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Abstract
This paper develops a mixed integer programming model for determining unca-
pacitated distribution centers location (UDCL) for B2C E-commerce. Based on the
characteristics of distribution system for B2C E-commerce firms, the impact of supply
cost of multi-commodity is considered in this model. Combining with the properties
of the semi-Lagrangian relaxation (SLR) dual problem in the UDCL case, a two-phase
SLR algorithm with good convergency property is furthermore developed for solving
the UDCL problem. For the sake of contrastive analysis, this paper has performed
computational experiments on 15 UDCL instances by the mixed integer programming
solver, CPLEX, and the approach obtained by combining two-phase SLR algorithm
with CPLEX, respectively. The numerical results show that the two-phase SLR algo-
rithm not only can improve the solving speed of the CPLEX solver, but also can
provide better results in reasonable time for most instances.

Keywords Uncapacitated distribution centers location · B2C E-commerce ·
Semi-Lagrangian relaxation · Dual ascent method

1 Introduction

Compared with traditional commerce, business-to-consumer (B2C) E-commerce has
advantages in reducing investment cost and selling cost by using internet and Web
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technologies [20]. However, since B2C E-commerce firms must deliver commodi-
ties to customers who have the characteristics of numerous multi-variety small batch
demands and decentralized locations, their logistics cost is increased [20]. Therefore,
with competition and economy fluctuations in recent years, it is very necessary for
B2C E-commerce firms to reduce logistics cost and improve customer service.

Depots, distribution centers and customers are important members of a distribu-
tion network. When the distribution centers are constructed, the commodities will be
shipped from the depots to the customers via the distribution centers. The more dis-
tribution centers are constructed, the better customer service will be, but the higher
construction costwill be. If location-allocation of the distribution centers are not appro-
priate, the service levelwill be reduced and logistics costwill be increased.Appropriate
distribution centers location can not only reduce logistics cost but also enhance service
level and profits [30,32]. Therefore, it is necessary for a B2C E-commerce firm to find
the best plan to locate its distribution centers.

In the distribution system for B2CE-commerce firms, the establishment of distribu-
tion centers needs some installing and operating cost, while transporting commodities
not only needs transportation cost but also needs supply cost and turnover cost at depots
and distribution centers, respectively. Thus, the distribution centers location problem
involves how to select locations of distribution centers from the potential candidates
and how to transport commodities from the depots to customers via distribution centers
so that the total relevant cost is minimized [32].

Distribution centers location (DCL) is one of the practical applications of facility
location (FL) which has been a well-known research topic in the operation research
community [18,24]. The challenge for best locating facilities has attracted much atten-
tion and ever expanding family of models has emerged. FL models can be broadly
classified into two categories: continuous location models and (mixed) integer pro-
gramming models. Continuous location model was proposed in 1909 when Weber
first considered how to locate a single warehouse so as to minimize the total distance
between it and its customers [18]. Then several extended versions of this problemwere
investigated in literatures, such asmulti-sourceWeber problem [18], the location prob-
lems of maximizing minimum distances, problems with barriers and so on. A rough
classification of (mixed) integer programming models can be given as follows: (a)
capacitatedmodels versus uncapacitatedmodels, (b) single-stagemodels versusmulti-
stage models [2,22,31,33], (c) single-commodity models versus multi-commodity
models [21,26], (d) static models versus dynamic models [3], (e) deterministic models
versus uncertain models [15,20,32], (f) single-source models versus multiple-source
models, (g) single-objective models versus multi-objective models [12,17], (h) single-
level models versus multi-level models [8,27]. A brief introduction and surveys of FL
models appear in [18].

Numerous heuristic algorithms [14,20,32], approximate algorithms [1,23] and
exact algorithms [33] for solving the FL problems have been discussed in litera-
tures. Although heuristic algorithms such as genetic algorithm [20] and tabu search
algorithm [32], are widely used for solving complicated optimization problems [14],
various heuristic algorithms have the disadvantages of premature convergence and
low search efficiency. Thus, in order to overcome the limitation of a single heuristic
algorithm, various hybrid heuristic algorithms were proposed to solve the FL prob-
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lems in recent years, for instance, hybrid firefly-genetic algorithm [29], iterated tabu
search heuristic [13], Lagrangian heuristic and ant colony system [7], swarm intelli-
gence based on sample average approximation [4], improved genetic algorithm with
particle swarm optimization [20]. Numerous exact algorithms for solving the FL prob-
lems usually combine branch-and-bound search with some bounding techniques, such
as column generation and branch-and-price method [19], branch-and-bound-and-cut
algorithm [28]. Lagrangian relaxation, one of the most popular bounding techniques,
which has also been used to solve the FL problems [11,34]. Recently, semi-Lagrangian
relaxation (SLR) [5,6,10,16,25], an improved Lagrangian relaxation method, has been
applied to solve the FL problems bymeans of general purpose mixed integer program-
ming solvers, for example, CPLEX. The SLR shows no duality gap [5,6,16,25] and
therefore it constitutes exact solution procedures.

The objectives that are usually considered in FL problems can be different [9].
Most of them can be as follows: (a) minimizing the longest distance from the existing
facilities, (b) minimizing fixed cost, (c) minimizing total annual operating cost, (d)
minimizing the number of located facilities, (e) minimizing average time/distance
traveled, (f) minimizing maximum time/distance traveled, (g) maximizing service, (h)
maximizing responsiveness. Recently, environmental and social objectives based on
energy cost, land use and construction cost, congestion, noise, quality of life, pollution,
fossil fuel crisis and tourism are also becoming customary [9].

It is worth pointing out that most of the (mixed) integer programming models
presented in DCL literatures, which aim to minimize the logistics cost, cannot be
directly applied to optimize the location of distribution centers in B2C E-commerce.
There is one main reason for this: the existing literatures focus almost exclusively on
how to optimize the site and the number of distribution centers [20], and neglect the
supply cost generated by all of the activities which are associated with distributing
commodities at depots, such as handling, packing, loading and so on. Customers
of B2C E-commerce firms are no longer a few retailers or wholesales with mass
and centralized demands but lots of terminal customers whose demands are small,
various and decentralized [20]. Therefore, the largely increasing supply cost in B2C
E-commerce has a great impact on the location of the distribution centers.

Motivated by the special customer characteristics of B2C E-commerce, a multi-
commodity,multi-stage anduncapacitated distribution centers location (UDCL)model
considering the supply cost is proposed in this paper. Then, some good theoretical
properties are investigated when semi-Lagrangian relaxation is applied to solve the
proposed model.

The outline of this paper is as follows. In Sect. 2 we present a multi-commodity,
multi-stage and uncapacitated distribution centers location model for the B2C E-
commerce. In Sect. 3 we first briefly review the main properties of the SLR, then
apply it to the UDCL model. In Sect. 4, in conjunction with the properties of the SLR
dual problem in the UDCL case, we derive a two-phase SLR algorithm. In Sect. 5,
the two-phase SLR algorithm is tested by solving a set of UDCL instances. Finally,
concluding remarks are given in Sect. 6.
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Fig. 1 Distribution network of a
B2C E-commerce firm
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2 The uncapacitated distribution centers location (UDCL) problem
for B2C E-commerce

Considering the distribution network of a B2C E-commerce firm with a interna-
tional/national presence and several inventory depots attached to it, the firm distributes
different commodities from depots to its customers through a network of uncapaci-
tated distribution centers located in different locations. It is assumed that one depot
can deliver commodities to any distribution center and one customer can be served
by one distribution center only. However, one distribution center can serve more than
one customer. To understand this problem easily, we can consult Fig. 1.

This paper considers five kinds of costs generated by the distribution into themodel:
(1) supply cost at each depot; (2) transportation cost from the depots to the distribution
centers; (3) fixed cost of installing and operating distribution centers; (4) turnover cost
of commodities at distribution centers; (5) transportation cost from the distribution
centers to the customers. The total distribution cost is not only related to the units of
commodities transacted but also relied on the locations of the distribution centers and
the allocation of customers.

Decision makers need to perform three tasks: (1) choose the building sites of the
uncapacitated distribution centers from the potential set; (2) allocate the customers to
the selected distribution centers; (3) determine the amount of commodities transported
from each depot to each selected distribution center without exceeding the supply of
commodities. For the results of this decision, there are two requirements including
satisfying the demand of each customer and minimizing the total cost.

In order to model the uncapacitated distribution centers location problem, the fol-
lowing notations for the parameters are defined:

I = {i |i = 1, 2, . . . , M}, set of commodity depots;
J = { j | j = 1, 2, . . . , N }, set of distribution center candidates;
K = {k|k = 1, 2, . . . , R}, set of customers;
L = {l|l = 1, 2, . . . , T }, set of commodity categories;
pil = the cost of supplying one unit of commodity l at depot i ;
ci jl = the cost of transporting one unit of commodity l from depot i to distribution
center j ;
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g j = the fixed cost including installing and operating distribution center j ;
t jkl = the cost of transporting one unit of commodity l from distribution center j
to customer k;
dkl = the demands of customer k for commodity l;
h jl = the turnover cost of one unit of commodity l at the distribution center j ;
Ail = the maximal supply of commodity l at depot i in the planning period.

For this problem, we need to select several distribution centers from the potential set
J = {1, 2, . . . , N } and allocate each customer k ∈ K to a single selected distribution
center.We use the binary variables y j and z jk to denote whether the distribution center
j is selected or not and whether the distribution center j serves customer k or not,
respectively. That is,

y j =
{
1, if the distribution center j is selected,
0, otherwise.

z jk =
{
1, if the distribution center j serves customer k,
0, otherwise.

In addition, we use one set of nonnegative continuous variables to represent the
multi-commodity flows from the depots to the selected distribution centers:

xi jl = the amount of commodity l transported from the depot i to the distribution
center j .

The model considers the minimization of the total relevant cost, subject to con-
straints on the supply of each depot and the conservation of commodity flow at each
distribution center.

f (x, y, z) =
∑
i∈I

∑
l∈L

pil
∑
j∈J

xi jl +
∑
i∈I

∑
j∈J

∑
l∈L

ci jl xi jl

+
∑
j∈J

g j y j +
∑
j∈J

∑
l∈L

h jl

∑
i∈I

xi jl +
∑
j∈J

∑
k∈K

∑
l∈L

t jkldkl z jk
(1)

Minimize f (x, y, z) subjects to the following constraints:

∑
i∈I

xi jl =
∑
k∈K

dkl z jk, j ∈ J , l ∈ L (2)

∑
j∈J

z jk = 1, k ∈ K (3)

∑
j∈J

xi jl ≤ Ail , i ∈ I , l ∈ L (4)

z jk ≤ y j , j ∈ J , k ∈ K (5)

xi jl ≥ 0, i ∈ I , j ∈ J , l ∈ L (6)

y j ∈ {0, 1}, j ∈ J (7)

z jk ∈ {0, 1}, j ∈ J , k ∈ K (8)

123



832 H. Zhang et al.

Equation (1) expresses the objective of minimizing the total cost of the whole
distribution system. The total cost consists of 5 parts, which are the cost of supplying
commodities at depots , the cost of shipping commodities from depots to distribution
centers, the cost of fixed installing and operating distribution centers, commodity
turnover cost at distribution centers and transportation cost from distribution centers
to customers. Constraints (2) are the commodity flow conservation constrains which
ensure the total amount of commodity l ∈ L shipped from the depots to the distribution
center j ∈ J are equal to the amount shipped out from the distribution center j ∈ J .
Constraints (3) guarantee only one distribution center serves one customer. Constraints
(4) take care of limited supply of commodity l ∈ L at depot i ∈ I . Constraints (5)
couple the location and the assignment decision.

The supply cost is included in (1)–(8). As mentioned in Sect. 1, this is the main
difference between the new model (1)–(8) and other location models presented in
literatures.

3 Semi-Lagrangian relaxation and the UDCL problem

3.1 SLR concepts and properties

The semi-Lagrangian relaxationwas introduced in [5] and applied to the uncapacitated
facility location (UFL) problem in [6,16,25]. In this section, we briefly summarize the
main results obtained in [5,6]. Consider the following problem, to be named “primal”
henceforth:

z∗ = min
x

cT x (9)

s.t. Ax = b, (10)

x ∈ X ⊂ S ∩ N
n, (11)

where A ∈ R
m × R

n is a rational matrix, and the components of b ∈ R
m and c ∈ R

n

are nonnegative. Furthermore, S is a polyhedral set and 0 ∈ X . Unless otherwise
stated, it will be assumed throughout the paper that (9)–(11) has an optimal solution.

The semi-Lagrangian relaxation consists in substituting the constraint Ax = b by
the equivalent pair of constraints Ax ≤ b and Ax ≥ b, and then relaxing Ax ≥ b
only. We thus obtain the SLR dual problem

q∗ = max
u∈U q(u), (12)

where U = R
m+ and q(u) is the semi-Lagrangian dual function defined as

q(u) = min
x

cT x + uT (b − Ax) (13)

s.t. Ax ≤ b, (14)

x ∈ X . (15)
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Note that we have to solve problem (13)–(15) for calculating q(u), which we call
the oracle at u. Also note that with our assumptions its feasible set is bounded. We
also have that x = 0 is feasible to the oracle; hence it has an optimal solution. q(u)

is well-defined, but the minimizer in (13)–(15) is not necessarily unique. With some
abuse of notation, we write

x(u) = argmin
x

{cT x + uT (b − Ax) | Ax ≤ b, x ∈ X}

to denote one such minimizer.
We denote X∗,U∗ and X(u) the set of optimal solutions of problem (9)–(11), (12)

and (13)–(15), respectively. We say that (x∗, u∗) is an optimal primal-dual point if
u∗ ∈ int(U∗) and x∗ ∈ X(u∗)∩X∗.Given two sets S1 and S2, its addition corresponds
to S1 + S2 = {s1 + s2 : s1 ∈ S1 and s2 ∈ S2}. For any set S, int(S) stands for its
interior. Furthermore, given two vectors u and v, we will write u ≤ v to mean that
ui ≤ vi for each component i . Finally, for any scalar x , we define the negative part of
x as

[x]− := −min{x, 0}
and its positive part as

[x]+ := max{x, 0}.
Theorem 1 [5,6] The following statements hold true.

1. q(u) is concave and b − Ax(u) is a subgradient at u.
2. q(u) is monotone and q(u′) ≥ q(u) if u′ ≥ u, with strict inequality if u′ > u and

u′ /∈ U∗.
3. U∗ + R

m+ = U∗; thus U∗ is an unbounded (convex) set.
4. If x(u) is such that Ax(u) = b, then u ∈ U∗ and x(u) ∈ X∗.
5. Conversely, if u ∈ int(U∗), then any x(u) ∈ X∗.
6. The SLR closes the duality gap for problem (9)–(11), that is, z∗ = q∗.
From the definition of the SLR of problem (9)–(11), it is easy to know that the SLR

can be applied to both pure integer linear programming problem and mixed integer
linear programming problem. Beltran et al. [5,6] proposed the SLR of integer linear
programming problem (9)–(11), and gave an explicit proof of Theorem 1. Note that all
of the variables in (9)–(11) and (13)–(15) should be integer, which was not considered
in the proof of Theorem 1 presented in [5,6]. Therefore, the statements in Theorem 1
also hold true when the SLR is applied to mixed integer linear programming problem.

3.2 SLR applied to the UDCL problem

Following the ideas of the preceding section, we formulate the semi-Lagrangian relax-
ation of the UDCL problem (1)–(8). We obtain the SLR dual problem

max
u∈U , v∈V LSLR(u, v) (16)
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and the dual function (note that, now, we keep the equality constraints (2) and (3) as
inequalities)

LSLR(u, v) = min
x,y,z

L(u, v, x, y, z) (17)

s.t.
∑
i∈I

xi jl ≤
∑
k∈K

dkl z jk, j ∈ J , l ∈ L (18)

∑
j∈J

z jk ≤ 1, k ∈ K (19)

(4) − (8) (20)

where the Lagrangian function is defined as usual

L(u, v, x, y, z) =
∑
i∈I

∑
l∈L

pil
∑
j∈J

xi jl +
∑
i∈I

∑
j∈J

∑
l∈L

ci jl xi jl +
∑
j∈J

g j y j

+
∑
j∈J

∑
l∈L

h jl

∑
i∈I

xi jl +
∑
j∈J

∑
k∈K

∑
l∈L

t jkldkl z jk

+
∑
j∈J

∑
l∈L

u jl

(∑
k∈K

dkl z jk −
∑
i∈I

xi jl

)
+

∑
k∈K

vk

⎛
⎝1 −

∑
j∈J

z jk

⎞
⎠

=
∑
i∈I

∑
j∈J

∑
l∈L

(pil + ci jl + h jl − u jl)xi jl +
∑
j∈J

g j y j

+
∑
j∈J

∑
k∈K

(∑
l∈L

t jkldkl +
∑
l∈L

u jldkl − vk

)
z jk +

∑
k∈K

vk

As in the previous section, we denote (x(u, v), y(u, v), z(u, v)) an optimal point for
the oracle (17)–(20) and get the following theorem.

Theorem 2 Let (x(u, v), y(u, v), z(u, v)) is an optimal point of the oracleLSLR(u, v).

1. xi jl(u, v) = 0 if pil + ci jl + h jl − u jl > 0;
2. if pil + ci jl + h jl − u jl > 0 for all (i, j, l) (i ∈ I , j ∈ J , l ∈ L).

(a) For a given k ∈ K, if
∑

l∈L t jkldkl+
∑

l∈L u jldkl−vk > 0, then z jk(u, v) = 0;
(b) For a given k ∈ K, if

∑
j∈J z jk(u, v) = 1, then

vk ≥ min
j∈J

{∑
l∈L

t jkldkl +
∑
l∈L

u jldkl

}
;

3. For a given k ∈ K, if

vk ≥ min
j∈J

{∑
l∈L

t jkldkl +
∑
l∈L

u jldkl + g j

}
,
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then there exists an optimal oracle solution (x(u, v), y(u, v), z(u, v)) with∑
j∈J z jk(u, v) = 1.

Proof 1. (By contradiction) Suppose that there exists xi ′ j ′l ′(u, v) > 0 with pi ′l ′ +
ci ′ j ′l ′ + h j ′l ′ − u j ′l ′ > 0 (i ′ ∈ I , j ′ ∈ J , l ′ ∈ L). In this case, we can define a
new feasible solution for the oracle say (x̂(u, v), ŷ(u, v), ẑ(u, v)) which is equal to
(x(u, v), y(u, v), z(u, v)) except for component x̂i ′ j ′l ′(u, v).We set x̂i ′ j ′l ′(u, v) =
0. Thus,

(pi ′l ′ + ci ′ j ′l ′ + h j ′l ′ − u j ′l ′)x̂i ′ j ′l ′(u, v)

< (pi ′l ′ + ci ′ j ′l ′ + h j ′l ′ − u j ′l ′)xi ′ j ′l ′(u, v)

	⇒ L(u, v, x̂, ŷ, ẑ) < L(u, v, x, y, z) (21)

However, this contradicts (x(u, v), y(u, v), z(u, v)), the optimal point of the oracle
LSLR(u, v).

2. (a) Similar with the proof of the Theorem 2.1.
(b) Let us assume that vk0 < min j∈J {∑l∈L t jk0ldk0l + ∑

l∈L u jldk0l} for
some k0 ∈ K and see that contradicts

∑
j∈J z jk0(u, v) = 1. If vk0 <

min j∈J {∑l∈L t jk0ldk0l +
∑

l∈L u jldk0l}, then
∑

l∈L t jk0ldk0l +
∑

l∈L u jldk0l −
vk0 > 0 for all j ∈ J . Any optimal solution (x(u, v), y(u, v), z(u, v)) is such
that z jk0(u, v) = 0 by Theorem 2.2.(a). Hence, 0 = ∑

j∈J z jk0(u, v) �= 1.
3. Assume vk ≥ min j∈J {∑l∈L t jkldkl + ∑

l∈L u jldkl + g j } for a given k ∈ K . If
there exists an optimal solution of the oracle such that

∑
j∈J z jk(u, v) = 1, then

statement 3 hold. Assume we have the oracle solution with
∑

j∈J z jk(u, v) = 0
for the given k. Let j ′ be such that

∑
l∈L t j ′kldkl + ∑

l∈L u j ′ldkl + g j ′ =
min j∈J {∑l∈L t jkldkl + ∑

l∈L u jldkl + g j }. By hypothesis,
∑

l∈L t j ′kldkl +∑
l∈L u j ′ldkl + g j ′ − vk ≤ 0 and one can set z j ′k = 1 and y j ′ = 1 without

increasing the objective value. The modified solution is also optimal. Hence, there
exists an optimal oracle solution with

∑
j∈J z jk(u, v) = 1 for the given k where

vk ≥ min j∈J {∑l∈L t jkldkl + ∑
l∈L u jldkl + g j }.

�

Note that the statement 2 of Theorem 2 can not always hold if pil+ci jl+h jl−u jl <

0 for any (i, j, l) (i ∈ I , j ∈ J , l ∈ L). For example, pi0l0 + ci0 j0l0 + h j0l0 −
u j0l0 = −5 < 0 and Ai0l0 = 10 for the given (i0, j0, l0) (i0 ∈ I , j0 ∈ J , l0 ∈ L),
t j0k0l0dk0l0 + u j0l0dk0l0 − vk0 = 1 > 0 for the given ( j0, k0) ( j0 ∈ J , k0 ∈ K ), and
dk0l0 = 4 and g j0 = 2. In this case, one can set xi0 j0l0 = 4, y j0 = 1 and z j0k0 = 1.

FromTheorem 2, we can know that some xi jl(u, v) and z jk(u, v) can be fixed to “0”
in advance if their pil +ci jl +h jl −u jl > 0 and

∑
l∈L t jkldkl +

∑
l∈L u jldkl −vk > 0.

This operation, which reduces the size of the oracle, is quite common in Lagrangian
relaxation applied to combinatorial optimization. There, using some appropriate argu-
ments, one fixes some of the oracle variables and obtains a reduced-size oracle called
the core problem. Usually we have (much) fewer variables xi jl(u, v) and z jk(u, v) in
the core problem. Roughly speaking, if the size of the core problem is small enough, it
will be possible to solve it by an Integer Programming solver(e.g. CPLEX, etc.), and
this is the main advantage of the core problem.
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If the dual ascent method is applied to solve the dual problem (16), one should
properly initialize andupdatemultipliersv according to the value ofu andvice versa for
reducing the number of iterations and improving computational efficiency. Initializing
and updating the Lagrangian multipliers (u, v) are not an easy task because they
are interrelated. For the sake of convenience, in this paper we first set all of the
multipliers u jl = 0 for all j ∈ J and l ∈ L , and get the following dual problem
(22) and core problem (23)–(27) by fixing all of the variables xi jl to “0” because of
pil + ci jl + h jl − u jl > 0 (i ∈ I , j ∈ J , l ∈ L) . After solving the dual problem
(22) optimally, we use its results to initialize u and solve (16). That is, the solution
process is divided into two phases. We first solve dual problem (22), and then solve
dual problem (16).

max
v∈V L0

SLR(v) (22)

and dual function

L0
SLR(v) =min

y,z
L0(v, y, z) (23)

s.t.
∑
j∈J

z jk ≤ 1, k ∈ K (24)

z jk ≤ y j , j ∈ J , k ∈ K (25)

y j ∈ {0, 1}, j ∈ J (26)

z jk ∈ {0, 1}, j ∈ J , k ∈ K (27)

where

L0(v, y, z) =
∑
j∈J

g j y j +
∑
j∈J

∑
k∈K

(∑
l∈L

t jkldkl − vk

)
z jk +

∑
k∈K

vk (28)

We denote (U∗, V ∗), V ∗
0 , X(u, v) and X(v) the set of optimal solutions of problem

(16), (22), (17)–(20) and (23)–(27), respectively. For each (i, j, l) (i ∈ I , j ∈ J ,
l ∈ L), we define its costs as Fi jl = pil + ci jl + h jl . For each customer k, we define
its combined costs as Ck := min j∈J {∑l∈L t jkldkl + g j } and its transportation cost
from distribution center j as T jk := ∑

l∈L t jkldkl . The vector of combined costs is
thus C := (C1, · · · , CR). Furthermore, we sort costs T jk for each customer k and Fi jl

for each ( j, l), and get the sorted costs

T 1
k ≤ T 2

k ≤ · · · ≤ T N
k , F1

jl ≤ F2
jl ≤ · · · ≤ FM

jl .

The dual problem (22) and the oracle problem L0
SLR(v) are very similar with the

uncapacitated facility location (UFL) dual problem and oracle problem presented in
[6], respectively. Thus the main results of the UFL oracle problem are applicable to
the oracle problem L0

SLR(v), which are summarized in Theorem 3.

Theorem 3 The following statements hold true [6].
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1. v ≥ C 	⇒ v ∈ V ∗
0 ;

2. v > C 	⇒ v ∈ int(V ∗
0 );

3. If v ∈ int(V ∗
0 ), then v ≥ T 1.

Corollary 1 If u jl ≥ FM
jl for all ( j, l) ( j ∈ J , l ∈ L), and vk ≥ Ck +

max j∈J {∑l∈L u jldkl} for all k ∈ K, then (u, v) ∈ (U∗, V ∗).

Proof Assume u jl ≥ FM
jl for all ( j, l) ( j ∈ J , l ∈ L), and vk ≥ Ck +

max j∈J {∑l∈L u jldkl} for all k ∈ K . If there exists an optimal solution of the oracle
problem LSLR(u, v) such that

∑
i∈I xi jl = ∑

k∈K dkl z jk for all j ∈ J and l ∈ L ,
and

∑
j∈J z jk = 1 for all k ∈ K , then, by Theorem 1, this solution is optimal for the

original problem (1)–(8). Otherwise, we have two exclusive cases:

1.
∑

i∈I xi jl <
∑

k∈K dkl z jk for some ( j, l) and
∑

j∈J z jk = 1 for all k ∈ K . In
this case, we can increase the value of xi jl for some (i, j, l) such that the modified
solution (x, y, z) satisfies constraints (2)–(8).

2.
∑

j∈J z jk = 0 for some k ∈ K . In this case, first let j ′ be such that Ck =∑
l∈L t j ′kldkl + g j ′ , and set z j ′k = 1 and y j ′ = 1. Then we can also increase the

value of xi jl for some (i, j, l) such that the modified solution (x, y, z) satisfies
constraints (2)–(8).

By hypothesis, pil + ci jl + h jl − u jl ≤ 0 for all (i, j, l), and
∑

l∈L t jkldkl +∑
l∈L u jldkl + g j − vk ≤ 0 for all k ∈ {k|∑ j∈J z jk = 0, k ∈ K }. Thus, the

modified solution does not increase the objective value and is also optimal. Hence,
there exists an optimal oracle solution with

∑
i∈I xi jl = ∑

k∈K dkl z jk for all ( j, l)
( j ∈ J , l ∈ L),

∑
j∈J z jk = 1 for all k ∈ K and (u, v) ∈ (U∗, V ∗). �


Theorem 4 Let us consider ṽ ∈ V . If (y(ṽ), z(ṽ)) ∈ X(ṽ) then
∑

k∈K −[∑l∈L t jkldkl−
ṽk]− + g j ≤ 0 for all j ∈ J (y), where J (y) is the set of selected distribution centers,
i.e., J (y) := { j ∈ J |y j = 1}.
Proof (By contradiction) Let us assume that there exists j ′ ∈ J (y) such that∑

k∈K −[∑l∈L t j ′kldkl − ṽk]− + g j ′ > 0. In this case, we can define a new feasi-
ble solution (ŷ(ṽ), ẑ(ṽ)) which is equal to (y(ṽ), z(ṽ)) except for components with
j = j ′, for these components, we set ŷ j ′(ṽ) = 0 and ẑ j ′k(ṽ) = 0 for all k ∈ K . Thus

g j ′ ŷ j ′(ṽ) +
∑
k∈K

(∑
l∈L

t j ′kldkl − ṽk

)
ẑ j ′k(ṽ) = 0

<
∑
k∈K

−[
∑
l∈L

t j ′kldkl − ṽk]− + g j ′

≤
∑
k∈K

(∑
l∈L

t j ′kldkl − ṽk

)
z j ′k(ṽ) + g j ′ y j ′(ṽ)

where the last inequality comes from the fact that (
∑

l∈L t j ′kldkl − ṽk)z j ′k(ṽ) ≥
−[∑l∈L t j ′kldkl − ṽk]− for all k ∈ K , j ∈ J . This contradicts (y(ṽ), z(ṽ)) ∈ X(ṽ). �
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Theorem 5 Let us consider ṽ ∈ V . If (y(ṽ), z(ṽ)) ∈ X(ṽ) and there exists k′ ∈ K,∑
j∈J z jk′(ṽ) = 1, then

ṽk′ ≥
∑
l∈L

t j ′k′ldk′l = min
j∈J (y)

{∑
l∈L

t jk′ldk′l

}

where J (y) := { j ∈ J |y j = 1}, j ′ is the closet open distribution center to client k(it
may not be unique).

Proof (By contradiction) Let us assume that there exist k′′ ∈ K such that∑
j∈J z jk′′(ṽ) = 1 and

ṽk′′ <
∑
l∈L

t j ′k′′ldk′′l = min
j∈J (y)

{∑
l∈L

t jk′′ldk′′l

}

In this case we can define a new feasible solution for the oracle L0
SLR(v), say

(ŷ(ṽ), ẑ(ṽ)), which is equal to (y(ṽ), z(ṽ)) except for components with k = k′′.
For these components, we set ẑ jk′′(ṽ) = 0 for all j ∈ J . Thus

∑
j∈J (y)

(∑
l∈L

t jk′′ldk′′l − ṽk′′

)
ẑ jk′′(ṽ) = 0 <

∑
j∈J (y)

(∑
l∈L

t jk′′ldk′′l − ṽk′′

)
z jk′′(ṽ)

Considering this inequality and the definition of (ŷ(ṽ), ẑ(ṽ)), we can conclude that
(y(ṽ), z(ṽ)) /∈ X(ṽ) which contradicts the hypothesis of the theorem. �


4 Two-phase SLR algorithm to solve the UDCL problem

4.1 Computing the initial point for algorithm SLR

As pointed out in [6], it is likely to be impractical that solving the oracle (23)–(27) at
any v̄ > C because the oracle is probably too difficult at that v̄. It is also likely that
there exists a v∗

0 ∈ V ∗
0 with small norm, for which the oracle subproblem is easier

(with less binary variables) and hopefully tractable by an integer programming solver.
In this paper, we use the optimal solution v(λ∗) of the following problem (29)–(31)
to initialize the multiplier v.

min
0≤λ≤1

∑
k∈K

vk(λ) (29)

s.t.
∑
k∈K

−
[∑
l∈L

t jkldkl − vk(λ)

]−
+ g j ≤ 0 j ∈ J (30)

v(λ) = λv0 + (1 − λ)C (31)
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where C is the vector of best combined costs defined in Sect. 3, v0 is an initial guess
for v∗ ∈ V ∗

0 such that T 1 ≤ v0 ≤ C. Obviously, v(λ∗) is one point in [v0, C], the line
segment is used for connecting points v0 and C (notice that by Theorem 3, C ∈ V ∗

0 ).

4.2 Two-phase SLR algorithm

In this section, we propose a two-phase SLR algorithm for the UDCL problem, which
is obtained by combining the semi-Lagrangian relaxation approach with the theoreti-
cal results presented in Sect. 3. The two-phase SLR algorithm employs a specialized
version of the dual ascent method to solve the dual problems (22) and (16) in two con-
secutive phases. In thefirst phase, Theorem4 is used for computing the initial dual point
vi ter1 firstly, and then the processes of solving the oracle problem (23)–(27) and updat-
ing the dual point vi ter1 are executed iteratively until an optimal point of dual problem
(22) is obtained. In the second phase, the optimal results obtained in the first phase
are used for initializing the dual point (uiter2, vi ter2) firstly, and then the processes
of solving the oracle problem (17)–(20) and updating the dual point (uiter2, vi ter2)
are executed iteratively until a primal-dual optimal point is obtained. Theorem 5 and
Theorem 2 are used for updating dual points vi ter1 in the first phase and (uiter2, vi ter2)
in the second phase (see the following algorithm for details), respectively. To main-
tain the oracle problems L0

SLR(vi ter1) and LSLR(uiter2, vi ter2) as small as possible,
at each iteration, we only update the components of vi ter1 and (uiter2, vi ter2) whose
corresponding subgradients are not equal to “0”. The details of the solution procedure
are as follows.

Algorithm 1

• Input: v0 ≥ 0 (0 represents a zero vector ) initial guess for an optimal point of the
dual problem (22).

• Output: (x(u∗, v∗), y(u∗, v∗), z(u∗, v∗), u∗, v∗) primal-dual optimal point for the
UDCL problem (1)–(8).

First phase: solving the dual problem (22)

1. Initialization: For each customer k ∈ K = {1, 2, . . . , R}:
(a) compute its transportation costs:

T jk =
∑
l∈L

t jkldkl j ∈ J = {1, 2, · · · , N };

(b) sort its costs T jk such that

T 1
k ≤ T 2

k ≤ · · · ≤ T N
k ;

(c) compute its best combined cost:

Ck := min
j∈J

{∑
l∈L

t jkldkl + g j

}
.
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(d) set T N+1
k = Ck + ε for an ε > 0

2. Initial dual point:

(a) Solve problem (29)–(31) to obtain v(λ∗);
(b) Set v1 such that

v1k = min
{
T r
k |T r

k ≥ vk(λ
∗), r ∈ {1, 2, . . . , N , N + 1}} + ε (ε > 0);

(c) Set i ter1 = 1.

3. Oracle call: computeL0
SLR(vi ter1), (y(vi ter1), z(vi ter1)) and the subgradient siter1

where

siter1k = 1 −
∑
j∈J

z jk(v
i ter1), k ∈ K .

4. Stopping criterion: if siter1 = 0, then stop: (ỹ∗, z̃∗, ṽ∗) = (yiter1, ziter1, vi ter1),
ṽ∗ is the optimal point of the problem (22).

5. Dual point updating:

(a) Define J (yiter1) := { j |y j (vi ter1) = 1, j ∈ J };
(b) For each k ∈ K such that siter1k = 0, set vi ter1+1

k = vi ter1k ;
(c) For each k ∈ K such that siter1k = 1, set

vk = min
j∈J (yiter1)

{T jk},

vi ter1+1
k = min

{
T r
k |T r

k ≥ vk, r ∈ {1, 2, . . . , N , N + 1}} + ε;

6. Set i ter1 = i ter1 + 1 and go to Step 3.

Second phase: solving the dual problem (16)

1. Initialization:

(a) Compute Fi jl = pil + ci jl + h jl for each (i, j, l) ( i ∈ I , j ∈ J , l ∈ L);
(b) For each ( j, l) ( j ∈ J , l ∈ L), sort cost Fi jl such that

F1
jl ≤ F2

jl ≤ · · · ≤ FM
jl ;

(c) Set u0jl = 0 for each ( j, l)( j ∈ J , l ∈ L), and v0k = ṽ∗
k for all k ∈ K ;

(d) Set z(u0, v0) = z̃∗;
(e) Set i ter2 = 1.

2. Dual point setting (I):

(a) For each ( j, l) ( j ∈ J , l ∈ L), compute Djl , the amount of commodity l
transported from the distribution center j to customers:

Djl =
∑
k∈K

dkl z jk(u
iter2−1, vi ter2−1);
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(b) Define uiter2 such that

uiter2jl = max

{
uiter2−1
jl ,min

{
Fr

jl |
r∑

i=1

ALocate(i)l ≥ Djl , r ∈ I

}}
+ ε,

where Locate(·) is the locating function such that Fr
jl = FLocate(r) jl for the

given r ∈ I .
(c) Define vi ter2 such that

vi ter2k = vi ter2−1
k + max

{∑
l∈L

(
uiter2jl − uiter2−1

jl

)
dkl , j ∈ J

}

3. Oracle call: compute LSLR(uiter2, vi ter2), (x(uiter2, vi ter2), y(uiter2, vi ter2),
z(uiter2, vi ter2)) and the subgradient siter2 and subiter2 where

siter2k = 1 −
∑
j∈J

z jk(u
iter2, vi ter2), k ∈ K

subiter2jl =
∑
k∈K

dkl z jk(u
iter2, vi ter2) −

∑
i∈I

xi jk(u
iter2, vi ter2), j ∈ J , l ∈ L

4. Stopping criterion: If siter2 = 0 and subiter2 = 0, then stop:
(x(uiter2, vi ter2), y(uiter2, vi ter2), z(uiter2, vi ter2), uiter2, vi ter2) is the primal-
dual optimal point.

5. Dual point setting (II):

(a) If siter2 �= 0 and subiter2 = 0,
i. set uiter2+1 = uiter2.
ii. for each k ∈ K such that siter2k = 0, set vi ter2+1

k = vi ter2k .
iii. for each k ∈ K such that siter2k = 1, set vi ter2+1

k = ṽk + ε where

ṽk = min
j∈J (yiter2)

{
T jk +

∑
l∈L

uiter2jl dkl

}
(32)

iv. set i ter2 = i ter2 + 1 and go to Step 3.
(b) If subiter2 �= 0,

i. for each k ∈ K such that siter2k = 1, firstly set ṽk by using Eq. (32), then
set vi ter2k = ṽk and z j ′k(uiter2, vi ter2) = 1 where

j ′ = min

{
j |ṽk = T jk +

∑
l∈L

uiter2jl dkl , j ∈ J

}
(33)

ii. set i ter2 = i ter2 + 1 and go to Step 2.
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Theorem 6 Algorithm 1 is a dual ascent method and after finitely many iterations, it
converges to optimal dual points ṽ∗ ∈ V ∗

0 (V ∗
0 �= ∅) in the first phase and (u∗, v∗) ∈

(U∗, V ∗) (U∗ �= ∅ and V ∗ �= ∅) in the second phase, respectively.

Proof Considering the first phase, let (y(vi ter1), z(vi ter1)) be the optimal solution of
the oracle L0

SLR(vi ter1) (i ter1 is a finite positive integer). We have three exclusive
cases:

Case 1 At least for one component of s(vi ter1), say k′, there exists sk′(vi ter1) = 1 and
vi ter1k′ < T N+1

k′ . In this case, the updating procedure of Algorithm 1 consists in
increasing component vi ter1k′ (step 5 in the first phase). Thus, vi ter1+1 > vi ter1

and by Theorem 1.2 we have L0
SLR(vi ter1+1) > L0

SLR(vi ter1).
Case 2 All of the nonzero components of s(vi ter1) have the associated multipliers

vi ter1k = T N+1
k . However, by Theorem 3 we can know that this case cannot

happen.
Case 3 s(vi ter1) = 0. By Theorem 1.4, we have vi ter1 ∈ V ∗

0 .

For the second phase, we can also proof LSLR(uiter2+1, vi ter2+1) > LSLR(uiter2,
vi ter2) by the updating procedure of dual point, Step 5 and Step 2. After finitely
many iterations, if uiter2jl ≥ FM

jl for all ( j, l) ( j ∈ J , l ∈ L), and vi ter2k ≥ Ck +
max j∈J {∑l∈L uiter2jl dkl} for all k ∈ K , then (u∗, v∗) ∈ (U∗, V ∗) by Corollary 1. �


5 Computational experiments

In order to assess the performance of two-phase SLR algorithm in terms of solution
quality and CPU time, we solve a set of UDCL instances by using plain CPLEX
and the approach obtained by combining two-phase SLR algorithm with CPLEX,
respectively. The CPU time limit is set to 7200 s for the plain CPLEX. For the two-
phase SLR algorithm, owing to the fact that our main purpose is to solve the dual
problem (16) in the second phase which needs more CPU time, the CPU time limit
is set to 10 s in the first phase and 7200 s in the second phase, respectively. The
experiments are conducted on a laptop with a processor Intel Core TM i7-2640M CPU
2.80 GHz, and 6.00 GB of RAM. CPLEX 12.5 (with default parameters) interfaced
with MATLAB R2010a is used as mixed integer linear programming solver.

Note that, on the one hand, we use plain CPLEX to solve the UDCL instances, and
on the other hand, we also use CPLEX as the integer programming solver to compute
L0
SLR(v) or LSLR(u, v) at each iteration of two-phase SLR algorithm .

5.1 Instance description

For the sake of contrastive analysis, this paper tested 15 instances which can be divided
into two groups. All of the instances distribute 5 different kinds of commodities (l =
1, 2, . . . , 5) from depots to theirs customers through the distribution centers. For the 5
kinds of commodities, the unit transportation costs from depots to distribution centers
tc1l and the unit transportation costs from distribution centers to customers tc2l are
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Table 1 Unit transportation cost l tc1l tc2l

1 10 5

2 13 7

3 15 8

4 18 12

5 20 14

Table 2 Intervals of the
parameters

Parameters Interval

pil [30, 80]

h jl [20, 50]

dkl [1, 20]

Dis1i j [200, 6000]

shown in Table 1. The parameters pil (unit supply cost of commodity l at depot i),
h jl (the unit turnover cost of commodity l at distribution center j), dkl (the demands
of the customer k for commodity l), and Dis1i j (the distance between the depot i
and distribution center j) are generated randomly in the intervals shown in Table 2.
The transportation cost ci jl and the maximal supply Ail are generated by ci jl =
tc1l × Dis1i j and Ail = [α ×

∑
k∈K dkl
M + 0.5] (M is the number of depots, [·] is

the sign of rounding off, α is a random number generated in the interval [1, 2]),
respectively.

The fixed costs g j and the shipping costs t jkl in the first group are generated as
follows: in the Euclidian plane n points are randomly generated in the unit square
[0, 1] × [0, 1]. Each point simultaneously represents a distribution center and a cus-
tomer (N = R), with N = 500, 1000. The shipping costs t jkl are determined by the
Euclidian connection distance Dis2 jk and tc2l , t jkl = Dis2 jk×tc2l . In each instance
all the fixed costs g j are equal and calculated by

√
N/m with m = 10, 100 or 1000.

All values are rounded up to 4 significant digits and made integers. We use the label
N − m to name the 6 instances in the first group.

The second group has 9 instanceswith N = R. In these instances, the shipping costs
t jkl are generated by Dis2 jk and tc2l , t jkl = Dis2 jk × tc2l , where the connection
distances Dis2 jk are drawn uniformly at random from [1000, 2000]. The fixed costs
g j are drawn uniformly at random from [100, 200] in class ‘a’, from [1000, 2000] in
class ‘b’ and from [10,000, 20,000] in class ‘c’. We use the label YZ to name these
instances, where Y is equal to ‘N ’ and Z is the class (a, b, or c).

In Table 3 we further describe 15 instances used in our test, the number of depots
(Nb. of depots), the number of clients (customers) (Nb. of clients), the number of
variables (Nb. of vars.) and the number of constraints (Nb. of cons.). In the tables of
this paper, P.ave. andG.ave. are the abbreviation for partial average and global average,
respectively.
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5.2 CPLEX performance

In Table 3 we report the results obtained with CPLEX 12.5 in default settings and 7200
s of CPU time limit. Column cost reports the objective function value. Column time (s)
reports the CPU time (in seconds) for solving the UDCL. ColumnNb. of cents. reports
the number of selected distribution centers. Within the allowed time limit, 14 of the
15 instances obtained optimal solutions by plain CPLEX, which are presented with
CPU time less than 7200 s. The instance 1000-10 which was not proved its optimality
is marked with (*). The average CPU time for solving the first group of instances
and the second group of instances are around 2704 s and 1496 s, respectively. For
the first group of instances, the number of the selected distribution centers is around
half of the number of the customers, that is, on average per selected distribution
center serves 2–3 customers. For the second group of instances, the number of the
selected distribution centers is around one-tenth of the number of the customers. For
example, 21 selected instances serve 250 customers for instance 250c, and on average
per selected distribution center serves 10–12 customers.

5.3 Two-phase SLR algorithm performance

In Table 4 we report the results obtained with the two-phase SLR algorithm. The
results obtained in the first phase and in the second phase are presented in columns
First phase and Second phase, respectively. Except instance 750c, other 14 instances
obtained optimal solutions for the dual problem (22) within 10 s of CPU time limit in
the first phase. All of the tested instances obtained optimal primal-dual solutions in
the second phase. Obviously, the objective function value obtained in the first phase
(presented in the second column) is the lower bound of the objective function value
obtained in the second phase (presented in the sixth column). An important advantage
of the two-phase SLR algorithm is that it can drastically reduce the number of relevant
variables (otherwise said, we can fix many variables to 0). For example, instance 750a
has 619,500 variables shown in Table 3, but as we can see in the fourth column of
Table 4 only 2900 variables are relevant in the first phase (the remaining 616,600
variables are fixed to 0). Note that the number of variables in the second phase is
different for each SLR iteration and therefore we give average figures corresponding
to all the SLR iterations. On average, in the first phase we only use 0.71% of the
variables and 99.28% of the constraints, and in the second we use 78.00% of the
variables. As expected, we have a similar reduction in the CPU time. We observe that
the dual problem (22) for 14 instances other than 750c is solved optimally in a few
seconds in the first phase.

Comparing Tables 3 and 4, although the CPU time spent in the second phase is
slightly higher than theCPU time spent byplainCPLEXfor instances 500-10, 500-100,
250a, 250c and 500c, the global average CPU time of the two-phase SLR algorithm is
competitive because the sum of CPU time spent in the first phase and the second phase
is reduced by around 750 s. Especially, the two-phase SLR algorithm took 5537.62 s to
compute an optimal solution for the instance 1000-10 which was not solved optimally
by plain CPLEX within 7200 s.
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6 Conclusion

The contribution of this paper is threefold as following:
Modeling contribution: based on the characteristics of distribution system for B2C

E-commerce firms, a mixed integer programming model for determining the location
of distribution centers was developed. This model is a multi-commodity, multi-stage
and uncapacitated distribution center location-allocationmodel considering the supply
cost of different commodities. Compared with the models without considering the
supply cost of commodities, the one established in this paper is closer to the real
distribution system of B2C E-commerce firms.

Algorithmic contribution: we studied the theoretical properties of the SLR dual
problem in the UDCL case. These properties are very useful for initializing and updat-
ing theLagrangianmultipliers. Furthermore, a two-phaseSLRalgorithmwas proposed
to solve the UDCL problem and we have proved its (finite) convergence.

Empirical contribution: the performance of a general mixed integer programming
solver, as CPLEX, can be enhanced by combining it with the SLR algorithm. We
compared the approach obtained by combining two-phase SLRalgorithmwithCPLEX
versus plain CPLEX in our computational experiment. In this experiment we used a set
of 15 UDCL instances. Within a CPU time limit of 7200 s, 14 and 15 instances were
solved by using plain CPLEX and the combined approach, respectively. On average,
the combined approach performed better than the plain CPLEX. The reason for this
good result is that, the two-phase SLR algorithm drastically reduced the number of
the UDCL relevant variables. Roughly speaking, on average the number of relevant
variables was reduced to 0.71% in the first phase and 78.00% in the second phase,
respectively.
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