
Computational Optimization and Applications (2019) 72:363–390
https://doi.org/10.1007/s10589-018-0045-8

A primal-dual interior-point method based on various
selections of displacement step for symmetric optimization

Baha Alzalg1,2

Received: 12 June 2017 / Published online: 8 November 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
In this paper, we develop a primal-dual central trajectory interior-point algorithm for
symmetric programming problems and establish its complexity analysis. The main
contribution of the paper is that it uniquely equips the central trajectory algorithm
with various selections of the displacement step while solving symmetric program-
ming. To show the efficiency of the proposed algorithm, these selections of calculating
the displacement step are compared in numerical examples for second-order cone pro-
gramming, which is a special case of symmetric programming.

Keywords Symmetric programming · Interior-point methods · Primal-dual methods ·
Central trajectory methods · Jordan algebras

Mathematics Subject Classification 90C30 · 90C46 · 90C51 · 17A15

1 Introduction

Symmetric programming problems [1,2] are convex optimization problems in which
weoptimize a linear objective function over the intersection of an affine linearmanifold
with the Cartesian product of symmetric cones. Linear programming, second-order
cone programming [3,4] and semidefinite programming [5,6] are well known and
important special cases of symmetric programs. Interior-point methods are consid-
ered one of the effective methods developed for general symmetric programming
problems (see for example [1,2,7–9]). For certain classes of optimization problems
over symmetric cones complete interior point methods were developed. See, for exam-
ple, [10–13] for linear programming, [3,4,14–18] for second-order cone programming,
and [5,6,19–22] for semidefinite programming.

B Baha Alzalg
b.alzalg@ju.edu.jo

1 Department of Mathematics, The University of Jordan, Amman 11942, Jordan

2 School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-018-0045-8&domain=pdf

364 B. Alzalg

Interior-point methods consist of two elements: namely, calculating a step or search
direction that places one in the direction of a central path, and calculating a dis-
placement step-size in order to enforce some sort of feasibility (more specifically,
the positive-definiteness) of the subsequent iterate. Throughout this paper, we use the
term “displacement step” instead of “displacement step-size” for the sake of simplicity.
In fact, the main challenge to be faced in establishing an iteration in an interior-point
algorithm is that the determination and computation of the displacement step along the
search direction. Calculating the displacement step using classical line search meth-
ods is undesirable and even generally impossible [20,23]. Touil et al. [23] developed
an interior-point algorithm for semidefinite programming and presented some strate-
gies for determining the displacement step for the developed algorithm. Extensions of
interior-point methods for semidefinite programming to general symmetric cones can
be found in the literature (see for example [14–18]), but only in terms of calculating
the search direction, not preserving geometric feasibility conditions thereafter. This
paper presents some strategies for determining the displacement step for a particu-
lar interior-point method on general symmetric cones. So, our focus in this paper is
not on the search direction, but on the displacement step. In other words, we are not
developing a new step, but a new step size.

We can separate two types of interior-point methods: projective methods [10–
12,24,25] and (feasible or infeasible) central trajectory methods [19,23,26,27]. The
interior-point method developed by Touil et al. [23] for semidefinite programming
is a feasible central trajectory algorithm. The focus in this paper is on solving sym-
metric programming by feasible central trajectory methods. More specifically, this
work exploits the Jordan algebraic structure of the symmetric cone to derive a feasible
primal-dual central trajectory algorithm for symmetric programming and to present
some strategies for determining the displacement step for the proposed algorithm by
extending the work of Touil et al. [23] for the semidefinite case to the general sym-
metric case.

In this paper, we associate a perturbed problem to symmetric programming problem
and apply Newton’s method to treat the corresponding perturbed equations in order
to obtain a descent search direction. The main contribution of this paper is that it
uniquely proposes four different selections to calculate the displacement step along
the search direction while solving symmetric programming. Our work is not a trivial
generalization of that in [23], however, because a deep understanding of the Euclidean
Jordan algebras is very important to establish the analysis of this paper. The main
difficulties in developing our analysis are caused by establishing and proving the
selections of determining the displacement step in the framework of Euclidean Jordan
algebras.

There are widely available software packages than can handle symmetric programs
in general, and second-order cone programs in particular. Optimization solvers such
as MOSEK [28] and SDPT3 [29] are based on the interior-point methods and are well
suited for symmetric programming problems. The efficiency of our proposed algo-
rithms is shown by presenting numerical experiments on second-order cone programs
comparing with SDPT3 and MOSEK.

This paper is organized as follows. In Sect. 2, we briefly review the basics of
the Euclidean Jordan algebra associated with the symmetric cone and provide some

123

A primal-dual interior-point method based on various… 365

preliminary results. In Sect. 3, we introduce the problem formulation and make some
assumptions, then we apply Newton’s method to the perturbed problem. In Sect. 4,
we propose four different selections of calculating the appropriate displacement step.
Section 5 is devoted to present a feasible primal-dual central trajectory algorithm.
The complexity analysis of the proposed algorithm is presented in Sect. 6. In Sect. 7,
we compare the four selections of computing the displacement step and show the
efficiency of the proposed algorithm in some numerical examples for second-order
cone programs. Section 8 contains some concluding remarks.

2 Background and preliminary results

In this section, we provide the necessary background for the subsequent sections. First,
we review some statistical inequalities needed for deriving some results in the work.
Then, we briefly review the definitions of self-duality, homogeneity and symmetric
cones. Finally, we review the basics of the theory of Euclidean Jordan algebras.

2.1 Preliminary statistical inequalities

In this part, we review some statistical inequalities needed for the derivation of some
of the results in the paper.

Let x1, x2, . . . , xn ∈ R be a sample of size n, then its mean x̄ and its standard
deviation σx are respectively defined as

x̄ := 1

n

n∑

k=1

xk and σ 2
x := 1

n

n∑

k=1

x2k − x̄2 = 1

n

n∑

k=1

(xk − x̄)2.

The first statement in the following proposition is due to [30] and the second statement
is due to [20, Theorem 5].

Proposition 2.1 Assume that x ∈ R
n, then we have

x̄ − σx
√
n − 1 ≤ min

1≤k≤n
xk ≤ x̄ − σx√

n − 1
, and

x̄ + σx√
n − 1

≤ max
1≤k≤n

xk ≤ x̄ + σx
√
n − 1.

In particular, if xk > 0 for all k = 1, 2, . . . , n, then we also have

n ln
(
x̄ − σx

√
n − 1

)
≤ A ≤

n∑

k=1

ln(xk) ≤ B ≤ n ln(x̄), where

A = (n − 1) ln

(
x̄ + σx√

n − 1

)
+ ln

(
x̄ − σx

√
n − 1

)
, and

B = (n − 1) ln

(
x̄ − σx√

n − 1

)
+ ln

(
x̄ + σx

√
n − 1

)
.

123

366 B. Alzalg

2.2 Preliminary conical definitions

A cone is said to be closed iff it is closed under the taking of sequential limits, convex
iff it is closed under taking convex combinations, pointed iff it does not contain two
opposite nonzero vectors (so the origin is an extreme point), solid iff it has a nonempty
interior, and regular iff it is a closed, convex, pointed, solid cone.

Definition 2.1 Let V be a finite-dimensional Euclidean vector space over R with an
inner product “〈·, ·〉”. The dual cone of a regular cone K ⊂ V is denoted by K� and
is defined as

K� := {s ∈ V : 〈x, s〉 ≥ 0, ∀x ∈ K}.

A regular coneK is said to be self-dual if it coincides with its dual cone, i.e.,K = K�.

The general linear group of degree n overR is denoted by GL(n,R) and is defined
to be the set of all nonsingular matrices of order n with entries from R, together with
the operation of ordinary matrix multiplication. For a regular coneK ⊂ V, we denote
by Aut(K) the automorphism group of K , i.e.,

Aut(K) := {ϕ ∈ GL(n,R) : ϕ(K) = K}.

Definition 2.2 Let V be a finite-dimensional real Euclidean space. A regular cone
K ⊂ V is said to be homogeneous if for each u, v ∈ intK , there exists an nonsingular
linear map F : V −→ V such that

F(K) = K (i.e., F is an automorphism of K), and F(u) = v.

In other words, Aut(K) acts transitively on the interior of K .

A regular K cone is said to be symmetric if it is both self-dual and homogeneous.

2.3 Preliminaries of Euclidean Jordan algebras

In this subsection, we review some basic definitions and notions from the theory of
Jordan algebras. The text of Faraut and Korányi [31] covers the foundations of this
theory. Our presentation in this subsection follows that of [1, Section 2]. In order
to make our presentation concrete, we give some examples from the algebra of the
second-order cone as an interesting paradigm for understanding the theory of Jordan
algebras.

We use “,” for adjoining scalars, vectors and matrices in a row, and use “;” for
adjoining them in a column. So, for instance, if u and v are vectors, we have

[
u
v

]
= (uT, vT)T = (u; v).

123

A primal-dual interior-point method based on various… 367

LetJ be afinite-dimensional vector space overR. Amap◦ : J×J −→ J is called
bilinear if (αx+β y)◦ z = α(x◦ z)+β(y◦ z) and x◦(α y+β z) = α(x◦ y)+β(x◦ z)
for all x, y, z ∈ J and α, β ∈ R. The vector spaceJ over R is called an algebra over
R if a bilinear map ◦ : J × J −→ J exists.

Let x be an element in an algebra J , then we define x(1) := x and define x(n)

recursively by x(n) := x ◦ x(n−1) for n ≥ 2.

Definition 2.3 LetJ be an algebra over R with a bilinear product ◦ : J ×J −→ J .
Then (J, ◦) is called a Jordan algebra if for all x, y ∈ J we have

x ◦ y = y ◦ x (commutativity), and

x ◦ (x(2) ◦ y) = x(2) ◦ (x ◦ y) (Jordan’s axiom).

The product x ◦ y between two elements x and y of a Jordan algebra (J, ◦)

is called the Jordan multiplication between x and y. A Jordan algebra (J, ◦) has
an identity element if there exists a (necessarily unique) element e ∈ J such that
x ◦ e = x for all x ∈ J . A Jordan algebra (J, ◦) is not necessarily associative, that
is, x ◦ (y ◦ z) = (x ◦ y) ◦ z may not generally hold. However, it is power associative,
i.e., x(p) ◦ x(q) = x(p+q) for all integers p, q ≥ 1.

Example 2.1 For each vector x ∈ R
n whose first entry is indexed with 0, wewrite x̃ for

the subvector consisting of entries 1, through n−1 (therefore x = (x0; x̃) ∈ R×R
n−1).

We let En denote the nth dimensional real vector space R×R
n−1 whose vectors x are

indexed from 0. Consider the multiplication ◦ : En × En −→ En defined as

x ◦ y :=
[
x0y0 + x̃T ỹ
x0 ỹ + y0 x̃

]
, (1)

for x, y ∈ En . It is easy to see that the space En with the multiplication “◦” forms a
Jordan algebra with the identity vector e := (1; 0) .

Definition 2.4 AJordan algebraJ is calledEuclidean if there exists amap • : (J, ◦)×
(J, ◦) −→ R such that for all x, y, z ∈ J we have

(1) x • x > 0 for all x �= 0 (positive definiteness);
(2) x • y = y • x (symmetry);
(3) x • (y ◦ z) = (x ◦ y) • z (associativity).

That is, J admits a positive definite, symmetric, quadratic form which is also asso-
ciative.

The degree of an element x ∈ J (denoted by deg(x)) is the smallest integer d
such that the set

{
e, x, x(2), . . . , x(d)

}
is linearly independent. The rank of a Jordan

algebra J (denoted by rank(J)) is the largest deg(x) of any element x ∈ J . An
element x ∈ J is called regular if deg(x) = rank(J). Throughout the rest of this
section, we let J be a rank-r Euclidean Jordan algebra.

123

368 B. Alzalg

Let x be an element of degree d in a Euclidean Jordan algebra J . Since
{e, x, x2, . . . , xd} is linearly dependent, there are real numbers a1(x), a2(x), . . . ,

ad(x), not all zero, such that

q(x) := xd − a1(x)xd−1 + a2(x)xd−2 + · · · + (−1)dad(x)e = 0.

We call q the minimal polynomial of x. If x is a regular element of a Euclidean
Jordan algebra, then we define its characteristic polynomial to be equal to its min-
imal polynomial. Since the set of regular elements is dense in J , we can extend
characteristic polynomials to all x in J . So, the minimal polynomial coincides
with the characteristic polynomial for regular elements and divides the character-
istic polynomial of non-regular elements. Let x be an element in a rank-r algebra
J , then its eigenvalues are the roots λ1, λ2, . . . , λr of its characteristic polynomial
p(λ) = λr − a1(x)λr−1 + a2(x)λr−2 + · · · + (−1)r ar (x).

Two elements c1, c2 ∈ J are said to be orthogonal if c1 ◦ c2 = 0. A set of elements
ofJ is orthogonal if all its elements are mutually orthogonal to each other. An element
c ∈ J is said to be an idempotent if c(2) = c. An idempotent is primitive if it is non-zero
and cannot be written as a sum of two (necessarily orthogonal) non-zero idempotents.
A subset {c1, c2, . . . , ck} ofJ is called a Jordan frame if it is a complete system (i.e.,
c1 + c2 + · · · + ck = e) of orthogonal primitive idempotents.

Note that Jordan frames always have r primitive idempotents in them, so in Jordan
frames k = r .

Theorem 2.1 (Spectral decomposition I, [31, Theorem 6]). LetJ be a Euclidean Jor-
dan algebra. Then for each x ∈ J there exist unique real numbers λ1(x), λ2(x), . . . ,

λk(x), all distinct, and a unique complete system of orthogonal idempotents
c1(x), c2(x), . . . , ck(x) such that

x = λ1(x)c1(x) + · · · + λk(x)ck(x).

Theorem 2.2 (Spectral decomposition II, [31, Theorem 7]). Let J be a rank-
r Euclidean Jordan algebra. Then for each x ∈ J there exist real numbers
λ1(x), λ2(x), . . . , λr (x) and a Jordan frame c1(x), c2(x), . . . , cr (x) such that

x = λ1(x)c1(x) + · · · + λr (x)cr (x), (2)

and λ1, λ2, . . . , λr are the eigenvalues of x.

The elements x and y of a Jordan algebra are called simultaneously decomposed
if they share a Jordan frame, i.e., x = λ1(x) c1 + · · · + λr (x) cr and y = λ1(y) c1 +
· · ·+λr (y) cr for a Jordan frame {c1, . . . , cr } (hence, we have ci (x) = ci (y) for each
i = 1, . . . , r). Two elements x and y are said to operator commute if for all z, we
have that x ◦ (y ◦ z) = y ◦ (x ◦ z). Two elements of a Euclidean Jordan algebra are
simultaneously decomposed iff they operator commute [1, Theorem 27].

Let x be an element in a Jordan algebra J with the spectral decomposition given
in (2). Then trace(x) := λ1(x) + · · · + λr (x) is called the trace of x in J , and
det(x) := λ1(x) · · · λr (x) is the determinant of x in J .

123

A primal-dual interior-point method based on various… 369

For a Euclidean Jordan algebra J , we define the Frobenius inner product between
two elements x, y ∈ J as

x • y := trace(x ◦ y).

Due to the bilinearity of “◦”, one can show that themap “•” satisfies the three conditions
in Definition 2.4. (See [1, Section 2]).

Example 2.2 One can easily show that the algebra En , with the Jordan multiplication
“ ◦” defined in (1), forms a Euclidean Jordan algebra under the inner product x • y =
2xT y = 2

(
x0y0 + x̃T ỹ

)
.

Now, for x ∈ J having the spectral decomposition given in (2), we can define x2

as

x2 := (λ1(x))2c1(x) + · · · + (λr (x))2cr (x).

One can easily see that x2 = x ◦ x = x(2).
If det(x) �= 0 (i.e., all λi (x) �= 0), thenwe say that x is nonsingular. In this case, the

inverse of x, which is denoted by x−1, is the unique element that satisfies x−1 ◦ x = e.
Therefore,

x−1 := 1

λ1(x)
c1(x) + · · · + 1

λr (x)
cr (x).

More generally, if f : R → R is continuous, then it is also possible to extend the
above definition to define f (x) as

f (x) := f (λ1(x))c1(x) + · · · + f (λr (x))cr (x).

In particular, the square root of x is defined as

x1/2 := √
λ1(x)c1(x) + · · · + √

λr (x)cr (x),

provided that λi (x) ≥ 0, i = 1, 2, . . . , r .
The cone of squares of J is defined as KJ := {

x2 : x ∈ J}
. The logarithmic

barrier function, which is defined on the interior ofKJ (denoted by intKJ) as �(x) :=
− ln det (x), will play an important role for our subsequent development.

In the following theorem, we give the Jordan algebraic characterization of symmet-
ric cones.

Theorem 2.3 [1, Theorem 2] A regular cone is symmetric iff it is the cone of squares
of some Euclidean Jordan algebra.

Example 2.3 The cone of squares of the algebra (En, ◦), with “ ◦” defined in (1), is the
second-order cone, which is defined as

En+ := {x : x0 ≥ ‖x̃‖} .

123

370 B. Alzalg

The mappings introduced in following definition play an important role in the
development of the interior point methods for conic programming [1].

Definition 2.5 Let x be an element in a Jordan algebra J . Then

(a) The linear map L(x) : J −→ J is defined as L(x) y := x ◦ y for all y ∈ J .
(b) The quadratic representation of x, Q(x) : J −→ J , is defined as Q(x) :=

2L(x)2 − L(x2).

Note that Q(x) is also a linear operator inJ . Note also that L(x)e = x, L(x)x = x2,
L(e) = Q(e) = I , trace(e) = 2 and det(e) = 1 (since all the eigenvalues of e are
equal to one).

The Frobenius norm of an element x ∈ J is defined as ‖x‖F := √
x • x =√∑r

i=1 λ2i (x). For any x, y ∈ J , we have

‖x ◦ y‖F ≤ ‖x‖ ‖ y‖F ≤ ‖x‖F ‖ y‖F and ‖x+ y‖2F = ‖x‖2F +‖ y‖2F +8x • y. (3)

All the above notions are also used in the block sense as follows. Let (J1, ◦1, •1),
(J2, ◦2, •2), . . ., (Jq , ◦q , •q), beEuclidean Jordan algebraswith identities e1, e2, . . . , eq
and cone of squaresKJ1 ,KJ2 , · · · ,KJq , respectively. Let also x := (x1; x2; . . . ; xq)
and y := (y1; y2; . . . ; yq) with xi , yi ∈ Ji for i = 1, 2, . . . , q. Then

(a) KJ := KJ1 ×KJ2 ×· · ·×KJq is the cone of squares ofJ := J1×J2×· · ·×Jq .
(b) e := (

e1; e2; . . . ; eq
)
is the identity vector of J .

(c) x ◦ y := (x1 ◦1 y1; x2 ◦2 y2; . . . ; xq ◦q yq).
(d) x • y := x1 •1 y1 + x2 •2 y2 + · · · + xq •q yq .
(e) L(x) := L(x1) ⊕ L(x2) ⊕ · · · ⊕ L(xq)1.
(f) Q(x) := Q(x1) ⊕ Q(x2) ⊕ · · · ⊕ Q(xq).
(g) f(x):=(f (x1); f (x2); . . . ; f (xq)). In particular, x−1 :=(

x1−1; x2−1; . . . ; xq−1
)
.

(h) ‖x‖2F := ‖x1‖2F + ‖x2‖2F + · · · + ‖xq‖2F .
(i) The logarithmic barrier is defined on intKJ as �(x) := −∑q

i=1 ln det (xi).
(j) x and y operator commute iff xi and yi operator commute for each i = 1, 2, . . . , q.

We write x �KJ 0 (or simply x � 0 when KJ is known from the context) to
mean that x ∈ KJ (i.e., x is positive semidefinite). We also write x � 0 to mean
that x ∈ intKJ (i.e., x is positive definite), and write x � y (x � y) to mean that
x − y � 0 (x − y � 0). Note that x � 0 (x � 0) iff λi (x) ≥ 0 (λi (x) > 0) for
i = 1, 2, . . . , r .

3 Problem formulation and Newton’s method

In this section, we introduce the primal and dual forms of symmetric programming
problem and the perturbed problem. Then we apply Newton’s method to the perturbed
problem.

1 The direct sum of two square matrices A and B is the block diagonal matrix A ⊕ B :=
[
A 0
0 B

]
.

123

A primal-dual interior-point method based on various… 371

3.1 Problem formulation and assumptions

Let q ≥ 1 be an integer. For each i = 1, 2, . . . , q, let n, ni , r and ri be positive inte-
gers such that n := ∑q

i=1 ni and r := ∑q
i=1 ri . Let (J1, ◦1, •1), (J2, ◦2, •2), . . .,

(Jq , ◦q , •q) be Euclidean Jordan algebras with dimensions n1, n2, . . . , nq , ranks
r1, r2, . . . , rq , identities e1, e2, . . . , eq and cone of squares KJ1 ,KJ2 , . . .KJq ,
respectively, and let

(J, ◦, •) := (J1, ◦1, •1) × (J2, ◦2, •2) × · · · × (Jq , ◦q , •q),
KJ := KJ1 × KJ2 × · · · × KJq .

Let also y, b ∈ R
m , and x, c, s ∈ J and A ∈ R

m×n be such that they are conformally
partitioned as

x := (x1; x2; . . . ; xq), s := (s1; s2; . . . ; sq), c := (c1; c2; . . . ; cq), and

A := (A1, A2, . . . , Aq),

where xi , si , ci ∈ Ji and Ai ∈ R
m×ni for i = 1, 2, . . . , q. More specifically, the

submatrix Ai consists of m rows a(i)
1 , a(i)

2 , . . . , a(i)
m ∈ Ji and acts as a linear transfor-

mation that maps xi to the mth-dimensional vector whose j th component is a(i)
j •i xi

for each i = 1, 2, . . . , q.
The symmetric programming problem and its dual in multi-block structures are

defined as [1, Section 3]

min c1 •1 x1 + · · · + cq •q xq max bT y
(Pi) s.t. A1x1+· · · + Aq xq = b, (Di) s.t. Ai

T y+si = ci , i = 1, . . . , q,

xi � 0, i=1, . . . , q; si � 0, i=1, . . . , q.

We can rewrite the pair (Pi , Di) compactly as

min c • x max bT y
(P) s.t. Ax = b, (D) s.t. AT y + s = c,

x � 0; s � 0.

The general scheme of the central trajectorymethods is as follows.We associate the
perturbed problems to symmetric programming problem (P) and (D), then we draw
a path of the centers defined by the perturbed KKT optimality conditions. After that,
Newton’s method is applied to treat the corresponding perturbed equations in order to
obtain a descent search direction. As we mentioned earlier, we propose four different
selections of calculating the displacement step.

Let μ > 0 be a barrier parameter and σ ∈ (0, 1) be the centering parameter. The
perturbed primal problem corresponding to the primal problem (P) is

(Pμ)

min fμ(x) := c • x + σμ �(x) + rμ lnμ

s.t. Ax = b,
x � 0,

123

372 B. Alzalg

and the perturbed dual problem corresponding to the dual problem (D) is

(Dμ)

max gμ(y, s) := bT y − σμ �(s) − rμ lnμ

s.t. AT y + s = c,
s � 0.

Now, we define the following feasibility sets:

FP := {x ∈ J : Ax = b, x � 0} ,

FD := {
(y; s) ∈ R

m × J : AT y + s = c, s � 0
}
,

F ◦
P := {x ∈ J : Ax = b, x � 0} ,

F ◦
D := {

(y; s) ∈ R
m × J : AT y + s = c, s � 0

}
,

F ◦ := F ◦
P × F ◦

D.

Next, we make two assumptions about the primal-dual pair (P, D).

Assumption 3.1 The m rows of the matrix A are linearly independent.

Assumption 3.2 The set F ◦ is nonempty.

Assumption 3.1 is for convenience. Assumption 3.2 requires that Problem (Pμ) and
its dual (Dμ) have strictly feasible solutions, which guarantees strong duality for the
symmetric programming problem. Note that the feasible region for Problems (Pμ) and
(Dμ) is described implicitly by F0. Due to the coercivity of the function fμ on the
feasible set of Pμ, Problem (Pμ) has an optimal solution.

The following lemma proves the convergence of the optimal solution of Problem
(Pμ) to the optimal solution of Problem (P) when μ approaches zero.

Lemma 3.1 Let x̄μ be an optimal primal solution of Problem (Pμ), then x̄ =
limμ→0 x̄μ is an optimal solution of Problem (P).

Proof Let fμ(x) := f (x, μ) and f (x) := f (x, 0). Due to the coercivity of the
function fμ on the feasible set of Pμ, Problem (Pμ) has an optimal solution, say x̄μ,
such that

∇x fμ(x̄μ) = ∇x f (x̄μ,μ) = 0.

Then, for all x ∈ F ◦
P , we have that

f (x) ≥ f (x̄μ,μ) + (x − x̄μ) • ∇x f (x̄μ,μ) + (0 − μ)
∂

∂μ
f (x̄μ,μ)

≥ f (x̄μ,μ) + μ ln det x̄μ − rμ lnμ − rμ
≥ c • x̄μ − μ ln det x̄μ + rμ lnμ + μ ln det x̄μ − rμ lnμ − rμ
≥ c • x̄μ − rμ.

Since x was arbitrary in F ◦
P , this implies that minx∈F ◦

P
f (x) ≥ c • x̄μ − rμ ≥

c • x̄μ = f (x̄μ). On the other side, we have f (x̄μ) ≥ minx∈F ◦
P
f (x). As μ goes to

0, it immediately follows that f (x̄) = minx∈F ◦
P
f (x). Thus, x̄ is an optimal solution

of Problem (P). The proof is complete. ��

123

A primal-dual interior-point method based on various… 373

3.2 Newton’s method and commutative directions

As we mentioned, the objective function of Problem (Pμ) is strictly convex, hence
the KKT conditions are necessary and sufficient to characterize an optimal solution
of Problem (Pμ). Consequently, the points x̄μ and (ȳμ, s̄μ) are optimal solutions of
(Pμ) and (Dμ) respectively iff they satisfy the perturbed nonlinear system

Ax = b, x � 0,
AT y + s = c, s � 0,

x ◦ s = σμe, μ > 0,
(4)

where e := (
en1; en2; . . . ; enq

)
is the identity vector of J .

We call the set of all solutions of system (4), denoted by (xμ, yμ, sμ) with μ > 0,
the central trajectory or central path. We say that a point (x, y, s) is near to the central
trajectory if it belongs to the set Nθ (μ), which is defined as

Nθ (μ) := {
(x; y; s) ∈ F ◦

P × F ◦
D : dF (x, s) ≤ θμ

}
, where

dF (x, s) := ‖Q(x1/2)s − μe‖F and θ ∈ (0, 1).

Now, we can apply Newton’s method to system (4) and obtain the following linear
system

A�x = 0,
AT� y + �s = 0,

x ◦ �s + �x ◦ s = σμe − x ◦ s.
(5)

where (�x;� y;�s) ∈ J × R
m × J is the search direction and μ = 1

r x • s is the
normalized duality gap corresponding to (x, y, s).

Note that the strict second-order cone inequalities x, s � 0 imply that dF (x, s) ≤
‖x ◦ s − μe‖F with equality holds when x and s operator commute [1, Lemma 30].
In fact, it is known that many interesting properties become apparent for the analysis
of interior-point methods when x and s operator commute. The commutative class is
denoted by C(x, s) and is defined as

C(x, s) :={
p ∈ (J, ◦, •) : p is nonsingular, Q(p)x and Q(p−1)s operator commute

}
.

(6)

From [1, Lemma 28], the equality x ◦ s = μe holds iff the equality (Q(p)x) ◦
(Q(p−1)s) = μe holds, for any nonsingular vector p in J . Therefore, for any given
nonsingular vector p ∈ (J, ◦, •), the system (4) is equivalent to the system

Ax = b, x � 0,
AT y + s = c, s � 0,

(Q(p)x) ◦ (Q(p−1)s) = σμe, μ > 0.
(7)

123

374 B. Alzalg

Let v ∈ (J, ◦, •). With respect to a nonsingular vector p ∈ (J, ◦, •), we define
the scaling vectors v and v and the scaling matrix A as

v := Q(p)v, v := Q(p−1)v, and A := Q(p)A.

Using this change of variables and the fact that Q(p) (J) = J , we conclude that the
system (5) is equivalent to the following Newton system

A�x = b − Ax,

AT� y + �s = c− s − AT y,
x ◦ �s + �x ◦ s = σμe − x ◦ s.

(8)

Here, the normalized duality gap is μ = 1
r x • s = 1

r x • s. In fact,

x • s = (
Q(p)x

) • Q(p−1)s = x • Q(p)Q(p−1)s = x • s. (9)

Solving the scaled Newton system (8) yields the search direction
(
�x;� y;�s

)
.

Then, we apply the inverse scaling to
(
�x;�s

)
to obtain the Newton direction

(�x;�s). Note that the search direction
(
�x;� y;�s

)
belongs to the so-called the

MZ family of directions (due to Monteiro [21] and Zhang [13]). In fact, such a way of
scaling originally proposed for semidefinite programming byMonteiro [21] andZhang
[13], and after that it was generalized for general symmetric cone programming by
Schmieta and Alizadeh [1].

Clearly, the set C(x, s) defined in (6) is a subclass of the MZ family of search
directions. Our focus in this paper is in vectors p ∈ C(x, s). We discuss the following
three choices of p (see [1, Section 3]): We may choose p = x1/2 to obtain x = e, and
we may choose p = s−1/2 to obtain s = e. These two choices of directions are called
the HRVW/KSH/M directions (due to Helmberg et al. [22], Monteiro [21] and Kojima
et al. [32]). The third choice of p is given by

p =
(
Q(x1/2)

(
Q(x1/2)s

)−1/2
)−1/2

,

which yields Q2
(p)x = s, and therefore s = Q(p−1)s = Q(p)x = x. This choice of

directions is called the NT direction (due to Nesterov and Todd [7]).

4 Selections of the displacement step

We start by motivating the need for introducing the so-called displacement step. Note
that the positive definiteness of the vectors x+ = x + �x and s+ = s + �s is
not always achieved. In order to circumvent this difficulty, we introduce a parameter
α > 0, for which we call the displacement step-size or simply the displacement step,
then we redefine x+, y+ and s+ as

x+ := x + α�x, y+ := y + α� y, and s+ := s + α�s.

123

A primal-dual interior-point method based on various… 375

Calculating the displacement step using classical line searchmethods is undesirable
and even generally impossible [20,23]. Strategies for determining the displacement
step and preserving positive definiteness exists in the literature for semidefinite pro-
gramming case only [23]. To the best of our knowledge, no such strategies available
for general symmetric programming. From this stems the importance of the results
of this paper. Calculating the search direction for any Newton method for problems
over symmetric cones has been well established in the literature, but there are gaps in
terms of maintaining feasibility. In order to fill such gaps, this section proposes four
different selections of computing the appropriate displacement step for symmetric
optimization. Lemmas 4.1, 4.2, 4.3 and 4.4 below generalize Lemmas 3.3, 3.4, 3.5
and 3.6, respectively, in [23, Section 3]. Each one of the following four lemmas gives
a selection to calculate the displacement step α.

Lemma 4.1 (The first selection lemma). Let (x; y; s) ∈ F ◦
P × F ◦

D. If α =
ρ min{αx, αs} with 0 < ρ < 1, then x+, s+ � 0, where for v ∈ {x, s} we have

αv =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−1

λ̄v − δv
√
r − 1

− ε, if

(−1

λ̄v − δv
√
r − 1

> 0 and min
1≤i≤r

λi

(
v−1/2 ◦

(
�v ◦ v−1/2

))
< 0

)
;

ε, if

(−1

λ̄v − δv
√
r − 1

< 0 and min
1≤i≤r

λi

(
v−1/2 ◦

(
�v ◦ v−1/2

))
< 0

)
;

1, if min
1≤i≤r

λi

(
v−1/2 ◦

(
�v ◦ v−1/2

))
> 0,

(10)
where

λ̄v = 1

r

r∑

i=1

λi

(
v−1/2 ◦

(
�v ◦ v−1/2

))
,

δ2v = 1

n

r∑

i=1

λ2i

(
v−1/2 ◦

(
�v ◦ v−1/2

))
− λ̄2v,

and ε is a small positive real. Here, λi
(
v−1/2 ◦ (

�v ◦ v−1/2
))

, i = 1, 2, . . . , r , are
the eigenvalues of the vector v−1/2 ◦ (

�v ◦ v−1/2
)
.

Proof Since x � 0, the vectors x±1/2 are well-defined and we have x±1/2 � 0. Note
that

x+ = x + α �x = x1/2 ◦ x1/2 + α �x

= x1/2 ◦
((

e + α x−1/2 ◦
(
�x ◦ x−1/2

))
◦ x1/2

)
.

Therefore, as x−1/2 � 0, we have that

x+ � 0 ⇐⇒ x−1/2 ◦ x+ � 0
⇐⇒ (

x−1/2 ◦ x+) ◦ x−1/2 � 0
⇐⇒ e + α x−1/2 ◦ (

�x ◦ x−1/2
) � 0

⇐⇒ 1 + αλi
(
x−1/2 ◦ (

�x ◦ x−1/2
))

> 0, for i = 1, 2, . . . , r .

123

376 B. Alzalg

Hence,

1 + α min
1≤i≤r

λi

(
x−1/2 ◦

(
�x ◦ x−1/2

))
> 0

�⇒ α min
1≤i≤r

λi

(
x−1/2 ◦

(
�x ◦ x−1/2

))
> −1.

If min1≤i≤r λi
(
x−1/2 ◦ (

�x ◦ x−1/2
))

< 0, then α < −1/min1≤i≤r λi
(
x−1/2◦(

�x ◦ x−1/2
))
. Using Proposition 2.1, we conclude that

α <
−1

min
1≤i≤r

λi

(
x−1/2 ◦

(
�x ◦ x−1/2

)) and
−1

λ̄x − δx
√
r − 1

≤ −1

min
1≤i≤r

λi

(
x−1/2 ◦

(
�x ◦ x−1/2

)) .

This gives the expression of αx . Applying the same procedure, we obtain αs. Finally,
we choose α = ρ min{αx, αs} with 0 < ρ < 1. The proof is complete. ��
Lemma 4.2 (The second selection lemma). Let (x; y; s) ∈ F ◦

P × F ◦
D. If α =

ρ min{αx, αs} with 0 < ρ < 1, then x+, s+ � 0, where for v ∈ {x, s} we have

αv =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−1

λ̄v − δv

√
r − 1

− ε, if

(−1

λ̄v − δv

√
r − 1

> 0 and min
1≤i≤r

λi

(
v−1 ◦ �v

)
< 0

)
;

ε, if

(−1

λ̄v − δv

√
r − 1

< 0 and min
1≤i≤r

λi

(
v−1 ◦ �v

)
< 0

)
;

1, if min
1≤i≤r

λi

(
v−1 ◦ �v

)
> 0,

(11)

where

λ̄v = 1

r

r∑

i=1

λi

(
v−1 ◦ �v

)
, δ2v = 1

n

r∑

i=1

λ2i

(
v−1 ◦ �v

)
− λ̄2v,

and ε is a small positive real.Here,λi
(
v−1 ◦ �v

)
, i = 1, 2, . . . , r , are the eigenvalues

of the vector v−1 ◦ �v.

Proof Since x � 0, the vector x−1 is invertible and positive definite (i.e., x−1 � 0).
Note that

x+ = x + α �x = x ◦
(
e + α x−1 ◦ �x

)
.

Therefore, as x−1 � 0, we have that

x+ � 0 ⇐⇒ x−1 ◦ x+ � 0
⇐⇒ e + α x−1 ◦ �x � 0
⇐⇒ 1 + αλi

(
x−1 ◦ �x

)
> 0, for i = 1, 2, . . . , r .

123

A primal-dual interior-point method based on various… 377

Hence,

1 + α min
1≤i≤r

λi

(
x−1 ◦ �x

)
> 0 �⇒ α min

1≤i≤r
λi

(
x−1 ◦ �x

)
> −1.

If min1≤i≤r λi
(
x−1 ◦ �x

)
< 0, then α < −1/min1≤i≤r λi

(
x−1 ◦ �x

)
. Using

Proposition 2.1, we conclude that

α <
−1

min
1≤i≤r

λi

(
x−1 ◦ �x

) and
−1

λ̄x − δx
√
r − 1

≤ −1

min
1≤i≤r

λi

(
x−1 ◦ �x

) .

This gives the expression of αx . Applying the same procedure, we obtain αs. Finally,
we choose α = ρ min{αx, αs} with 0 < ρ < 1. The proof is complete. ��
Lemma 4.3 (The third selection lemma). Let (x; y; s) ∈ F ◦

P × F ◦
D. If α =

ρ min{αx, αs} with 0 < ρ < 1, then x+, s+ � 0, where for v ∈ {x, s} we have

αv =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− λ̄v − δv

√
r − 1

λ̄�v − δ�v

√
r − 1

− ε, if

(
− λ̄v − δv

√
r − 1

λ̄�v − δ�v

√
r − 1

> 0 and min
1≤i≤r

λi (�v) < 0

)
;

ε, if

(
− λ̄v − δv

√
r − 1

λ̄�v − δ�v

√
r − 1

and min
1≤i≤r

λi (�v) < 0

)
;

1, if min
1≤i≤r

λi (�v) > 0,

(12)
where

λ̄v = 1

r

r∑

i=1

λi (v), λ̄�v = 1

r

r∑

i=1

λi (�v), δ2v = 1

r

r∑

i=1

λ2i (v) − λ̄2v,

δ2�v = 1

r

r∑

i=1

λ2i (�v) − λ̄2�v,

and ε is a small positive real. Here, λi (v), i = 1, 2, . . . , r , are the eigenvalues of the
vector v, and λi (�v), i = 1, 2, . . . , r , are the eigenvalues of the vector �v,

Proof It is known that x+ = x+α�x � 0 iffmin1≤i≤r λi (x+) > 0.Here,λi (x+), i =
1, 2, . . . , r , are the eigenvalues of the vector x+. It is also known (see for example
[33]) that

min
1≤i≤r

λi (x+) ≥ min
1≤i≤r

λi (x) + min
1≤i≤r

λi (�x).

Then, it is enough to find α such that

min
1≤i≤r

λi (x+) ≥ min
1≤i≤r

λi (x) + α min
1≤i≤r

λi (�x) > 0.

123

378 B. Alzalg

Hence

min
1≤i≤r

λi (�x) < 0 �⇒ α < − min1≤i≤r λi (x)

min1≤i≤r λi (�x)
.

Using Proposition 2.1, we find

α < − min1≤i≤r λi (x)

min1≤i≤r λi (�x)
and − λ̄x − δx

√
r − 1

λ̄�x − δ�x
√
r − 1

≤ − min1≤i≤r λi (x)

min1≤i≤r λi (�x)
.

This gives the expression of αx . Applying the same procedure, we obtain αs. Finally,
we choose α = ρ min{αx, αs} with 0 < ρ < 1. The proof is complete. ��
Lemma 4.4 (The fourth selection lemma). Let (x; y; s) ∈ F ◦

P × F ◦
D. If α =

ρ min{αx, αs} with 0 < ρ < 1, then x+, s+ � 0, where for v ∈ {x, s} we have

αv =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
i∈Iv

⎛

⎝
ni∑

j �=k=1

∣∣{L(vi)} jk
∣∣

⎞

⎠ − {L(vi)} j j

{L(�vi)} j j −
ni∑

j �=k=1

∣∣{L(�vi)} jk
∣∣
, if Iv �= ∅;

+∞, if Iv = ∅,

(13)

where

Iv :=
⎧
⎨

⎩i ∈ {1, 2, . . . , q} : {L(�vi)} j j −
ni∑

j �=k=1

∣∣{L(�vi)} jk
∣∣ < 0

⎫
⎬

⎭ .

Proof Note that a vector w ∈ J is positive definite (i.e., w � 0) iff L(wi) is positive
definite (i.e., wi � 0) for i = 1, 2, . . . , q [1, Lemma 12]. Then, x+ = x + α�x � 0
if

{L(x+
i)} j j >

ni∑

j �=k=1

∣∣{L(x+
i)} jk

∣∣ , ∀ i = 1, 2, . . . , q. (14)

Observe that L(x+
i) = L(xi + α�xi) = L(xi) + αL(�xi) for i = 1, 2, . . . , q. So,

the inequality (14) is equivalent to

{L(xi)} j j + α{L(�xi)} j j >

ni∑

j �=k=1

∣∣{L(xi)} jk + α{L(�xi)} jk
∣∣ , ∀ i = 1, 2, . . . , q.

Because, for i = 1, 2, . . . , q, we have

ni∑

j �=k=1

(∣∣{L(xi)} jk
∣∣ + α

∣∣{L(�xi)} jk
∣∣) ≥

ni∑

j �=k=1

∣∣{L(xi)} jk + α{L(�xi)} jk
∣∣ ,

123

A primal-dual interior-point method based on various… 379

it is enough to find α such that

{L(xi)} j j + α{L(�xi)} j j >

ni∑

j �=k=1

(∣∣{L(xi)} jk
∣∣ + α

∣∣{L(�xi)} jk
∣∣) , ∀ i = 1, 2, . . . , q,

or equivalently

α

⎛

⎝{L(�xi)} j j −
ni∑

j �=k=1

∣∣{L(�xi)} jk
∣∣

⎞

⎠ >

⎛

⎝
ni∑

j �=k=1

∣∣{L(xi)} jk
∣∣

⎞

⎠

−{L(xi)} j j , ∀ i = 1, 2, . . . , q.

This gives the expression of αx .
Applying the same procedure for the vector s+ = s + α�s, we obtain αs. Finally,

we choose α = ρ min{αx, αs} with 0 < ρ < 1. The proof is complete. ��

5 The central trajectory algorithm

The central trajectory algorithm for solving symmetric programming problem is for-
mally stated in Algorithm 5.1. Algorithm 5.1 selects a sequence of displacement steps
{α(k)} and centrality parameters {σ (k)} according to the following rule: for all k ≥ 0,
we take σ (k) = 1 − δ/

√
r , where δ ∈ [

0,
√
r
)
as it will be seen in the next section.

Algorithm 5.1. The central trajectory algorithm for symmetric programming problem.

Begin algorithm
1: Initialize k = 0, x(0), y(0), s(0), μ(0), ε, σ (k), θ

Ensure:
(
x(0); y(0); s(0)

)
∈ Nθ

(
μ(0)

)
, ε > 0, σ (0), θ ∈ (0, 1)

2: While x(k) • s(k) ≥ ε do
3: Choose p(k) ∈ C

(
x(k), s(k)

)

4: Compute
(
x(k); y(k); s(k)

)
by applying scaling to

(
x(k); y(k); s(k)

)

5: Let μ(k) := 1
r x

(k) • s(k), h(k) := σ (k)μ(k)e − x(k) ◦ s(k) and �(k) := 1
μ A x(k)2 AT

6: Compute
(
�x(k); � y(k); �s(k)

)
by solving the scaled Newton system (8) to get

(
�x(k); � y(k); �s(k)

)
:=

((
h(k) − x(k) ◦ �s(k)

)
◦ s(k)

−1;

−�(k)−1
A
(
s(k)

−1 ◦ h(k)
)

; −AT� y(k)
)

7: Compute
(
�x(k);� y(k); �s(k)

)
by applying inverse scaling to

(
�x(k);� y(k); �s(k)

)

8: Calculate the displacement step α(k) by one of the selections in (10), (11), (12) or (13)

123

380 B. Alzalg

9: Set the new iterate according to

(
x(k+1); y(k+1); s(k+1)

)
:=

(
x(k) + α(k)�x(k);

y(k) + α(k)� y(k); s(k) + α(k)�s(k)
)

10: Set k = k + 1
11: End while
End algorithm

In the rest of this section, we prove that the complementary gap and the function
fμ decrease for a given displacement step. The proof of this result depends essentially
on the following lemma.

Lemma 5.1 Let (x; y; s) ∈ intKJ ×R
m × intKJ ,

(
x; y; s) be obtained by applying

scaling to (x; y; s), and (
�x;� y;�s

)
be a solution of the system (8). Then we have

(a) �x • �s = 0.
(b) x • �s + �x • s = trace(h), where h = σμe − x ◦ s such that σ ∈ (0, 1) and

μ = 1
r x • s.

(c) x+ • s+ = (
1 − α

(
1 − σ

2

))
x • s, ∀α ∈ R, where x+ = x + α�x and s+ =

s + α�s.
(d) x+ • s+ = (

1 − α
(
1 − σ

2

))
x • s, ∀α ∈ R, where x+ = x + α�x and s+ =

s + α�s.

Proof By the first two equations of the system (8), we get

�x • �s = −�x • AT� y = − (
A�x

)T
� y = 0.

This proves item (a).
We prove item (b) by noting that

trace(h) = trace
(
σμe − x ◦ s

)

= trace
(
x ◦ �s + �x ◦ s

)

= trace
(
x ◦ �s

) + trace
(
�x ◦ s

)

= x • �s + �x • s,

where we used the last equation of the system (8) to obtain the first equality. To prove
item (c), note that

x+ • s+ = (
x + α�x

) • (
s + α�s

)

= x • s + α
(
�x • s + x • �s

) + α2�x • �s
= x • s + 1

2α trace
(
σμe − x ◦ s

)

= x • s + 1
2ασμ trace (e) − 1

2α trace
(
x ◦ s

)

= x • s + ασμr − αx • s
= x • s + 1

2ασ x • s − αx • s
= (

1 − α
(
1 − σ

2

))
x • s,

123

A primal-dual interior-point method based on various… 381

where the third equality follows from items (a) and (b).
Finally, item (d) follows from item (c) and the fact that x • s = x • s (see (9)), and

similarly that x+ • s+ = x+ • s+. The proof is complete. ��
The following result generalizes the corresponding one in [23, Lemmas 4.2 and

4.3].

Lemma 5.2 Let (x; y; s) and (
x+; y+; s+) be strictly feasible solutions of the pair of

problems (Pμ, Dμ) with
(
x+; y+; s+) = (x + α�x; y + α� y; s + α�s), where α

is a displacement step and (�x;� y;�s) is the Newton direction. Then we have

(a) x+ • s+ < x • s.
(b) fμ(x+) < fμ(x).

Proof Note that

x+ • s+ =
(
1 − α

(
1 − σ

2

))
x • s < x • s,

where the equality follows from item (d) of Lemma 5.1 and the strict inequality follows
from

(
1 − α

(
1 − σ

2

))
< 1 (as α > 0 and σ ∈ (0, 1)). This proves item (a).

To prove item (b), note that

fμ(x+) � fμ(x) + ∇x fμ(x) • (x+ − x),

and hence

fμ(x+) − fμ(x) � α∇x fμ(x) • �x.

Since

∇x fμ(x) = −∇2
xx fμ(x)�x,

we have

fμ(x+) − fμ(x) � −α �x • ∇2
xx fμ(x)�x < 0,

where the strict inequality follows from the positive definiteness of the Hessian matrix
∇2
xx fμ(x) (as fμ is strictly convex). Thus, fμ(x+) < fμ(x). The proof is complete.

��

6 Complexity analysis

In this section, we analyze the complexity of the proposed central trajectory algorithm
for symmetric programming.More specifically, we prove that the iteration-complexity
of Algorithm 5.1 is bounded by

O
(√

r ln
[
ε−1 x(0) • s(0)

])
.

123

382 B. Alzalg

Our proof depends essentially on the following two lemmas.

Lemma 6.1 Let (x; y; s) ∈ F ◦
P × F ◦

D,
(
x; y; s) be obtained by applying scaling to

(x; y; s) with h = σμe − x ◦ s, and
(
�x;� y;�s

)
be a solution of the system (8).

For any α ∈ R, we set

(x(α); y(α); s(α)) := (x; y; s) + α(�x;� y;�s),
μ(α) := 1

r x(α) • s(α),

ν(α) := x(α) ◦ s(α) − μ(α)e.

Then
ν(α) = (1 − α)(x ◦ s − μe) + α2 �x ◦ �s. (15)

Proof Given α ∈ R, using item (c) of Lemma 5.1, we have

x(α) • s(α) = (1 − α + ασ) x • s, and hence μ(α) = (1 − α + ασ)μ.

Thus, we get

ν(α) = x(α) ◦ s(α) − μ(α)e
= (

x + α�x
) ◦ (

s + α�s
) − (1 − α + ασ)μe

= (1 − α)(x ◦ s − μe) + α(x ◦ s − σμe︸ ︷︷ ︸
−h

)

+α
(
x ◦ �s + �x ◦ s

)
︸ ︷︷ ︸

h

+α2 �x ◦ �s

= (1 − α)(x ◦ s − μe) + α2 �x ◦ �s.

This completes the proof. ��

Lemma 6.2 Let (x; y; s) ∈ F ◦
P × F ◦

D,
(
x; y; s) be obtained by applying scaling

to (x; y; s) such that
∥∥x ◦ s − μe

∥∥ ≤ θμ, for some θ ∈ [0, 1) and μ > 0. Let
also

(
�x;� y;�s

)
be a solution of the system (8), h = σμe − x ◦ s, δx :=

μ
∥∥�x ◦ x−1

∥∥
F , δs := ∥∥x ◦ �s

∥∥
F . Then, we have

δxδs ≤ 1

2

(
δ2x + δ2s

)
≤ ‖h‖2F

2(1 − θ)2
. (16)

Proof By the last equation of system (8) and from the operator commutativity, we
have

h = x ◦ �s + �x ◦ s = x ◦ �s + μ�x ◦ x−1 +
(
�x ◦ x−1

)
◦ (

x ◦ s − μe
)
.

123

A primal-dual interior-point method based on various… 383

It immediately follows that

‖h‖F ≥ ∥∥x ◦ �s + μ�x ◦ x−1
∥∥
F − ∥∥�x ◦ x−1

∥∥
F

∥∥x ◦ s − μe
∥∥

≥ ∥∥x ◦ �s + μ�x ◦ x−1
∥∥
F − θδx

≥
√∥∥x ◦ �s

∥∥2
F + ∥∥μ�x ◦ x−1

∥∥2
F − θδx

= √
δ2x + δ2s − θδx

≥ (1 − θ)
√

δ2x + δ2s ,

(17)

where the second inequality follows from the assumption that
∥∥x ◦ s − μe

∥∥ ≤ θμ,
and the third inequality follows from (3) the fact that

(
x ◦ �s

) •
(
�x ◦ x−1

)
= trace

((
x ◦ �s

) ◦
(
�x ◦ x−1

))

= trace
(
�s ◦ �x

) = �x • �s,

which is essentially zero due to item (a) of Lemma 5.1.
The right-hand side inequality in (16) follows by noting that (δx − δs)

2 ≥ 0, and
the left-hand side inequality in (16) follows from the last inequality in (17). The proof
is complete. ��

The following theorem analyzes the behavior of one iteration of Algorithm 5.1.
This theorem generalizes [23, Theorem 7.1].

Theorem 6.1 Let θ ∈ (0, 1) and δ ∈ [
0,

√
r
)
be given such that

θ2 + δ2

2(1 − θ)2
(
1 − δ√

r

) ≤ θ ≤ 1

2
. (18)

Suppose that
(
x; y; s) ∈ Nθ (μ) and let

(
�x;� y;�s

)
denote the solution of system

(8) with h = σμe − x ◦ s and σ = 1 − δ√
r
. Then, we have

(a) x+ • s+ =
(
1 − δ√

r

)
x • s.

(b)
(
x+; y+; s+) = (

x; y; s) + (
�x;� y;�s

) ∈ Nθ (μ).
(c)

(
x+; y+; s+) = (x; y; s) + (�x;� y;�s) ∈ Nθ (μ).

Proof Item (a) followsdirectly from item (c) ofLemma5.1withα = 1 andσ = 1− δ√
r
.

We now prove item (b). Define

μ+ := 1

r
x+ • s+ =

(
1 − δ

r

)
μ (19)

and let
(
x; y; s) ∈ Nθ (μ), we then have

123

384 B. Alzalg

∥∥σμe − x ◦ s
∥∥2
F ≤ ‖(σ − 1)μe‖2F + ∥∥μe − x ◦ s

∥∥2
F

≤
(
(σ − 1)2r + θ2

)
μ2 =

(
δ2 + θ2

)
μ2. (20)

Since ‖x ◦ s − μe‖ ≤ θμ and h = σμe − x ◦ s, using Lemma 6.2 it follows that

∥∥∥�x ◦ x−1
∥∥∥
F

∥∥x ◦ �s
∥∥
F ≤

∥∥σμe − x ◦ s
∥∥2
F

2(1 − θ)2μ
. (21)

Defining ν+ := ν(1) = x+ ◦ s+ −μ+e and using (15) with α = 1, (21), (20), (18)
and (19), we get

‖ν+‖F = ∥∥�x ◦ �s
∥∥
F ≤

∥∥∥�x ◦ x−1
∥∥∥
F

∥∥x ◦ �s
∥∥
F

≤
∥∥σμe − x ◦ s

∥∥2
F

2(1 − θ)2μ
≤ (δ2 + θ2)μ

2(1 − θ)2
≤ θ

(
1 − δ√

r

)
μ = θμ+.

Consequently, ∥∥x+ ◦ s+ − μ+e
∥∥
F ≤ θμ+. (22)

By using the right-hand side inequality in (16), and using (20) and (18), we have

∥∥∥�x ◦ x−1
∥∥∥
F

≤
∥∥σμe − x ◦ s

∥∥
F

(1 − θ)μ
≤

√
δ2 + θ2

(1 − θ)
≤

√

2θ

(
1 − δ√

r

)
< 1,

where the strict inequality follows from θ ≤ 1
2 and 0 < 1 − δ√

r
< 1.

One can easily see that
∥∥�x ◦ x−1

∥∥
F < 1 implies that e + �x ◦ x−1 � 0, and

therefore

x+ = �x + x =
(
e + �x ◦ x−1

)
◦ x � 0.

Note that, from (22), we have λmin
(
x+ ◦ s+

) ≥ (1 − θ)μ+ > 0, and therefore
x+ ◦ s+ � 0. Since x+ � 0 and x+ and s+ operator commute, we conclude that
s+ � 0. Using the first equation of system (8), we get

Ax+ = A
(
x + �x

) = Ax + A�x = b, and hence x+ ∈ F ◦
P .

By using the second equation of system (8), we get

AT y+ + s+ = AT(y + � y) + (
s + �s

) = AT y + s

+AT� y + �s = c, and hence
(
y+; s+) ∈ F ◦

D.

Thus, in view of (22), we deduce that
(
x+; y+; s+) ∈ N◦

θ (μ). Item (b) is therefore
established. Item (c) follows from item (b) and [1, Proposition 29]. The proof is now
complete. ��

123

A primal-dual interior-point method based on various… 385

Corollary 6.1 Let θ and δ as given in Theorem 6.1 and
(
x0; y0; s(0)) ∈ Nθ (μ). Then

Algorithm 5.1 generates a sequence of points
{(
xk; yk; s(k))} ⊂ Nθ (μ) such that

x(k) • s(k) =
(
1 − δ√

r

)k

x(0) • s(0), ∀k ≥ 0.

Moreover, given a tolerance ε > 0, Algorithm 5.1 computes an iterate
{(
xk; yk; s(k))}

satisfying x(k) • s(k) ≤ ε in at most K = O (√
r ln

[
ε−1x(0) • s(0)

])
iterations.

Proof Looking recursively at item (a) of Theorem 6.1, for each k we have that

x(k) • s(k) =
(
1 − δ√

r

)k

x(0) • s(0) ≤ ε.

By taking natural algorithm of both sides, we get

k ln

(
1 − δ√

r

)
≤ ln

(ε

x(0) • s(0)

)
,

which holds only if

k

(
− δ√

r

)
≤ ln

(ε

x(0) • s(0)

)
, or equivalently, k ≥ K ≥

[
δ−1√r ln

(
x(0) • s(0)

ε

)]
.

The result is established. ��

7 Numerical experiments

In this section, we present two numerical examples for second-order cone programs
to demonstrate the efficiency of our algorithm. Our numerical experiments are carried
out on a PC with Intel(R) Dual CPU at 2.20 GHz and 2 GB of physical memory. The
PC runs MATLAB Version: 7.4.0.287 (R2007a) on Windows XP Enterprise 32-bit
operating system. We denote by

1st Sel.: the first selection for calculating the displacement step,
2nd Sel.: the second selection for calculating the displacement step,
3rd Sel.: the third selection for calculating the displacement step,
4th Sel.: the fourth selection for calculating the displacement step,
(n,m): the size of problems,
Iter.: the number of iterations taken to obtain the optimal solution,
CPU(s): the time (in seconds) required to obtain the optimal solution.

We point out that the matrices used in our examples have full row rank. In
all of our experiments, we used the NT direction for choosing the scaling vector

123

386 B. Alzalg

p(k) ∈ C (
x(k), s(k)

)
because this direction takes the advantage of being primal-dual

symmetric. The following example is taken from the literature, see [15, Section 6].

Example 7.1 Let n and m be positive integers such that n = 2m. We consider the
second-order cone programming problem and its dual

min cTx max bT y
(P) s.t. Ax = b, (D) s.t. c− AT y ∈ En+,

x ∈ En+;

where En+ is the second-order cone defined in Example 2.3, and

c = 10e − 2 ones(n, 1) + 4 rand(n, 1) ∈ En ,

b = 10e − 2 ones(m, 1) + 4 rand(m, 1) ∈ R
m ,

A =
[
Â

.

.

. Randn(m, n − m)

]
∈ R

m×n ,

and âi j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 if i = j − 1,
100 if i = j,

−2 if i = j + 1,
0 otherwise,

for 1 ≤ i, j ≤ m.

Here, ones(�, 1) is a vector of ones of length �. We take x(0) = e ∈ En and y(0) =
0 ∈ R

m as our initial strictly feasible points. We also take ε = 10−6, σ = 0.1 and
ρ = 0.99. As a well-known interior-point method for solving second-order cone
programming, MOSEK [28] and SDPT3 [29] solvers were used in our experiments
for comparison purposes. The numerical results related to this example are displayed
in Table 1.

Due to the similarity in results between Examples 7.1 and 7.2, we analyze the
numerical results of Table 1 after Example 7.2.

Example 7.2 In this example, the proposed primal-dual central trajectory algorithm
was tested on randomly generated second-order cone programming problems. We
generate a randommatrix A ∈ R

n×m with full row rank and random vectors x, s ∈ En+
and y ∈ R

m . We let b = Ax and c = AT y+ s. Let x(0) = e ∈ En, y(0) = 0 ∈ R
m and

s(0) = e ∈ En be initial points. Since the set of strictly feasible solutions of (P) and
(D) are non-empty, the generated test problems (P) and (D) have optimal solutions and
their optimal values are equal. The parameters used in Algorithm 5.1 were as follows:
ε = 1.3500e − 06, σ = 0.1 and ρ = 0.99.

In our experiments, we generated test problems with size n(= 2m) from 100 to
1200 and r = 1. The random test problems of each n are generated 5 times, and
hence we have 60 random problems in total. In this example, we use MOSEK [28]
and SDPT3 [29] solvers in our experiments for comparison purposes as another well-
known interior-point method for solving second-order cone programming.We present
the results of our numerical results in Table 2. Note that the values of “Iter” and
“CPU(s)” are the average of 5 runs for each n.

In view of Tables 1 and 2, we can see that Algorithm 5.1 with the first, second or
fourth selections are able to give an optimal solution with a favorable running time
and requires less number of iterations than the MOSEK and SDPT3 solvers; this is

123

A primal-dual interior-point method based on various… 387

Ta
bl
e
1

T
he

nu
m
er
ic
al
re
su
lts

of
E
xa
m
pl
e
7.
1

Pr
ob
.s
iz
e

1s
tS

el
.

2n
d
Se
l.

3r
d
Se
l.

4t
h
Se
l.

M
O
SE

K
SD

PT
3

(m
,n
)

It
er
.

C
PU

(s
)

It
er
.

C
PU

(s
)

It
er
.

C
PU

(s
)

It
er
.

C
PU

(s
)

It
er
.

C
PU

(s
)

It
er
.

C
PU

(s
)

(5
,1
0)

5
0.
00

78
6

0.
00

62
9

0.
11

13
5

0.
00

58
6

0.
00

52
7

0.
00

50

(1
0,
20

)
7

0.
01

78
7

0.
01

42
11

0.
12

35
6

0.
00

94
6

0.
00

81
7

0.
00

73

(2
0,
40

)
6

1.
01

60
7

0.
01

86
13

0.
17

32
6

0.
01

39
7

0.
01

67
8

0.
01

45

(4
0,
80

)
8

0.
04

56
9

0.
06

17
18

0.
27

18
7

0.
03

36
9

0.
05

28
8

0.
04

36

(8
0,
16

0)
12

0.
19

00
11

0.
18

62
21

0.
36

75
9

0.
14

14
11

0.
16

77
11

0.
15

10

(1
20

,2
40

)
15

0.
23

98
16

0.
24

05
34

0.
81

52
13

0.
22

73
16

0.
21

94
18

0.
21

07

123

388 B. Alzalg

Ta
bl
e
2

T
he

nu
m
er
ic
al
re
su
lts

of
E
xa
m
pl
e
7.
2

Pr
ob
.s
iz
e

1s
tS

el
.

2n
d
Se
l.

3r
d
Se
l.

4t
h
Se
l.

M
O
SE

K
SD

PT
3

(m
,n
)

It
er
.

C
PU

(s
)

It
er
.

C
PU

(s
)

It
er
.

C
PU

(s
)

It
er
.

C
PU

(s
)

It
er
.

C
PU

(s
)

It
er
.

C
PU

(s
)

(5
0,
10

0)
5.
6

0.
09

31
5.
6

0.
09

93
8.
3

0.
15

39
5.
2

0.
08

81
6.
1

0.
12

59
6.
5

0.
11

32

(1
00

,2
00

)
5.
8

0.
31

07
5.
7

0.
29

81
8.
4

0.
69

13
5.
4

0.
28

40
6.
3

0.
54

39
6.
6

0.
43

47

(1
50

,3
00

)
6.
1

1.
01

34
6.
2

0.
94

08
9.
4

1.
34

23
5.
8

0.
77

61
7.
1

1.
19

01
6.
6

1.
17

59

(2
00

,4
00

)
6.
3

2.
21

50
6.
4

2.
09

35
8.
9

2.
80

31
6.
2

1.
84

20
7.
0

2.
34

94
7.
2

2.
10

36

(2
50

,5
00

)
6.
4

2.
60

19
6.
5

2.
71

42
9.
5

3.
24

01
6.
1

2.
22

45
7.
2

3.
17

80
7.
5

2.
95

18

(3
00

,6
00

)
6.
4

3.
82

10
6.
4

3.
91

01
9.
8

6.
13

09
6.
3

3.
20

91
7.
1

5.
27

17
7.
9

4.
76

71

(3
50

,7
00

)
6.
5

6.
01

34
6.
6

6.
20

13
9.
4

7.
84

31
6.
4

5.
52

19
7.
8

7 .
51

98
7.
7

6.
93

83

(4
00

,8
00

)
6.
8

8.
13

94
6.
7

8.
34

05
9.
7

9.
84

10
6.
4

7.
34

90
7.
8

11
.8
41

8.
4

9.
25

21

(4
50

,9
00

)
6.
8

10
.9
51

6.
8

11
.3
02

10
.0

14
.0
28

6.
7

9.
19

18
8.
1

13
.9
90

8.
5

12
.3
40

1

(5
00

,1
00

0)
6.
9

15
.2
13

6.
9

16
.0
29

10
.2

18
.7
21

6.
7

13
.8
79

7.
9

18
.0
84

7.
9

17
.3
10

(5
50

,1
10

0)
7.
0

16
.0
90

7.
2

16
.8
81

11
.1

22
.4
11

6.
9

15
.1
09

7.
9

21
.4
68

8.
3

19
.8
94

(6
00

,1
20

0)
7.
3

20
.1
32

7.
4

21
.0
94

11
.4

27
.9
13

7.
1

18
.9
38

8.
8

25
.5
67

8.
7

23
.4
31

123

A primal-dual interior-point method based on various… 389

probably due to the fact that these solvers implement infeasible algorithms and use
infeasible initial points. We can also see that the fourth selection for calculating the
displacement step has remarkable superiority to other three selections in terms of
number of iterations and running time. It is interesting to note that our conclusion
for second-order cone programming problems exactly matches the same conclusion
obtained from the numerical experiments in [23, Section 5] for solving semidefinite
programming problems.

8 Conclusions

In this paper, we have presented a primal-dual central trajectory interior-point method
for solving symmetric programming problem. We have proven the convergence of the
optimal solution of the corresponding perturbed problem to the optimal solution of
the original problem when the barrier parameter goes to zero. Then, we have applied
Newton’s method to find a new iterative point by computing a good descent direction.
The inconvenience lies in the high computational cost motivated us to avoid using
several methods, such as the line search methods, to calculate the displacement step.
Alternatively, in this paper, we have proposed a new approach based on four new
selections to calculate the displacement step.

After stating the central trajectory algorithm, we have analyzed the convergence of
the proposed algorithm and have proven that the complexity for short-step is bounded
by O(

√
r ln[ε−1x(0) • s(0)]) iterations, where r is the rank of the Cartesian product of

the corresponding Euclidean Jordan algebras. Our numerical results for second-order
cone program have demonstrated the efficiency of our approach and have shown the
convergence of the four proposed selections to the optimal solution of the problem.
By looking at the computed time and number of iterations, the numerical results on
second-order cone programs have shown that the fourth selection is the best selection
that can be chosen to reach the optimal solution.

Acknowledgements A part of this work was performed while the author was visiting The Center for
Applied and Computational Mathematics at Rochester Institute of Technology, NY, USA. The work of the
author was supported in part by the Deanship of Scientific Research at the University of Jordan. The author
thanks the two anonymous expert referees for their valuable suggestions. The constructive comments from
the referees have greatly enhanced the paper.

References

1. Schmieta, S.H., Alizadeh, F.: Extension of primal-dual interior point methods to symmetric cones.
Math. Program. Ser. A 96, 409–438 (2003)

2. Schmieta, S.H., Alizadeh, F.: Associative and Jordan algebras, and polynomial time interior point
algorithms for symmetric cones. Math. Oper. Res. 26(3), 543–564 (2001)

3. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. Ser. B 95, 3–51 (2003)
4. Alzalg, B.: Stochastic second-order cone programming: application models. Appl. Math. Model. 36,

5122–5134 (2012)
5. Todd, M.J.: Semidefinite optimization. ACTA Numer. 10, 515–560 (2001)
6. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)
7. Nesterov, Y.E., Todd, M.J.: Primal-dual interior-point methods for self-scaled cones. SIAM J. Optim.

8(2), 324–364 (1998)

123

390 B. Alzalg

8. Alzalg, B., Ariyawansa, K.A.: Logarithmic barrier decomposition-based interior point methods for
stochastic symmetric programming. J. Math. Anal. Appl. 409, 973–995 (2014)

9. Alzalg, B., Maggiono, F., Vitali, S.: Homogeneous self-dual methods for symmetric cones under
uncertainty. Far East J. Math. Sci. 99(11), 1603–1778 (2016)

10. Benterki, D., Leulmi, A.: An improving procedure of the interior projective method for linear pro-
gramming. Appl. Math. Comput. 199, 811–819 (2008)

11. Dodani, M., Babu, A.: Karmarkar’s projective method for linear programming: a computational
appraisal. Comput. Ind. Eng. 16, 189–206 (1989)

12. Todd, M., Wang, Y.: On combined phase 1-phase 2 projective methods for linear programming. Algo-
rithmica 9, 64–83 (1993)

13. Zhang,Y.:On extending primal-dual interior-point algorithms from linear programming to semidefinite
programming. SIAM J. Optim. 8, 356–386 (1998)

14. Hans, Y.-J., Mittelmann, D.: Interior point methods for second-order cone programming and OR
applications. Comput. Optim. Appl. 28, 255–285 (2004)

15. Tang, J., He, G., Dong, L., Fang, L.: A new one-step smoothing newton method for second-order cone
programming. Appl. Math. 57, 311–331 (2012)

16. Alzalg, B.: Homogeneous self-dual algorithms for stochastic second-order cone programming. J.
Optim. Theory Appl. 163(1), 148–164 (2014)

17. Alzalg, B.: Decomposition-based interior point methods for stochastic quadratic second-order cone
programming. Appl. Math. Comput. 249, 1–18 (2014)

18. Alzalg, B.: Volumetric barrier decomposition algorithms for stochastic quadratic second-order cone
programming. Appl. Math. Comput. 256, 494–508 (2015)

19. Kettab, S., Benterki, D.: A relaxed logarithmic barrier method for semidefinite programming. RAIRO
Oper. Res. 42, 555–568 (2015)

20. Crouzeix, J.P., Merikhi, B.: A logarithm barrier method for semidefinite programming. RAIRO Oper.
Res. 42, 123–139 (2008)

21. Monteiro, R.D.: Primal-dual path-following algorithms for semidefinite programming. SIAMJ.Optim.
7, 663–678 (1997)

22. Helmberg, C., Rendl, F., Vanderbei, R.J., Wolkowicz, H.: An interior-point methods for stochastic
semidefinite programming. SIAM J. Optim. 6, 342–361 (1996)

23. Touil, I., Benterki, D., Yassine, A.: A feasible primal-dual interior point method for linear semidefinite
programming. J. Comput. Appl. Math. 312, 216–230 (2017)

24. Kebbiche, Z., Keraghel, A., Yassine, A.: Extension of a projective interior point method for linearly
constrained convex programming. Appl. Math. Comput. 193, 553–559 (2007)

25. Gahinet, P., Nemirovski, A.: The projective method for solving linear matrix inequalities. Math. Prog.
77, 163–190 (1997)

26. Behling, R., Gonzaga, C., Haeser, G.: Primal-dual relationship between Levenberg–Marquardt and
central trajectories for linearly constrained convex optimization. J. Optim. Theory Appl. 162, 705–717
(2014)

27. Gould, N., Orban, D., Robinson, D.: Trajectory-following methods for large-scale degenerate convex
quadratic programming. Math. Prog. Comput. 5, 113–142 (2013)

28. MOSEK is an optimization software designed to solve large-scalemathematical optimization problems.
http://www.mosek.com/. Accessed 5 Oct 2017

29. Toh, K.C., Todd, M.J., Tutuncu, R.H.: SDPT3 version 4.0–a MATLAB software for semidefinite-
quadratic-linear programming, (2009). Available online at: http://www.math.nus.edu.sg/~mattohkc/
sdpt3.html

30. Wolkowicz, H., Styan, G.-P.-H.: Bounds for eigenvalues using traces. Linear Algebra Appl. 29, 471–
506 (1980)

31. Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Oxford University Press, Oxford (1994)
32. Kojima, M., Shindoh, S., Hara, S.: Interior-point methods for the monotone linear complementarity

problem in symmetric matrices. SIAM J. Optim. 7(9), 86–125 (1997)
33. Lütkepohl, H.: Handbook of Matrices. Humboldt-Universität zu Berlin, Germany (1996)

123

http://www.mosek.com/
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html

	A primal-dual interior-point method based on various selections of displacement step for symmetric optimization
	Abstract
	1 Introduction
	2 Background and preliminary results
	2.1 Preliminary statistical inequalities
	2.2 Preliminary conical definitions
	2.3 Preliminaries of Euclidean Jordan algebras

	3 Problem formulation and Newton's method
	3.1 Problem formulation and assumptions
	3.2 Newton's method and commutative directions

	4 Selections of the displacement step
	5 The central trajectory algorithm
	6 Complexity analysis
	7 Numerical experiments
	8 Conclusions
	Acknowledgements
	References

