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Abstract The optimal control of a system of nonlinear reaction–diffusion equations
is considered that covers several important equations of mathematical physics. In
particular equations are covered that develop travelingwave fronts, spiral waves, scroll
rings, or propagating spot solutions.Well-posedness of the system and differentiability
of the control-to-state mapping are proved. Associated optimal control problems with
pointwise constraints on the control and the state are discussed. The existence of
optimal controls is proved underweaker assumptions than usually expected.Moreover,
necessary first-order optimality conditions are derived. Several challenging numerical
examples are presented that include in particular an application of pointwise state
constraints where the latter prevent a moving localized spot from hitting the domain
boundary.
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1 Introduction

We consider a class of optimal control problems for a general system of nonlinear
reaction–diffusion equations that covers a variety of particular cases with important
applications in mathematical physics. Control problems of this type received increas-
ing attention in the recent past, we refer for instance to [16,24,29,33] with respect
to control methods of theoretical physics or [3,4,11–13] from a more mathematical
perspective.

The general system is posed in Q := Ω × (0, T ), where Ω ⊂ R
d is a bounded

spatial domain and T > 0 is a finite time. It has the form

E
∂y

∂t
− DΔy + R(x, t, y) + A(x, t) y = B(x, t) u (1.1)

subject to appropriate initial and boundary conditions. Here, y : Q �→ R
n is the

state vector function and u : Q �→ R
nc is the control vector function. Moreover,

constant diagonal (n, n)-matrices E , D, and matrix-valued functions A, B of suitable
dimensions are given, where E has positive diagonal entries and the ones of D are non-
negative. The nonlinearity of the system is defined by the function R : Q ×R

n → R
n

that we suppose to have a diagonal structure, i.e. the j-th component of the vector
function R depends only on (x, t, y j ). The assumptions on A, B, and R are detailed
in the next section.

In particular, the system (1.1) includes the following special cases that we recall
with increasing order of complexity.

(i) The Schlögl model
This model is defined upon the cubic nonlinearity R : R → R,

R(y) = ρ(y − y1)(y − y2)(y − y3) (1.2)

with given real numers y1 ≤ y2 ≤ y3 and ρ > 0. The equation has the form

∂y

∂t
− Δy + R(y) = u (1.3)

Here, we have n = nc = 1, the matrices E = D = B reduce to the real
number 1 and A is equal to the real number 0. The system (1.3) is known to
exhibit traveling waves as typical solutions. We refer to [28] and to the standard
textbooks [14,22,31] on reaction–diffusion equations. The optimal control of
(1.3) was investigated in [4] with focus on the numerical analysis and in [16]
from a physical point of view; we also refer to various examples in [29].
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Optimal control of a class of reaction–diffusion systems 679

(ii) The FitzHugh–Nagumo system
A standard type of this well-known system is

σy
∂y

∂t
− DyΔy + R(y) + α z = u

σz
∂z

∂t
+ β z − γ y + δ = 0, (1.4)

where σy, σz, and Dy are positive and α, β, δ, γ are real numbers. This system
fits in (1.1) with n = 2, nc = 1; A has the rows (0 α) and (−γ β), B = (1 0)�,
and R(x, t, y, z) = (R(y), δ)�.
For spatial dimension d = 1, the system has impulses as typical solutions, while
it develops turning spirals or scroll rings for d = 2 and d = 3, respectively. We
refer to [14,22,31] for general results on the equation, to [24,33] on applications
of control methods in theoretical physics and to [11,12] with respect to the
optimal control from a mathematical perspective.

(iii) Coupling of (1.3) with a linear system of ODEs
More general than the FitzHugh–Nagumo system and more diverse in the behav-
ior of the solutions is the system

σy
∂y

∂t
− DyΔy + R(y) +

m∑

j=1

α j z j = u, (1.5)

σ j
∂z j

∂t
+ β j z j − γ j y + δ j = 0, j = 1, . . . , m, (1.6)

for the state vector (y, z1, . . . , zm). Here, we have n = m + 1, nc = 1,
A ∈ R

n×n has the first row (0, α1, . . . , αm), the first column −(0, γ1, . . . , γm)�,
and the (m, m)-submatrix diag(β1, . . . , βm) in the lower right corner. The other
matrices are E = diag(σy, σ1, . . . , σm), D = diag(Dy, 0, . . . , 0), and B =
(1, 0, . . . , 0)�. Moreover, we have R(·, y, z1, . . . , zm) = (R(y), δ1, . . . , δm)�;
we refer to the Ph.D. thesis [23] for the treatment of this system.

(iv) Coupling of (1.3) with a linear system of PDEs
In this more general system, the Eq. (1.5) is coupled with the linear equations

σ j
∂z j

∂t
− D jΔz j + β j z j − γ j y + δ j = 0, j = 1, . . . , m. (1.7)

Here, we have almost the same quantities as in (iii), but D has to be defined by
D = diag(Dy, D1, . . . , Dm) with positive numbers D j .
This system was discussed in the Ph.D. thesis [23], too.

Other similar reaction–diffusion-equations covered by the general system (1.1)
and associated control strategies have been of great interest during recent years. We
mention exemplarily [1,20,21,25,27,32].

We will present several numerical examples for the different types of equations
listed above. All of them are adopted from the thesis [23]. Our mathematical analysis
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is developed for the more general system (1.1) that includes all these particular cases
for the case of unit matrices E and D.

Our paper contains the following novelties: we extend the analysis on existence,
uniqueness, and differentiability of the control-to-state mapping to the general state
Eq. (1.1). Here, we apply a different method of proof than in [23] and avoid the
application of analytic semigroups that turns out to be too technical for the general
case. We prove the existence of optimal controls under weaker assumptions than
usually expected: in the unconstrained case a = −∞ or b = ∞ it seems that the
existence of optimal controls cannot be shown. The L2-Tikhonov term ensures only
the L2(Q)nc -boundedness of the set of controls, where the infimum of the problem
can be attained. However, with exception of d = 1, the control-to-state mapping G
is not continuous from L2(Q)nc to the state space. Therefore, this boundedness in
L2(Q)nc seems to be useless. Nevertheless, we are able to prove the existence of
optimal controls.

Moreover, we consider problems with pointwise state constraints and prove asso-
ciated necessary optimality conditions.

The consideration of the state constraints is motivated by an interesting application
in theoretical physics, namely the problem of preventing localized moving spots from
reaching the boundary of the spatial domain. This issue is discussed in Example 3 of
Sect. 4.

Remark 1.1 We will develop our analysis for (n, n)-unit matrices E = D = Id , since
this is less technical. If E and D have positive diagonal entries, then the results remain
true with E and D substituted for Id in the associated positions. The proofs need only
minor modifications. If some of the diagonal entries of D are vanishing as in (1.4)
or (1.6), then some equations of (1.1) are ordinary differential equations w.r. to t . In
these equations, x plays the role of a parameter and boundary conditions are not given.
If they are linear as in (1.6), then the associated vector function z can be represented
by the variation-of-constants formula in terms of y and herafter eliminated. Then a
system for y of the form (1.1) is obtained, where D has positive diagonal elements
again. If z and y appear nonlinearly in the ordinary differential equations, then the
situation is more complicated. This case is not covered by our theory. The matrices E
and D will be needed in our numerical examples.

2 Control constrained problem

2.1 State equation

We shall consider the following system of parabolic partial differential equations

⎧
⎪⎨

⎪⎩

∂y

∂t
− Δy + R(x, t, y) + A(x, t)y = B(x, t)u in Q = Ω × (0, T ),

∂ν y = 0 on Σ = Γ × (0, T ),

y(x, 0) = y0(x) in Ω,

(2.1)
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Optimal control of a class of reaction–diffusion systems 681

whereΩ is an open bounded domain inRd with d ∈ {1, 2, 3}, Γ is the boundary ofΩ
that we assume to be Lipschitz, ν is the unit outward normal vector to Γ , 0 < T < ∞
is fixed, A ∈ L∞(Q,Rn×n), B ∈ L∞(Q,Rn×nc ), y0 ∈ L∞(Ω)n , and the function
R : Q × R

n −→ R
n is defined by R(x, t, y) = (R1(x, t, y1), . . . , Rn(x, t, yn))�

with Carathéodory functions R j : Q × R −→ R for 1 ≤ j ≤ n. Given a control
u : Q −→ R

nc , we look for the corresponding solution yu : Q −→ R
n of (2.1). The

analysis of this equation will be done below under the following assumptions on R.
We assume that every function R j is of class C1 with respect to the last variable and
satisfies for 1 ≤ j ≤ n

R j (·, 0) ∈ L p̂(0, T ; Lq̂(Ω)) with p̂, q̂ ∈ [2,∞] and 1

p̂
+ d

2q̂
< 1, (2.2)

∃CR ∈ R : ∂ R j

∂y j
(x, t, y j ) ≥ CR for a.a. (x, t) ∈ Q, ∀y j ∈ R, (2.3)

∀M > 0 ∃CM :
∣∣∣∣
∂ R j

∂y j
(x, t, y j )

∣∣∣∣ ≤ CM for a.a. (x, t) ∈ Q, ∀|y j | ≤ M. (2.4)

Along this paper, we take ‖A‖L∞(Q,Rn×n) := ess sup(x,t)∈Q‖A(x, t)‖, where
‖A(x, t)‖ denotes the matrix norm induced by the Euclidean norm in R

n . Analo-
gously, we define ‖B‖L∞(Q,Rn×nc ).

We will use the function space

W (0, T ) =
{

y ∈ L2
(
0, T, H1(Ω)

)
: ∂t y ∈ L2

(
0, T ; H1(Ω)∗

)}
.

and set Y = W (0, T )n ∩ L∞(Q)n . This is a Banach space when endowed with the
norm

‖y‖Y =
⎧
⎨

⎩

n∑

j=1

‖y j‖2L2(0,T ;H1(Ω))
+ ‖∂t y‖2L2(0,T ;H1(Ω)∗)

⎫
⎬

⎭

1/2

+ max
1≤ j≤n

‖y j‖L∞(Q).

Theorem 2.1 Under the above assumptions, for every u ∈ L p̄(0, T ; Lq̄(Ω))nc with
p̄, q̄ ∈ [2,+∞] and 1

p̄ + d
2q̄ < 1, (2.1) has a unique solution y ∈ Y . Furthermore,

there exists a constant CY independent of u such that

‖y‖Y ≤ CY

(
‖y0‖L∞(Ω)n + ‖u‖L p̄(0,T ;Lq̄ (Ω))nc + ‖R(·, 0)‖L p̂(0,T ;Lq̂ (Ω))n

)
. (2.5)

For y0 ∈ C(Ω̄), we have that y ∈ C(Q̄).

Proof For every M > 0, we set RM (x, t, y) = R(x, t,Proj[−M,+M]n (y)). Now, given
w ∈ L2(Q)n , we consider the system

⎧
⎪⎨

⎪⎩

∂y

∂t
− Δy + A(x, t)y = B(x, t)u − RM (x, t, w(x, t)) in Q,

∂ν y = 0 on Σ,

y(x, 0) = y0(x) in Ω.

(2.6)
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For every η > ‖A‖L∞(Q,Rn×n), the operator −Δ + A + ηI is coercive in H1(Ω)n ,
hence there exists a unique solution yw ∈ L2(0, T ; H1(Ω))n of (2.6); see, for
instance, [30, p. 112]. Further, from the partial differential equation we get that
∂t yw ∈ L2(0, T ; H1(Ω)∗)n as well, hence yw ∈ W (0, T )n . For fixed M > 0, the right
hand side of the partial differential Eq. (2.6) is bounded in L2(Q), hence the Schauder
fixed point theorem applied to the mapping w ∈ L2(Q)n → yw ∈ L2(Q)n along
with the compactness of the embedding W (0, T ) ⊂ L2(Q), implies the existence of
a fixed point yM ∈ L2(0, T ; H1(Ω))n that satisfies the equation

⎧
⎪⎨

⎪⎩

∂yM

∂t
− ΔyM + RM (x, t, yM (x, t)) + A(x, t)yM = B(x, t)u in Q,

∂ν yM = 0 on Σ,

yM (x, 0) = y0(x) in Ω.

(2.7)

Next, we derive some estimates for yw. Let us set η = |CR |+‖A‖L∞(Q,Rn×n) +1 and
take 0 < T ′ ≤ T . Multiplying (2.7) by e−2ηt yM and integrating in Q′ = Ω × (0, T ′),
we get

∫ T ′

0
e−2ηt

(
∂yM

∂t
, yM

)

[H1(Ω)n ]∗,H1(Ω)n
dt +

∫ T ′

0
e−2ηt

∫

Ω

|∇ yM |2 dx dt

+
∫

Q′
e−2ηt [RM (x, t, yM ) − R(x, t, 0)] · yM dxdt +

∫

Q′
e−2ηt y�

M A(x, t)yM dxdt

=
∫

Q′
e−2ηt [B(x, t)u − R(x, t, 0)] · yM dx dt. (2.8)

For the first term of the left hand side of the above identity we have

∫ T ′

0
e−2ηt

(
∂yM

∂t
, yM

)

[H1(Ω)n ]∗,H1(Ω)n
dt = 1

2

∫ T ′

0
e−2ηt d

dt
‖yM (t)‖2L2(Ω)n dt

= 1

2

{
e−2ηT ′ ∥∥yM (T ′)

∥∥2
L2(Ω)n − ‖y0‖2L2(Ω)n

}

+ η

∫ T ′

0
e−2ηt‖yM (t)‖2L2(Ω)n dt. (2.9)

Moreover, applying the mean value theorem and using (2.3) we obtain

[RM (x, t, yM ) − R(x, t, 0)] · yM ≥ CR |yM |2.

We also have that y�
M A(x, t)yM ≥ −‖A‖L∞(Q,Rn×n)|yM |2. Using these two inequal-

ities, inserting (2.9) in (2.8), and taking into account the definition of η, we infer by
the Schwarz inequality that
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Optimal control of a class of reaction–diffusion systems 683

1

2
e−2ηT ′ ∥∥yM (T ′)

∥∥2
L2(Ω)n +

∫ T ′

0
e−2ηt‖yM (t)‖2L2(Ω)n dt

+
∫ T ′

0
e−2ηt

∫

Ω

|∇ yM |2 dx dt ≤ 1

2
‖y0‖2L2(Ω)n

+
(∫

Q′
e−2ηt |Bu − R(x, t, 0)|2 dx dt

)1/2 (∫

Q′
e−2ηt |yM |2 dx dt

)1/2

.

Applying Young’s inequality and multiplying the resulting inequality by 2 we get

e−2ηT ′ ‖yM (T ′)‖2L2(Ω)n +
∫ T ′

0
e−2ηt‖yM (t)‖2L2(Ω)n dt

+ 2
∫ T ′

0
e−2ηt

∫

Ω

|∇ yM |2 dx dt

≤ ‖y0‖2L2(Ω)n + ‖B‖L∞(Q,Rn×nc )‖u‖L2(Q)nc + ‖R(·, ·, 0)‖L2(Q)n .

Therefore, dropping the second term, using e−2ηt ≥ e−2ηT ′
with 0 < T ′ ≤ T , and

multiplying the inequality by e2ηT ′
, we conclude

‖yM (T ′)‖2L2(Ω)n + 2
∫ T ′

0

∫

Ω

|∇ yM |2 dx dt

≤ e2ηT
(
‖y0‖2L2(Ω)n + ‖B‖L∞(Q,Rn×nc )‖u‖L2(Q)nc + ‖R(·, ·, 0)‖L2(Q)n

)
.

(2.10)

Since T ′ was arbitrary, we deduce that {yM }M is uniformly bounded in the space
L∞(0, T ; L2(Ω))n ∩ L2(0, T ; H1(Ω))n .

It remains to prove the boundedness of yM in L∞(Q)n . To this end, consider the
functions f j : Q × R −→ R and g j , 1 ≤ j ≤ n, defined by

f j (x, t, y) = RM, j (x, t, y) − R j (x, t, 0) + (1 + |CR |)y,

g j = (Bu) j − R j (·, ·, 0) + (1 + |CR |)yM, j − (AyM ) j .

From (2.7), it is obvious that yM, j satisfies the equation

⎧
⎪⎨

⎪⎩

∂yM, j

∂t
− ΔyM, j + f j (x, t, yM, j (x, t)) = g j in Q,

∂ν yM, j = 0 on Σ,

yM, j (x, 0) = y0, j (x) in Ω.

(2.11)

Due to the regularity of g j and the fact that f j is monotone non decreasing, we can
use the methods of [15, §III.7] to infer the existence of a constant C j independent of
M such that
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‖yM, j‖L∞(Q) ≤ C j
(‖y0; j‖L∞(Ω) + ‖(Bu) j‖L p̄(0,T ;Lq̄ (Ω))

+ ‖R j (·, ·, 0)‖L p̂(0,T ;Lq̂ (Ω))

+ ‖(1 + |CR |)yM, j − (AyM ) j‖L∞(0,T ;L2(Q))

)

≤ C ′
j

(‖y0‖L∞(Ω)n + ‖u‖L p̄(0,T ;Lq̄ (Ω))nc

+ ‖R(·, ·, 0)‖L p̂(0,T ;Lq̂ (Ω))n + ‖yM‖L∞(0,T ;L2(Ω))n

)
. (2.12)

Combining (2.10) and (2.12), we obtain the boundedness in L∞(Q)n of every yM by a
constantC independent of M .Hence, taking M > C ,we see that RM (x, t, yM (x, t)) =
R(x, t, y(x, t)). This implies that yM is solution of (2.1).Moreover, (2.5) follows from
(2.10) and (2.12).

Now, we prove the uniqueness of a solution. Let us assume that y1, y2 ∈ Y are two
solutions of (2.1). We set y = y2 − y1. Subtracting the equations satisfied by these
functions, we obtain

⎧
⎪⎨

⎪⎩

∂y

∂t
− Δy + R(x, t, y2) − R(x, t, y1) + A(x, t)y = 0 in Q,

∂ν y = 0 on Σ,

y(x, 0) = 0 in Ω.

Setting again η = 1 + |CR | + ‖A‖L∞(Q,Rn×n), multiplying this equation by e−2ηt y,
integrating in Q, using that

[
R(x, t, y2) − R(x, t, y1)

]
· y ≥ CR |y|2,

and arguing as above, we get

1

2
e−2ηT ‖y(T )‖2L2(Ω)n +

∫ T

0
e−2ηt‖y(t)‖2L2(Ω)n dt

+
∫ T

0
e−2ηt

∫

Ω

|∇ y|2 dx dt ≤ 0.

This shows that y = 0.
Finally, if y0 ∈ C(Ω̄)n , then we can apply the results of [15, §III.7] to deduce that

y ∈ C(Q̄)n . ��
Remark 2.1 Of course the previous theorem remains valid if we consider a more gen-
eral elliptic operator with L∞(Q) coefficients. Moreover, the space Y = W (0, T )n ∩
L∞(Q)n introduced previously can be substituted by Y = W (0, T )n ∩ C(Q̄)n , pro-
vided that y0 ∈ C(Ω̄)n . Then, Theorem 2.1 and the next results are true under this
new definition of Y . We also mention that the diagonal structure of R could be avoided
under some additional assumptions. For instance, Theorem 2.1 is valid assuming that
R is of polynomial order with respect to y and certain kind of monotonicity is satisfied:
there exist constants Ci > 0, i = 1, 2, 3, such that for almost all (x, t) ∈ Q and all
y, y′ ∈ R

d
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|R(x, t, y)| ≤ C1(1 + |y|r ) with r > 0 arbitrary if d ≤ 2 and r < 2 if d = 3,

∃C2 > 0 : (R(x, t, y) − R(x, t, y′)) · (y − y′) ≥ −C2|y − y′|2,
∃C3 > 0 : R(x, t, y) · y ≥ −C3|y|2.

The difficulty of dealing with more general functions is due to the lack of L∞-
estimates, which are crucial in the above analysis.

Remark 2.2 As usual, assuming more regularity of y0 and Ω , we get extra regularity
of y: if y0 ∈ H1(Ω)n , then y belongs to H1(Q)n , and an associated estimate is
valid. If, in addition to this regularity of y0, Γ is of class C1,1 or Ω is convex, then
y ∈ H2,1(Q)n .

Due to Theorem 2.1, we can define a mapping G : L p̄(0, T ; Lq̄(Ω))nc −→ Y by
G(u) = yu , where yu is the solution of (2.1) associated with u. The next theorem
states the differentiability of this mapping.

Theorem 2.2 The mapping G is of class C1 and the derivatives zv = G ′(u)v are the
solutions of the system

⎧
⎪⎪⎨

⎪⎪⎩

∂z

∂t
− Δz + ∂ R

∂y
(x, t, yu)z + A(x, t)z = B(x, t)v in Q,

∂νz = 0 on Σ,

z(x, 0) = 0 in Ω.

(2.13)

Moreover, we have that zv ∈ [H1(Q) ∩ C(Q̄)]n.

Proof We define the space

V =
{

y ∈ Y : ∂y

∂t
− Δy ∈ L p̄(0, T ; Lq̄(Ω))n + L p̂(0, T ; Lq̂(Ω))n, ∂ν y = 0

}

endowed with the norm

‖y‖V = ‖y‖Y +
∥∥∥∥
∂y

∂t
− Δy

∥∥∥∥
L p̄(0,T ;Lq̄ (Ω))n+L p̂(0,T ;Lq̂ (Ω))n

;

then V is a Banach space. Moreover, we introduce a mapping

F : V × L p̄
(
0, T ; Lq̄(Ω)

)nc −→
[

L p̄(0, T ; Lq̄(Ω))n + L p̂(0, T ; Lq̂(Ω))n
]

×L∞(Ω)n

given by

F(y, u) =
(

∂y

∂t
− Δy + R(x, t, y) + A(x, t)y − B(x, t)u, y(·, 0) − y0

)
.
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By the definition of V and assumption (2.2)–(2.4), it is clear that F is well defined
and is of class C1. Moreover, the identity F(G(u), u) = 0 holds for all u ∈
L p̄(0, T ; Lq̄(Ω))nc . We want to apply the implicit function theorem to deduce the
differentiability of G and to obtain zv = G ′(u)v as the solution of (2.13). To this end,
we only need to prove that the linear operator

∂F
∂y

(G(u), u) : V −→
[

L p̄
(
0, T ; Lq̄(Ω)

)n + L p̂
(
0, T ; Lq̂(Ω)

)n]× L∞(Ω)n

is an isomorphism. From the expression

∂F
∂y

(G(u), u) z =
(

∂z

∂t
− Δz + ∂ R

∂y
(x, t, yu)z + A(x, t)z , z(·, 0)

)
,

we have that ∂F
∂y (G(u), u) is an isomorphism if and only if for every element

( f, g, z0) ∈ [L p̄(0, T ; Lq̄(Ω))n + L p̂(0, T ; Lq̂(Ω))n] × L∞(Ω)n , the system

⎧
⎪⎪⎨

⎪⎪⎩

∂z

∂t
− Δz + ∂ R

∂y
(x, t, yu)z + A(x, t)z = f + g in Q,

∂νz = 0 on Σ,

z(x, 0) = z0 in Ω

has a unique solution in V and the solution z depends continuously on the data
( f, g, z0). This existence, uniqueness and continuity follows fromTheorem2.1. There-
fore, G is of class C1. Finally, (2.13) follows from the identity

∂F
∂y

(G(u), u)
(
G ′(u)v

)+ ∂F
∂u

(G(u), u) v = (0, 0) ∀v ∈ L p̄
(
0, T ; Lq̄(Ω)

)nc

and the fact that ∂F
∂u (G(u), u)v = −Bv.

The additional regularity of zv is a consequence of the initial condition zv(0) = 0,
because zv(0) is continuous and belongs to H1(Ω). ��

2.2 Optimal control problem

In this section, associated with the state Eq. (2.1), we consider the following control
problem

(P) min
u∈Ua,b

J (u),

where

J (u) =1

2

∫

Q
|CQ(x, t)yu(x, t) − yQ(x, t)|2 dx dt

+ 1

2

∫

Ω

|CΩ(x)yu(x, T ) − yΩ(x)|2 dx dt + λ

2

∫

Q
|u(x, t)|2 dx dt
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Optimal control of a class of reaction–diffusion systems 687

withλ ≥ 0,matrix functionsCQ ∈ L∞(Q,RnQ×n),CΩ ∈ L∞(Ω,RnΩ×n), functions
yQ ∈ L2(Q)nQ , yΩ ∈ L2(Ω)nΩ , and the admissible set

Ua,b =
{

u ∈ L2(Q)nc : a ≤ u(x, t) ≤ b a.e. in Q
}

,

where a = (a1, . . . , anc )
�, b = (b1, . . . , bnc )

�, and −∞ ≤ a j < b j ≤ +∞, 1 ≤
j ≤ nc. Of course, the relations a ≤ u(x, t) ≤ b are to be understood componentwise.
Obviously, this assumption implies that Ua,b �= ∅.

As an immediate consequence of Theorem 2.2, we deduce the following corollary
just by an application of the chain rule.

Corollary 2.1 The mapping J : L p̄(0, T ; Lq̄(Ω))nc −→ R is of class C1 and we
have

J ′(u)v =
∫

Q

(
B�ϕu + λu

)
· v dx dt ∀u, v ∈ L p̄

(
0, T ; Lq̄(Ω)

)nc
, (2.14)

where ϕu ∈ L2(0, T ; H1(Ω))n is the unique solution of the adjoint state equation

⎧
⎪⎪⎨

⎪⎪⎩

−∂ϕ

∂t
− Δϕ + ∂ R

∂y
(x, t, yu)ϕ + A(x, t)�ϕ = C�

Q

[
CQ yu − yQ

]
in Q,

∂νϕ = 0 on Σ,

ϕ(·, T ) = C�
Ω [CΩ yu(·, T ) − yΩ ] in Ω.

(2.15)

Using this result, we can derive the optimality condition for a local solution to (P).

Theorem 2.3 Assume that a, b ∈ R
nc . Then there exists at least one solution of the

control problem (P). Any local solution ū satisfies the variational inequality

∫

Q

(
B�ϕ̄ + λū

)
· (u − ū) dx dt ≥ 0 ∀u ∈ Ua,b, (2.16)

where ϕ̄ = ϕū is the adjoint state associated with ū.

SinceUa,b was assumed to be bounded in L∞(Q)nc , the proof of the existence of an
optimal control is standard by taking aminimizing sequence that converges weakly∗ in
L∞(Q)nc to some ū ∈ Ua,b. Moreover, we mention that uk

∗
⇀ u weakly∗ in L∞(Q)nc

implies that yuk → yu strongly in L2(Q)n . This follows from Theorem 2.1 and the
Aubin–Lions theorem.

Finally, we take p̄ = q̄ = +∞ and apply Corollary 2.1 to deduce the optimality
conditions.

Let us now analyze the case whereUa,b is not bounded, which in particular includes
the case without control constraints. Here, we slightly extend ideas of [8]. First we
observe that Theorem 2.1 cannot be applied to deduce the existence of a solution of
the state equation for arbitrary elements in Ua,b because the L∞-estimates for the
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688 E. Casas et al.

states fail. We need to assume more regularity for the elements of Ua,b, the assumed
L2(Q)nC regularity in the definition of Ua,b is not enough. Therefore, we have to work
with a control space of type L p̄(0, T ; Lq̄(Ω))nc with p̄, q̄ ∈ [2,+∞] and 1

p̄ + d
2q̄ < 1.

The reader can easily identify the difficulty of proving a solution of the correspond-
ing control problem because of the lack of coercivity of the cost functional in these
spaces. Notice that the Tikhonov regularization term yields only coercivity in the space
L2(Q)nc but not in the control space introduced above. Let us redefine

Ua,b =
{

u ∈ L∞ (
0, T ; L2(Ω)

)nc : a ≤ u(x, t) ≤ b for a.a. (x, t) ∈ Q
}

.

Theorem 2.4 Let λ be strictly positive. Then, the optimal control problem (P) has at
least one solution ū. Any local solution in this space satisfies the variational inequality
(2.16).

Proof For every 1 ≤ j ≤ nc, we select an element ξ j ∈ R such that a j < ξ j < b j .
We set ξ = (ξ j )

nc
j=1 ∈ R

nc and M0 = |ξ |√|Ω|, where |Ω| denotes the Lebesgue
measure of Ω . For every M ≥ M0, we define

UM =
{

u ∈ Ua,b : ‖u‖L∞(0,T ;L2(Ω))
nc ≤ M

}
.

Take u0(x, t) = ξ∀(x, t) ∈ Q. Then we have that u0 ∈ UM ∀M ≥ M0 and, conse-
quently, UM �= ∅. According to Theorem 2.1 we know that (2.1) has a unique solution
yu ∈ Y for every u ∈ L∞(0, T ; L2(Ω))nc .We formulate the following optimal control
problem

(PM ) min
u∈UM

J (u).

For every M ≥ M0, this problem has at least one solution uM . Indeed, any minimizing
sequence {uk} is bounded in L∞(0, T ; L2(Ω))nc , hence the sequence of corresponding
states {yk} is bounded in Y . Moreover, from (2.1) we also obtain the boundedness of
{yk} in W (0, T )n . Then we can select subsequences, denoted in the same way, such

that uk
∗
⇀ uM in L∞(0, T ; L2(Ω))nc and yk → yM strongly in L2(Q)n due to the

compactness of the embedding W (0, T ) ⊂ L2(Q). Now, it is easy to pass to the limit
in the state equation and to deduce that yM is the state associated with uM . Finally,
we have that

uM ∈ UM and J (uM ) ≤ lim inf
k→∞ J (uk) = inf (PM ).

Therefore, uM is a solution of (PM ). Then from (2.14) we infer that

∫

Q

(
B�ϕM + λuM

)
· (u − uM ) dx dt ≥ 0 ∀u ∈ UM ,

where ϕM is the adjoint state associated with uM . This relation implies that

uM = ProjUM

(
−1

λ
B�ϕM

)
, (2.17)
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Optimal control of a class of reaction–diffusion systems 689

where the projection is taken in the L2(Q)nc norm. Let us prove that there exists
M̄ ≥ M0 such that {uM }M≥M̄ is bounded in L∞(0, T ; L2(Ω))nc . To this end, we first
observe that J (uM ) ≤ J (u0) < ∞ ∀M ≥ M0. This implies that

‖uM‖2L2(Q)nc ≤ 2

λ
J (u0) ∀M ≥ M0. (2.18)

Since yM ∈ L∞(Q)n , we can multiply the state equations (2.1) by e−2ηt yM with
η = 1+|CR |+‖A‖L∞(Q,Rn×n) and argue as in the proof of Theorem 2.1, without any
truncation of R (replace RM by R in that proof), to obtain (2.10). Then, using (2.18),
we deduce from (2.10) the existence of a constant C1 such that

‖yM‖L∞(0,T ;L2(Ω))n ≤ C1 ∀M ≥ M0.

Since yM ∈ W (0, T )n ⊂ C(0, T ; L2(Ω))n , we infer from the above inequality

‖yM‖L2(Q)n ≤ C1
√

T and ‖yM (T )‖L2(Ω)n ≤ C1 ∀M ≥ M0. (2.19)

Now, from the adjoint state equation satisfied by ϕM , it follows the existence of a
constant C2 such that

‖ϕM‖L∞(0,T ;L2(Ω))n

≤ C2

(
‖CQ‖L∞(Q,R

nQ×n
)

[
‖CQ‖L∞(Q,R

nQ×n
)
‖yM‖L2(Q)n + ‖yQ‖L2(Q)

nQ

]

+ ‖CΩ‖L∞(Ω,RnΩ×n)

[‖CΩ‖L∞(Ω,RnΩ×n)‖yM (T )‖L2(Ω)n + ‖yΩ‖L2(Ω)nΩ

] )
.

Combining this inequality and (2.19), we conclude that

∃C∞ > 0 : 1
λ

‖B‖L∞(Q;Rn×nc )‖ϕM‖L∞(0,T ;L2(Ω))
n ≤ C∞ ∀M ≥ M0. (2.20)

Let us introduce the index sets

Ia = { j ∈ [1, . . . , n] : a j ∈ R} and Ib = { j ∈ [1, . . . , n] : b j ∈ R},

and define

M̄ = max{C∞, M0} + (
max
j∈Ia

|a j | + max
j∈Ib

|b j |
)√|Ω|.

Notice that Ia or Ib or both can be empty. In any of these cases, the corresponding
maximum is taken as 0. If we define ũ ∈ Ua,b by

ũ j (x, t) = max

{
a j ,min

{
b j ,

(
−1

λ
B�ϕM (x, t)

)

j

}}
,
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690 E. Casas et al.

we have

|ũ j (x, t)| ≤
∣∣∣∣∣

(
−1

λ
B�ϕM (x, t)

)

j

∣∣∣∣∣+ min
{
0, |a j |

}+ min{0, |b j |},

therefore

‖ũ‖L∞(0,T ;L2(Ω))nc ≤ C∞ +
(
max
j∈Ia

|a j | + max
j∈Ib

|b j |
)√|Ω| ≤ M̄ .

This, along with (2.17), implies

uM = ProjUM

(
−1

λ
B�ϕM

)
= ProjUa,b

(
−1

λ
B�ϕM

)
= ũ. (2.21)

In this way, we have proved that ‖uM‖L∞(0,T ;L2(Ω))nc ≤ M̄ ∀M ≥ M̄ .
Now, we show that, for every M ≥ M̄ , uM is a solution of (P). Let us take u in the

space L∞(0, T ; L2(Ω))nc and set M ′ = ‖u‖L∞(0,T ;L2(Ω))nc . If M ′ ≤ M , thenu ∈ UM

and J (uM ) ≤ J (u). If M ′ > M , consider uM ′ , a solution of (PM ′). We have that
‖uM ′ ‖L∞(0,T ;L2(Ω))nc ≤ M̄ ≤ M , andhenceuM ′ ∈ UM , so J (uM ) ≤ J (uM ′) ≤ J (u),
and the proof is complete.

Finally, an application of the Corollary 2.1 with p̄ = +∞ and q̄ = 2 leads to
(2.16). ��
Remark 2.3 Let us notice that the optimal controls, whose existence is proved in
Theorems 2.3 and 2.4 , belong to C([0, T ]; L2(Ω))nc ∩ L2(0, T ; H1(Ω))nc assuming
that bi j ∈ C([0, T ]; W 1,∞(Ω)) for every entry of B. Indeed, this regularity is well
known for the adjoint state. Since the associated optimal control is taken as a projection
on Ua,b, this regularity is transferred to the control. The projection formula in the first
case follows from (2.6) and it is given in (2.21) in the second case.

3 State constrained control problem

3.1 Optimal control problem and existence of a solution

In this section we analyze the following state constrained control problem

(PS)

⎧
⎨

⎩

min J (u)

subject to u ∈ Ua,b and
g1(x, t) ≤ g(x, t, yu(x, t)) ≤ g2(x, t) ∀(x, t) ∈ K .

We impose the following assumptions on the data of the control problem.

(A1) The control u is related to the state yu through the system (2.1). We assume that
(2.2)–(2.4) hold and y0 ∈ C(Ω̄). We set Y = L2(0, T ; H1(Ω))n ∩ C(Q̄)n .
Notice that according to Theorem 2.1, the states yu ∈ Y due to the continuity
of y0; see Remark 2.1.
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Optimal control of a class of reaction–diffusion systems 691

(A2) The cost functional is given as in Sect. 2.2 with λ ≥ 0 and the same regularity
for matrix functions CQ , CΩ , and functions yQ , and yΩ .

(A3) We assume that a, b ∈ R
nc with a j < b j for 1 ≤ j ≤ nc.

(A4) K is a compact subset of Q̄ and the function g : K ×R
n −→ R is continuous,

together with its partial derivatives ∂g/∂y j ∈ C(K × R
n), j = 1, . . . , n.

We also assume that g1, g2 : K −→ R are continuous functions with
g1(x, t) < g2(x, t) ∀(x, t) ∈ K , and that either K ∩ (Ω̄ × {0}) = ∅ or
g1(x, 0) < g(x, t, y0(x)) < g2(x, 0) holds for every (x, 0) ∈ K ∩ (Ω̄ × {0}).
We introduce the sets

Yg = {y ∈ C(K ) : g1(x, t) ≤ y(x, t) ≤ g2(x, t) ∀(x, t) ∈ K }

and

Uad = {u ∈ Ua,b : g1(x, t) ≤ g(x, t, yu(x, t)) ≤ g2(x, t) ∀(x, t) ∈ K }.

Under the above assumptions, we have that Ua,b is a closed, convex and bounded
subset of L∞(Q)nc and the mapping G : L∞(Q)nc −→ Y , defined as in Sect. 2.1 by
G(u) = yu , is of class C1. The derivative zv = G ′(u)v ∈ Y is the solution of (2.13).
FromCorollary 2.1 we know that J : L∞(Q)nc −→ R is of classC1 and its derivative
J ′(u)v is given by (2.14).

By using the above assumptions we can prove the following theorem on existence
of an optimal control.

Theorem 3.1 Under the assumptions (A1)–(A4), if Uad �= ∅, then (PS) has at least a
solution.

Proof The proof follows classical arguments. Indeed, since Uad �= ∅ there exists a
minimizing sequence {uk}∞k=1 ⊂ Uad of (PS). This sequence is bounded in L∞(Q)nc

and the associated states {yk}∞k=1 are bounded in Y . Additionally, this boundedness
along with the partial differential Eq. (2.1) implies that {∂t yk}∞k=1 is bounded in
L2(0, T ; H1(Ω)∗)n . Hence, {yk}∞k=1 is bounded in W (0, T )n , which is compactly
embedded in L2(Q)n .

Therefore, we can take subsequences, denoted in the sameway, such that uk
∗
⇀ ū in

L∞(Q)nc with ū ∈ Ua,b, and yk → ȳ strongly in L2(Q)n and yk(x, t) → ȳ(x, t) for
almost all (x, t) ∈ Q. Now, it is easy to pass to the limit in the state Eq. (2.1) as k → ∞
and to prove that ȳ ∈ Y is the state associated to ū. Moreover, using the continuity
of g we can pass to the limit in the inequality g1(x, t) ≤ g(x, t, yk(x, t)) ≤ g2(x, t)
to obtain g1(x, t) ≤ g(x, t, ȳ(x, t)) ≤ g2(x, t) for almost all (x, t) ∈ K . But the
continuity of the functions ȳ, g1, g2 and g implies that the above inequality holds for
all (x, t) ∈ K . Hence, we have that ū ∈ Uad. Finally it is obvious that

J (ū) ≤ lim inf
k→∞ J (uk) = inf (PS),

which proves that ū is solution of (PS). ��
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3.2 Optimality system

Hereafter, ū will denote a local minimum of (PS) with associated state ȳ. In order to
get the optimality conditions satisfied by ū in a qualified formwe assume the following
linearized Slater condition.

(A5) There exists u0 ∈ Ua,b such that

g1(x, t) < g(x, t, ȳ(x, t)) + ∂g

∂y
(x, t, ȳ(x, t))z0(x, t) < g2(x, t) ∀(x, t) ∈ K ,

(3.1)
where z0 ∈ Y is the unique solution of the linearized equation

⎧
⎪⎪⎨

⎪⎪⎩

∂z

∂t
− Δz + ∂ R

∂y
(x, t, ȳ)z + A(x, t)z = B(x, t)(u0 − ū) in Q,

∂νz = 0 on Σ,

z(x, 0) = 0 in Ω.

(3.2)

This section is devoted to the proof of the following theorem.

Theorem 3.2 Let ū be a local solution of (PS) and suppose that the assumptions (A1)–
(A4) hold. Then there exist a real number μ̄0 ≥ 0, a regular Borel measure μ̄ ∈ M(K ),
and a function ϕ̄ ∈ Lr (0, T ; W 1,s(Ω))n, for all s, r ∈ [1, 2) with 2

r + d
s > d + 1,

such that

μ̄0 + ‖μ̄‖M(K ) > 0, (3.3)
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∂ϕ̄

∂t
− Δϕ̄ + ∂ R

∂y
(x, t, ȳ)ϕ̄ + A(x, t)�ϕ̄

= μ̄0C�
Q[CQ ȳ − yQ] + ∇y g(x, t, ȳ)μ̄Q in Q,

∂νϕ̄ = ∇y g(x, t, ȳ)μ̄Σ on Σ,

ϕ̄(·, T ) = μ̄0C�
Ω [CΩ ȳ(·, T ) − yΩ ] + ∇y g(x, t, ȳ)μ̄Ω in Ω̄,

(3.4)

∫

K
(z(x, t) − g(x, t, ȳ(x, t))dμ̄(x, t) ≤ 0 ∀z ∈ Yg, (3.5)

∫

Q
(B�ϕ̄ + μ̄0λū) · (u − ū) dx dt ≥ 0 ∀u ∈ Ua,b. (3.6)

If in addition the Slater assumption (A5) holds, then the above optimality system is
satisfied with μ̄0 = 1.

In the optimality system, the measures μ̄Q , μ̄Σ and μ̄Ω are the restrictions of μ̄ to
K ∩ Q, K ∩ Σ and K ∩ (Ω̄ × {T }), respectively.

Before proving this theorem, we recall what a solution of (3.4) is. We will do it
in an abstract framework. We consider a vector of real and regular Borel measures
μ ∈ M(Q̄)

n
such that |μ j |(Ω̄ × {0}) = 0 for 1 ≤ j ≤ n. We decompose μ =

μQ + μΣ + μΩ by taking the restrictions of μ to Q, Σ and Ω̄ × {T }, respectively.
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Now, we consider the system

⎧
⎪⎨

⎪⎩

−∂ϕ

∂t
− Δϕ + D(x, t)ϕ = μQ in Q,

∂νϕ = μΣ on Σ,

ϕ(·, T ) = μΩ in Ω̄,

(3.7)

where D ∈ L∞(Q,Rn×n).

Definition 3.1 We say that a function ϕ ∈ L1(Q)n is a weak solution of (3.7) if

∫

Q
ϕ ·

[
∂φ

∂t
− Δφ + D(x, t)�φ

]
dx dt =

∫

Q̄
φ · dμ ∀φ ∈ Φ (3.8)

with

Φ =
{
φ ∈

[
H1(Q) ∩ C(Q̄)

]n : ∂φ

∂t
− Δφ ∈ L∞(Q)n, ∂νφ = 0, φ(·, 0) = 0

}
.

Notice that the last integral in Q̄ of (3.8) can be expanded as

∫

Q̄
φ · dμ =

∫

Q
φ · dμQ +

∫

Σ

φ · dμΣ +
∫

Ω

φ(T ) · dμΩ.

Theorem 3.3 System (3.7) has a unique solution ϕ in L1(0, T ; W 1,1(Ω))n. Moreover,
ϕ belongs to Lr (0, T ; W 1,s(Ω))n for all s, r ∈ [1, 2) with 2

r + d
s > d + 1, and there

exists Cr,s such that

‖ϕ‖Lr (0,T ;W 1,s (Ω))n ≤ Cr,s‖μ‖M(Q̄)n .

The reader is referred to [6] or [10] for the proof of this theorem in the case of a scalar
equation. The arguments are identical for the above system. In the proof of theorem
some regularity results for the adjoint system to (3.7) are required, they are deduced
from Theorem 2.1 just taking R ≡ 0. From the regularity of φ established in the above
theorem and using a density argument, it is easy to prove that

∫

Q
ϕ ·

[
∂φ

∂t
− Δφ + D(x, t)�φ

]
dx dt +

∫

Σ

ϕ · ∂νφ dx dt =
∫

Q̄
φ · dμ

for every φ ∈ [H1(Q) ∩ C(Q̄)]n such that ∂νφ ∈ L∞(Σ)n and φ(·, 0) = 0 in Ω .
Now, we can apply Theorem 3.3 to the system (3.4) with

D(x, t) = ∂ R

∂y
(x, t, ȳ(x, t)) + A(x, t)�
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taking into account that ȳ ∈ C(Q̄)n and using (2.4). For the right hand side of the
equations we consider the measures

μQ(A) =
∫

A
μ̄0C�

Q

[
CQ ȳ − yQ

]
dx dt +

∫

K∩A
∇y g (x, t, ȳ(x, t)) dμ̄Q,

μΣ(B) =
∫

K∩B
∇y g (x, t, ȳ(x, t)) dμ̄Σ,

μΩ(C) =
∫

C
μ̄0C�

Ω [CΩ ȳ(·, T ) − yΩ ] dx dt +
∫

K∩C
∇y g (x, T, ȳ(x, T )) dμ̄Ω,

for arbitrary Borel sets A ⊂ Q, B ⊂ Σ and C ⊂ Ω̄ × {T }.
The optimality conditions (3.3)–(3.6) can be deduced from the following abstract

theorem, whose proof can be found in [5, Theorem 5.2].

Theorem 3.4 Let U and Z be two Banach spaces and K ⊂ U and C ⊂ Z two convex
subsets, C having a nonempty interior. Let ū ∈ K be a solution of the optimization
problem:

(Q)

{
Min J (u)

u ∈ K and F(u) ∈ C,

where J : U −→ (−∞,+∞] and F : U −→ Z are two Gâteaux differentiable
mappings at ū. Then there exist a real number μ̄0 ≥ 0 and an element μ ∈ Z∗ such
that

μ̄0 + ‖μ̄‖Z ′ > 0, (3.9)

〈μ̄, z − F(ū)〉Z∗,Z ≤ 0 ∀z ∈ C, (3.10)

〈μ̄0 J ′(ū) + [DF(ū)]�μ̄, u − ū〉U∗,U ≥ 0 ∀u ∈ K . (3.11)

Moreover μ̄0 can be taken equal to 1 if the following linearized Slater condition is
satisfied:

∃u0 ∈ K such that F(ū) + DF(ū) · (u0 − ū) ∈ int C. (3.12)

Now, Theorem 3.3 follows by taking U = L∞(Q)nc , K = Ua,b, Z = C(K ),
C = Yg , J is the cost functional of (PS) and F(u) = g(·, ·, G(u)). Then, we have that
(3.9) and (3.10) coincide with (3.3) and (3.5), respectively. Let us prove that (3.11) is
the same as (3.6). To this end, we first introduce ϕ̄ as the solution of the system (3.4).
We observe that the chain rule along with the expression of zv = G ′(ū)v provided in
(2.13) leads to

〈[DF(ū)]∗μ̄, v〉[L∞(Q)nc ]∗,L∞(Q)nc = 〈μ̄, [DF(ū)]v〉M(K ),C(K )

=
〈
μ̄,

∂g

∂y
(·, ·, ȳ)[G ′(ū)v]

〉

M(K ),C(K )

=
∫

K

∂g

∂y
(x, t, ȳ(x, t))zv(x, t) dμ̄.
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From here we get, once again with the chain rule,

〈μ̄0 J ′(ū) + [DF(ū)]�μ̄, v〉[L∞(Q)nc ]∗,L∞(Q)nc

= μ̄0

( ∫

Q

[
C�

Q(CQ ȳ − yQ)
]

· zv dx dt +
∫

Ω

[
C�

Ω(CΩ ȳ(T ) − yΩ)
]

· zv(T ) dx

+ λ

∫

Q
ū · v dx dt

)
+
∫

K

∂g

∂y
(x, t, ȳ(x, t))zv(x, t) dμ̄

= μ̄0λ

∫

Q
ū · v dx dt +

∫

Q̄
zv · dμ,

where μ = μQ + μΣ + μΩ is the measure introduced above. Now, we notice that
Theorem 2.2 implies zv ∈ Φ and ∂νzv = 0. Then from Definition 3.1 applied to the
system (3.4) with φ = zv , and recalling that D = ∂g

∂y + A� we obtain with (2.13)

∫

Q̄
zv · dμ =

∫

Q
ϕ̄ ·

[
∂zv

∂t
− Δzv + ∂ R

∂y
(x, t, ȳ)zv + Azv

]
dx dt

=
∫

Q
ϕ̄ · Bv dx dt =

∫

Q

(
B�ϕ̄

)
· v dx dt.

The last two identities lead to

〈μ̄0 J ′(ū) + [DF(ū)]�μ̄, v〉[L∞(Q)nc ]∗,L∞(Q)nc =
∫

Q
(B�ϕ̄ + μ̄0λū) · v dx dt.

Hence, taking v = u− ū with u ∈ Ua,b, we conclude that (3.11) and (3.6) are identical.
It is obvious that (3.1) and (3.12) are equal, hence the possibility of taking μ̄0 = 1
under the Slater assumption follows from Theorem 3.4.

After having proved Theorem 3.2, let us draw some conclusion, namely some
information on μ̄ that follows from (3.5).

Theorem 3.5 Assume that (A4) holds and μ̄ ∈ M(K ) satisfies (3.5). Then the fol-
lowing embeddings hold

{
supp(μ̄+) ⊂ {(x, t) ∈ K : g(x, t, ȳ(x, t)) = g2(x, t)},
supp(μ̄−) ⊂ {(x, t) ∈ K : g(x, t, ȳ(x, t)) = g1(x, t)}, (3.13)

where μ̄ = μ̄+ − μ̄− is the Jordan decomposition of μ̄,

The proof follows the lines of [9, Proposition 2.5] with obvious modifications. As
a consequence of this theorem and the assumption (A4) we have that |μ̄|(K ∩ (Ω̄ ×
{0})) = 0. Hence, the identity μ̄ = μ̄Q + μ̄Σ + μ̄Ω holds.
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3.3 A regularity result for local solutions

As in the previous section, ū will denote a local minimum of (PS) with associate
state and adjoint state ȳ and ϕ̄, respectively. In this section we impose the following
additional assumption on the problem (PS).

(A6) The following structure is assumed for B = (bi j ) : nc ≤ n and

bi j (x, t) =
{
0 if i �= j,
b j (x, t) if i = j,

with b j ∈ L∞(0, T ; W 1,∞(Ω)), 1 ≤ j ≤ nc.

Moreover, there exists a constant b̄ > 0 such that |b j (x, t)| ≥ b̄ for almost all
(x, t) ∈ Q and 1 ≤ j ≤ nc. We also assume that λ > 0 and (3.4)–(3.6) holds
with μ̄0 = 1.

Under this assumption, the well known regularity ū ∈ Lr (0, T ; W 1,s(Ω))nc for all
r, s ∈ [1, 2) with 2

r + d
s > d + 1 follows from the projection formula

ū(x, t) = Proj[a,b]
(

−1

λ
B(x, t)�ϕ̄(x, t)

)

equivalent to

ū j (x, t) = Proj[a j ,b j ]
(

−1

λ
b j (x, t)ϕ̄ j (x, t)

)
, 1 ≤ j ≤ nc, (3.14)

which is well known to be deduced from (3.6). However, this projection formula leads
to higher regularity, namely ū ∈ L2(0, T ; H1(Ω))nc . The next lemma, proved in the
Appendix, is the key tool to establish this regularity.

Lemma 3.1 Assume that (A6) holds, and let ϕ̄ be the solution of (3.4). Given M > 0,
we set

ϕM (x, t) = Proj[−M,+M]n (ϕ̄(x, t)).

Then, ϕM ∈ L2(0, T ; H1(Ω))n and there exists a constant C depending on Ω , CR,
and ‖A‖L∞(Q,Rn×n), but independent of M, such that

‖ϕM‖L2(0,T ;H1(Ω))n ≤ C

[
‖C�

Q[CQ ȳ − yQ]‖L2(Q)n

+ ‖C�
Ω [CΩ ȳ(·, T ) − yΩ ]‖L2(Ω)n

+
√

M‖∇y g(·, ·, ȳ)‖C(K )n ‖μ̄‖M(K )

]
. (3.15)

Theorem 3.6 Assume that (A6) holds. Then, ū belongs to L2(0, T ; H1(Ω))nc .
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Proof Let us take

M >
λ

b̄
max{|a|, |b|} and ϕM (x, t) = Proj[−M,+M]n (ϕ̄(x, t)).

Then, fromLemma3.1weknow thatϕM ∈ L2(0, T ; H1(Ω))n .Due to the regularity of
the functions b j we also have that b jϕM, j ∈ L2(0, T ; H1(Ω)) for every 1 ≤ j ≤ nc.
Now, from (3.14) we have

ū j (x, t) = Proj[a j ,b j ]
(

−b j (x, t)ϕ̄ j (x, t)

λ

)
= Proj[a j ,b j ]

(
−b j (x, t)ϕM, j (x, t)

λ

)
.

This implies that ū j ∈ L2(0, T ; H1(Ω)) as well for 1 ≤ j ≤ nc. It remains to
prove that both projections coincide. This is obviously the case if |ϕ̄ j (x, t)| ≤ M . If
|ϕ̄ j (x, t)| > M , the reader can easily confirm the following facts

(1) − b j (x,t)
λ

ϕ̄ j (x, t) /∈ [a j , b j ],
(2) if − b j (x,t)

λ
ϕ̄ j (x, t) < a j , then − b j (x,t)

λ
ϕ̄ j (x, t) < − b j (x,t)

λ
ϕM, j (x, t) < a j .

(3) if − b j (x,t)
λ

ϕ̄ j (x, t) > b j , then − b j (x,t)
λ

ϕ̄ j (x, t) > − b j (x,t)
λ

ϕM, j (x, t) > b j .

In either case the equality of the projections follows. ��

4 Examples

As applications, we consider systems of equations in two-dimensional spatial domains
(d = 2) that develop spiral waves or moving localized spots as solutions. Spiral
waves appear for the FitzHugh–Nagumo equations, a system of 2 equations, while
localized spots arise for a system of 3 equations. In all the examples, the aim is to
move the appearing state function in a prescribed way. All examples are numerically
very challenging but show, on the other hand, the geometrical beauty of solutions to
the selected reaction–diffusion equations.

Example 1 Translation of a spiral wave along a circle

We consider the FitzHugh–Nagumo system (1.4) inΩ = (0, LΩ)2 with LΩ := 75,
for T = 1000, and subject to homogeneous Neumann boundary conditions. The
parameters of the system read σy = σz = Dy = 1, α = 1, β = 0.05, γ = 0.0125,
δ = 0, λ = 10−6, and the nonlinearity is R(y) = y(y − 0.01)(y − 1).

As pointed out in Remark 1.1, the system (1.4) does not directly fit to (1.1), since the
second diagonal element of D is zero. However, our theory remains true with obvious
modifications. For the necessary optimality conditions and the adjoint equation we
refer to [12], where this example was not considered. Here, our control task is to
translate a naturally developed spiral wave pattern along a given circle. By a standard
method that is explained in [23, p. 48], a rotation of the states is triggered: spiral waves
y0 and z0 are computed in Ω as initial states for the system (1.4); they are depicted in
Fig. 1.
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Fig. 1 Initial states y0 (left) and z0 (right) for Eq. (1.4)

The area of the center of the spiral, the so-called “core”, is located around the
position (3/4 LΩ, 1/2 LΩ) = (56.25, 37.5).

The desired trajectory yQ equals the uncontrolled natural state y evolving from
(y0, z0) that is translated in counter-clockwise direction along a circular shape with
radius 1/4 LΩ around the center of the domain (1/2 LΩ, 1/2 LΩ). Due to the Neu-
mann boundary conditions, this is delicate issue.

However, the position of a spiral pattern is basically determined by the loca-
tion of its core. Translating the core, the arm of the spiral follows accordingly
with some delay. Hence, we consider the desired trajectory only in a circle-shaped
area of radius 15 around the desired center X (t) of the spiral, given by X (t) :=
(1/2 LΩ + 1/4 LΩ cos(2π t/T ), 1/2 LΩ + 1/4 LΩ sin(2π t/T )). We set

CQ(x, t) :=
⎧
⎨

⎩

1 if |x − X (t)| ≤ 7.5,
|x − X (t)|/7.5 − 1 if 7.5 < |x − X (t)| < 15,
0 if |x − X (t)| ≥ 15.

Figure 2 displays CQ at t = 0 as well as the product CQ yQ for some times t . The
remaining parameters of the optimal control problem (P) are set to ua = − 1, ub = 1,
and CΩ = yΩ ≡ 0.

As optimization algorithm, a projected gradient-method with non-linear CG-step
was chosen. Due to the large time-horizon with 3001 time-steps, and the circumstance
that an entire desired trajectory yQ is given, we employed Model Predictive Control
with 4 time-steps of length τ in each sub-problem. Thismeans that we solve a sequence
of (discretized) short time optimal control problems in a time horizon of length 4τ
starting with the interval [0, 4τ ]. From the 4 values computed for the discretized
optimal control in this short time interval,wekeep thefirst value for thefinal suboptimal
control. Next we move the time horizon one time step to the right, compute the next
optimal control for this shifted time horizon and keep again its first value. After having
solved a finite number of small optimal control problems, we arrive at a suboptimal
control on [0, T ]. The short time control problemswere solved by a nonlinear CG-step.
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Fig. 2 Support functionCQ(·, 0) (left) and productCQ(·, t) yQ(·, t) (right) for t ∈ {0, 210, 420, 630, 840},
where the pattern that is most faded away indicates the associated product for the earliest time t = 0 and
so on. The dashed white line illustrates the center X (t) of the circle-shaped support function CQ for
t ∈ (0, 840)

Fig. 3 Example 1: (sub)optimal control ū (top row) and associated activator state ȳ (bottom row) for
t = 210, 420, 630, 840

Moreover, since the chosen discretization of 101 × 101 grid points in space still
leads to fairly high computation times, only a semi-implicit Euler-scheme for solving
the discrete systems was applied. Yet, 13.42 h for computing the suboptimal control
ū was quite large.

Figure 3 illustrates the computed (sub-)optimal control ū with associated activator
state ȳ at several times t . As shown, the control task is satisfied; the suboptimal value
of the objective functional was f (ū, ȳ) = 9.899 × 10−3.
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One should expect that the optimal control concentrates at the support of the function
CQ . However, the highest amplitudes of the control appear at the boundary of the
circumcircle of the support. The reason is that the profile of the given desired trajectory
is the one of an uncontrolled “standing” spiral wave. A translation of the pattern
naturally leads to some deformations of the profile and the control aims to suppress
those deformations where CQ is positive.

Example 2 Translation of a propagating spot along a circle

The realization of this and the next example involves the system (1.5), (1.7) with
three components, i.e. with m = 2. We mainly adopt the system parameters from
[2] and [26], namely σy = σ2 = 1, σ1 = 48, Dy = 15 × 10−5, D1 = 186 × 10−6,
D2 = 96×10−4, R(x, t, y) = R(y) = y(y +√

2)(y −√
2)+6.92, α1 = 1, α2 = 8.5,

β1 = β2 = γ1 = γ2 = 1, and δ1 = δ2 = 0 in (1.5), (1.7). The spatial domain is
Ω = (0, LΩ)2 with LΩ = 0.5.

Similarly to Example 1, the control task is to translate a naturally developed pattern
along a circle-shaped curve in Ω in counter-clockwise direction. For this purpose, we
proceed as follows. First, we construct a natural developed spot profile as follows: we
take as auxiliary initial states

ỹ0(x) :=
{
1.2 if x ∈ [0.09, 0.13] × [0.29, 0.31],
− 0.8 elsewhere,

z̃10(x) :=
{− 0.3 if x ∈ [0.05, 0.1] × [0.29, 0.31],

− 0.8 elsewhere,

z̃20(x) :=
{− 0.65 if x ∈ [0.09, 0.13] × [0.29, 0.31],

− 0.8 elsewhere,

and solve the system (1.5), (1.7) for u ≡ 0 with initial data (ỹ0, z̃10, z̃20) subject to
periodic boundary conditions. Eventually, after a finite time, a stable spot profile is
generated. As soon as the center of mass of the pattern is in the center of the domainΩ ,
we replace the boundary conditions by homogeneous Neumann-type. The violation
of those conditions is negligible and disappears after a few further time-steps. In fact,
we even let enough time pass by to have the center of mass of the spot profile in the
activator state y situated in (3/4 LΩ, 1/2 LΩ) = (0.45, 0.3). This state is taken as
initial state, cf. Fig. 4.

Analogously to Example 1, we define the support function

CQ(x, t) :=
⎧
⎨

⎩

1 if |x − X (t)| ≤ 0.05,
20 |x − X (t)| − 1 if 0.05 < |x − X (t)| < 0.1,
0 if |x − X (t)| ≥ 0.1,

where X (t) is defined as in Example 1. The desired state yQ is defined by

yQ(x, t) :=
{

y0(x + (3/4 LΩ, 1/2 LΩ) − X (t)) if |x − X (t)| ≤ 0.1,
0 elsewhere,
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Fig. 4 Initial states y0 (left), z10 (middle), and z20 (right)

Fig. 5 Example 2: (sub)optimal control ū (upper row) and associated activator state ȳ (bottom row) for
t = 50, 100, 150, 200

and we fix CΩ = yΩ ≡ 0, T = 250.3, λ = 10−6, as well as ua = − 1 and ub = 1.
The problem is solved numerically in the sameway as for Example 1, this time with

2504 time-steps. The computed suboptimal objective value is f (ū, ȳ) = 2.49×10−6.
The associated (sub-)optimal computed control ū is shown in Fig. 5 along with the
state ȳ for various times t .

An interesting property of the spot can be observed in this example. The pattern
is oriented and hence, a natural translation of the spot in positive x1-direction would
occur in the uncontrolled case. However, the desired trajectory is determined by a spot
profile inwhich orientation and natural movement do not comply. They only comply in
t ≈ 3/4 T which causes the computed control to have much lower amplitudes during
these times. In all other times, the control does not only force the spot to change its
position but also to keep its “non-complying” profile unchanged.
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Fig. 6 Example 3: activator component of the initial state ỹ0 (left) and natural development of this com-
ponent in (0, 100) for u ≡ 0 (right). The white dashed line indicates the position of the center of mass of
the pattern. In t ≈ 60, the spot gets trapped by the Neumann-boundary

For control tasks of this type, namely translating a natural developed pattern in a
reaction–diffusion equation without changing the profile, we also refer to [17–19,24].

Example 3 Keeping a spot solution away from the boundary

The spot solution to (1.5), (1.7) can get trapped by the boundary ∂Ω . Figure 6
illustrates the natural propagation of such a pattern for Ω = (0, 0.4)2, T = 100,
σy = σ2 = 1, σ1 = 48, Dy = 1 × 10−4, D1 = 186 × 10−6, D2 = 96 × 10−4,
R(x, t, y) = R(y) = y(y + √

2)(y − √
2) + 6.92, α1 = 1, α2 = 8.5, β1 = β2 =

γ1 = γ2 = 1, and δ1 = δ2 = 0.
Now, our task is to prevent the spot from touching the boundary. For this purpose,

we define c̃y(x) := 0.2−max{|x1 −0.2|, |x2 −0.2|}, g2(·, t) := min{2, 40 c̃y}−0.5,
and consider the pointwise state-constraints

y(x, t) ≤ g2(x, t) ∀(x, t) ∈ Q.

Notice that 0 ≤ c̃y(x) ≤ 0.2, c̃y(x) = 0 holds on ∂Ω , and we have c̃y(x) = 0.2 in
the midpoint of Ω . Therefore, the value g2 = − 0.5 is attained, if y hits the boundary
and g2 = 1.5 is sufficiently large in the midpoint. The distance of the curve g2 = 0
to ∂Ω is 0.0125 = 1/80. The core of the uncontrolled spot is mainly positive and the
principal form of the spots is known to be quite stable. Therefore, it was sufficient to
bound y from above by g2. This keeps the spot away from the boundary. An additional
lower bound would have made the computations a bit more demanding.

To complete the setup of the optimal control problem, we set CΩ = yΩ = CQ =
yQ ≡ 0, λ = 10−6, ua = − 1, and ub = 1.

The numerical solution of this example is based on a finite difference discretization
with h = 1/200, τ = 0.1 as step sizes in space and time and is performed as in the
preceding 2 examples.
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Fig. 7 Computed (sub-)optimal control ū in t = 50 (left) and the activator component ȳ of its associated
state for t = 0, 20, 40, 60, 80, 100 (right)

Again, we applied Model Predictive Control with 4 time-steps and a nonlinear CG
optimization method for solving each subproblem. The state constraints have been
included in an associated penalty term.

It turns out that only a small negative impulse of an amplitude of maximal 0.007 in
t ∈ (49, 55) is sufficient to push the spot away from the boundary. Figure 7 shows the
described behaviour. Let us also emphasize that similar examples with multiple spots
in the domain instead of only one lead to analogue results.

Remark 4.1 By techniques of sparse control, the support of the control functions can
be reduced significantly. For associated examples, we refer the reader to [11] and
the thesis [23], where the analysis of sparse optimal control for reaction–diffusion
equations is developed up to second-order sufficient optimality conditions.

5 Appendix: Proof of Lemma 3.1

Let us consider sequences { fk}∞k=1 ⊂ L2(Q)n , {gk}∞k=1 ⊂ L2(Σ)n , and {hk}∞k=1 ⊂
H1(Ω)n satisfying

‖ fk‖L1(Q)n ≤ ‖∇y g(·, ·, ȳ)μ̄Q‖M(Q)n , fk
∗
⇀ ∇y g(·, ·, ȳ)μ̄Q inM(Q)n, (5.1)

‖gk‖L1(Σ)n ≤ ‖∇y g(·, ·, ȳ)μ̄Σ‖M(Σ)n , gk
∗
⇀ ∇y g(·, ·, ȳ)μ̄Σ inM(Σ)n, (5.2)

{ ‖hk‖L1(Ω)n ≤ ‖∇y g(·, T, ȳ(T ))μ̄Ω‖M(Ω̄×{T })n

hk
∗
⇀ ∇y g(·, T, ȳ(T ))μ̄Ω inM(Ω̄ × {T })n .

(5.3)

We also consider a sequence {wk}∞k=1 ⊂ H1(Ω)n such that
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{
wk → C�

Ω [CΩ ȳ(·, T ) − yΩ ] strongly in L2(Ω)n

and ‖wk‖L2(Ω)n ≤ ‖C�
Ω [CΩ ȳ(·, T ) − yΩ ]‖L2(Ω)n ∀k.

(5.4)

Now we consider the problem

⎧
⎪⎪⎨

⎪⎪⎩

−∂ϕk

∂t
− Δϕk + ∂ R

∂y
(·, ·, ȳ)ϕk + A�ϕk = C�

Q[CQ ȳ − yQ] + fk in Q,

∂νϕk = gk on Σ,

ϕk(·, T ) = wk + hk in Ω̄.

(5.5)

This is a standard linear problem for which existence and uniqueness of a solution
ϕk ∈ W (0, T )n are well known. Moreover, since wk + hk ∈ H1(Ω)n , we also have
that ϕk ∈ H1(Q)n . From Theorem 3.3 we infer that

ϕk ⇀ ϕ̄ in Lr
(
0, T ; W 1,s

0 (Ω)
)n ∀r, s ∈ [1, 2) with 2

r
+ d

s
> 1 + d. (5.6)

Moreover, the following strong convergence holds [7]

lim
k→∞ ‖ϕ̄ − ϕk‖Lq (Q)n = 0 ∀1 ≤ q <

d + 2

d
. (5.7)

Now, we define ϕM,k(x, t) = Proj[−M,+M]n (ϕ̄k(x, t)). Since ϕk ∈ H1(Q)n , then
we also have that ϕM,k ∈ H1(Q)n . From the inequality |ϕM (x, t) − ϕM,k(x, t)| ≤
|ϕ̄(x, t) − ϕk(x, t)| and (5.7) we infer that ϕM,k → ϕM strongly in Lq(Q)n for every
1 ≤ q < d+2

d .
If we prove that {ϕM,k}∞k=1 is bounded in L2(0, T ; H1(Ω))n , then the convergence

ϕM,k → ϕM in Lq(Q)n implies that ϕM ∈ L2(0, T ; H1(Ω))n as well. Taking η =
|CR | + 1, multiplying (5.5) by e2ηtϕM,k and integrating in Q

∫

Q
−e2ηt ∂ϕk

∂t
· ϕM,k dx dt +

∫

Q
e2ηt∇ϕk · ∇ϕM,k dx dt

+
∫

Q
e2ηt

(
∂ R

∂y
(x, t, ȳ)ϕk

)
· ϕM,k dx dt +

∫

Q
e2ηtϕ�

k A(x, t)ϕM,k dx dt

=
∫

Q
e2ηt

(
C�

Q[CQ ȳ − yQ] + fk

)
· ϕM,k dx dt +

∫

Σ

e2ηt gk · ϕM,k dx dt.

(5.8)

Now using that ϕk · ∂tϕM,k = ϕM,k · ∂tϕM,k = 1
2∂t |ϕM,k |2, we obtain

∫

Q
−e2ηt ∂ϕk

∂t
· ϕM,k dx dt = −

∫ T

0

d

dt

∫

Ω
e2ηtϕk · ϕM,k dx dt

+ 2η
∫

Q
e2ηtϕk · ϕM,k dx dt +

∫

Q
e2ηtϕk · ∂ϕM,k

∂t
dx dt
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= −
∫

Ω
e2ηT ϕk(x, T ) · ϕM,k(x, T ) dx

+
∫

Ω
ϕk(x, 0) · ϕM,k(x, 0) dx

+ 2η
∫

Q
e2ηtϕk · ϕM,k dx dt + 1

2

∫

Q
e2ηt∂t |ϕM,k |2 dx dt.

(5.9)

For the last term we have

1

2

∫

Q
e2ηt∂t |ϕM,k |2 dx dt

= 1

2

∫ T

0

d

dt

∫

Ω

e2ηt |ϕM,k |2 dx dt − η

∫ T

0

∫

Ω

e2ηt |ϕM,k |2 dx dt

≥ 1

2

∫

Ω

e2ηT |ϕM,k(x, T )|2 dx − 1

2

∫

Ω

|ϕM,k(x, 0)|2 dx

− η

∫

Q
e2ηtϕk · ϕM,k dx dt. (5.10)

From (5.9) and (5.10) and using that ϕk · ϕM,k ≥ |ϕM,k |2 we deduce
∫

Q
−e2ηt ∂ϕk

∂t
· ϕM,k dx dt ≥ − e2ηT

∫

Ω

(wk + hk) · ϕM,k(x, T ) dx

+ 1

2

∫

Ω

|ϕM,k(x, 0)|2 dx + η

∫

Q
e2ηtϕk · ϕM,k dx dt

+ e2ηT

2

∫

Ω

|ϕM,k(x, T )|2 dx

≥ − e2ηT
∫

Ω

(wk + hk) · ϕM,k(x, T ) dx

+ η

∫

Q
e2ηtϕk · ϕM,k dx dt

+ 1

2

∫

Ω

|ϕM,k(x, T )|2 dx .

Inserting this inequality in (5.8) and taking into account that ∂xi ϕk · ∂xi ϕM,k =
∂xi ϕM,k · ∂xi ϕM,k , we obtain with Young’s inequality, (5.1)–(5.4), and the estimate
for ‖ϕk‖L1(Q)n derived from Theorem 3.3

∫

Q
|∇ϕM,k |2 dx dt +

∫

Q
|ϕM,k |2 dx dt + 1

2

∫

Ω
|ϕM,k(x, T )|2 dx

≤
∫

Q
|∇ϕM,k |2dxdt +

∫

Q
e2ηt (η − |CR |)ϕk · ϕM,k dxdt + 1

2

∫

Ω
|ϕM,k(·, T )|2dx

≤
∫ T

0
−e2ηt ∂ϕM

∂t
· ϕM,k dx dt +

∫

Q
e2ηt∇ϕM · ∇ϕM,k dx dt
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+
∫

Q
e2ηt

(∂ R

∂y
(x, t, ȳ)ϕk

)
· ϕM,k dx dt + e2ηT

∫

Ω
(wk + hk) · ϕM,k(x, T ) dx

=
∫

Q
e2ηt

(
C�

Q [CQ ȳ − yQ ] + fk
)

· ϕM,k dx dt +
∫

Σ
e2ηt gk · ϕM,k dx dt

+ e2ηT
∫

Ω
(wk + hk) · ϕM,k(T ) dx −

∫

Q
e2ηtϕ�

k A(x, t)ϕM,k dx dt

≤ e2ηT
[
‖C�

Q [CQ ȳ − yQ ]‖L2(Q)n ‖ϕM,k‖L2(Q)n + ‖wk‖L2(Ω)n ‖ϕM,k(T )‖L2(Ω)n

+ M
(‖ fk‖L1(Q)n + ‖gk‖L1(Σ)n + ‖hk‖L1(Ω)n + ‖A‖L∞(Q,Rn×n)‖ϕk‖L1(Q)n)

)]

≤ C
[∥∥∥C�

Q [CQ ȳ − yQ ]
∥∥∥
2

L2(Q)
+ ‖C�

Ω [CΩ ȳ(·, T ) − yΩ ]‖2L2(Ω)n

+ M‖∇y g(·, ·, ȳ)‖C(K )n ‖μ̄Q‖M(Q̄)

]
+ 1

2

∫

Q
|ϕM,k |2dxdt + 1

4
‖ϕM,k(T )‖2L2(Ω)n .

Finally, we get from the above inequality with (5.4) that each ϕM,k satisfies (3.15).
Hence, ϕM also does it. ��
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