allow a more direct application of the theory in [23,27], but it also renders the consideration
of the particular cases (only bounds or only linear equalities) simpler.
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Proof First, we observe that x +Wd̃ ∈ F is equivalent to x̃ + d̃ ∈ F̃ . Then, we apply
[23, Proposition 2.2] to the reduced formulation (2.4). ��

This result also holds for displacements of norm α in the full space as ‖Wd̃‖ = ‖d̃‖.
Hence, by considering steps of the form αWd̃ with d̃ ∈ T (x, α) and ‖d̃‖ = 1, we are
ensured to remain in the feasible region.

We point out that the previous definitions and the resulting analysis can be extended
by replacing α in the definition of the nearby active inequality constraints/bounds by
a quantity of the order of α (that goes to zero when α does); see [23]. For matters of
simplicity of the presentation, we will only work with α, which was also the practical
choice suggested in [25].

3 Feasible descent and deterministic global convergence

In the absence of constraints, all that is required for the set of polling directions is the
existence of a sufficiently good descent direction within the set; in other words, we
require

cm(D,−∇ f (x)) ≥ κ with cm(D, v) = max
d∈D

d�v

‖d‖‖v‖ ,

for some κ > 0. The quantity cm(D, v) is the cosine measure of D given v, introduced
in [19] as an extension of the cosine measure of D [22] (and both measures are
bounded away from zero for positive spanning sets D). To generalize this concept for
Problem (2.1), where the variables are subject to inequality constraints/bounds and
equalities, we first consider the feasible region F in its reduced version (2.4), so that
we can apply in the reduced space the concepts and properties of [23,27] where the
problem has been stated using a linear inequality formulation.

Let ∇̃ f (x) be the gradient of f reduced to the null space of the matrix A defining
the equality constraints, namely ∇̃ f (x) = W�∇ f (x). Given an approximate tangent
cone T (x, α) and a set of directions D̃ ⊂ T (x, α), we will use

cmT (x,α)(D̃,−∇̃ f (x))
def= max

d̃∈D̃
d̃�(−∇̃ f (x))

∥∥d̃
∥∥∥∥PT (x,α)[−∇̃ f (x)]∥∥ (3.1)

as the cosine measure of D̃ given −∇̃ f (x). If PT (x,α)[−∇̃ f (x)] = 0, then we define
the quantity in (3.1) as equal to 1. This cosine measure given a vector is motivated by
the analysis given in [23] for the cosine measure (see Condition 1 and Proposition A.1
therein). As away tomotivate the introduction of the projection in (3.1), note that when
‖PT (x,α)[−∇̃ f (x)]∥∥ is arbitrarily small compared with ‖∇̃ f (x)‖, cm(D̃,−∇̃ f (x))

may be undesirably small but cmT (x,α)(D̃,−∇̃ f (x)) can be close to 1. In particular,
cmT (x,α)(D̃,−∇̃ f (x)) is close to 1 if D̃ contains a vector that is nearly in the direction
of −∇̃ f (x).
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Given a finite set C of cones, where each cone C ∈ C is positively generated from
a set of vectors G(C), one has

λ(C) = min
C∈C

⎧
⎨

⎩
inf

u∈Rn−m

PC [u]�=0

max
v∈G(C)

v�u
‖v‖‖PC [u]‖

⎫
⎬

⎭
> 0. (3.2)

For any C ∈ C, one can prove that the infimum is finite and positive through a simple
geometric argument, based on the fact thatG(C) positively generatesC (see, e.g., [27,
Proposition 10.3]). Thus, if D̃ positively generates T (x, α),

cmT (x,α)(D̃)
def= inf

u∈Rn−m

PT (x,α)[u]�=0

max
d̃∈D̃

d̃�u
‖d̃‖ ∥∥PT (x,α)[u]∥∥ ≥ κmin > 0,

where κmin = λ(T) and T is formed by all possible tangent cones T (x, ε) (with some
associated sets of positive generators), for all possible values of x ∈ F and ε > 0.
Note thatT is necessarily finite given that the number of constraints is. This guarantees
that the cosine measure (3.1) of such a D̃ given −∇̃ f (x) will necessarily be bounded
away from zero.

We can now naturally impose a lower bound on (3.1) to guarantee the existence of
a feasible descent direction in a given D̃. However, we will do it in the full space Rn

by considering directions of the form d = Wd̃ for d̃ ∈ D̃.

Definition 3.1 Let x ∈ F and α > 0. Let D be a set of vectors in R
n of the form

{d = Wd̃, d̃ ∈ D̃} for some D̃ ⊂ T (x, α) ⊂ R
n−m . Given κ ∈ (0, 1), the set D is

called a κ-feasible descent set in the approximate tangent cone WT (x, α) if

cmWT (x,α)(D,−∇ f (x))
def= max

d∈D
d�(−∇ f (x))

‖d‖‖PWT (x,α)[−∇ f (x)]‖ ≥ κ, (3.3)

whereW is an orthonormal basis of the null space of A, and we assume by convention
that the above quotient is equal to 1 if

∥∥PWT (x,α)[−∇ f (x)]∥∥ = 0.

In fact, using both PWT (x,α)[−∇ f (x)] = PWT (x,α)[−WW�∇ f (x)] = WPT (x,α)

[−W�∇ f (x)] and the fact that the Euclidean norm is preserved under multiplication
by W , we note that

cmWT (x,α)(D,−∇ f (x)) = cmT (x,α)(D̃,−W�∇ f (x)), (3.4)

which helps passing from the full to the reduced space. Definition 3.1 characterizes the
polling directions of interest to the algorithm. Indeed, if D is a κ-feasible descent set, it
contains at least one descent direction at x feasible for a displacement of length α (see
Lemma 2.1). Furthermore, the size of κ controls how much away from the projected
gradient such a direction is.

In the remaining of the section, we will show that the algorithm is globally conver-
gent to a first-order stationary point. There will be no novelty here as the result is the
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same as in [23], but there is a subtlety as we weaken the assumption in [23] when using
polling directions from a feasible descent set instead of a set of positive generators.
This relaxation will be instrumental when later we derive results based on proba-
bilistic feasible descent, generalizing [19] from unconstrained to linearly constrained
optimization.

Assumption 3.1 The function f is bounded below on the feasible region F by a
constant flow > −∞.

It is well known that under the boundedness below of f the step size converges to
zero for direct-searchmethods based on sufficient decrease [22]. This type of reasoning
carries naturally from unconstrained to constrained optimization as long as the iterates
remain feasible, and it is essentially based on the sufficient decrease condition imposed
on successful iterates. We present the result in the stronger form of a convergence of
a series, as the series limit will be later needed for complexity purposes. The proof
is given in [19] for the unconstrained case but it applies verbatim to the feasible
constrained setting.

Lemma 3.1 Consider a run of Algorithm 2.1 applied to Problem (2.1) under Assump-
tions 2.1, 2.2, and 3.1. Then,

∑∞
k=0 ρ(αk) < ∞ (thus limk→∞ αk = 0).

Lemma 3.1 is central to the analysis (and to defining practical stopping criteria) of
direct-search schemes. It is usually combined with a bound of the criticality measure
in terms of the step size. For stating such a bound we need the following assump-
tion, standard in the analysis of direct search based on sufficient decrease for smooth
problems.

Assumption 3.2 The function f is continuously differentiable with Lipschitz contin-
uous gradient in an open set containing F (and let ν > 0 be a Lipschitz constant of
∇ f ).

Assumptions 3.1 and 3.2 were already made in the unconstrained setting [19,
Assumption 2.1]. In addition to those, the treatment of linear constraints also requires
the following property (see, e.g., [23]):

Assumption 3.3 The gradient of f is bounded in norm in the feasible set, i.e., there
exists Bg > 0 such that ‖∇ f (x)‖ ≤ Bg for all x ∈ F .

The next lemma shows that the criticality measure is of the order of the step size for
unsuccessful iterations under our assumption of feasible descent. It is a straightforward
extension ofwhat can be proved using positive generators [23], yet this particular result
will become fundamental in the probabilistic setting.

Lemma 3.2 Consider a run of Algorithm 2.1 applied to Problem (2.1) under Assump-
tions 2.1 and 3.2. Let Dk be a κ-feasible descent set in the approximate tangent cone
WT (xk, αk). Then, denoting Tk = T (xk, αk) and gk = ∇ f (xk), if the kth iteration is
unsuccessful,

∥∥∥PTk [−W�gk]
∥∥∥ ≤ 1

κ

(
ν

2
αk + ρ(αk)

αk

)
. (3.5)
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Proof The result clearly holds whenever the left-hand side in (3.5) is equal to zero,
therefore we will assume for the rest of the proof that PTk [−W�gk] �= 0 (Tk is thus
non-empty). From (3.4) we know that cmTk (D̃k,−W�gk) ≥ κ , and thus there exists
a d̃k ∈ D̃k such that

d̃�
k [−W�gk]

‖d̃k‖
∥∥PTk

[−W�gk
]∥∥ ≥ κ.

On the other hand, from Lemma 2.1 and Assumption 2.1, we also have xk +αkW d̃k ∈
F . Hence, using the fact that k is the index of an unsuccessful iteration, followed by
a Taylor expansion,

−ρ(αk) ≤ f (xk + αkW d̃k) − f (xk) ≤ αk d̃
�
k W�gk + ν

2
α2
k

≤ −καk‖d̃k‖‖PTk [−W�gk]‖ + ν

2
α2
k ,

which leads to (3.5). ��

In order to state a result involving the criticality measure χ(xk), one also needs
to bound the projection of the reduced gradient onto the polar of T (xk, αk). As in
[23], one uses the following uniform bound (derived from polyhedral geometry) on
the normal component of a feasible vector.

Lemma 3.3 [23, Proposition B.1] Let x ∈ F and α > 0. Then, for any vector d̃ such
that x + Wd̃ ∈ F , one has

∥∥∥PN (x,α)[d̃]
∥∥∥ ≤ α

ηmin
, (3.6)

where ηmin = λ(N) andN is formed by all possible approximate normal cones N (x, ε)
(generated positively by the vectors in (2.6)) for all possible values of x ∈ F and ε > 0.

We remark that the definition of ηmin is independent of x and α.

Lemma 3.4 Consider a run of Algorithm 2.1 applied to Problem (2.1) under Assump-
tions 2.1, 3.2, and 3.3. Let Dk be a κ-feasible descent set in the approximate tangent
cone WT (xk, αk). Then, if the kth iteration is unsuccessful,

χ(xk) ≤
[

ν

2κ
+ Bg

ηmin

]
αk + ρ(αk)

καk
. (3.7)

Proof Wemake use of the classical Moreau decomposition [33], which states that any
vector v ∈ R

n−m can be decomposed as v = PTk [v] + PNk [v] with Nk = N (xk, αk)

and PTk [v]�PNk [v] = 0, and write
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χ(xk) = max
xk+Wd̃∈F

‖d̃‖≤1

(
d̃�PTk [−W�gk] +

(
PTk [d̃] + PNk [d̃]

)�
PNk [−W�gk]

)

≤ max
xk+Wd̃∈F

‖d̃‖≤1

(
d̃�PTk [−W�gk] + PNk [d̃]�PNk [−W�gk]

)

≤ max
xk+Wd̃∈F

‖d̃‖≤1

(
‖d̃‖‖PTk [−W�gk]‖ + ‖PNk [d̃]‖‖PNk [−W�gk]‖

)
.

We bound the first term in the maximum using ‖d̃‖ ≤ 1 and Lemma 3.2. For the
second term, we apply Lemma 3.3 together with Assumption 3.3, leading to

‖PNk [d̃]‖‖PNk [−W�gk]‖ ≤ αk

ηmin
Bg,

yielding the desired conclusion. ��
The use of feasible descent sets (generated, for instance, through the techniques

described in “AppendixA”) enables us to establish a global convergence result. Indeed,
one can easily show from Lemma 3.1 that there must exist an infinite sequence of
unsuccessful iterations with step size converging to zero, to which one then applies
Lemma 3.4 and concludes the following result.

Theorem 3.1 Consider a run of Algorithm 2.1 applied to Problem (2.1) under Assump-
tions 2.1, 2.2, 3.1, 3.2, and 3.3. Suppose that for all k, Dk is a κ-feasible descent set
in the approximate tangent cone WT (xk, αk). Then,

lim inf
k→∞ χ(xk) = 0. (3.8)

4 Complexity in the deterministic case

In this section, our goal is to provide an upper bound on the number of iterations and
function evaluations sufficient to achieve

min
0≤l≤k

χ(xl) ≤ ε, (4.1)

for a given threshold ε > 0. Such complexity bounds have already been obtained
for derivative-based methods addressing linearly constrained problems. In particular,
it was shown that adaptive cubic regularization methods take O(ε−1.5) iterations to
satisfy (4.1) in the presence of second-order derivatives [8]. Higher-order regulariza-
tion algorithms require O(ε−(q+1)/q) iterations, provided derivatives up to the qth
order are used [7]. A short-step gradient algorithm was also proposed in [9] to address
general equality-constrained problems: it requires O(ε−2) iterations to reduce the
corresponding criticality measure below ε.
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In the case of direct search based on sufficient decrease for linearly constrained
problems, a worst-case complexity bound on the number of iterations can be derived
based on the simple evidence that the methods share the iteration mechanism of
the unconstrained case [39]. Indeed, since Algorithm 2.1 maintains feasibility, the
sufficient decrease condition for accepting new iterates is precisely the same as for
unconstrained optimization. Moreover, Lemma 3.4 gives us a bound on the criticality
measure for unsuccessful iterations that only differs (from the unconstrained case) in
the multiplicative constants. As a result, we can state the complexity for the linearly
constrained case in Theorem 4.1. We will assume there that ρ(α) = c α2/2, as q = 2
is the power q in ρ(α) = constant × αq that leads to the least negative power of ε in
the complexity bounds for the unconstrained case [39].

Theorem 4.1 Consider a run of Algorithm 2.1 applied to Problem (2.1) under the
assumptions of Theorem 3.1. Suppose that Dk is a κ-feasible descent set in the approx-
imate tangent cone WT (xk, αk) for all k. Suppose further that ρ(α) = c α2/2 for some
c > 0. Then, the first index kε satisfying (4.1) is such that

kε ≤
⌈
E1ε

−2 + E2

⌉
,

where

E1 = (
1 − logθ (γ )

) f (xk0) − flow
0.5θ2L2

1

− logθ (exp(1)),

E2 = logθ

(
θL1 exp(1)

αk0

)
+ f (x0) − flow

0.5α2
0

,

L1 = min(1, L−1
2 ), L2 = C = ν + c

2κ
+ Bg

ηmin
.

and k0 is the index of the first unsuccessful iteration (assumed ≤ kε). The constants
C, κ, ηmin depend on n,m,mI : C = Cn,m,mI , κ = κn,m,mI , ηmin = ηn,m,mI .

We refer the reader to [39, Proofs of Theorems 3.1 and 3.2] for the proof, a verbatim
copy of what works here (up to the multiplicative constants), as long as we replace
‖gk‖ by χ(xk).

Under the assumptions of Theorem 4.1, the number of iterations kε and the number
of function evaluations k f

ε sufficient to meet (4.1) satisfy

kε ≤ O
(
C2n,m,mI ε−2

)
, k f

ε ≤ O
(
rn,m,mIC2n,m,mI ε−2

)
, (4.2)

where rn,m,mI is a uniform upper bound on |Dk |. The dependence of κn,m,mI
and ηn,m,mI (and consequently of Cn,m,mI which is O(max{κ−2

n,m,mI , η−2
n,m,mI })) in

terms of the numbers of variables n, equality constraints m, and inequality con-
straints/bounds mI is not straightforward. Indeed, those quantities depend on the
polyhedral structure of the feasible region, and can significantly differ from one prob-
lem to another. Regarding rn,m,mI , one can say that rn,m,mI ≤ 2n in the presence of
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a non-degenerate condition such as the one of Proposition A.1 (see the sentence after
this proposition in “Appendix A”). In the general, possibly degenerate case, the com-
binatorial aspect of the faces of the polyhedral may lead to an rn,m,mI that depends
exponentially on n (see [34]).

Only bounds

When only bounds are enforced on the variables (m = 0,mI = n, AI = W = In), the
numbers κ, η, r depend only on n, and the set D⊕ = [In −In] formed by the coordinate
directions and their negatives is the preferred choice for the polling directions. In fact,
given x ∈ F and α > 0, the cone T (x, α) defined in Sect. 2 is always generated by
a set G ⊂ D⊕, while its polar N (x, α) will be generated by D⊕ \ G. The set of all
possible occurrences for T (x, α) and N (x, α) thus coincide, and it can be shown (see
[26] and [22, Proposition 8.1]) that κn ≥ κmin = 1/

√
n as well as ηn = ηmin = 1/

√
n.

In particular, D⊕ is a (1/
√
n)-feasible descent set in the approximate tangent cone

WT (x, α) for all possible values of x and α. Since rn ≤ 2n, one concludes from (4.2)
thatO(n2ε−2) evaluations are taken in the worst case, matching the known bound for
unconstrained optimization.

Only linear equalities

When there are no inequality constraints/bounds on the variables and only equalities
(m > 0), the approximate normal cones N (x, α) are empty and T (x, α) = R

n−m ,
for any feasible x and any α > 0. Thus, κn,m ≥ 1/

√
n − m and by convention

ηn,m = ∞ (or Bg/ηn,m could be replaced by zero). Since rn,m ≤ 2(n − m), one
concludes from (4.2) that O((n − m)2ε−2) evaluations are taken in the worst case. A
similar bound [39] would be obtained by first rewriting the problem in the reduced
space and then considering the application of deterministic direct search (based on
sufficient decrease) on the unconstrained reduced problem—and we remark that the
factor of (n − m)2 cannot be improved [12] using positive spanning vectors.

5 Probabilistic feasible descent and almost-sure global convergence

We now consider that the polling directions are independently randomly generated
from some distribution in R

n . Algorithm 2.1 will then represent a realization of the
corresponding generated stochastic process. We will use Xk,Gk,Dk, Ak to represent
the randomvariables corresponding to the kth iterate, gradient, set of polling directions,
and step size, whose realizations are respectively denoted by xk, gk = ∇ f (xk), Dk, αk

(as in the previous sections of the paper).
The first step towards the analysis of the corresponding randomized algorithm is

to pose the feasible descent property in a probabilistic form. This is done below in
Definition 5.1, generalizing the definition of probabilistic descent given in [19] for the
unconstrained case.
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Definition 5.1 Given κ, p ∈ (0, 1), the sequence {Dk} in Algorithm 2.1 is said to be
p-probabilistically κ-feasible descent, or (p, κ)-feasible descent in short, if

P
(
cmWT (x0,α0) (D0,−G0) ≥ κ

) ≥ p, (5.1)

and, for each k ≥ 1,

P
(
cmWT (Xk ,Ak ) (Dk,−Gk) ≥ κ

∣∣D0, . . . ,Dk−1
) ≥ p. (5.2)

Observe that at iteration k ≥ 1, the probability (5.2) involves conditioning on the
σ -algebra generated by D0, . . . ,Dk−1, expressing that the feasible descent property
is to be ensured with probability at least p regardless of the outcome of iterations 0 to
k − 1.

As in the deterministic case of Sect. 3, the results fromLemmas 3.1 and 3.4will form
the necessary tools to establish global convergence with probability one. Lemma 3.1
states that for every realization of Algorithm 2.1, thus for every realization of the
random sequence {Dk}, the step size sequence converges to zero. We rewrite below
Lemma 3.4 in its reciprocal form.

Lemma 5.1 Consider Algorithm 2.1 applied to Problem (2.1), and under Assump-
tions 2.1, 3.2, and 3.3. The kth iteration in Algorithm 2.1 is successful if

cmWT (xk ,αk ) (Dk,−gk) ≥ κ and αk < ϕ(κχ(xk)), (5.3)

where

ϕ(t)
def= inf

{
α : α > 0,

ρ(α)

α
+
[
ν

2
+ κBg

η

]
α ≥ t

}
. (5.4)

Note that this is [19, Lemma 2.1] but with cmWT (xk ,αk )(Dk,−gk) and χ(xk) in the
respective places of cm(Dk,−gk) and ‖gk‖.

For any k ≥ 0, let

Yk =
{
1 if iteration k is successful,

0 otherwise

and

Zk =
{
1 if cmWT (Xk ,Ak ) (Dk,−Gk) ≥ κ,

0 otherwise,

with yk, zk denoting their respective realizations. One can see from Theorem 4.1 that,
if the feasible descent property is satisfied at each iteration, that is zk = 1 for each k,
then Algorithm 2.1 is guaranteed to converge in the sense that lim infk→∞ χ(xk) = 0.
Conversely, if lim infk→∞ χ(xk) > 0, then it is reasonable to infer that zk = 1 did
not happen sufficiently often during the iterations. This is the intuition behind the
following lemma, for which no a priori property on the sequence {Dk} is assumed.
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Lemma 5.2 Under the assumptions of Lemmas 3.1 and 5.1, it holds for the stochastic
processes {χ(Xk)} and {Zk} that

{
lim inf
k→∞ χ(Xk) > 0

}
⊂
{ ∞∑

k=0

[
Zk ln γ + (1 − Zk) ln θ

] = −∞
}

. (5.5)

Proof The proof is identical to that of [19, Lemma 3.3], using χ(xk) instead of ‖gk‖.
��

Our goal is then to refute with probability one the occurrence of the event on the
right-hand side of (5.5). To this end, we ask the algorithm to always increase the
step size in successful iterations (γ > 1), and we suppose that the sequence {Dk} is
(p0, κ)-feasible descent, with

p0 = ln θ

ln(γ −1θ)
. (5.6)

Under this condition, one can proceed as in [6, Theorem 4.1] to show that the random
process

k∑

l=0

[Zl ln γ + (1 − Zl) ln θ ]

is a submartingale with bounded increments. Such sequences have a zero probabil-
ity of diverging to −∞ ( [6, Theorem 4.2]), thus the right-hand event in (5.5) also
happens with probability zero. This finally leads to the following almost-sure global
convergence result.

Theorem 5.1 Consider Algorithm 2.1 applied to Problem (2.1), with γ > 1, and under
Assumptions 2.1, 2.2, 3.1, 3.2, and 3.3. If {Dk} is (p0, κ)-feasible descent, then

P

(
lim inf
k→∞ χ(Xk) = 0

)
= 1. (5.7)

The minimum probability p0 is essential for applying the martingale arguments
that ensure convergence. Note that it depends solely on the constants θ and γ in a way
directly connected to the updating rules of the step size.

6 Complexity in the probabilistic case

The derivation of an upper bound for the effort taken by the probabilistic variant to
reduce the criticality measure below a tolerance also follows closely its counterpart for
unconstrained optimization [19]. As in the deterministic case, we focus on the most
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favorable forcing function ρ(α) = c α2/2, which renders the function ϕ(t) defined
in (5.4) linear in t ,

ϕ(t) =
[
ν + c

2
+ Bgκ

η

]−1

t .

A complexity bound for probabilistic direct search is given in Theorem 6.1
below for the linearly constrained case, generalizing the one proved in [19, Corol-
lary 4.9] for unconstrained optimization. The proof is exactly the same but with
cmWT (Xk ,Ak )(Dk,−Gk) and χ(Xk) in the respective places of cm(Dk,−Gk) and
‖Gk‖. Let us quickly recall the road map of the proof. First, a bound is derived on
P
(
min0≤l≤k χ(Xl) ≤ ε

)
in terms of a probability involving

∑k−1
l=0 Zl [19, Lemma4.4].

Assuming that the set of polling directions is (p, κ)-feasible descent with p > p0,
a Chernoff-type bound is then obtained for the tail distribution of such a sum, yield-
ing a lower bound on P

(
min0≤l≤k χ(Xl) ≤ ε

)
[19, Theorem 4.6]. By expressing the

event min0≤l≤k χ(Xl) ≤ ε as Kε ≤ k, where Kε is the random variable counting the
number of iterations performed until the satisfaction of the approximate optimality
criterion (4.1), one reaches an upper bound on Kε of the order of ε−2, holding with
overwhelming probability (more precisely, with probability at least 1− exp(O(ε−2));
see [19, Theorem 4.8 and Corollary 4.9]). We point out that in the linearly constrained
setting the probability p of feasible descent may depend on n, m, and mI , and hence
we will write p = pn,m,mI .

Theorem 6.1 Consider Algorithm 2.1 applied to Problem (2.1), with γ > 1, and
under the assumptions of Theorem 5.1. Suppose that {Dk} is (p, κ)-feasible descent
with p > p0, with p0 being defined by (5.6). Suppose also that ρ(α) = c α2/2 and
that ε > 0 satisfies

ε ≤ Cα0

2γ
.

Then, the first index Kε for which (4.1) holds satisfies

P

(
Kε ≤

⌈
βC2

c(p − p0)
ε−2

⌉)
≥ 1 − exp

[
−β(p − p0)C2

8cp
ε−2

]
, (6.1)

where β = 2γ 2

c(1−θ)2

[ c
2γ

−2α2
0 + f0 − flow

]
is an upper bound on

∑∞
k=0 α2

k (see [19,
Lemma 4.1]). The constants C, κ, p depend on n,m,mI : C = Cn,m,mI , κ = κn,m,mI ,
p = pn,m,mI .

Let K f
ε be the random variable counting the number of function evaluations

performed until satisfaction of the approximate optimality criterion (4.1). From The-
orem 6.1, we have:

P

(

K f
ε ≤rn,m,mI

⌈
βC2n,m,mI

c(pn,m,mI − p0)
ε−2

⌉)

≥1−exp

[

−β(pn,m,mI − p0)C2n,m,mI
8c pn,m,mI

ε−2

]

.

(6.2)
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As C2n,m,mI = O(max{κ−2
n,m,mI , η−2

n,m,mI }), and emphasizing the dependence on the
numbers of variables n, equality constraints m, and linear inequality/bounds mI , one
can finally assure with overwhelming probability that

K f
ε ≤ O

(
rn,m,mI max{κ−2

n,m,mI , η−2
n,m,mI }

pn,m,mI − p0
ε−2

)

. (6.3)

Only bounds

When there are only bounds on the variables (m = 0, mI = n, AI = W = In), we
can show that probabilistic direct search does not necessarily yield a better complexity
bound than its deterministic counterpart. Without loss of generality, we reason around
the worst case T (xk, αk) = R

n , and use a certain subset of positive generators of
T (xk, αk), randomly selected for polling at each iteration. More precisely, suppose
that instead of selecting the entire set D⊕, we restrict ourselves to a subset of uniformly
chosen �2np� elements, with p being a constant in (p0, 1). Then the corresponding
sequence of polling directions is (p, 1/

√
n)-feasible descent (this follows an argument

included in the proof of Proposition 7.1; see (B.8) in “Appendix B”). The complexity
result (6.2) can then be refined by setting rn = �2np�, κn ≥ κmin = 1/

√
n, and

ηn = κmin = 1/
√
n, leading to

P

(

K f
ε ≤ �2np�

⌈
C̄nε−2

p − p0

⌉)

≥ 1 − exp

[

− C̄(p − p0)ε−2

8p

]

, (6.4)

for some positive constant C̄ independent of n. This bound on K f
ε is thus O(n2ε−2)

(with overwhelming probability), showing that such a random strategy does not lead
to an improvement over the deterministic setting. To achieve such an improvement,
we will need to uniformly generate directions on the unit sphere of the subspaces
contained in T (xk, αk), and this will be described in Sect. 7.

Only linear equalities

As in the bound-constrained case, one can also here randomly select the polling
directions from [W −W ] (of cardinal 2(n − m)), leading to a complexity bound
ofO((n−m)2ε−2)with overwhelming probability. However, if instead we uniformly
randomly generate on the unit sphere ofRn−m (and post multiply byW ), the complex-
ity bound reduces toO((n−m)ε−2), a fact that translates directly from unconstrained
optimization [19] (see also the argument given in Sect. 7 as this corresponds to explore
the null space of A).
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7 Randomly generating directions while exploring subspaces

A random generation procedure for the polling directions in the approximate tangent
cone should explore possible subspace information contained in the cone. In fact, if
a subspace is contained in the cone, one can generate the polling directions as in the
unconstrained case (with as few as two directions within the subspace), leading to
significant gains in numerical efficiency as we will see in Sect. 8.

In this section, we will see that such a procedure still yields a condition sufficient
for global convergence and worst-case complexity. For this purpose, consider the kth
iteration of Algorithm 2.1. To simplify the presentation, we will set ñ = n − m for
the dimension of the reduced space, g̃k = W�gk for the reduced gradient, and Tk
for the approximate tangent cone. Let Sk be a linear subspace included in Tk and let
T c
k = Tk ∩ S⊥

k be the portion of Tk orthogonal to Sk . Any set of positive generators
for Tk can be transformed into a set Vk = [V s

k V c
k ], with Vk ,V s

k ,V
c
k being sets of

positive generators for Tk ,Sk ,T c
k , respectively (details on how to compute Sk and V c

k
are given in the next section). Proposition 7.1 describes a procedure to compute a
probabilistically feasible descent set of directions by generating random directions on
the unit sphere of Sk and by randomly selecting positive generators from V c

k (the latter
corresponding to the technique mentioned in Sect. 6 for the bound-constrained case).
The proof of the proposition is quite technical, thus we defer it to “Appendix B”.

Proposition 7.1 Consider an iteration of Algorithm 2.1 and let Tk be the associated
approximate tangent cone. Suppose that Tk contains a linear subspace Sk and let
T c
k = Tk ∩ S⊥

k . Let V
c
k be a set of positive generators for T c

k .
Let Us

k be a set of rs vectors generated on the unit sphere of Sk , where

rs =
⌊
log2

(
1 − ln θ

ln γ

)⌋
+ 1. (7.1)

and Uc
k be a set of

⌈
pc|V c

k |⌉ vectors chosen uniformly at random within V c
k such that

p0 < pc < 1. (7.2)

Then, there exist κ ∈ (0, 1) and p ∈ (p0, 1), with p0 given in (5.6), such that

P

(
cmTk ([Us

k Uc
k ],−G̃k) ≥ κ

∣∣∣|σk−1

)
≥ p,

where σk−1 represents the σ -algebra generated by D0, . . . ,Dk−1.
The constant κ depends on n,m,mI : κ = κn,m,mI , while p depends solely on

θ, γ, pc.

In the procedure presented in Proposition 7.1, we conventionally setUs
k = ∅ when

Sk is zero, andUc
k = ∅when T c

k is zero. As a corollary of Proposition 7.1, the sequence
of polling directions

{
Dk = W [Us

k Uc
k ]} corresponding to the subspace exploration

is (p, κ)-feasible descent. By Theorem 5.1, such a technique guarantees almost-sure
convergence, and it also falls into the assumptions of Theorem 6.1. We can thus obtain
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a general complexity bound in terms of iterations and evaluations, but we can also go
further thanSect. 6 and show improvement for specific instances of linearly constrained
problems.

7.1 Improving the complexity when there are only bounds

Suppose that the cones Tk always include an (n − nb)-dimensional subspace with
nb ≥ 1 (this is the case if only nb < n problem variables are actually subject to
bounds). Then, using2 |V c

k | ≤ nb, the number of polling directions to be generated
per iteration varies between rs and rs + pcnb, where rs given in (7.1) does not depend
on n nor on nb, and pc is a constant in (p0, 1). This implies that we can replace r by
rs + nb, κ by t/

√
n with t ∈ (0, 1] independent of n (see “Appendix B”) and η by

1/
√
n so that (6.2) becomes

P

(

K f
ε ≤

(⌊
log2

(
1 − ln θ

ln γ

)⌋
+ 1 + nb

)⌈ C̄nε−2

p − p0

⌉)

≥ 1 − exp

[

− C̄(p − p0)ε−2

8p

]

(7.3)

for some positive constant C̄ independent of nb and n. The resulting bound is
O (

nbnε−2
)
. If nb is substantially smaller than n, then this bound represents an

improvement over those obtained in Sects. 4 and 6, reflecting that a problem with
a small number of bounds on the variables is close to being unconstrained.

7.2 Improving the complexity when there are only linear equalities

In this setting, our subspace generation technique is essentially the same as the one for
unconstrained optimization [19]. We can see that (6.2) renders an improvement from
the bound O((n − m)2ε−2) of Sect. 6 to O((n − m)ε−2) (also with overwhelming
probability), which is coherent with the bound for the unconstrained case obtained in
[19].

8 Numerical results

This section is meant to illustrate the practical potential of our probabilistic strategies
through a comparison of several polling techniques with probabilistic and determinis-
tic properties.We implementedAlgorithm 2.1 inMATLABwith the following choices
of polling directions. The first choice corresponds to randomly selecting a subset of
the positive generators of the approximate tangent cone (dspfd-1, see Sect. 6). In the
second one, we first try to identify a subspace of the cone, ignore the corresponding

2 V c
k corresponds to the coordinate vectors in Tk for which their negatives do not belong to Vk , and hence

the corresponding variables must be subject to bound constraints. Since there only are nb bound constraints,
one has 0 ≤ |V c

k | ≤ nb .
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positive generators, and then randomly generate directions in that subspace (dspfd-2,
see Sect. 7). Finally, we tested a version based on the complete set of positive gener-
ators, but randomly ordering them at each iteration (dspfd-0)—such a variant can be
analyzed in the classic deterministic way despite the random order. The three variants
require the computation of a set of positive generators for the approximate tangent
cone, a process we describe in “Appendix A”. For variant dspfd-2, subspaces are
detected by identifying opposite vectors in the set of positive generators: this forms
our set V s

k (following the notation of Sect. 7), and we obtain V c
k by orthogonaliz-

ing the remaining positive generators with respect to those in V s
k . Such a technique

always identifies the largest subspace when there are either only bounds or only linear
constraints, and benefits in the general case from the construction described in Propo-
sition A.1. To determine the approximate active linear inequalities or bounds in (2.5),
we used min{10−3, αk} instead of αk—as we pointed out in Sect. 3, our analysis can
be trivially extended to this setting. The forcing function was ρ(α) = 10−4α2.

8.1 Comparison of deterministic and probabilistic descent strategies

Our first set of experiments aims at comparing our techniques with a classical
deterministic direct-search instance. To this end, we use the built-in MATLAB
patternsearch function [36]. This algorithm is a direct-search-type method that
accepts a point as the new iterate if it satisfies a simple decrease condition, i.e., pro-
vided the function value is reduced. The options of this function can be set so that it
uses a so-called Generating Set Search strategy inspired from [22]: columns of D⊕
are used for bound-constrained problems, while for linearly constrained problems the
algorithm attempts to compute positive generators of an approximate tangent cone
based on the technique of Proposition A.1 (with no provision for degeneracy).

For allmethods including theMATLABone,we choseα0 = 1, γ = 2, and θ = 1/2.
Thosewere the reference values of [19], and as they yield p0 = 1/2we thus expect this
parameter configuration to allow us to observe in practice the improvement suggested
by the complexity analysis. We adopted the patternsearch default settings by
allowing infeasible points to be evaluated as long as the constraint violation does not
exceed 10−3 (times the norm of the corresponding row of AI ). All methods rely upon
the built-inMATLABnull function to compute the orthogonal basisW when needed.
We ran all algorithms on a benchmark of problems from the CUTEst collection [18],
stopping whenever a budget of 2000n function evaluations was consumed or the step
size fell below 10−6α0 (for our methods based on random directions, ten runs were
performed and the mean of the results was used). For each problem, this provided
a best obtained value fbest . Given a tolerance ε ∈ (0, 1), we then looked at the
number of function evaluations needed by each method to reach an iterate xk such
that

f (xk) − fbest < ε ( f (x0) − fbest ) , (8.1)

where the run was considered as a failure if the method stopped before (8.1) was
satisfied. Performance profiles [13,32] were built to compare the algorithms, using the
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Fig. 1 Performance of three variants of Algorithm 2.1 and MATLAB patternsearch on bound-
constrained problems
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Fig. 2 Performance of three variants of Algorithm 2.1 and MATLAB patternsearch on larger bound-
constrained problems

number of function evaluations (normalized for each problem in order to remove the
dependence on the dimension) as a performance indicator.

Bound-constrained problems We first present results on 63 problems from the
CUTEst collection that only enforce bound constraints on the variables, with dimen-
sions varying between 2 and 20 (see Table 1 in “Appendix C” for a complete list).
Figure 1 presents the results obtained while comparing our three variants with the
built-in patternsearch function. One observes that the dspfd-2 variant has the
highest percentage of problems on which it is the most efficient (i.e., the highest curve
leaving the y-axis). In terms of robustness (large value of the ratio of function calls), the
dspfd methods outperform patternsearch, with dspfd-0 and dspfd-2 emerging
as the best variants.

To further study the impact of the random generation, we selected 31 problems
among the 63 for which we could increase their dimensions, so that all problems
had at least 10 variables, with fifteen of them having between 20 and 52 variables.
We again refer to Appendix and Table 2 for the problem list. Figure 2 presents the
corresponding profiles. One sees that the performance of dspfd-0 and of theMATLAB
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Fig. 3 Performance of three variants of Algorithm 2.1 and MATLAB patternsearch on problems
subject to general linear constraints

function has significantly deteriorated, as they both take a high number of directions
per iteration. On the contrary, dspfd-1 and dspfd-2, having a lower iteration cost
thanks to randomness, present better profiles, and clearly outperform the strategies
with deterministic guarantees. These results concur with those of Sect. 7, as they show
the superiority of dspfd-2 when the size of the problem is significantly higher than
the number of nearby bounds.

Linearly constrained problems Our second experiment considers a benchmark of
106 CUTEst problems for which at least one linear constraint (other than a bound)
is present. The dimensions vary from 2 to 96, while the number of linear inequalities
(when present) lies between 1 and 2000 (with only 14 problems with more than 100
of those constraints). Those problems are given in “Appendix C”, in Tables 3 and 4.

Figure 3 presents the results of our approaches and of the MATLAB function on
those problems. Variant dspfd-2 significantly outperforms the other variants, in both
efficiency and robustness. The other dspfd variants seem more expensive in that they
rely on a possibly larger set of tangent cone generators; yet, they manage to compete
with patternsearch in terms of robustness.

We further present the results for two sub-classes of these problems. Figure 4
restricts the profiles to the 48CUTEst problems forwhich at least one linear inequality
constraint was enforced on the variables. The MATLAB routine performs quite well
on these problems; still, dspfd-2 is competitive and more robust. Figure 5 focuses on
the 61 problems for which at least one equality constraint is present (and note that
3 problems have both linear equalities and inequalities). In this context, the dspfd-2
profile highlights the potential benefit of randomly generating in subspaces. Although
not plotted here, this conclusion is even more visible for the 13 problems with only
linear equality constraints where dspfd-2 is by far the best method, which does not
come as a surprise given what was reported for the unconstrained case [19].

We have also run variant dspfd-0 with γ2 = 1 (i.e., no step-size increase at suc-
cessful iterations), and although this has led to an improvement of efficiency for
bound-constrained problems, the relative position of the profiles did not seem much
affected in the general linearly constrained setting. We recall that dspfd-0 configures
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Fig. 4 Performance of three variants of Algorithm 2.1 andMATLAB patternsearch on problems with
at least one linear inequality constraint
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Fig. 5 Performance of three variants of Algorithm 2.1 andMATLAB patternsearch on problems with
at least one linear equality constraint

a case of deterministic direct search from the viewpoint of the choice of the polling
directions, and that it is known that insisting on always increasing the step size upon
a success is not the best approach at least in the unconstrained case.

8.2 Comparison with well-established solvers

In this section, we propose a preliminary comparison of the variant dspfd-2 with
the solvers NOMAD [4,24] (version 3.9.1 with the provided MATLAB interface) and
PSwarm [38] (version 2.1). For both NOMAD and PSwarm, we disabled the use of
models to yield a fairer comparison with our method. No search step was performed
in NOMAD, but this step is maintained in PSwarm as it is intrinsically part of the
algorithm. The various parameters in both codes were set to their default values, except
for the maximum number of evaluations allowed (set to 2000n as before). The linear
constraints were reformulated as one-side inequality constraints (addressed through
the extreme barrier approach in NOMAD). For the dspfd-2 method, we kept the
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Fig. 6 Performance of Algorithm 2.1 (version 2) versus NOMAD and PSwarm on the largest tested bound-
constrained problems. PSwarm was tested with a search step

settings of Sect. 8.1 except for the relative feasibility tolerance, that was decreased
from 10−3 to 10−15, a value closer to those adopted byNOMAD and PSwarm.Wewill
again use performance profiles to present our results. Those profiles were built based
on the convergence criterion (8.1), using themeans over 10 runs of the three algorithms
corresponding to different random seeds. We emphasize that our implementation is
not as sophisticated as that of NOMAD and PSwarm, therefore we do not expect to be
overwhelmingly superior to those methods. Nonetheless, we believe that our results
can illustrate the potential of our algorithmic paradigm.

Bound-constrained problems Figure 6 presents the results obtained on the 31 bound-
constrained problems with the largest dimensions. The PSwarm algorithm is the most
efficient method, and finds points with significantly lower function values on most
problems. This appears to be a feature of the population-based technique of this algo-
rithm: during the search step, the method can compute several evaluations at carefully
randomly generated points, that are projected so as to satisfy the bound constraints.
In that sense, the randomness within PSwarm is helpful in finding good function
values quickly. The NOMAD method is able to solve more problems within the con-
sidered budget, and its lack of efficiency for a small ratio of function evaluations is
consistent with the performance of dspfd-0 in the previous section: one poll step
might be expensive because it relies on a (deterministic) descent set. We point out that
NOMAD handles bound constraints explicitly, and even in a large number they do not
seem detrimental to its performance. The dspfd-2 variant of our algorithm falls in
between those two methods. We note that it is comparable to PSwarm for small ratios
of function evaluations, because random directions appear to lead to better values. It
is also comparable to NOMAD for large ratios, which can be explained by the fact
that our scheme can use deterministically descent sets in the worst situation, that is,
when a significant number of bound constraints become approximately active. This
observation is in agreement with Sect. 8.1, where we observed that using coordinate
directions (or a subset thereof) can lead to good performance.

Linearly constrained problems Figure 7 summarizes the performance of the three
algorithms on the 106 CUTEst problems with general linear constraints. The per-
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Fig. 7 Performance of Algorithm 2.1 (version 2) versus NOMAD and PSwarm on problems subject to
general linear constraints. PSwarm was tested with a search step
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Fig. 8 Performance of Algorithm 2.1 (version 2) versus NOMAD and PSwarm on problems with at least
one linear inequality constraint. PSwarm was tested with a search step

formance of NOMAD on such problems is clearly below the ones of the other two
algorithms. NOMAD is not equipped with dedicated strategies to handle linear con-
straints, particularly linear equalities, and we believe that this is the main explanation
for this bad performance. We have indeed observed that the method tends to stall on
these problems, especially in the presence of a large number of constraints. More-
over, on seven of the problems having more than 500 linear inequalities, the NOMAD
algorithm was not able to complete a run due to memory requirements. The PSwarm
algorithm is outperforming both NOMAD and dspfd-2, which we again attribute
to the benefits of the search step. We note that in the presence of linear constraints, the
initial feasible population is generated by an ellipsoid strategy (see [38] for details).
We have observed failure of this ellipsoid procedure on seven of the problems in our
benchmark with linear inequality constraints (other than bounds).

As in Sect. 8.1, we then looked at the results on specific subsets of the problems
included to compute Fig. 7. The profiles are similar if we consider only problems
involving at least one linear equality (with PSwarm standing out as the best method),
and thus not reported. On the other hand, the results while considering the 48 problems
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having at least one linear inequality exhibit a different pattern, and the corresponding
profiles are given in Fig. 8. We note that our approach dspfd-2 yields a much
improved profile compared to Fig. 7, especially for small ratios. This behavior is likely
a consequence of our use of the double description algorithm (see “Appendix A”), that
efficiently computes cone generators even with a large number of constraints. We
believe that our probabilistic strategy brings an additional benefit: the method only
considers a subset of those generators for polling, which is even more economical.
Even though our strategy does not fully outperformPSwarm, it is certainly competitive
on this particular set of experiments (and, again, without a search step). This suggests
that our approach could be particularly beneficial in the presence of linear inequality
constraints.

9 Conclusions

Wehave shown how to prove global convergencewith probability one for direct-search
methods applied to linearly constrained optimization when the polling directions are
randomly generated. We have also derived a worst-case analysis for the number of
iterations and function evaluations. Suchworst-case complexity bounds are established
with overwhelming probability and are of the order of ε−2,where ε > 0 is the threshold
of criticality. Itwas instrumental for suchprobabilistic analyses to extend the concept of
probabilistic descent fromunconstrained to linearly constrained optimization.Wehave
also refined such bounds in terms of the problem dimension and number of constraints
for two specific subclasses of problems, where it is easier to exhibit an improvement
over deterministic direct search. The numerical behavior of probabilistic strategies
was found coherent with those findings, as we observed that simple direct-search
frameworks with probabilistic polling techniques can perform better than variants
based on deterministic guarantees. The performance of our algorithm, especially when
compared to the well-established solvers tested, is encouraging for further algorithmic
developments.

A natural extension of the presented work is the treatment of general, nonlinear
constraints. One possibility is to apply the augmented Lagrangian method, where
a sequence of subproblems containing all the possible original linear constraints is
solved by direct search, as it was done in [28] for the deterministic case. Although
it is unclear at the moment whether the extension of the probabilistic analysis would
be straightforward, it represents an interesting perspective of the present work. Other
avenues may include linearizing constraints [31], using a barrier approach to penalize
infeasibility [5], or making use of a merit function [20]. Adapting the random genera-
tion techniques of the polling directions to any of these settings would also represent
a continuation of our research.

ADeterministic computation of positive cone generators

Provided a certain linear independence condition is satisfied, the positive generators of
the approximate tangent cone can be computed as follows (see [25, Proposition 5.2]).
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Proposition A.1 Let x ∈ F , α > 0, and assume that the set of generators of N (x, α)

has the form [We −We Wi ]. Let B be a basis for the null space of W�
e , and suppose

that W�
i B = Q� has full row rank. If R is a right inverse for Q� and N is a matrix

whose columns form a basis for the null space of Q�, then the set

Y = [ −BR BN −BN ] (A.1)

positively generates T (x, α).

Note that the number of vectors in Y is then nR + 2(nB − nR) = 2nB − nR , where
nB is the rank of B and nR is that of Q (equal to number of columns of R). Since
nB < ñ, we have that |Y | ≤ 2ñ.

In the case where W�
i B is not full row rank, one could consider all subsets of

columns of Wi of largest size that yield full row rank matrices, obtain the corre-
sponding positive generators by Proposition A.1, and then take the union of all these
sets [34]. Due to the combinatorial nature of this technique, we adopted a differ-
ent approach, following the lines of [22,25] where an algorithm originating from
computational geometry called the double description method [16] was applied. We
implemented this algorithm to compute a set of extreme rays (or positive generators)
for a polyhedral cone of the form {d̃ ∈ R

ñ : Bd̃ = 0,Cd̃ ≥ 0}, where we assume that
rank(B) < ñ, and applied it to the approximate tangent cone. In our experiments, the
three variants detected degeneracy (and thus invoked the double description method)
in less than 2% of the iterations on average.

B Proof of Proposition 7.1

Proof To simplify the notation, we omit the index k in the proof. By our convention
about cmT (V ,−G̃) when PT [G̃] = 0, we only need to consider the situation where
PT [G̃] is nonzero.

Define the event

E =
{

‖P[G̃]‖
‖PT [G̃]‖ ≥ 1√

2

}

and let Ē denote its complementary event. We observe that

{
cmT ([Us Uc],−G̃) ≥ κ

}
⊃
{
cmS(U

s,−G̃) ≥ √
2κ
}

∩ E, (B.1)
{
cmT ([Us Uc],−G̃) ≥ κ

}
⊃
{
cmT c (Uc,−G̃) ≥ √

2κ
}

∩ Ē (B.2)

for each κ . Indeed, when E happens, we have

cmT ([Us Uc],−G̃)

≥ cmT (Us,−G̃) = ‖PS[G̃]‖
‖PT [G̃]‖ cmS(U

s,−G̃) ≥ 1√
2
cmS(U

s,−G̃),
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and (B.1) is consequently true;when Ē happens, then by the orthogonal decomposition

‖PT [G̃]‖2 = ‖PS[G̃]‖2 + ‖PTc [G̃]‖2,

we know that ‖PTc [G̃]‖/‖PT [G̃]‖ ≥ 1/
√
2, and hence

cmT ([Us Uc],−G̃) ≥ cmT c (Uc,−G̃)

= ‖PTc [G̃]‖
‖PT [G̃]‖ cmT c (Uc,−G̃)

≥ 1√
2
cmT c (Uc,−G̃),

which gives us (B.2). Since the events on the right-hand sides of (B.1) and (B.2) are
mutually exclusive, the two inclusions lead us to

P

(
cmT ([Us Uc],−G̃) ≥ κ

∣∣ σ
)

≥ P

({
cmS(U

s,−G̃) ≥ √
2κ
}

∩ E ∣∣ σ
)

+P

({
cmT c(Uc,−G̃) ≥ √

2κ
}

∩ Ē ∣∣ σ
)

.

Then it suffices to show the existence of κ ∈ (0, 1) and p ∈ (p0, 1) that fulfill
simultaneously

P

({
cmS(U

s,−G̃) ≥ √
2κ
}

∩ E ∣∣ σ
)

≥ p 1E , (B.3)

P

({
cmT c (Uc,−G̃) ≥ √

2κ
}

∩ Ē ∣∣ σ
)

≥ p1Ē , (B.4)

because 1E + 1Ē = 1. If P(E) = 0, then (B.3) holds trivially regardless of κ or p.
Similar things can be said about Ē and (B.4). Therefore, we assume that both E and
Ē are of positive probabilities. Then, noticing that E ∈ σ (E only depends on the past
iterations), we have

P

({
cmS(U

s,−G̃) ≥ √
2κ
}

∩ E ∣∣ σ
)

= P

(
cmS(U

s,−G̃)≥√
2κ

∣∣ σ ∩E
)
P(E |σ),

= P

(
cmS(U

s,−G̃)≥√
2κ

∣∣ σ ∩E
)
1E ,

P

({
cmT c (Uc,−G̃)≥√

2κ
}

∩ Ē ∣∣ σ
)

= P

(
cmT c (Uc,−G̃)≥√

2κ
∣∣ σ ∩Ē

)
P(Ē |σ)

= P

(
cmT c (Uc,−G̃) ≥ √

2κ
∣∣ σ ∩ Ē

)
1Ē ,

where σ ∩ E is the trace σ -algebra [35] of E in σ , namely σ ∩ E = {A ∩ E : A ∈ σ },
and σ ∩ Ē is that of Ē . Hence it remains to prove that

P

(
cmS(U

s,−G̃) ≥ √
2κ

∣∣ σ ∩ E
)

≥ p, (B.5)

P

(
cmT c(Uc,−G̃) ≥ √

2κ
∣∣ σ ∩ Ē

)
≥ p. (B.6)
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Let us examine cmS(Us,−G̃) whenever E happens (which necessarily means that
S is nonzero). Since E depends only on the past iterations, while Us is essentially a
set of rs (recall (7.1)) i.i.d. directions from the uniform distribution on the unit sphere
in Rs with s = dim(S) ≤ ñ, one can employ the theory of [19, Appendix B] to justify
the existence of ps > p0 and τ > 0 that are independent of ñ or s (solely depending
on θ and γ ) and satisfy

P

(
cmS(U

s,−G̃) ≥ τ√
ñ

∣∣∣ σ ∩ E
)

≥ ps . (B.7)

Now consider cmT c (Uc,−G̃) under the occurrence of Ē (in that case, T c is nonzero
and V c is nonempty). Let D∗ be a direction in V c that achieves

D∗�(−G̃)

‖D∗‖‖PTc [G̃]‖ = cmT c(V c,−G̃).

Then by the fact that Uc is a uniform random subset of V c and |Uc| = �pc|V c|�, we
have

P

(
cmT c (Uc,−G̃)=cmT c(V c,−G̃)

∣∣ σ ∩Ē
)
≥P

(
D∗ ∈ Uc

∣∣ σ ∩ Ē) = |Uc|
|V c| ≥ pc.

(B.8)

Let

κc = λ
({

C = T̄ ∩ S̄⊥ : T̄ ∈ T and S̄ is a subspace of T̄
})

,

where λ(·) is defined as in (3.2) andT denotes all possible occurrences for the approx-
imate tangent cone. Then κc > 0 and cmT c (V c,−G̃) ≥ κc. Hence (B.8) implies

P

(
cmT c (Uc,−G̃) ≥ κc

∣∣ σ ∩ Ē
)

≥ pc. (B.9)

Finally, set

κ = 1√
2
min

{
τ√
ñ
, κc

}
, p = min {ps, pc} .

Then κ ∈ (0, 1), p ∈ (p0, 1), and they fulfill (B.5) and (B.6) according to (B.7)
and (B.9). Moreover, κ depends on the geometry of T , and consequently depends on
m, n, andmI , while p depends solely on θ , γ , and pc. The proof is then completed. ��

C List of CUTEst problems

The complete list of our test problems, with the associated dimensions and number of
constraints, is provided in Tables 1, 2, 3 and 4.
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Table 3 List of the tested CUTEst test problems with only linear equality constraints and bounds

Name Size Bounds LE Name Size Bounds LE

AUG2D 24 0 9 BOOTH 2 0 2

BT3 5 0 3 GENHS28 10 0 8

HIMMELBA 2 0 2 HS9 2 0 1

HS28 3 0 1 HS48 5 0 2

HS49 5 0 2 HS50 5 0 3

HS51 5 0 3 HS52 5 0 3

ZANGWIL3 3 0 3 CVXQP1 10 20 5

CVXQP2 10 20 2 DEGENLPA 20 40 15

DEGENLPB 20 40 15 DEGTRIDL 11 11 1

DUAL1 85 170 1 DUAL2 96 192 1

DUAL4 75 150 1 EXTRASIM 2 1 1

FCCU 19 19 8 FERRISDC 16 24 7

GOULDQP1 32 64 17 HONG 4 8 1

HS41 4 8 1 HS53 5 10 3

HS54 6 12 1 HS55 6 8 6

HS62 3 6 1 HS112 10 10 3

LIN 4 8 2 LOTSCHD 12 12 7

NCVXQP1 10 20 5 NCVXQP2 10 20 5

NCVXQP3 10 20 5 NCVXQP4 10 20 2

NCVXQP5 10 20 2 NCVXQP6 10 20 2

ODFITS 10 10 6 PORTFL1 12 24 1

PORTFL2 12 24 1 PORTFL3 12 24 1

PORTFL4 12 24 1 PORTFL6 12 24 1

PORTSNQP 10 10 2 PORTSQP 10 10 1

READING2 9 14 4 SOSQP1 20 40 11

SOSQP2 20 40 11 STCQP1 17 34 8

STCQP2 17 34 8 STNQP1 17 34 8

STNQP2 17 34 8 SUPERSIM 2 1 2

TAME 2 2 1 TWOD 31 62 10
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Table 4 List of the tested CUTEst test problems with at least one linear inequality constraint

Name Size Bounds LE LI Name Size Bounds LE LI

AVGASA 8 16 0 10 AVGASB 8 16 0 10

BIGGSC4 4 8 0 7 DUALC1∗∗ 9 18 1 214

DUALC2∗∗ 7 14 1 228 DUALC5∗∗ 8 16 1 277

EQC 9 18 0 3 EXPFITA∗∗ 5 0 0 22

EXPFITB ∗∗ 5 0 0 102 EXPFITC∗,∗∗ 5 0 0 502

HATFLDH 4 8 0 7 HS105 8 16 0 1

HS118 15 30 0 17 HS21 2 4 0 1

HS21MOD 7 8 0 1 HS24 2 2 0 3

HS268 5 0 0 5 HS35 3 3 0 1

HS35I 3 6 0 1 HS35MOD∗∗ 3 4 0 1

HS36 3 6 0 1 HS37 3 6 0 2

HS44 4 4 0 6 HS44NEW 4 4 0 6

HS76 4 4 0 3 HS76I 4 8 0 3

HS86 5 5 0 10 HUBFIT 2 1 0 1

LSQFIT 2 1 0 1 OET1 3 0 0 6

OET3 4 0 0 6 PENTAGON 6 0 0 15

PT∗ 2 0 0 501 QC 9 18 0 4

QCNEW 9 18 0 3 S268 5 0 0 5

SIMPLLPA 2 2 0 2 SIMPLLPB 2 2 0 3

SIPOW1∗ 2 0 0 2000 SIPOW1M∗ 2 0 0 2000

SIPOW2∗ 2 0 0 2000 SIPOW2M∗ 2 0 0 2000

SIPOW3 4 0 0 20 SIPOW4∗ 4 0 0 2000

STANCMIN 3 3 0 2 TFI2 3 0 0 101

TFI3 3 0 0 101 ZECEVIC2 2 4 0 2

Symbols ∗ (resp. ∗∗) indicate that NOMAD (resp. PSwarm) could not complete a run on this problem
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