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Abstract
We investigate the numerical treatment of optimal control problems of linear ordi-
nary differential equations with terminal complementarity constraints. Therefore, we
generalize the well-known relaxation technique of Scholtes to the problem at hand.
In principle, any other relaxation approach from finite-dimensional complementar-
ity programming can be adapted in similar fashion. It is shown that the suggested
method possesses strong convergence properties under mild assumptions. Finally,
some numerical examples are presented.
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1 Introduction

For some positive time T > 0 and the associated time interval I := (0, T ), we consider
the following optimal control problem with terminal complementarity constraints

J (x, u) → min
x,u

S(u) − x = 0

gi (x(T )) ≤ 0 i ∈ L
0 ≤ G j (x(T )) ⊥ Hj (x(T )) ≥ 0 j ∈ K.

(OCTCC)

Here, we use the index sets L := {1, . . . , l} and K := {1, . . . , k}. Furthermore,
the mapping S : L2(I )m → H1(I )n represents the operator which assigns to any
u ∈ L2(I )m the uniquely determined solution x ∈ H1(I )n of the ODE-system

ẋ(t) − Ax(t) − Bu(t) = 0 a.e. on I

x(0) = 0.
(ODE)

It is well known that S is linear and continuous, see [2, Section 18]. For simplicity,
the target-type objective functional J : H1(I )n × L2(I )m → R given by

J (x, u) := f (x(T )) + 1
2 ‖x − xd‖2L2(I )n + σ

2 ‖u − ud‖2L2(I )m

for any x ∈ H1(I )n and u ∈ L2(I )m will be considered throughout this manuscript.
However, it is possible to add some integral terms postulating additional assumptions.
Note that terminal equality constraints can be easily added to the model as well.

In the recent paper [5], problem (OCTCC) was presented in a more general setting,
where mixed control-state constraints were included as well. Some real-world appli-
cations from gas balancing on energy markets [15] or multi-agent control [4,7,16]
motivate the study of (OCTCC). Clearly, model (OCTCC) belongs to the rich class
of so-called mathematical programs with complementarity constraints, MPCCs for
short.

The precise assumptions on (OCTCC) are stated below.

Assumption 1.1 The functions f , g1, . . . , gl ,G1, . . . ,Gk, H1, . . . , Hk : R
n → R are

continuously differentiable. Furthermore, f is bounded from below. The matrices
A ∈ R

n×n and B ∈ R
n×m are chosen such that

[
B AB . . . An−1B

] ∈ R
n×nm

possesses full row rank n (i.e. the ODE-system in the constraints of (OCTCC) is
controllable, see [3]). In order to exclude trivial situations, it is assumed that (OCTCC)
possesses at least one feasible point. Finally, the regularization parameter σ > 0, the
desired state xd ∈ H1(I )n , and the desired control ud ∈ L2(I )m are fixed.

Under the postulated assumptions, (OCTCC) possesses an optimal solution, see [5,
Theorem 5.1]. In [5], the authors derive necessary optimality conditions and constraint
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Terminal complementarity-constrained optimal control 415

qualifications for (OCTCC) which were motivated by the rich theory on finite-
dimensional complementarity programming, see [17,19]. However, the manuscript
does not answer the question how problem (OCTCC) can be treated numerically. The
aim of this study is to close this gap. Therefore, we follow standard ideas and relax
the complementarity constraints as suggested by Scholtes [21]. However, there exist
several other relaxation techniques for the computational treatment of complementar-
ity constraints, see [13]. In principle, the findings of this study can be extended to all
these relaxation methods doing some obvious changes. Particularly, this manuscript
justifies the application of well-known numerical methods for the treatment of finite-
dimensional complementarity problems to solve (OCTCC). Note that we do not focus
on numerical details of the proposed method’s implementation. Here, we abstain from
a detailed numerical analysis associated with (OCTCC).

The remaining parts of the paper are structured as follows: Sect. 2 presents fun-
damental notation and recalls some preliminaries from [5]. Afterwards, we study
Scholtes’ relaxation scheme for (OCTCC) in Sect. 3. First, a global convergence result
is presented. Second, we consider the situation where only Karush–Kuhn–Tucker
(KKT for short) points of the surrogate problems are computed. We visualize the
proposed approach in Sect. 4 by means of two numerical examples where the sec-
ond one represents a particular model from multi-agent control with terminal friction
constraints. Finally, the paper is closed by some concluding remarks in Sect. 5.

2 Preliminaries

In this work, we basically exploit standard notation which has been used in [5] already.
However, let us briefly recall that L2(I ) denotes the Banach space of all (equivalence
classes of) scalar,measurable function on I whose square is Lebesgue integrablewhich
is equipped with the usual norm ‖·‖L2(I ). Furthermore, H1(I ) is the common Sobolev
space of all functions x ∈ L2(I ) which possess a weak derivative ẋ which belongs to
L2(I ) as well. It is equipped with the norm defined below:

∀x ∈ H1(I ) : ‖x‖H1(I ) := (‖x‖L2(I ) + ‖ẋ‖L2(I )

)1/2
.

By L2(I )n and H1(I )n we denote the n-fold Cartesian product of L2(I ) and H1(I ),
respectively. Let the mapping E : H1(I )n → L2(I )n be the associated natural embed-
ding and denote by ET : H1(I )n → R

n the evaluation operator H1(I )n 	 x 
→
x(T ) ∈ R

n . For brevity, we will use the notation xT := x(T ) = ET (x) for all
x ∈ H1(I )n throughout the remaining parts of the paper. Bymeans of [5, Lemma 4.2],
E and ET are compact.

Recall that S : L2(I )m → H1(I )n denotes the solution operator of (ODE). We set
S := E ◦ S and ST := ET ◦ S. Note S : L2(I )m → L2(I )n and ST : L2(I )m → R

n .
The controllability of the system (ODE) ensures that the operator ST is surjective.
Thus, we already know that the associated adjoint S�

T is injective. Below, the adjoint
operators S� and S�

T are characterized explicitly. These results are taken from [5,
Lemmas 4.3, 4.4].
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416 F. Benita, P. Mehlitz

Lemma 2.1 1. For any v ∈ L2(I )n, we have S�
(v) = B� p1 where p1 ∈ H1(I )n is

the unique solution of the ODE-system

ṗ1(t) + A� p1(t) + v(t) = 0 a.e. on I

p1(T ) = 0.

2. For any b ∈ R
n, we have S�

T (b) = B� p2 where p2 ∈ H1(I )n is the unique
solution of the ODE-system

ṗ2(t) + A� p2(t) = 0 a.e. on I

p2(T ) = b.

The subsequent corollary follows easily from the above lemma.

Corollary 2.1 For v ∈ L2(I )n, b ∈ R
n, and w ∈ L2(I )m, the function p ∈ H1(I )n

may solve the system

ṗ(t) + A� p(t) + v(t) = 0 a.e. on I

w(t) + B� p(t) = 0 a.e. on I

p(T ) = b.

Then, 0 = S�
(v) + S�

T (b) + w holds true.

3 Scholtes’ relaxation technique

The terminal complementarity constraints appearing in our model (OCTCC) make
a direct numerical treatment difficult due to two main issues: First, the feasible set
of (OCTCC) is almost disconnected. Second, the appearance of the terminal com-
plementarity constraint implies that standard regularity assumptions from nonlinear
programming are generally violated at the feasible points of (OCTCC). In order to over-
come these difficulties, for a sequence {θr }r∈N ⊂ R

+ of positive relaxation parameters
converging to zero, we consider the relaxed problem

J (x, u) → min
x,u

S(u) − x = 0

gi (xT ) ≤ 0 i ∈ L
G j (xT ) ≥ 0 j ∈ K
Hj (xT ) ≥ 0 j ∈ K

G j (xT )Hj (xT ) ≤ θr j ∈ K.

(OCTCC(θr ))

This idea was introduced in [21] to solve standard complementarity problems in the
finite-dimensional context. Qualitative results associatedwith this relaxation approach
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Terminal complementarity-constrained optimal control 417

are presented in [13] as well. Noting that the complementarity requirement enters
problem (OCTCC) only in terms of the terminal conditions, it is reasonable to think
that some of these results can be generalized to the optimal control setting we are
considering here.

Mimicking the proof of [5, Theorem 5.1], we easily see that (OCTCC(θr )) pos-
sesses an optimal solution for any r ∈ N. Clearly, the feasible set of (OCTCC(θr ))
is a superset of the feasible set of (OCTCC). Consequently, if a local minimizer of
(OCTCC(θr )) is already feasible to (OCTCC), then this point is a local minimizer of
the latter.

Forthwith, we will present two types of convergence results. First, we investi-
gate the situation where (OCTCC(θr )) can be solved globally for any r ∈ N. This
might be possible if the structure of the terminal constraints appearing in (OCTCC)
is not too difficult. Here, we show the natural result that the global minimizers of
(OCTCC(θr )) converge strongly (along a subsequence) to a global minimizer of
(OCTCC). Second, we examine the case where only KKT points of the surrogate
problems (OCTCC(θr )) can be computed. Due to the nonconvexity of (OCTCC(θr )),
this assumption is much more natural than the first one. Clearly, one cannot hope that
the computed sequence converges to a local or even global minimizer of (OCTCC).
However, we prove that under reasonable assumptions a sequence of KKT points
associated with (OCTCC(θr )) converges (along a subsequence) to a so-called Clarke-
stationary point of (OCTCC), see Definition 3.2 below. This seems to be a natural
extension of a similar convergence result for finite-dimensional MPCCs obtained in
[13, Theorem 3.1].

We start with the promised global convergence result.

Theorem 3.1 Let {θr }r∈N ⊂ R
+ be a sequence of positive relaxation parameters con-

verging to zero. For any r ∈ N, let (x̄r , ūr ) ∈ H1(I )n × L2(I )m be a globally optimal
solution of (OCTCC(θr )). Then, {(x̄r , ūr )}r∈N possesses a convergent subsequence
(without relabeling) whose limit point (x̄, ū) ∈ H1(I )n×L2(I )m is a globally optimal
solution of (OCTCC).

Proof Fix an arbitrary feasible point (x, u) ∈ H1(I )n ×L2(I )m of (OCTCC). Clearly,
(x, u) is feasible to (OCTCC(θr )) as well which yields

f (x̄rT ) + 1
2

∥∥x̄r − xd
∥∥2
L2(I )n + σ

2

∥∥ūr − ud
∥∥2
L2(I )m

≤ f (xT ) + 1
2 ‖x − xd‖2L2(I )n + σ

2 ‖u − ud‖2L2(I )m

for any r ∈ N by definition of J . Noting that f is bounded from below while σ > 0
holds true, {ūr }r∈Nmust be bounded in L2(I )m . Thus, it possesses aweakly convergent
subsequence (without relabeling) with weak limit ū ∈ L2(I )m . Set x̄ := S(ū). Due
to the continuity of S, {x̄r }r∈N converges weakly in H1(I )n to x̄ . Since E is compact,
we obtain x̄r → x̄ in L2(I )n . Noting that ET is a compact operator as well, we have
x̄rT → x̄T in R

n . The continuity of g, G, and H as well as θr → 0 guarantee the
feasibility of (x̄, ū) to (OCTCC).
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418 F. Benita, P. Mehlitz

Next, we exploit the above convergences, the continuity of f , as well as the weak
lower semicontinuity of norms in order to obtain

J (x̄, ū) = f (x̄T ) + 1
2 ‖x̄ − xd‖2L2(I )n + σ

2 ‖ū − ud‖2L2(I )m

≤ lim
r→∞ f (x̄rT ) + lim

r→∞
1
2

∥∥x̄r − xd
∥∥2
L2(I )n + lim inf

r→∞
σ
2

∥∥ūr − ud
∥∥2
L2(I )m

= lim inf
r→∞

(
f (x̄rT ) + 1

2

∥∥x̄r − xd
∥∥2
L2(I )n + σ

2

∥∥ūr − ud
∥∥2
L2(I )m

)

≤ lim sup
r→∞

(
f (x̄rT ) + 1

2

∥∥x̄r − xd
∥∥2
L2(I )n + σ

2

∥∥ūr − ud
∥∥2
L2(I )m

)

≤ f (xT ) + 1
2 ‖x − xd‖2L2(I )n + σ

2 ‖u − ud‖2L2(I )m = J (x, u)

Thus, (x̄, ū) solves (OCTCC) globally. Choosing x := x̄ as well as u := ū and exploit-
ing f (x̄rT ) → f (x̄T ) as well as x̄r → x̄ in L2(I )n , we obtain ‖ūr − ud‖L2(I )m →
‖ū − ud‖L2(I )m . We combine this with the weak convergence ūr⇀ū in L2(I )m and
the property of L2(I )m to be a Hilbert space in order to get the strong convergence
ūr → ū in L2(I )m . Finally, the continuity of S already yields x̄r → x̄ in H1(I )n

which completes the proof. ��
In practice, the computation of a globally optimal solution of the nonconvex relaxed

surrogate problem (OCTCC(θr )) might be difficult. Instead, it is a nearby presumption
that only KKT points of the surrogate problems can be identified. In the following
definition, the KKT conditions of (OCTCC(θr )) are presented. The derivation of this
system is omitted here since the necessary arguments mainly parallel those ones used
in [5, Section 6].

Definition 3.1 For fixed r ∈ N, let (x̄r , ūr ) ∈ H1(I )n×L2(I )m be feasible to problem
(OCTCC(θr )). Then, (x̄r , ūr ) is a KKT point of (OCTCC(θr )) if and only if there
are an adjoint state pr ∈ H1(I )n and multipliers λr ∈ R

l as well as αr , βr , ξ r ∈ R
k

which solve the following system:

0 = ṗr (t) + A� pr (t) + x̄r (t) − xd(t) a.e. on I ,

prT = ∇ f (x̄rT ) +
∑

i∈L
λri ∇gi (x̄

r
T )

−
∑

j∈K

[
αr
j − ξ rj Hj (x̄

r
T )

]∇G j (x̄
r
T )

−
∑

j∈K

[
βr
j − ξ rj G j (x̄

r
T )

]∇Hj (x̄
r
T ),

0 = σ(ūr (t) − ud(t)) + B� pr (t) a.e. on I ,

λr ≥ 0, ∀i /∈ Ig
r : λri = 0,

αr ≥ 0, ∀ j /∈ IG
r : αr

j = 0,

βr ≥ 0, ∀ j /∈ IH
r : βr

j = 0,

ξ r ≥ 0, ∀ j /∈ IGH
r : ξ rj = 0.
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Terminal complementarity-constrained optimal control 419

Here, the index sets Ig
r , IG

r , IH
r , and IGH

r are defined as stated below:

Ig
r := {i ∈ L | gi (x̄rT ) = 0},

IG
r := { j ∈ K |G j (x̄

r
T ) = 0},

IH
r := { j ∈ K | Hj (x̄

r
T ) = 0},

IGH
r := { j ∈ K |G j (x̄

r
T )Hj (x̄

r
T ) − θr = 0}.

As mentioned above, the second convergence result of this work shows that
a sequence {(x̄r , ūr )}r∈N ⊂ H1(I )n × L2(I )m of KKT points associated with
(OCTCC(θr )) contains a convergent subsequence whose limit point is a so-called
Clarke-stationary point of (OCTCC) provided {ūr }r∈N is bounded. This observation
parallels classical results from [13,21] for standard complementarity problems. Below,
we state an appropriate generalization of Clarke-stationarity for (OCTCC). Other rea-
sonable stationarity notions for (OCTCC), namely weak, Mordukhovich- and strong
stationarity, are introduced in [5, Section 6].

Definition 3.2 Let (x̄, ū) ∈ H1(I )n × L2(I )m be a feasible point of (OCTCC). Then,
(x̄, ū) is called Clarke-stationary, C-stationary for short, if and only if there exist an
adjoint state p ∈ H1(I )n as well as multipliers λ ∈ R

l and μ, ν ∈ R
k which satisfy

the following conditions:

0 = ṗ(t) + A� p(t) + x̄(t) − xd(t) a.e. on I , (1a)

pT = ∇ f (x̄(T )) +
∑

i∈L
λi∇gi (x̄T ) −

∑

j∈K

[
μ j∇G j (x̄T ) + ν j∇Hj (x̄T )

]
, (1b)

0 = σ(ū(t) − ud(t)) + B� p(t) a.e. on I , (1c)

λ ≥ 0, ∀i /∈ Ig : λi = 0, (1d)

∀ j ∈ I+0 : μ j = 0, (1e)

∀ j ∈ I0+ : ν j = 0, (1f)

∀ j ∈ I00 : μ jν j ≥ 0. (1g)

Therein, the index sets Ig , I+0, I0+, and I00 are defined as stated below:

Ig := {i ∈ L | gi (x̄T ) = 0},
I0+ := { j ∈ K |G j (x̄T ) = 0 ∧ Hj (x̄T ) > 0},
I+0 := { j ∈ K |G j (x̄T ) > 0 ∧ Hj (x̄T ) = 0},
I00 := { j ∈ K |G j (x̄T ) = 0 ∧ Hj (x̄T ) = 0}.

Next, we postulate our standing assumptions for further theoretical investigations
of the relaxation technique.

Assumption 3.1 We fix a sequence {θr }r∈N ⊂ R
+ converging to zero. For any r ∈ N,

let (x̄r , ūr ) ∈ H1(I )n × L2(I )m be a KKT point of (OCTCC(θr )). Furthermore, let
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420 F. Benita, P. Mehlitz

pr ∈ H1(I )n , λr ∈ R
l , and αr , βr , ξ r ∈ R

k be the associated Lagrange multipliers,
see Definition 3.1. We assume that {ūr }r∈N is bounded and, thus, possesses a weakly
convergent subsequencewithweak limit ū ∈ L2(I )m . For simplicity of notation,we do
not relabel this subsequence but use the expression {ūr }r∈N again. Finally, x̄ := S(ū)

is the state function associated with ū.

Let us briefly comment on the assumption that {ūr }r∈N is bounded.

Remark 3.1 The boundedness of {ūr }r∈N ⊂ L2(I )m is not very restrictive and can
be guaranteed under a mild assumption: If the sequence {J (x̄r , ūr )}r∈N of objective
values associated with the KKT points (x̄r , ūr ) of (OCTCC(θr )) is bounded inR, then
{ūr }r∈N needs to be bounded in L2(I )m since the function f is bounded from below.
Note that this observation has been exploited in the proof of Theorem 3.1 as well.

For the proof of our next convergence result, we need to study the behavior of
the index sets Ig

r , IG
r , and IH

r as r → ∞. Some corresponding observations which
directly follow from Assumption 3.1 are stated in the lemma below.

Lemma 3.1 For sufficiently large r ∈ N, the following relations hold true:

Ig
r ⊂ Ig,

IG
r ⊂ I0+ ∪ I00,

IH
r ⊂ I+0 ∪ I00.

Proof Due to ūr⇀ū in L2(I )m and the continuity of the solution operator S associated
with (ODE),weobtain x̄r⇀x̄ in H1(I )n . Recalling thatET is compact, x̄rT → x̄T holds
true in R

n . Thus, the validity of the presented inclusions is guaranteed by continuity
of g, G, and H . ��

Now, we are in position to state our second convergence result. For its validation,
we exploit ideas used in the proof of [13, Theorem 3.1]. However, some essentials of
infinite-dimensional programming have to be taken into account as well in order to
show the following theorem.

Theorem 3.2 Suppose that the following constraint qualification is valid:

0 =
∑

i∈L
λi∇gi (x̄T ) −

∑

j∈K

[
μ j∇G j (x̄T ) + ν j∇Hj (x̄T )

]
,

λ ≥ 0, ∀i /∈ Ig : λi = 0,

∀ j ∈ I+0 : μ j = 0,

∀ j ∈ I0+ : ν j = 0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

�⇒

⎧
⎪⎨

⎪⎩

λ = 0,

μ = 0,

ν = 0.

(CQ)

Then, (x̄, ū) is a C-stationary point of (OCTCC). Furthermore, the following conver-
gences hold along a subsequence:

x̄r → x̄ in H1(I )n, ūr → ū in L2(I )m, pr → p in H1(I )n .
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Here, p ∈ H1(I )n is the adjoint state which appears in the system (1).
If ud ∈ H1(I )m is valid, then {ūr }r∈N ⊂ H1(I )m and ū ∈ H1(I )m hold. Further-

more, we obtain ūr → ū in H1(I )m.

Proof From ūr⇀ū in L2(I )m , we obtain x̄r⇀x̄ in H1(I )n and x̄rT → x̄T in R
n since

S is continuous while ST is compact and continuous.
We note that for any r ∈ N and any j ∈ K, the multipliers αr

j and ξ rj (β
r
j and ξ rj ,

respectively) cannot be positive at the same time since IG
r ∩IGH

r = ∅ (IH
r ∩IGH

r =
∅) is valid by definition. For any r ∈ N, let us introduce μr , νr ∈ R

k as stated below
for any j ∈ K:

μr
j :=

⎧
⎪⎨

⎪⎩

αr
j if αr

j > 0,

−ξ rj Hj (x̄rT ) if ξ rj > 0 ∧ j /∈ I+0,

0 otherwise,

νrj :=

⎧
⎪⎨

⎪⎩

βr
j if βr

j > 0,

−ξ rj G j (x̄rT ) if ξ rj > 0 ∧ j /∈ I0+,

0 otherwise.

Then, we obtain

prT = ∇ f (x̄rT ) +
∑

i∈L
λri ∇gi (x̄

r
T ) −

∑

j∈K

[
μr

j∇G j (x̄
r
T ) + νrj∇Hj (x̄

r
T )

]

+
∑

j∈I+0

ξ rj Hj (x̄
r
T )∇G j (x̄

r
T ) +

∑

j∈I0+
ξ rj G j (x̄

r
T )∇Hj (x̄

r
T )

from Definition 3.1. Note that the appearing index sets I+0 and I0+ correspond to the
limit point x̄ and not to the KKT points of (OCTCC(θr )). Now, we apply Corollary 2.1
and Definition 3.1 to deduce

0 = S�
(E(x̄r ) − xd) + σ(ūr − ud)

+ S�
T

⎡

⎣∇ f (x̄rT ) +
∑

i∈L
λri ∇gi (x̄

r
T ) −

∑

j∈K

[
μr

j∇G j (x̄
r
T ) + νrj∇Hj (x̄

r
T )

]

+
∑

j∈I+0

ξ rj Hj (x̄
r
T )∇G j (x̄

r
T ) +

∑

j∈I0+
ξ rj G j (x̄

r
T )∇Hj (x̄

r
T )

⎤

⎦ .

(2)

Suppose that the sequence {(λr , μr , νr , ξ rI+0∪I0+)}r∈N is not bounded, define the

constants κr :=
∣∣∣(λr , μr , νr , ξ rI+0∪I0+)

∣∣∣
2
for all r ∈ N, and set

(λ̃r , μ̃r , ν̃r , ξ̃ rI+0∪I0+) := 1

κr
(λr , μr , νr , ξ rI+0∪I0+)
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422 F. Benita, P. Mehlitz

for all r ∈ N. Then, {(λ̃r , μ̃r , ν̃r , ξ̃ rI+0∪I0+)}r∈N is a bounded sequence and converges

w.l.o.g. to a nonvanishing multiplier (λ̃, μ̃, ν̃, ξ̃I+0∪I0+). Hence, dividing (2) by the
positive number κr , taking the limit r → ∞, and observing that {x̄r }r∈N and {ūr }r∈N
are bounded in L2(I )n and L2(I )m , respectively, yields

0 = S�
T

⎡

⎣
∑

i∈L
λ̃i∇gi (x̄T ) −

∑

j∈K

[
μ̃ j∇G j (x̄T ) + ν̃ j∇Hj (x̄T )

]
⎤

⎦

as well as λ̃ ≥ 0, λ̃i = 0 (i /∈ Ig), μ̃ j = 0 ( j ∈ I+0), and ν̃ j = 0 ( j ∈ I0+),
see Lemma 3.1. We note that the validity of the constraint qualification (CQ) implies
λ̃ = 0, μ̃ = 0, and ν̃ = 0 sinceS�

T is injective. Thus, due to the above observation, ξ̃I+0

or ξ̃I0+ possesses a nonvanishing component. Assume w.l.o.g. that there is j0 ∈ I+0

such that ξ̃ j0 does not vanish. Then, ξ
r
j0

> εκr holds true for sufficiently large r ∈ N

and some ε > 0. By construction, νrj0 < −εκrG j0(x̄
r
T ) is valid for sufficiently large

r ∈ N, i.e. taking the limit r → ∞ yields

ν̃ j0 = lim
r→∞

νrj0

κr
≤ −ε lim

r→∞G j0(x̄
r
T ) = −εG j0(x̄T ) < 0

due to j0 ∈ I+0. This, however, contradicts (λ̃, μ̃, ν̃) = (0, 0, 0).
Thus, {(λr , μr , νr , ξ rI+0∪I0+)}r∈N is bounded and converges (along a subsequence

without relabeling) to a multiplier (λ, μ, ν, ξI+0∪I0+). Due to x̄r → x̄ in L2(I )n ,
x̄rT → x̄T in R

n , and the continuity of f , g, G, and H , we infer ūr → ū in L2(I )m ,
(1d), (1e), (1f), as well as

0 = S�
(E(x̄) − xd) + σ(ū − ud)

+ S�
T

⎡

⎣∇ f (x̄T ) +
∑

i∈L
λi∇gi (x̄T ) −

∑

j∈K

[
μ j∇G j (x̄T ) + ν j∇Hj (x̄T )

]
⎤

⎦

from (2), see Lemma 3.1. Now, we apply Lemma 2.1 in order to obtain the conditions
(1a)–(1c).

Fix j ∈ I00 and suppose that μ jν j < 0 holds true. If μ j < 0 and ν j > 0 are valid,
then μr

j < 0 and νrj > 0 must be satisfied for sufficiently large r ∈ N. On the other
hand, μr

j < 0 implies ξ rj > 0 which contradicts βr
j = νrj > 0. Similarly, we obtain a

contradiction from μ j > 0 and ν j < 0. Therefore, condition (1g) holds as well, i.e.
(x̄, ū) is a C-stationary point of (OCTCC).

Noting that we have the convergences x̄r → x̄ in L2(I )n , x̄rT → x̄T in R
n , and

(λr , μr , νr , ξ rI+0∪I0+) → (λ, μ, ν, ξI+0∪I0+)while the solution operator of theODE-
system

ṗ(t) + A� p(t) + v(t) = 0 a.e. on I

pT = b
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is continuous as a mapping L2(I )n × R
n 	 (v, b) 
→ p ∈ H1(I )n , see e.g. [2, Chap-

ter 18], we obtain pr → p in H1(I )n from Definition 3.1 and (1a), (1b). Combining
Definition 3.1 and (1c), we have

ūr = ud − 1
σ
B� pr → ud − 1

σ
B� p = ū

in L2(I )m . Thus, if ud is a function from H1(I )m , then the same holds true for ūr ,
r ∈ N, and ū and the above convergence can be extended to H1(I )m . This completes
the proof. ��

Let us present some brief remarks regarding the regularity condition (CQ).

Remark 3.2 Assume that the computed limit point (x̄, ū) satisfies the constraint qual-
ification (CQ). If (x̄, ū) is a local minimizer of (OCTCC), then it is already a
Mordukhovich-stationary point, i.e. it satisfies the C-stationarity conditions (1) where
(1g) is strengthened to

∀ j ∈ I00 : μ jν j = 0 ∨ (μ j > 0 ∧ ν j > 0),

see [5, Theorem 7.5]. Staying close to the notion of finite-dimensional comple-
mentarity programming, the constraint qualification (CQ) might be referred to as
MPCC-MFCQ, see [13, Definition 2.4].

In order to ensure that locally or even globally optimal solutions of the surrogate
problem (OCTCC(θr )) satisfy theKKT conditions stated inDefinition 3.1, the validity
of a constraint qualification is necessary. Here, we rely on Robinson’s constraint qual-
ification which is the fundamental regularity condition in the context of Banach space
programming. It has been introduced by Robinson [20] in order to study the stability
properties of parameterized nonlinear systems in Banach spaces. Later, Kurcyusz and
Zowe exploited this condition in order to derive necessary optimality conditions of
KKT-type in Banach space programming, see [24]. Further information on Robinson’s
constraint qualification can be found in the monograph [6].

Here, we want to emphasize that the validity of the constraint qualification (CQ)
at the limit point (x̄, ū) implies that Robinson’s constraint qualification holds at the
iterates (x̄r , ūr ) w.r.t. the surrogate problem (OCTCC(θr )) for sufficiently large r .
Consequently, the assumption that (x̄r , ūr ) is a KKT point of (OCTCC(θr )) would
not be restrictive anymore provided (x̄r , ūr ) is a locally optimal solution of the relaxed
surrogate.

Note that the upcoming result can be seen as a natural extension of [13, Theo-
rem 3.2] which shows that the validity of MPCC-MFCQ at the limit point produced
by Scholtes’ relaxation scheme (applied to standard MPCCs) implies that MFCQ
holds in a neighborhood of this point for all the relaxed surrogate problems where the
relaxation parameter is sufficiently small. The proof of this result is omitted since it
follows easily reprising the arguments in [13] while recalling that the linear operator
(S̄,ST ) : L2(I )m → L2(I )n × R

n is surjective, see [5, Lemmas 7.1 and 7.4].
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Lemma 3.2 Let the constraint qualification (CQ) be valid. Then, Robinson’s constraint
qualification is valid at the iterates (x̄r , ūr ) for sufficiently large r ∈ N. Particularly,
if (x̄r , ūr ) is locally optimal for (OCTCC(θr )), then it satisfies the KKT conditions
from Definition 3.1.

In our above considerations, we only commented on Scholtes’ relaxation scheme.
Investigating the presented proofs which, from the infinite-dimensional point of view,
only exploit the controllability of (ODE) and the present function space setting but
not the precise geometry of the relaxed feasible set, similar results are likely to be
satisfied for other relaxation schemes, see [13].

4 Numerical experiments

4.1 Discretization strategy

Throughout the section, we assume ud ∈ H1(I )m which is non-restrictive in the
setting of the aforementioned underlying real-world applications where ud generally
vanishes, see [4,7,15,16]. Invoking Theorem 3.2, we now can restrict our consideration
to the situationwhere the control function in (OCTCC) is chosen from H1(I )m . Noting
that H1(I ) is continuously embedded into C(I ), see [1, Theorem 6.3], the pointwise
evaluation of state and control functions is reasonable in this setting.

For the computational treatment of (OCTCC) via a sequence of surrogate prob-
lems of the form (OCTCC(θr )), we rely on a first-discretize-then-optimize-approach.
Therefore, we decompose I into N ∈ N equidistant intervals of length h := T /N .
The discretized variables are given by xs := x(hs) and us := u(hs) for s = 0, . . . , N .
Note that the data functions xd and ud are discretized similarly. Now, we need to
choose an appropriate strategy to represent the discretized linear system associated
with (ODE). Therefore, we exploit the trapezoidal rulewhich is a certainRunge–Kutta
method, see [8]. Particularly, we set

xs+1 = xs + h
2

[
A

[
xs + xs+1

] + B
[
us + us+1]

]
s = 0, . . . , N − 1.

For any function w ∈ H1(I ), we have
∫ T

0
w(t)dt ≈

N−1∑

s=0

w(sh) + w((s + 1)h)

2N
= 1

N

(
1
2w(0) +

N−1∑

s=1

w(sh) + 1
2w(T )

)

.

This observation provides the following discretization scheme for the norms in the
objective functional of (OCTCC):
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1
2 ‖x − xd‖2L2(I )n

= 1

2

n∑

i=1

∫ T

0
(xi (t) − xd,i (t))2dt

≈ 1

2N

n∑

i=1

(
1
2 (x0,i − xd,0,i )2 +

N−1∑

s=1

(xs,i − xd,s,i )2 + 1
2 (xT ,i − xd,T ,i )

2

)

.

Similarly, the term σ
2 ‖u − ud‖2L2(I )m is discretized.

Note that whenever ud /∈ H1(I )m holds true, we cannot rely on the pointwise
evaluation of the control which only possesses L2-regularity in general. Thus, the
above discretization strategy has to be changed slightly. One possible way in order to
proceed might be the approximation of the control by piecewise constant functions,
see e.g. [10, Section 5].

The resulting finite-dimensional programs are (due to the relaxation of the terminal
complementarity constraint) standard nonlinear problems which can be solved using
e.g. the interior-point-solver IPOPT, see [23].

In this study, we focus on the theoretical details of the suggested relaxation method
which is why the derivation of error estimates for the suggested Runge–Kutta method
is clearly beyond of the paper’s scope. However, let us brieflymention that related con-
siderations regarding the numerical analysis of optimal control problems of ordinary
differential equations can be found in [8–10,22]. Another idea for the derivation of
error estimates for a different discretization strategywould be to couple thewell-known
method of variational discretization, where a discrete counterpart of the solution oper-
ator to (ODE) depending on h and its convergence in a suitable operator topology are
considered, see [11,12], with already available error estimates for the numerical han-
dling of linear ordinary differential equations via higher order Runge–Kutta schemes,
see [8]. Noting that the terminal constraints in (ODE) and (OCTCC(θr )) are not con-
vex, the foreshadowed considerations may turn out to be technically challenging.

4.2 Example 1

Here, we first review [5, Example 7.9] in terms of the presented numerical method.
For n = m := 2 and T := ln 2, we consider the problem

1
2

(‖x1 − 1‖2L2(I ) + ‖x2‖2L2(I )

) + 1
2

(‖u1‖2L2(I ) + ‖u2‖2L2(I )

) → min
x,u

ẋ1(t) − u1(t) = ẋ2(t) − u2(t) = 0 a.e. on I

x1(0) = x2(0) = 0

x1(T ) − x2(T ) ≤ 0

0 ≤ x1(T ) ⊥ x2(T ) ≥ 0.
(3)

From [5] we know that the unique global solution of (3) is given by
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Fig. 1 Surface plots of the solutions to the discretized, relaxed surrogate problems

x̄1(t) = 1
3 sinh(t) − cosh(t) + 1, ū1(t) = 1

3 cosh(t) − sinh(t), x̄2(t) = ū2(t) = 0

for all t ∈ I . First, we analytically calculate the optimal solution of the associated
relaxed problem in the given function space setting. For this purpose, we introduce

xc1(t) := c sinh t − cosh h + 1 xd2 (t) := d sinh t

uc1(t) := c cosh t − sinh t ud2(t) := d cosh t

for all t ∈ I and constants c, d ∈ R. Using standard methods, see [14], one can easily
check that the relaxation of problem (3) possesses two KKT points which depend on
θ > 0. For θ ≥ 1/25, we set c1 := 7/15 and d1 := 2/15 in order to obtain the
KKT point P = (x̄1, ū1) := ((xc11 , xd12 ), (uc11 , ud12 )). Furthermore, for any θ ≤ 1

3

√
5,

c2(θ) := 1
3 (2

√
θ +1), and d2(θ) := 2

3

√
θ , another KKT point Q(θ) = (x̄2(θ), ū2(θ))

is given by ((xc2(θ)
1 , xd2(θ)

2 ), (uc2(θ)
1 , ud2(θ)

2 )). One can easily check that both KKT
points coincide for θ = 1/25. The objective value of P equals 19/30, while the
objective value of Q(θ) is given by 5

6θ − 1
3

√
θ + 2

3 . Comparing both, the global
minimizer of the θ -relaxation is given by Q(θ) for any θ ∈ (0, 1/25) and P for
θ ∈ [1/25,∞).

Figure 1 shows the evolution of controls and states for θ ∈ [0, 0.04] and N =
500. Note that IPOPT computes the global minimizer of the relaxed problems for
sufficiently small values of θ .
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4.3 Example 2

The following example reflects the situation of multi-agent-control with terminal fric-
tion conditions. Let us consider na ∈ N agents whose position at time t is denoted by
xi (t), i = 1, . . . , na . All agents need to start their movements at time t = 0 at the point
0. It is desirable that agent i moves as close to the given path xd,i as possible for all
i = 1, . . . , na . By xi+na := ẋi , we denote the speed of agent i , i = 1, . . . , na , which
can be controlled by ui . At terminal time T , the agents need to satisfy given frictional
constraints in order to allow the sharing of goods while their respective speed must be
zero. Thus, we have n = 2na andm = na in this situation and it can be easily checked
that the associated ODE-system satisfies the proposed controllability assumption. An
overall formulation of the problem is given by

1
2

na∑

i=1

(∥
∥xi − xd,i

∥
∥2
L2(I ) + ∥

∥xi+na

∥
∥2
L2(I )

)

+σ
2

na∑

i=1

‖ui‖2L2(I ) → min
x,u

ẋi (t) − xi+na (t) = 0 a.e. on I , i = 1, . . . , na
ẋi+na (t) − ui (t) = 0 a.e. on I , i = 1, . . . , na

xi (0) = 0 i = 1, . . . , 2na
xi+na (T ) = 0 i = 1, . . . , na

0 ≤ G j (xT ) ⊥ Hj (xT ) ≥ 0 j ∈ K.

(4)
For our numerical calculation, we choose T := 1, na := 2, σ := 10−2, and k := 1

with

G1(xT ) := 1 − x1(T ) H1(xT ) := 1 − x2(T )

for all x ∈ H1(I )4. Furthermore, let us set xd,1(t) := t − t2 and xd,2(t) := t2 − t3 for
all t ∈ I . Note that we have xd,1(1) = xd,2(1) = 0 for this choice of the desired states
which clearly antagonizes the complementarity requirement on x1 and x2.

It is important to highlight that IPOPT allows to compute the numerical solution of
the relaxed problemassociatedwith (4)without any relaxation.However, the algorithm
solves a sequence of barrier problems that may lead to infeasible solutions of the
original problem if the feasible set is too small. Furthermore, it turns out that regarding
different starting points, the relaxation approach is much more robust than a direct
treatment of (4) when it comes down to identifying global minimizers. Thus, it is
reasonable to rely on the relaxation approach.

To start, we note that due to na = 2, the discretized problem associated with (4) can
be decomposed into two convex programs by replacing the terminal complementarity
constraint by xT ,1 = 1 and xT ,2 ≤ 1 in the first or xT ,1 ≤ 1 and xT ,2 = 1 in the
second case. Thus, by comparing the solution of both programs one can find the global
minimizer and its corresponding objective value Obj(N )∗, where N denotes the total
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Fig. 2 Position of the agents x1 (dots) and x2 (triangles) for (θ, N ) ∈ {0.1, 0.05, 0.01} × {80, 400}

number of (equidistant) sampling intervals. We emphasize that the global minimizer,
which clearly depends on N , satisfies xT ,1 = 1 and xT ,2 < 1 for sufficiently large N .
The strategy helps to determine the relative gap G(θ, N ) between the objective value
of the relaxed problem Obj(θ, N ) at the solution determined by IPOPT and Obj(N )∗
which computes as stated below:

G(θ, N ) :=
∣∣
∣∣
Obj(θ, N ) − Obj(N )∗

Obj(N )∗

∣∣
∣∣ .

We note that Obj(θ, N ) does not necessary equal the optimal objective value of the
associated θ -relaxation with N sampling intervals since the latter is nonconvex and it
cannot be guaranteed that IPOPT finds its global minimizer.

We solve the discretized surrogate problem for all

(θ, N ) ∈ {0.01, 0.05, 0.1} × {80, 160, 240, 320, 400}

in order to test the performance of the relaxations. Here, we follow the approach of [13]
by starting with large values of θ , i.e., θ = 0.1 and decreasing its value while using
the previously found solution as a starting vector. This approach allows to improve the
quality of the solution as θ is reduced. In order to start the algorithm, we use the global
minimizer of the program (4) where the complementarity constraint is weakened to
the nonnegativity requirements G j (xT ), Hj (xT ) ≥ 0 for all j ∈ K. We note that the
resulting program is convex and its global minimizer is easily computed usingIPOPT.

To illustrate our findings, Fig. 2 displays the position x1 and x2 of the agents for
different combinations of θ and N . One easily sees that feasibility for the complemen-
tarity problem is achieved as θ tends to zero.

We note that IPOPT solves the θ -relaxations globally in this example and bymeans
of Theorem 3.1, the associated sequence of solutions tends to the global minimizer of
the underlying complementarity program (4) as θ falls to zero. Particularly, the con-
sideration of the relative gap G(θ, N ) is meaningful and we report on the development
of G(θ, N ) in Table 1. As expected, for fixed N , G(θ, N ) tends to zero as θ falls to
zero.
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Table 1 Development of relative gap G(θ, N )

G(θ, N ) N

80 160 240 320 400

θ

0.1 0.1750 0.1773 0.1781 0.1785 0.1788

0.05 0.0901 0.0909 0.0912 0.0913 0.0914

0.01 0.0182 0.0183 0.0184 0.0184 0.0184

5 Conclusions

Terminal complementarity constraints appear frequently in the context of optimal con-
trol of linear dynamical systems. Common examples arise in the fields of multi-agent
control, satellite clustering [7], flocking [18], spacecraft formation [4], or natural gas
balancing [15]. In this work, we have shown that relaxation methods which are well
known from finite-dimensional complementarity programming, see [13], can be used
to treat optimal control problems with terminal complementarity constraints. Exem-
plary, we analyzed Scholtes’ relaxation technique but similar results are likely to hold
for different relaxation approaches. On the one hand, it has been shown that global
solutions of the relaxed surrogate problems converge in norm to a global minimizer of
the complementarity problem. On the other hand, we demonstrated that a sequence of
KKT points associated with the relaxed surrogate problems converges (under reason-
able assumptions) to a C-stationary point of the complementarity problem. Numerical
examples were presented to illustrate the method and visualize possible applications
in multi-agent control.

There exist many interesting topics deserving further investigation like the com-
putation of error estimates resulting from discretization or the practical solution of
real-world problems exploiting the proposed numerical method.

Acknowledgements The authorswould like to thank the anonymous reviewers for somevaluable comments
which helped us to improve the presentation of our results.
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