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Abstract Weconsider general nonlinear programmingproblemswith cardinality con-
straints. By relaxing the binary variables which appear in the natural mixed-integer
programming formulation, we obtain an almost equivalent nonlinear programming
problem, which is thus still difficult to solve. Therefore, we apply a Scholtes-type
regularization method to obtain a sequence of easier to solve problems and investigate
the convergence of the obtained KKT points. We show that such a sequence con-
verges to an S-stationary point, which corresponds to a local minimizer of the original
problem under the assumption of convexity. Additionally, we consider portfolio opti-
mization problems where we minimize a risk measure under a cardinality constraint
on the portfolio. Various risk measures are considered, in particular Value-at-Risk
and Conditional Value-at-Risk under normal distribution of returns and their robust
counterparts under moment conditions. For these investment problems formulated as
nonlinear programming problems with cardinality constraints we perform a numerical
study on a large number of simulated instances taken from the literature and illumi-
nate the computational performance of the Scholtes-type regularization method in
comparison to other considered solution approaches: a mixed-integer solver, a direct
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continuous reformulation solver and the Kanzow–Schwartz regularization method,
which has already been applied to Markowitz portfolio problems.

Keywords Cardinality constraints ·Regularization method · Scholtes regularization ·
Strong stationarity · Sparse portfolio optimization · Robust portfolio optimization

1 Introduction

Sparse solutions of optimization problems, i.e. solutions with a limited number of
nonzero elements, are required in many areas including image and signal processing,
mathematical statistics, machine learning, inverse environmental modeling and oth-
ers. The approach proposed in this paper is motivated mainly by applications of these
problems in the portfolio selection theory where sparse solutions are popular due to
lower fluctuations of the future (out-of-sample) portfolio performance, cf. DeMiguel et
al. [19], and also due to the reductionof the transaction costswhich are growingwith the
increasing number of assets included into the portfolio. A standard way how to ensure
the sparsity of the solutions is imposing a cardinality constraint where the number of
nonzero elements of the solution is bounded. While some studies employ a penalty
on the l1-norm of the asset weight vector or its alternatives, e.g., Fastrich et al. [25],
some consider the explicit cardinality constraints. The portfolio optimization problem
resulting from the latter can be viewed as a mixed-integer problem and it is consid-
ered computationally challenging. The examples of solution techniques include exact
branch-and-boundmethods, e.g., Borchers andMitchell [8], Bertsimas and Shioda [4];
exact branch-and-cut methods, e.g., Bienstock [6]; heuristic algorithms, e.g., Chang
et al. [14]; and relaxation algorithms, e.g., Shaw et al. [55], Murray and Shek [44] and
Burdakov et al. [10,11]. Portfolio optimization problems with sparsity have been one
of the main motivations to study optimization problems with cardinality constraints,
see [3,7,13,21,28,29,52,57,59] and the references therein for some more ideas.

In this paper, we follow the approach from [11,12,28] and reformulate the cardinal-
ity constrained problem into a continuous optimization problem with orthogonality
constraints. The resulting structure is similar to mathematical programs with com-
plementarity constraints (MPCC), see [41,45] and the references therein for some
background. Thus one can try to adapt solution methods originally designed for
MPCCs to the continuous reformulation of cardinality constrained optimization prob-
lems. One popular class of algorithms for MPCCs are the so-called regularization or
relaxation methods, see for example [18,35,36,40,53,56]. In the recent paper [11] the
regularization method from [36] was adapted to cardinality constrained problems. In
this paper we want to focus on the older regularization method from [53], which was
suggested for MPCCs by Scholtes in 2001. Although the theoretical properties of this
method are weaker than those of most of the other regularization methods, a numeri-
cal study on a collection of MPCC test problems in [34] showed that for MPCCs the
Scholtes regularization performs very well in practice. Hence, in the theoretical part
of this paper, we analyze the convergence properties of an adaptation of the Scholtes
regularization method to problems with cardinality constraints. As it turns out, for
cardinality constrained problems this regularization has stronger convergence prop-
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erties than those known for MPCCs. This is somewhat surprising since the method
studied in [11] retains the same properties known fromMPCCs. In fact, for cardinality
constrained problems, it seems that the Scholtes-type regularization has better con-
vergence properties than the one discussed in [11]. More details are found in Sect. 3.
Furthermore we show that the regularized problems possess better properties than the
original problem in terms of constraint qualifications.

In portfolio optimization, two basic types of decision-making frameworks are
adopted: the utility maximization and the return-risk trade-off analysis, see, e.g.,
Levy [39] for properties and relations between these two approaches. In the latter,
it is important to define a risk that the concerned system has. In optimization problems
governed by uncertain inputs such as rates of return, typically represented as random
variables, the risk is explicitly quantified by a risk measure. In return-risk analysis,
widely used both in theory and practice, an investor faces a trade-off between expected
return and associated risk. In his pioneering work in 1952, Markowitz [42] adopted
variance as a measure of risk in his mean-variance analysis. Many other alternatives
were introduced since then.Nowadays, Value-at-Risk (VaR),whichmeasures themax-
imum loss that can be expected during a specific time horizon with a probability β (β
close to 1), is widely used in the banking and insurance industry as a downside risk
measure. Despite its popularity, VaR lacks some important mathematical properties.
Artzner et al. [2] presented an axiomatic definition of risk measures and coined a
coherent risk measure which has certain reasonable properties. Conditional Value-at-
Risk (CVaR), the mean value of losses that exceed the value of VaR, exhibits favorable
mathematical properties such as coherence implying convexity. Rockafellar and Urya-
sev [50,51] proposed to minimize CVaR for optimizing a portfolio so as to reduce the
risk of high losses without prior computation of the corresponding VaR while com-
puting VaR as a by-product. Their CVaR minimization formulation results usually
in convex or even linear programs which proved attractive for financial optimization
and risk management in practice due to their tractability for larger real life instances.
For each of these risk measures, one can formulate corresponding mean-risk portfolio
optimization problems.

Regardless of the risk measure used, these models are strongly dependent on the
underlying distribution and its parameters, which are typically unknown and have to
be estimated, cf. Fabozzi et al. [24]. Investors usually face the so-called estimation risk
as they rely on a limited amount of data to estimate the input parameters. Portfolios
constructed using these estimators perform very poorly in terms of their out-of-sample
mean and variance as the resulting portfolio weights fluctuate substantially over time,
cf. e.g., Michaud [43] and Chopra and Ziemba [16]. As some reformulations of mean-
risk portfolio problems depend on the assumption of normality, poor performance
can also be caused by deviations of the empirical distribution of returns from nor-
mality. One can thus also consider the distribution ambiguity in the sense that no
knowledge of the return distribution for risky assets is assumed while the mean and
variance/covariance are assumed to be known. For these reasons, we examine portfolio
policies based on robust estimators. Robust portfolio selection deals with eliminating
the impacts of estimation risk and/or distribution ambiguity. Goldfarb and Iyengar [32]
studied the robust portfolio in the mean-variance framework. Instead of the precise
information on the mean and the covariance matrix of asset returns, they introduced
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special types of uncertainty, such as box uncertainty and ellipsoidal uncertainty. They
also considered the robust VaR portfolio selection problem by assuming a normal
distribution. Chen et al. [15] minimized the worst-case CVaR risk measure over all
distributions with fixed first and second moment information. The reader is referred
to El Ghaoui et al. [23] and Popescu [49] for other studies on portfolio optimization
with distributional robustness. Paç and Pınar [46] extend Chen et al. [15] to the case
where a risk-free asset is also included and distributional robustness is complemented
with ellipsoidal mean return ambiguity. Other choices of the ambiguity set for VaR
and CVaR are considered e.g., by Tütüncü and Koening [58], Pflug andWozabal [48],
Zhu and Fukushima [60], DeMiguel and Nogales [20] and Delage and Ye [17]. For
survey of recent approaches to construct robust portfolios, we refer to Kim et al. [38].
Despite the vast literature on robust portfolio optimization and many works on sparse
portfolio optimization, there are only few works that concern both sparse and robust
portfolios, cf. e.g., Bertsimas and Takeda [5].

As an application of the general problem class, we consider the cardinality con-
strained minimization of VaR and CVaR under normality of asset returns and their
robust counterparts under distribution ambiguity. We assume that both first and sec-
ond order moments of the random returns are known. The resulting problem can then
be solved using the following four approaches: solve a mixed-integer reformulation
using GUROBI, solve the continuous reformulation directly using SNOPT, apply the
Scholtes regularization and the regularization from Burdakov et al. [11]. We perform
a numerical experiment based on randomly generated test examples from the litera-
ture to compare these four approaches. A similar numerical study has been reported
in Burdakov et al. [11] for a cardinality constrained (and non-robust) mean-variance
model, where the objective function was convex quadratic and the standard constraints
linear. Here, we investigate the investment problemswithVaR andCVaR as introduced
above, which leads to a more complicated convex objective function. In order to be
able to solve the resulting problem with GUROBI, the objective function has to be
reformulated using a second-order cone constraint.

The paper is organized as follows: we start Sect. 2 with a brief background on
the continuous reformulation of cardinality constraints and the related optimality con-
ditions and constraint qualifications. Section 3 is then devoted to the adaptation of
the Scholtes regularization method and the analysis of its properties. In Sect. 4, we
introduce the risk measures and define investment problems with a condition on port-
folio sparsity. Section 5 finally provides an extensive numerical comparison of all four
aforementioned solution approaches.

A fewwords on notation: By e ∈ R
n wedenote the vectorwith all components equal

to one. For two vectors x, y ∈ R
n the vector x ◦ y ∈ R

n denotes the componentwise
(Hadamard) product of x and y. For a vector x ∈ R

n we denote the support and its
cardinality by

supp(x) := {i = 1, . . . , n | xi �= 0} and ‖x‖0 := | supp(x)|.
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2 Cardinality constrained problems and a continuous reformulation

In this section wewant to provide the necessary background on cardinality constrained
optimization problems and the continuous reformulation used in [11,12,28]. Since the
continuous reformulation has similarities toMPCCs,we also have to introduce suitable
optimality conditions and constraint qualifications.

Let us consider a general cardinality constrained optimization problem

min
x

f (x) s.t. g(x) ≤ 0, h(x) = 0, ‖x‖0 ≤ κ, (1)

where f : R
n → R, g : R

n → R
m , and h : R

n → R
p are assumed to be continuously

differentiable. To simplify notation, we use the index sets

Ig(x) := {i | gi (x) = 0} and I0(x) := {i | xi = 0}

in the following.
Beforewe introduce the continuous reformulation onwhich our analysis is based, let

us mention an alternative mixed integer reformulation, which was used for example
in [6] and which we will use in our numerical comparison to solve the portfolio
optimization problems with GUROBI. In case lower and upper bounds l ≤ x ≤ u
on the variable x are known, problem (1) can be reformulated using binary decision
variables into

min
x,z

f (x)

s.t. g(x) ≤ 0, h(x) = 0,

z ∈ {0, 1}n,

l ◦ z ≤ x ≤ u ◦ z,

e�z ≤ κ.

(2)

If xi is nonzero, then the corresponding zi must be equal to one and by the reformu-
lated cardinality constraint e�z ≤ κ this can happen at most κ times. However, as
even for simple instances of cardinality constrained problems Bienstock [6] showed
the problem to be NP-complete, solving (2) even using specialized global solution
techniques can be computationally very time demanding.

Thus, we instead consider the following continuous reformulation of (1) introduced
in Burdakov et al. [11]:

min
x,y

f (x)

s.t. g(x) ≤ 0, h(x) = 0,

0 ≤ y ≤ e,

x ◦ y = 0,

e�y ≥ n − κ.

(3)
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Here, in contrast to the previous reformulation, whenever xi is nonzero, the corre-
sponding yi has to be equal to zero. Due to the reformulated cardinality constraint
e�y ≥ n − κ this can again occur at most κ times. Note that this problem is closely
related to a mathematical program with complementarity constraints (MPCC) due to
the “half-complementarity”constraints y ≥ 0, x ◦ y = 0. In case the additional con-
straint x ≥ 0 is present as in the examples considered above, problem (3) in fact is an
MPCC. Consequently (3) is a nonconvex problem, even when the original cardinal-
ity constrained problem (except for the cardinality constraint of course) was convex.
Thus, one can in general not expect to obtain global minima. But if one is for example
interested in obtaining local solutions or good starting points for a global method, this
approach can be useful.

ForMPCCs in addition to theKKTconditions (or strong stationarity) severalweaker
optimality conditions such as Mordukhovich- and Clarke-stationarity are known, see
for example [12] for precise definitions. In contrast to this it was shown in [11,12] that
M-stationarity and all weaker concepts coincide for the continuous reformulation (3)
and that strong and M-stationarity can be reduced to the following conditions.

Definition 1 Let (x∗, y∗) be feasible for (3). Then (x∗, y∗) is called

(a) S-stationary (S = strong) if there exist multipliers λ ∈ R
m, μ ∈ R

p, and γ ∈ R
n

such that the following conditions hold:

∇ f (x∗) +
m∑

i=1

λi∇gi (x∗) +
p∑

i=1

μi∇hi (x∗) +
n∑

i=1

γi ei = 0,

λi ≥ 0, λi gi (x∗) = 0 ∀ i = 1, . . . , m,

γi = 0 ∀ i such that y∗
i = 0.

(b) M-stationary (M =Mordukhovich) if there exist multipliers λ ∈ R
m, μ ∈ R

p, and
γ ∈ R

n such that the following conditions hold:

∇ f (x∗) +
m∑

i=1

λi∇gi (x∗) +
p∑

i=1

μi∇hi (x∗) +
n∑

i=1

γi ei = 0,

λi ≥ 0, λi gi (x∗) = 0 ∀ i = 1, . . . , m,

γi = 0 ∀ i such that x∗
i �= 0.

Note that S-stationarity is equivalent to the KKT conditions of (3) and still depends
on the artificial variable y. In contrast, the M-stationarity condition is slightly weaker
but independent from the artificial variable y. Following the idea from [11,12] one can
also define constraint qualifications for (3) depending on the original variable x only.
This leads for example to the following version ofMangasarian–Fromowitz constraint
qualification:

Definition 2 Let (x∗, y∗) be feasible for (3). Then (x∗, y∗) satisfies the cardinal-
ity constrained Mangasarian–Fromowitz constraint qualification (CC-MFCQ) if the
gradients
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∇gi (x∗) (i ∈ Ig(x∗)) and ∇hi (x∗) (i = 1, . . . , p), ei (i ∈ I0(x∗))

are positively linearly independent, i.e. if one cannot find multipliers λ ≥ 0 and μ, γ

such that (λ, μ, γ ) �= 0 and

∑

i∈Ig(x∗)
λi∇gi (x∗) +

p∑

i=1

μi∇hi (x∗) +
∑

i∈I0(x∗)
γi ei = 0.

It was shown in [12] that every local minimum of (3), where CC-MFCQ or a
weaker CC constraint qualification holds, is an S-stationary point. This result differs
from what is known for general MPCCs, where S-stationarity of local minima can
only be guaranteed under an MPCC analogue of the linear independence constraint
qualification. Under MPCC-MFCQ and all weaker MPCC constraint qualifications,
local minima of an MPCC can only be guaranteed to be M-stationary.

In this paper we are interested in portfolio optimization as an application, see
Sect. 4 for details. The resulting optimization problems turn out to be convex, except
for the cardinality constraint of course. For this special class of cardinality constrained
optimization problems, it is known that S-stationarity of a point (x∗, y∗) implies that
it is a local minimum, see [12]:

Theorem 1 Consider (3), where f, gi : R
n → R are convex and h : R

n → R
p is

linear. Then every S-stationary point (x∗, y∗) is a local minimum of (3).

3 Properties of a Scholtes-type regularization method

Currently, there exist many different solution approaches for MPCCs, see [41,45] for
an introduction. One popular class of algorithms for MPCCs are so-called regular-
ization methods, see [18,35,36,40,53,56], where one replaces the original, difficult
problem by a sequence of simpler nonlinear programs (NLP), whose feasible set
shrinks to the original one in the limit. In this section, we briefly introduce the regular-
ization method by Burdakov et al. [11] for cardinality constrained problems. Then we
adapt the regularizationmethod fromScholtes [53] to cardinality constrained problems
and analyze its convergence properties as well as the regularized subproblems.

In [11] the idea from Kanzow and Schwartz [36] was adapted to cardinality con-
strained problems: The corresponding regularized problem was obtained by replacing
the constraints y ≥ 0, x ◦ y = 0 in (3) by the inequalities

Φ+(x, y; t) ≤ 0, Φ−(x, y; t) ≤ 0, y ≥ 0, (4)

where Φ+
i (x, y; t) = ϕ(xi , yi ; t) and Φ−

i (x, y; t) = ϕ(− xi , yi ; t) with

ϕ(a, b; t) =
{

(a − t)(b − t) if a + b ≥ 2t,

− 1
2

[
(a − t)2 + (b − t)2

]
if a + b < 2t.
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0
xi
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0 t
xi

1
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1

yi

(a) (b) (c)

Fig. 1 Illustration of the constraints 0 ≤ yi ≤ 1, xi yi = 0 and the two regularizations. a Complementarity
constraints. b Kanzow–Schwartz regularization. c Scholtes regularization

It is not difficult to see that for t ≥ 0 the inequality ϕ(a, b; t) ≤ 0 is equivalent to
min{a, b} ≤ t . In the case one knows x ≥ 0, as in the considered application in
portfolio optimization, one can of course eliminate the constraint Φ−(x, y; t) ≤ 0.

In this paper,wewant to adapt the regularizationmethod introducedbyScholtes [53]
for MPCCs to (3). Although this regularization technique is one of the oldest and the
theoretical results known for MPCCs are weaker than those known for example for
the regularization from [36], it is numerically still very successful for MPCCs, see
[34].

For a regularization parameter t > 0 we consider the regularized problem

NLP(t) : min
x,y

f (x)

s.t. g(x) ≤ 0, h(x) = 0,

0 ≤ y ≤ e,

− te ≤ x ◦ y ≤ te,

e�y ≥ n − κ.

(5)

Again it is easy to see that NLP(0) corresponds to the original problem (3) and that one
can eliminate the constraint x ◦ y ≥ − te in the case one knows x ≥ 0. A comparison
of the feasible sets for a pair (xi , yi ) for both regularization techniques is given in
Fig. 1.

Now consider a sequence of regularized problems NLP(tk) for tk ↓ 0 and assume
that we can calculate a sequence of corresponding KKT points (xk, yk), which is
converging to some limit (x∗, y∗). Then one easily sees that the limit (x∗, y∗) is
feasible for the original problem (3). However, the question remains whether (x∗, y∗)
is some kind of stationary point of (3), too. In the classical MPCC case, one can only
prove that the limit of such a sequence is a C-stationary point and there exist examples
illustrating that this result is sharp. Since C-stationary points and M-stationary points
coincide for optimization problems with cardinality constraints, cf. [12], one would
assume that we obtain M-stationarity of the limit here. However, it turns out that the
limit is in fact even S-stationary.

This result is even more surprising since it was shown in [11] that the adapta-
tion of the Kanzow–Schwartz regularization retains its convergence properties known
from MPCCs, i.e. converges to M-stationary points for both MPCCs and cardinal-
ity constrained problems. But to be precise, the results for the Kanzow–Schwartz

123



Convergence of a Scholtes-type regularization method for… 511

regularization were shown under a constant positive linear dependence constraint
qualification, which is weaker than the MFCQ condition used for the Scholtes regu-
larization here.

Theorem 2 Let (tk)k be a sequence with tk > 0 for all k ∈ N and tk ↓ 0. Let (xk, yk)k

be a sequence of KKT points of NLP(tk) converging to (x∗, y∗). If CC-MFCQ holds
at (x∗, y∗), then (x∗, y∗) is an S-stationary point of (3).

Proof Note that (x∗, y∗) is a feasible point of (3). Since (xk, yk)k is a sequence of
KKT points of NLP(tk), there are multipliers (λk, μk, γ̃ k, δk, νk) for all k ∈ N such
that

∇ f (xk) +
m∑

i=1

λk
i ∇gi (xk) +

p∑

i=1

μk
i ∇hi (xk) +

n∑

i=1

γ̃ k
i yk

i ei = 0, (6a)

− δke +
n∑

i=1

νk
i ei +

n∑

i=1

γ̃ k
i xk

i ei = 0, (6b)

λk
i

{
≥ 0, if gi (xk) = 0,

= 0, otherwise,
∀ i = 1, . . . , m, (6c)

δk

{
≥ 0, if e�yk = n − κ,

= 0, otherwise,
(6d)

γ̃ k
i

⎧
⎪⎨

⎪⎩

≥ 0, if xk
i · yk

i = tk,

≤ 0, if xk
i · yk

i = − tk,

= 0, otherwise,

∀ i = 1, . . . , n, (6e)

νk
i

⎧
⎪⎨

⎪⎩

≤ 0, if yk
i = 0,

≥ 0, if yk
i = 1,

= 0, otherwise,

∀ i = 1, . . . , n. (6f)

Let us first have a closer look at the KKT conditions (6). A componentwise inspection
of Eq. (6b) yields

δk = νk
i + γ̃ k

i xk
i

for all i = 1, . . . , n. The sign restrictions on γ̃ k imply γ̃ k
i · xk

i ≥ 0. Assuming there is
an index i ∈ {1, . . . , n} with νk

i < 0, it follows that yk
i = 0 and then using (6e) also

γ̃ k
i = 0. Thus the above equation yields 0 > νk

i = δk ≥ 0 which is a contradiction.
Consequently we have

νk
i ≥ 0 ∀ i = 1, . . . , n. (7)

In case δk > 0 we have

0 < δk = νk
i + γ̃ k

i xk
i (8)
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for all i = 1, . . . , n. Then νk
i > 0 or γ̃ k

i xk
i > 0 has to hold for all i = 1, . . . , n, which

is true if and only if

yk
i = 1 or yk

i = tk

|xk
i | . (9)

For all k ∈ N define

γ k
i := γ̃ k

i yk
i ∀ i = 1, . . . , n.

Boundedness of the multipliers (λk, μk, γ k)k We show this by contradiction. Thus,
assume that limk→∞ ‖(λk, μk, γ k)‖ = ∞. Then the sequence

(
(λk, μk, γ k)

‖(λk, μk, γ k)‖
)

k∈N

is bounded and without loss of generality let it converge to some limit

0 �= (λ̄, μ̄, γ̄ ) := lim
k→∞

(λk, μk, γ k)

‖(λk, μk, γ k)‖ .

Clearly, λ̄ ≥ 0. Further, for all i such that gi (x∗) < 0 we have gi (xk) < 0 and thus
also λk

i = 0 for all k sufficiently large. That is, we have supp(λ̄) ⊆ Ig(x∗).
Next, to proceed with obtaining a contradiction, let us show that supp(γ̄ ) ⊆ I0(x∗).

Assume, to the contrary, that there is an index j ∈ {1, . . . , n}, such that x∗
j �= 0 and

γ̄ j �= 0. Then we have y∗
j = 0 and consequently

xk
j �= 0, yk

j < 1

for sufficiently large k. Since γ̄ k
j �= 0 we have γ k

j �= 0 and hence γ̃ k
j �= 0 for all k

sufficiently large. This implies δk = νk
j + γ̃ k

j xk
j > 0 and thus δk = νk

i + γ̃ k
i xk

i > 0

for all i = 1, . . . , n. Due to the KKT conditions, δk > 0 is only possible if

e�yk = n − κ (10)

for sufficiently large k. Furthermore, for sufficiently large k, γ̃ k
j �= 0 implies

0 < yk
j = tk

|xk
j |

and νk
j = 0. (11)

As yk
j → y∗

j = 0 and yk
j > 0 hold for k sufficiently large, the sequence (yk

j )k is
strictlymonotonically decreasing (at least on a suitable subsequence).Moreover, since
e�yk = n − κ for all k sufficiently large (and yk is a finite-dimensional vector), strict
monotone decrease of (yk

j )k implies the existence of an index l such that the sequence
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(yk
l )k is strictly monotonically increasing (possibly on a suitable subsequence) and

compensates the decrease of (yk
j )k in such a way that e�yk = n − κ is preserved.

Thus, we have

y∗
l > 0, x∗

l = 0 and yk
l < 1, νk

l = 0 for sufficiently large k.

Invoking (9) and yk
l < 1 for sufficiently large k, we have

yk
l = tk

|xk
l | . (12)

Since νk
j = νk

l = 0, (8), (11) and (12) implies

|γ k
j |

|γ k
l | = |γ̃ k

j · yk
j |

|γ̃ k
l · yk

l | =

∣∣∣∣
δk

xk
j
· tk

|xk
j |

∣∣∣∣
∣∣∣∣
δk

xk
l

· tk

|xk
l |

∣∣∣∣
=

(
xk

l

xk
j

)2

−−−→
k→∞

(
x∗

l

x∗
j

)2

= 0.

This leads to the contradiction

0 �= |γ̄ j | = lim
k→∞

|γ k
j |

‖(λk, μk, γ k)‖ ≤ lim
k→∞

|γ k
j |

|γ k
l | = 0,

which concludes the proof of supp(γ̄ ) ⊆ I0(x∗).
Now, dividing (6a) by ‖(λk, μk, γ k)‖ and taking the limit k → ∞ yields

∑

i∈Ig(x∗)
λ̄i∇gi (x∗) +

p∑

i=1

μ̄i∇hi (x∗) +
∑

i∈I0(x∗)
γ̄i ei = 0.

However, this, together with λ̄ ≥ 0, supp(λ̄) ⊆ Ig(x∗), supp(γ̄ ) ⊆ I0(x∗), and
(λ̄, μ̄, γ̄ ) �= 0, is in contradiction with the assumption of CC-MFCQ at (x∗, y∗). Thus,
the sequence of multipliers (λk, μk, γ k)k is bounded and without loss of generality
we can assume that the whole sequence (λk, μk, γ k)k converges to some limit

(λ∗, μ∗, γ ∗) := lim
k→∞(λk, μk, γ k).

Taking the limit in (6a) as k → ∞, we obtain

∇ f (x∗) +
∑

i∈Ig(x∗)
λ∗

i ∇gi (x∗) +
p∑

i=1

μ∗
i ∇hi (x∗) +

n∑

i=1

γ ∗
i ei = 0.

S-Stationarity of x∗ together with the multipliers λ∗, μ∗, γ ∗ Using analogous argu-
ments as previously, we have λ∗ ≥ 0 and supp(λ∗) ⊆ Ig(x∗).
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To complete the proof, it remains to show that y∗
i = 0 implies γ ∗

i = 0. Again, to
the contrary, assume that there exists an index j such that y∗

j = 0 and γ ∗
j �= 0. This

implies γ k
j = γ̃ k

j yk
j �= 0 for all k sufficiently large and sequence (yk

j )n with,

0 < yk
j = tk

|xk
j |

,

is strictly monotonically decreasing to zero (at least on a suitable subsequence). Thus,
we have xk

j �= 0 and νk
j = 0 for all k sufficiently large which together with γ k

j �= 0

implies δk = γ̃ k
j xk

j > 0 and e�yk = n − κ for all k sufficiently large. Analogously to

the previous part of the proof, there has to exist an index l such that (yk
l )k is strictly

increasing and

0 < yk
l = tk

|xk
l | .

This implies yk
l → y∗

l > 0 and νk
l = 0 and thus δk = γ k

l xk
l and xk

l �= 0 for all k
sufficiently large. Finally, this together with γ k

i = γ̃ k
i yk

i for all i yields

|γ ∗
j |

|γ ∗
l | = lim

k→∞
|γ k

j |
|γ k

l | = lim
k→∞

|γ̃ k
j yk

j |
|γ̃ k

l yk
l | = lim

k→∞

∣∣∣∣
δk

|xk
j |

tk yk
j

∣∣∣∣
∣∣∣∣

δk

|xk
l | t

k yk
l

∣∣∣∣
= lim

k→∞

(
yk

j

yk
l

)2

=
(

y∗
j

y∗
l

)2

= 0,

which is a contradiction to γ j �= 0. This completes the proof. ��
In theMPCCcase it was shown that limit points of the Scholtes regularization areC-

stationary not only if one computes exact KKT points of the regularized problems but
also if one only computes approximate KKT points, see [37]. An interesting question
is of course if the Scholtes-type regularization for cardinality constrained problems
inherits this favorable property. Unfortunately the above line of argument can not be
transferred directly to a sequence of approximate KKT-points. The proof relies heavily
on the complementarity between the inequality constraints and their corresponding
multipliers to show that supp(γ ) ⊆ I0(x∗), see Eqs. (9) and (12). Thus, at the moment,
the convergence properties of the Scholtes-type regularization in the inexact case
remain an open question.

The previous proof differs slightly from the one typically used in the MPCC case,
see e.g., [34], since CC-MFCQ does not demand positive linear independence of the
gradients of the constraintswith respect to y. This is the reasonwhyweonly normalized
the multipliers λk, μk, γ k corresponding to constraints on x in the previous proof.
The drawback of this approach is that the verification of the correct support of the
limit of γ k is then more lengthy. The central idea to exploit the fact e�yk = n − κ

was borrowed from [1], where a similar structure was used to reformulate chance
constrained optimization problems.
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Instead of normalizing only the multipliers λk, μk, γ k one can also normalize all
multipliers λk, μk, γ k, νk, δk . This simplifies the verification of the correct support of
γ k but makes it harder to obtain a contradiction to CC-MFCQ. We follow this route
in the proof of the next result, where we show that the regularized problems NLP(t)
indeed have better properties than the original problem (3).

Theorem 3 Let (x∗, y∗) be feasible for (3) and CC-MFCQ hold there. Then there is
a neighborhood U of (x∗, y∗) such that for all t > 0 the standard MFCQ for NLP(t)
holds at every (x, y) ∈ U feasible for NLP(t).

Proof Let us assume that the claim is false. Then there exist sequences (xk, yk)k →
(x∗, y∗) and (tk)k > 0 such that (xk, yk) is feasible for NLP(tk) butMFCQ is violated.
Consequently, we can find multipliers (λk, μk, γ̃ k, δk, νk)k such that for all k ∈ N

(λk, μk, γ̃ k, δk, νk) �= 0 ∀ k ∈ N, (13)

along with condition

m∑

i=1

λk
i ∇gi (xk) +

p∑

i=1

μk
i ∇hi (xk) +

n∑

i=1

γ̃ k
i yk

i ei = 0, (14)

and (6b)–(6f) are satisfied. This means the relevant gradients are positively linearly
dependent at (xk, yk), hence MFCQ is violated. Analogously to the proof of Theorem
3.1, we can show that νk

i < 0 cannot occur, thus we have to consider νk
i ≥ 0 only.

Now, let us define γ k
i := γ̃ k

i yk
i for all i = 1, . . . , n and all k ∈ N. Because for all

i = 1, . . . , n and all k ∈ N we have γ̃ k
i �= 0 only if yk

i �= 0, we immediately obtain

supp(γ k) = supp(γ̃ k) ∀ k ∈ N.

Using (6e) we have

γ̃ k
i xk

i =
⎧
⎨

⎩
γ k

i · xk
i

yk
i
, if |xk

i · yk
i | = tk,

0, otherwise.

Therefore, we can write Eqs. (14) and (6b) for all k ∈ N as

m∑

i=1

λk
i ∇gi (xk) +

p∑

i=1

μk
i ∇hi (xk) +

n∑

i=1

γ k
i ei = 0, (15)

δk =
⎧
⎨

⎩
νk

i + γ k
i

xk
i

yk
i

if |xk
i · yk

i | = tk,

νk
i otherwise.

(16)
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Due to the sign restrictions in (6e) we know γ̃ k
i xk

i ≥ 0 for all i = 1, . . . , n and all
k ∈ N. Hence we also have

γ k
i xk

i = γ̃ k
i xk

i yk
i ≥ 0 ∀ i = 1, . . . , n, ∀ k ∈ N. (17)

Weproceed to deduce a contradictionwithCC-MFCQat (x∗, y∗). Since by assump-
tion (λk, μk, γ̃ k, δk, νk) �= 0 for all k ∈ N, we can choose the multipliers without loss
of generality such that ‖(λk, μk, γ k, δk, νk)‖ = 1 for all k ∈ N and that the whole
sequence converges to some limit

0 �= (λ, μ, γ, δ, ν) := lim
k→∞(λk, μk, γ k, δk, νk).

We have λ ≥ 0. Since for all i such that gi (x∗) < 0 we know gi (xk) < 0 and thus
λk

i = 0 for all k sufficiently large, we have

supp(λ) ⊆ Ig(x∗). (18)

We will prove supp(γ ) ⊆ I0(x∗) by contradiction. To this end we assume that there
is an index j ∈ {1, . . . , n} such that γ j �= 0 and x∗

j �= 0. This implies |xk
i · yk

i | = tk
for sufficiently large k and y∗

j = 0. Therefore we know xk
j �= 0 and yk

j > 0 for k

sufficiently large and yk
j → 0 for k → ∞. Thus we have yk

j < 1 and hence νk
j = 0

for sufficiently large k. Keeping in mind (17) it follows from the j-th row of (16) that

δk = νk
j + γ k

j

xk
j

yk
j

= γ k
j

xk
j

yk
j

−→ ∞ (k → ∞).

Because (λk, μk, γ k, δk, νk)k is convergent, this is a contradiction. Consequently we
have

supp(γ ) ⊆ I0(x∗). (19)

It remains to show that (λ, μ, γ ) �= 0. We will show this also by contradiction.
Assume that (λ, μ, γ ) = 0. Since (λ, μ, γ, δ, ν) �= 0 this implies (δ, ν) �= 0. Due
to νk ≥ 0 and (17) combined with (16) we know δk ≥ maxi=1,...,n νk

i and thus
(δ, ν) �= 0 implies δ > 0 and δk > 0 for all k sufficiently large. This is only possible,
if eT yk = n − κ for all k large. For all i with y∗

i > 0 we know x∗
i = 0 and thus γ = 0

implies

0 < δ∗ = lim
k→∞ νk

i + γ k
i

xk
i

yk
i

= νi .

Hence, for all i such that y∗
i > 0 we know yk

i = 1 for all k sufficiently large and
therefore y∗

i = 1. Due to eT yk = n − κ < n for all k large there exists at least one
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index j such that yk
j = 0 for all k large and consequently νk

i = 0 and |xk
i · yk

i | �= tk .

This, however, implies δk = 0, a contradiction.
Thus the assumption (λ, μ, γ ) = 0 is false and we have

(λ, μ, γ ) �= 0.

Using (18) and (19), it follows from (15) for k → ∞ that

∑

i∈Ig(x∗)
λi∇gi (x∗) +

p∑

i=1

μi∇hi (x∗) +
∑

i∈I0(x∗)
γi ei = 0. (20)

Since (λ, μ, γ ) �= 0 and λ ≥ 0, this is a contradiction to CC-MFCQ. ��
Regarding the existence of a solution of NLP(t), as well as the existence of limit

points of a sequence of KKT points of NLP(tk), as tk ↓ 0, we like to refer the reader
to [9]. In that article second order optimality conditions for (3) are established and
used to address these points.

4 Robust risk measures for portfolio optimization under distribution
ambiguity

In this sectionwewant to provide an application for the abstract cardinality constrained
optimization problems discussed in the previous sections. To do so, we consider the
following portfolio optimization problem:

min
x

r(x)

s.t. e�x = 1,

0 ≤ x ≤ u,

‖x‖0 ≤ κ.

(21)

Here, we consider a market with n risky financial assets. The disposable wealth is to
be allocated into a portfolio x ∈ R

n , such that each component xi denotes the fraction
of disposable wealth to be invested into the i th asset for i = 1, . . . , n. We do not
allow short-sales, i.e. we assume x ≥ 0. For numerical purposes, we assume that there
exist upper bounds u ≥ 0 on the possible investment. If no upper bounds are present,
one can use u = e due to the budget constraint e�x = 1. The latter states that we
demand that the whole disposable budget is invested. Additionally, we introduce the
cardinality constraint ‖x‖0 ≤ κ , i.e. one may invest in at most κ assets. Naturally, we
assume that κ < n.

For a vector x of allocations to n risky assets and a random vector ξ of return rates
for these assets, we consider the following loss function

�(x, ξ) = − x�ξ.
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Assume that ξ follows a probability distribution π from the ambiguity (uncertainty)
set D = {π | Eπ [ξ ] = μ, Covπ (ξ) =  � 0} of distributions with expected value
μ and positive definite covariance matrix . Note that Markowitz [42] considered the
variance σ 2(x) = x�x as a risk measure associated with a portfolio x .

In the 90s, the investment bank J.P. Morgan reinvented the quantile risk measure
(quantile premium principle) used by actuaries for investment banking, giving rise to
Value-at-Risk (VaR). Associated with a confidence level β and portfolio x , VaR is
defined as

VaRβ(x) = min{z | Pπ (�(x, ξ) ≤ z) ≥ β}.

Artzner et al. [2] defined coherent risk measure as a measure satisfying monotonic-
ity, translation invariance, subadditivity and positive homogeneity. It is known, that
VaR is not a coherent risk measure as it fails subadditivity. On the other hand, the
Conditional Value-at-Risk (CVaR), as introduced by Rockafellar and Uryasev [50],
turns out to be a convex and coherent risk measure. CVaR at level β is defined as the
expected value of loss that exceeds VaRβ(x). Alternatively, Rockafellar and Urya-
sev [50] showed that calculation of CVaR and VaR can be achieved simultaneously
by minimizing the following auxiliary function with respect to α ∈ R

Fβ(x, α) = α + 1

1 − β
E[(�(x, ξ) − α)+],

where (v)+ = max{0, v}. Thus,

CVaRβ(x) = min
α

Fβ(x, α)

and VaRβ(x) is the left endpoint of the interval argminα Fβ(x, α).
Let us assume normality of returns ξ . Denote by φ and Φ density and cumula-

tive distribution function of the standard normal distribution, respectively. Following
Fabozzi et al. [24], originating in Rockafellar and Uryasev [50], the Value-at-Risk can
be expressed as

VaRβ(x) = ζβ

√
x�Qx − μ�x, (22)

where ζβ = −Φ−1(1 − β), and assuming β > 0.5, the Conditional Value-at-Risk
reduces to

CVaRβ(x) = ηβ

√
x�Qx − μ�x, (23)

where ηβ = − ∫ Φ−1(1−β)
− ∞ tφ(t)dt

1−β
.

Further, we consider the worst case (robust) VaR for a fixed x with respect to the
ambiguity set D defined as

RVaRβ(x) = sup
π∈D

VaRβ(x).
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Analogously, we consider the worst case (robust) CVaR for a fixed x with respect to
set D defined as

RCVaRβ(x) = sup
π∈D

CVaRβ(x) = sup
π∈D

min
α

Fβ(x, α).

Based on Chen et al. [15, proof of Theorem 2.9], further generalized in Paç and
Pınar [46] using Shapiro [54, Theorem 2.4], we obtain the following representations
of VaR and CVaR under distribution ambiguity,

RVaRβ(x) = 2β − 1

2
√

β(1 − β)

√
x�Qx − μ�x (24)

and

RCVaRβ(x) =
√

β

1 − β

√
x�Qx − μ�x . (25)

In the following section we consider cardinality constrained portfolio selection
models for each of the risk measures (22)–(25) replacing the general risk function
r(x) in (21).

The approach introduced in this paper canbe also applied to the investment problems
with CVaR under a finite discrete distribution of the random returns. Consider S, for
example S = 1000, equiprobable scenarios ξ s of randomrates of return ξ ,which canbe
obtained, e.g., by a simulation leading to the so called sample (average) approximation
technique. Let

X = {x : μ�x ≥ ρ, e�x = 1, 0 ≤ x ≤ u, ‖x‖0 ≤ κ}

denote the set of feasible portfolioweights including the sparsity andminimal expected
return. Then, the CVaR problem can be formulated as

min
x,α,u

α + 1

(1 − β)S

S∑

s=1

us

s.t. us ≥ −x�ξ s − α, s = 1, . . . , S,

us ≥ 0, s = 1, . . . , S,

x ∈ X,

(26)

where the nonnegative variables us are used instead of the positive parts, see Rock-
afellar and Uryasev [50,51] for details. The only nonlinear part of the problem is
represented by the sparsity constraint which can be replaced by the regularizations.
However, our numerical experiment showed that there are some serious numerical
problems in solving problems larger than 50 assets and 1000 scenarios. In particular,
the applied solver SNOPT (see [30,31]) had problems with the precision when the
regularization parameter t decreased. Therefore we have decided not to include the
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Table 1 Quantiles and
generalized quantiles as defined
in (22)–(25)

cβ�β 0.9 0.95 0.99

VaR ζβ 1.2816 1.6449 2.3263

CVaR ηβ 1.7550 2.0627 2.6652

RVaR 2β−1
2
√

β(1−β)
1.3333 2.0647 4.9247

RCVaR
√

β
1−β

3.0000 4.3589 9.9499

numerical results here and consider this issue as a topic for future research which will
employ a decomposition approach.

5 Numerical comparison of different solution methods

In this section, we compare the performance of the Scholtes regularization method
introduced in this paper for cardinality constrained optimization problems with the
Kanzow–Schwartz regularization from [11], the direct application of an NLP solver to
the continuous reformulation (3) and the solution of (2)with amixed integer solver.We
test all four approaches on the investment problems described in the previous section
with the VaR and CVaR measures under normality assumption and the robust VaR
and CVaR. Moreover, we consider each problem for several levels of β, in particular
we select β ∈ {0.9, 0.95, 0.99}. Table 1 contains the values of the corresponding
quantiles and generalized quantiles, which appear in the exact reformulations of the
risk measures.

For the cardinality constraint we set κ = 10. We use 90 simulated instances with
mean vectors and variance matrices, which were already employed by [26] and are
freely available at website [27]. The generation of the data was described by [47]. For
each number n = 200, 300 and 400 of assets there are 30 different problems included
in the dataset.

We compare the performance of the following solution approaches:

GUROBI_60: Solve the mixed integer formulation (2) using the com-
mercial mixed-integer solver GUROBI, version 6.5, with
time limit of 60s and start vector x0 = 0, z0 = e.

GUROBI_300_40: Same as above but with time limit 300s and node limit 40.
Relaxation_01: Solve the continuous reformulation (3) directly using the

sparse SQPmethod SNOPT, version 7.5, with start vectors
x0 = 0, y0 = e.

Relaxation_00: Same as above but with start vectors x0 = 0, y0 = 0.
Scholtes_01: Solve a sequence of Scholtes regularizations (5) using

SNOPT with starting point x0 = 0, y0 = e.
Scholtes_00: Same as above but with start vectors x0 = 0, y0 = 0.

KanzowSchwartz_01: Solve a sequence of Kanzow–Schwartz regularizations (4)
using SNOPT with starting point x0 = 0, y0 = e.

KanzowSchwartz_00: Same as above but with start vectors x0 = 0, y0 = 0.
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All computations were done in MATLAB R2014a. Before we discuss the results,
let us state a few details on the implementation of the respective solution approaches:

More information on the solver GUROBI and its various options can be found at
[33]. To be able to solve the mixed-integer problem (2) with GUROBI, we had to
reformulate it in the following form:

min
x,z,w,v

cβv − μ�x

s.t. e�x = 1,

0 ≤ x ≤ u ◦ z,

z ∈ {0, 1}n,

e�z ≤ κ,

v ≥ 0,

w = Q
1
2 x,

v2 ≥ w�w,

where cβ is the respective constant from Table 1 for the different risk measures. Since
we used x0 = 0 as start vector, we also used w0 = 0 and v0 = 0.

Note that GUROBI is a global solver, i.e. it tries to verify that a candidate solution
is indeed a global minimum. Since the other solution approaches do not provide any
guarantee of finding a global solution, we set the option mipfocus to 1 in order to
encourage GUROBI to try to find good solutions fast. Additionally we set the option
timelimit to 60s at first. However, we observed that GUROBI sometimes spent the
whole time by looking for a feasible solution without moving to the branch-and-bound
tree. Thus we increased timelimit to 300s and added the condition on the maximal
number of computed nodes nodelimit = 40 to obtain results less dependent on
slight variations in computation time.

The continuous reformulation (3) and the regularized problems (4) and (5) were all
solved using the sparse SQP method SNOPT, see [30,31] for more information. We
started both regularization methods with an initial parameter t0 = 1 and decreased tk

in each iteration by a factor of 0.01. Both regularization methods were terminated if
either ‖xk ◦ yk‖∞ ≤ 10−6 or tk < 10−8.

The constraints e�x = 0 and 0 ≤ x ≤ u were usually satisfied in the solutions
x∗ found by all methods (except for GUROBI, which occasionally did not return a
feasible solution at all, see below). In order to check whether the cardinality constraint
‖x‖0 ≤ κ are also satisfied, we counted the number of all components x∗

i > 10−6.
Table 2 contains results for a particular problem with 400 assets (pard400-e-400).

We can see that GUROBI running 60s was not able to provide a feasible solution
for problem with RVaR0.99. The Scholtes regularization starting from point x0 = 0,
y0 = e was not successful for RCVaR0.95. However, in all other cases the Scholtes
regularization starting from x0 = 0, y0 = e provided the best solution with a runtime
around 1s. In Table 2 we also report the relative gap

relative gap = ( f − fbest)/ fbest,
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Table 2 Results for a problem with 400 assets (pard400-e-400)

β VaR CVaR RVaR RCVaR

0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

Alg. Objective value

1 62.29 42.79 58.87 49.58 55.28 64.67 64.81 52.08 – 80.31 117.98 272.07

2 32.70 40.55 63.97 49.58 55.28 64.67 36.62 52.73 133.68 79.21 117.98 272.07

3 53.20 68.28 96.57 72.85 85.62 110.64 55.35 85.71 204.43 124.53 180.94 413.04

4 29.76 38.20 54.03 40.76 47.91 61.90 30.97 47.96 114.39 69.68 101.24 231.11

5 25.94 33.30 47.12 35.54 41.76 53.99 27.00 41.80 99.86 60.79 – 201.92

6 29.76 38.20 54.03 40.76 47.91 61.90 30.97 47.95 114.34 69.68 101.21 231.02

7 27.30 35.05 49.58 37.40 43.94 56.80 28.41 44.00 104.92 63.94 92.86 201.45

8 29.76 38.20 54.03 40.76 47.91 61.90 30.97 47.95 114.39 69.68 101.24 231.11

Alg. Relative gap

1 1.40 0.29 0.25 0.39 0.32 0.20 1.40 0.25 – 0.32 0.27 0.35

2 0.26 0.22 0.36 0.39 0.32 0.20 0.36 0.26 0.34 0.30 0.27 0.35

3 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 0.95 1.05

4 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.09 0.15

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00

6 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.15 0.09 0.15

7 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.00 0.00

8 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.09 0.15

Alg. Computation time (s)

1 60 61 62 60 61 69 67 73 – 60 68 68

2 300 300 258 300 300 300 300 300 189 288 302 300

3 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.03 0.03

4 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.05

5 1.03 0.78 1.09 1.07 1.06 1.16 0.97 1.17 1.14 0.71 – 1.04

6 1.53 1.47 1.52 1.64 1.51 1.39 1.50 1.52 1.37 1.41 1.25 1.20

7 0.77 0.78 0.76 0.76 0.72 0.81 0.73 0.83 0.69 0.77 0.71 0.69

8 0.87 0.91 0.80 0.81 0.92 0.80 0.81 0.88 0.83 0.86 0.83 0.83

where f is the objective value obtained by an algorithm and fbest denotes the lowest
objective value for a problem computed by any of the compared algorithms.

Summary results for all problems are reported in Tables 3, 4 and 5. For each problem
with a particular risk measure, level β, number of assets and algorithm we report the
following descriptive statistics over 30 instances of problems: average relative gap
with respect to the minimal objective value, average computation time (in seconds),
number of cases when the algorithm found the best solution, number of cases when
the result was infeasible with respect to the sparsity or orthogonality. All computations
were done on two computers with comparable performance indicators. Nonetheless,
the given computation times should only be used for a qualitative comparison of the
methods.
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Table 3 Results for 30 instances with 200 assets

β VaR CVaR RVaR RCVaR

0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

Alg. Average relative gap

1 0.126 0.157 0.143 0.158 0.171 0.180 0.164 0.170 0.154 0.167 0.179 0.188

2 0.158 0.149 0.146 0.133 0.130 0.155 0.123 0.139 0.145 0.143 0.147 0.164

3 1.091 1.087 1.093 1.092 1.088 1.089 1.073 1.085 1.096 1.094 1.092 1.096

4 0.166 0.163 0.167 0.166 0.164 0.165 0.156 0.162 0.169 0.167 0.167 0.169

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

6 0.166 0.163 0.167 0.166 0.164 0.165 0.156 0.162 0.169 0.167 0.167 0.169

7 0.004 0.010 0.016 0.013 0.020 0.014 0.008 0.020 0.017 0.014 0.015 0.000

8 0.166 0.163 0.167 0.166 0.164 0.165 0.156 0.162 0.169 0.167 0.167 0.169

Alg. Average computation time (s)

1 60 60 60 60 60 60 67 67 67 60 60 60

2 59 72 51 63 63 80 56 59 71 56 66 71

3 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.02

4 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

5 0.25 0.26 0.27 0.26 0.28 0.25 0.27 0.28 0.26 0.27 0.27 0.26

6 0.31 0.31 0.34 0.31 0.31 0.30 0.31 0.32 0.33 0.31 0.32 0.31

7 0.23 0.20 0.18 0.18 0.19 0.19 0.19 0.20 0.18 0.19 0.17 0.19

8 0.21 0.21 0.22 0.22 0.21 0.20 0.21 0.21 0.20 0.21 0.20 0.20

Alg. Best solution found (out of 30)

1 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 1 0 1 1 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0

5 29 29 28 28 28 28 26 28 27 28 27 30

6 0 0 0 0 0 0 1 0 0 0 0 0

7 17 20 14 19 16 14 16 15 11 14 11 9

8 0 0 0 0 0 0 0 0 0 0 0 0

Alg. Solution was infeasible (out of 30)

1 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 1 1 0 3 1 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0

7 6 4 5 3 5 5 5 5 13 6 14 21

8 0 0 0 0 0 0 0 0 0 0 0 0
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Table 4 Results for 30 instances with 300 assets

β VaR CVaR RVaR RCVaR

0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

Alg. Average relative gap

1 0.256 0.245 0.224 0.219 0.232 0.202 0.204 0.196 0.217 0.220 0.248 0.232

2 0.209 0.224 0.216 0.206 0.197 0.187 0.229 0.200 0.215 0.207 0.234 0.230

3 1.093 1.086 1.082 1.083 1.082 1.085 1.093 1.082 1.094 1.090 1.094 1.094

4 0.170 0.166 0.163 0.164 0.164 0.165 0.170 0.164 0.171 0.168 0.171 0.171

5 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000

6 0.170 0.166 0.163 0.164 0.164 0.165 0.170 0.164 0.171 0.168 0.169 0.171

7 0.016 0.017 0.011 0.021 0.014 0.014 0.018 0.014 0.018 0.020 0.022 0.008

8 0.170 0.166 0.163 0.164 0.164 0.165 0.170 0.164 0.171 0.168 0.171 0.168

Alg. Average computation time (s)

1 60 60 61 60 60 60 67 67 64 60 60 60

2 141 135 132 148 158 127 135 149 139 144 125 156

3 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02

4 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

5 0.49 0.48 0.56 0.53 0.58 0.53 0.49 0.56 0.56 0.59 0.57 0.55

6 0.69 0.68 0.69 0.68 0.67 0.69 0.70 0.70 0.73 0.72 0.69 0.67

7 0.47 0.43 0.40 0.40 0.41 0.38 0.42 0.42 0.39 0.43 0.39 0.41

8 0.47 0.46 0.44 0.44 0.45 0.45 0.46 0.47 0.43 0.44 0.44 0.44

Alg. Best solution found (out of 30)

1 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0

5 29 28 21 28 26 23 29 25 25 25 26 22

6 0 0 0 1 0 0 0 0 0 0 0 0

7 13 10 18 8 9 13 14 8 11 11 10 11

8 0 0 0 0 0 0 0 0 0 0 0 0

Alg. Solution was infeasible (out of 30)

1 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0

5 0 2 2 2 2 2 0 3 0 1 0 0

6 0 0 0 0 0 0 0 0 0 0 1 0

7 1 4 6 4 3 11 1 3 13 12 12 17

8 0 0 0 0 0 0 0 0 0 0 0 1
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Table 5 Results for 30 instances with 400 assets

β VaR CVaR RVaR RCVaR

0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

Alg. Average relative gap

1 0.266 0.259 0.235 0.226 0.277 0.241 0.311 0.228 0.209 0.253 0.288 0.269

2 0.205 0.238 0.244 0.198 0.215 0.214 0.206 0.199 0.226 0.212 0.258 0.250

3 1.180 1.191 1.195 1.188 1.172 1.201 1.182 1.178 1.201 1.201 1.197 1.200

4 0.171 0.177 0.179 0.175 0.168 0.183 0.173 0.171 0.183 0.183 0.181 0.182

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001

6 0.171 0.177 0.179 0.175 0.167 0.183 0.172 0.170 0.183 0.183 0.181 0.183

7 0.016 0.023 0.017 0.016 0.011 0.017 0.015 0.011 0.006 0.013 0.003 0.000

8 0.171 0.177 0.179 0.175 0.167 0.183 0.173 0.171 0.180 0.183 0.181 0.183

Alg. Average computation time (s)

1 62 61 67 62 62 64 67 67 65 63 64 63

2 231 243 220 201 206 205 217 221 224 222 183 210

3 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03

4 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.04 0.04 0.05 0.04

5 0.94 1.03 1.09 1.04 1.02 1.04 0.93 1.04 1.07 1.07 1.06 1.06

6 1.36 1.36 1.38 1.38 1.36 1.36 1.37 1.50 1.32 1.37 1.32 1.30

7 0.85 0.77 0.76 0.75 0.76 0.77 1.00 0.76 0.73 0.73 0.74 0.72

8 0.86 0.86 0.84 0.84 0.83 0.84 0.85 0.85 0.82 0.85 0.83 0.79

Alg. Best solution found (out of 30)

1 0 0 0 0 0 0 0 1 0 0 0 0

2 0 0 1 0 0 0 0 1 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0

5 24 25 19 22 13 20 24 14 16 19 16 21

6 0 0 0 0 0 0 0 0 0 0 0 0

7 14 8 12 9 16 12 12 15 16 14 16 11

8 0 0 0 0 1 0 0 0 0 0 0 0

Alg. Solution was infeasible (out of 30)

1 0 0 0 0 0 0 0 0 20 0 0 1

2 0 0 0 0 0 0 0 0 1 0 0 1

3 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 1 5 1 2 5 0 0 2 0

6 0 0 0 0 0 0 1 0 0 0 0 0

7 2 1 12 2 5 12 4 5 12 11 13 19

8 1 1 2 1 1 0 1 1 2 0 2 0
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Fig. 2 Performance plot of the objective function values for n = 200 assets

If we consider the initial value x0 = 0, y0 = e, it can be observed that the best
results were obtained by the Scholtes regularization (Alg. 5). When the results of this
regularization were feasible, they correspond to the best obtained solutions. However,
in a few cases the portfolios obtained by the Scholtes regularization and in more cases
the results obtained by the Kanzow–Schwartz regularization (Alg. 7) were infeasible.
Also SNOPT applied directly to the continuous reformulation (Alg. 3) behaved very
badly showing an average relative gap greater than 100%.

To further investigate the behavior, we changed the starting point of the continuous
reformulation and both regularizations to x0 = 0, y0 = 0. In this case, the obtained
optimal values were slightly worse for both regularizations, but we have reduced the
problems with infeasible solutions. Moreover, for the starting point x0 = 0, y0 = 0,
the behavior of the continuous reformulation approach (Alg. 4) improved significantly
such that it is fully comparable with the regularizations.

Figures 2, 3 and 4 present performance plots introduced byDolan andMoré [22] for
each problem size and algorithm. We identified the minimal objective value for each
problem found by any of the eight considered algorithms and then compared it with the
remaining objective values using the ratio: actual objective value/minimal objective
value. The graphs report the relative number of problems (y-value), where the ratio
is lower or equal to the x-value. We would prefer algorithms with the curve close to
the upper-left corner, i.e. which produce good and feasible solutions. Since infeasible
problems are considered with an infinite objective function value, not all algorithm
curves touch the upper bound 1. This is the case for the regularized problems with
x0 = 0, y0 = e for all problem sizes. For the largest problems with 400 assets, even
GUROBI with 60s limit and Kanzow–Schwartz regularization starting from x0 = 0,
y0 = 0 were not able to reach the upper bound 1.
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Fig. 3 Performance plot of the objective function values for n = 300 assets
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Fig. 4 Performance plot of the objective function values for n = 400 assets

6 Conclusions

We adapted the Scholtes regularization method to optimization problems with cardi-
nality constraints and proved its convergence to S-stationary points, which is stronger
than the corresponding result known for MPCCs. Additionally, we verified that the
corresponding regularized problems have better properties than the original one. We
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discussed several possible risk measures for portfolio optimization under the assump-
tion of normality and distributional ambiguity. Finally, we compared several solution
algorithms applied to these portfolio optimization problems and showed that the
Scholtes regularization can keep up even with the commercial solver GUROBI, at
least for fast, possibly local solutions.

Sufficient conditions for the existence and convergence of the iterates of the
Scholtes-type regularization method can be found in [9]. Future research will be
devoted to developing a global solution strategy based on several starting points and
combinations of the proposed methods. A further subject of future research are the
convergence properties of the regularization method if one only computes a sequence
of inexact KKT points.
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