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Abstract
We propose new descent methods for unconstrainedmultiobjective optimization prob-
lems, where each objective function can be written as the sum of a continuously
differentiable function and a proper convex but not necessarily differentiable one. The
methods extend the well-known proximal gradient algorithms for scalar-valued non-
linear optimization, which are shown to be efficient for particular problems. Here, we
consider two types of algorithms: with and without line searches. Under mild assump-
tions, we prove that each accumulation point of the sequence generated by these
algorithms, if exists, is Pareto stationary. Moreover, we present their applications in
constrainedmultiobjective optimization and robustmultiobjective optimization,which
is a problem that considers uncertainties. In particular, for the robust case, we show
that the subproblems of the proximal gradient algorithms can be seen as quadratic pro-
gramming, second-order cone programming, or semidefinite programming problems.
Considering these cases, we also carry out some numerical experiments, showing the
validity of the proposed methods.
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1 Introduction

Multiobjective optimization consists in minimizing (or maximizing) more than one
objective function at the same time and under possible constraints. In most of the
cases, it is not possible to find a single point that minimizes all objective functions at
once, so the concept of Pareto optimality becomes essential. A point is called Pareto
optimal or efficient, if there does not exist another point with the same or smaller
objective function values, and with at least one objective function value being strictly
smaller. Multiobjective optimization problems have applications in many fields. We
refer to [15] for a list of applications.

One of the most well-known methods for multiobjective optimization prob-
lems is the scalarization approach [16,20,23]. It consists in solving one or several
parametrized single-objective optimization problems to find a solution of the original
multiobjective problem. However, in the non-convex case, we may not necessarily get
all Pareto optimal solutions using this approach.

In recent years, descent methods for multiobjective optimization problems have
attracted a lot of attention in the optimization community. For example, a steepest
descent method for differentiable unconstrainedmultiobjective optimization problems
was proposed in [13]. Afterwards, a proximal point method [8], that can be applied
to nondifferentiable problems, was considered. However, this method is just a con-
ceptual scheme and does not necessarily generate subproblems that are easy to solve.
For nondifferentiable problems, a subgradient method was also developed in [10].
However, for some particular problems, these methods may not be efficient.

In this paper, we consider the following unconstrained multiobjective optimization
problem:

min F(x)

s.t. x ∈ Rn,
(1.1)

where F : Rn → Rm is a vector-valued function with F := (F1, . . . , Fm)�
and �denotes transpose. We assume that each component Fi : Rn → R is defined by

Fi (x) := fi (x) + gi (x), i = 1, . . . ,m, (1.2)

where fi : Rn → R is continuously differentiable and gi : Rn → R ∪ {∞} is proper
convex and lower semicontinuous but not necessarily differentiable.

In order to solve (1.1), we propose a proximal gradient method, that combines
proximal point and gradient methods [8,13]. The proximal point method solves sub-
problems iteratively, and their objective functions are defined as the sum of the original
function F with regularization terms. However, these subproblems are nonlinear in
general, so the computational cost for solving them is possibly high. On the other
hand, a proximal gradient method applies a gradient method for the differentiable part
fi and a proximal point method for the convex part gi . As it can be seen in the single
objective function cases [3,22], this method is shown to be efficient when gi has some
special structure.
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Proximal gradient methods for multiobjective optimization… 341

Wealso observe that the problemand the proposedmethods havemany applications.
For example, when gi is an indicator function of a convex set S, (1.1) is equivalent to
the optimization problems with constraints x ∈ S. Also, as it can be seen in Sect. 5.2,
we can deal with robust optimization problems. These problems include uncertain
parameters and basically consists in optimizing under the worst scenario. Although
the literature about robust optimization is vast, the studies about robust multiobjective
optimization is relatively new [11,14,19].

The outline of this paper is as follows. We present some notations and notions
of Pareto optimality and Pareto stationarity in Sect. 2. In Sect. 3, we propose the
proximal gradient methods for unconstrained multiobjective optimization. We show
the global convergence of the proposed algorithms in Sect. 4. In Sect. 5, we apply
the proposed method to constrained problems and to robust optimization. Finally,
we report some numerical experiments by solving robust multiobjective optimization
problems in Sect. 6.

2 Preliminaries

Let us first present some notations that will be used in this paper. Let R denote the set
of real numbers and let N be the set of positive integers. The symbol ‖ · ‖ stands for
the Euclidean norm in Rn . We also define the relation ≤ (<) in Rm as u ≤ v (u < v)
if and only if ui ≤ vi (ui < vi ) for all i = 1, . . . ,m. Moreover, we call

h′(x; d) := lim
α↘0

h(x + αd) − h(x)

α

the directional derivative of h : Rn → R ∪ {∞} at x in the direction d. It is easy to
see that h′(x; d) = ∇h(x)�d when h is differentiable at x , where ∇h(x) denotes the
gradient of h at x . The following well-known result shows a non-decreasing property
when h is convex.

Lemma 2.1 [7, Section 4.3] Let h : Rn → R ∪ {∞} be a convex function.
Then, the function h̃ : (0,+∞) → R defined by

h̃(α) := h(x + αd) − h(x)

α

is non-decreasing. In particular, it follows that

h(x + d) − h(x) ≥ h(x + αd) − h(x)

α
for all α ∈ (0, 1).

Now, we introduce the concept of optimality for the multiobjective optimization
problem (1.1). Recall that x∗ ∈ Rn is a Pareto optimal point for F , if there is no
x ∈ Rn such that F(x) ≤ F(x∗) and F(x) �= F(x∗). The set of all Pareto optimal
values is called Pareto frontier. Likewise, x∗ ∈ Rn is a weakly Pareto optimal point
for F , if there is no x ∈ Rn such that F(x) < F(x∗). It is known that Pareto optimal
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points are always weakly Pareto optimal, and the converse is not always true. We also
say that x̄ ∈ Rn is Pareto stationary (or critical), if and only if,

max
i=1,...,m

F ′
i (x̄; d) ≥ 0 for all d ∈ Rn .

Observe that this definition generalizes the one given in [13], because here we have
to deal with possibly nondifferentiable Fi (or, in particular, gi ). Moreover, instead
of considering subdifferentials as in [10], we use the directional derivative notion.
Still, with this definition, we can show in the next lemma that weakly Pareto optimal
points are always Pareto stationary, but the converse is not always true. However, if
every component Fi is convex, then Pareto stationarity implies weak Pareto optimality.
Furthermore, if every component Fi is strictly convex, then Pareto stationary points
are also Pareto optimal.

Lemma 2.2 1. If x ∈ Rn is a weakly Pareto optimal point of F, then x is Pareto
stationary.

2. Let every component Fi of F be convex. If x ∈ Rn is a Pareto stationary point
of F, then x is weakly Pareto optimal.

3. Let every component Fi of F be strictly convex. If x ∈ Rn is a Pareto stationary
point of F, then x is Pareto optimal.

Proof We show the contrapositions of statements 1, 2 and 3.

1. Suppose that x is not Pareto stationary. Then, there exists d ∈ Rn such that

F ′
i (x; d) < 0, i = 1, . . . ,m.

By the definition of directional derivative, for a sufficiently small scalar α > 0 we
obtain

Fi (x + αd) − Fi (x) < 0, i = 1, . . . ,m,

which means that x is not weakly Pareto optimal.
2. Suppose that x is not weakly Pareto optimal. Then, there exists a point y ∈ Rn

such that y �= x and
Fi (y) < Fi (x), i = 1, . . . ,m. (2.1)

Since Fi is convex, it follows from Lemma 2.1 that

Fi (x + α(y − x)) − Fi (x)

α
≤ Fi (y) − Fi (x)

for an arbitrary i and α ∈ (0, 1). From the convexity of Fi and Lemma 2.1, the
left-hand side is non-decreasing with respect to α. Therefore, we have

F ′
i (x; y − x) ≤ Fi (y) − Fi (x) < 0,
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where the second inequality follows from (2.1). Since this inequality holds for all
i = 1, . . . ,m, we have

max
i=1,...,m

F ′
i (x; d) < 0 for d = y − x .

Consequently, we conclude that x is not Pareto stationary.
3. Suppose that x is not Pareto optimal. Then, there exists a point y ∈ Rn such that

y �= x and Fi (y) ≤ Fi (x) for all i = 1, . . . ,m. Since Fi is strictly convex, for
each i we have

Fi (x + α(y − x)) < Fi (x) + α(Fi (y) − Fi (x)) for all α ∈ (0, 1).

Therefore, it follows that

Fi (x + α(y − x)) − Fi (x)

α
< Fi (y) − Fi (x) for all α ∈ (0, 1).

In the same way to statement 2, we obtain F ′
i (x; y − x) < 0 for all i = 1, . . . ,m,

which concludes the proof. ��

3 Proximal gradient methods for multiobjective optimization

In this section, we propose two types of proximal gradient methods for unconstrained
multiobjective optimization. Both generate some sequence {xk} iteratively with the
following procedure:

xk+1 = xk + tkd
k,

where dk is a search direction, and tk is a step size. For the method without line
searches, we set tk = 1 in each iteration. Now, define the function ψx : Rn → R by

ψx (d) := max
i=1,...,m

{
∇ fi (x)

�d + gi (x + d) − gi (x)
}

, (3.1)

where∇ fi (x) denotes the gradient of fi at x . The term inside the maximum represents
the approximation of Fi (x + d) − Fi (x). It is clear that ψx is convex and ψx (0) = 0.
The following lemma shows an important property of ψx .

Lemma 3.1 For all d ∈ Rn, the following equality holds:

ψ ′
x (0; d) = max

i=1,...,m
F ′
i (x; d).

Proof Since ψx (0) = 0, by the definition of directional derivative, we get

ψ ′
x (0; d) = lim

α↘0

ψx (αd)

α
.
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Moreover, the definition of ψx in (3.1) shows that

lim
α↘0

ψx (αd)

α
= lim

α↘0
max

i=1,...,m

∇ fi (x)�(αd) + gi (x + αd) − gi (x)

α

= max
i=1,...,m

lim
α↘0

∇ fi (x)�(αd) + gi (x + αd) − gi (x)

α

= max
i=1,...,m

{
∇ fi (x)

�d + g′
i (x; d)

}

= max
i=1,...,m

F ′
i (x; d),

where the second equality follows from the continuity of the max function and the
third one comes from the definition of directional derivative. Thus, the claim holds. ��

Now, let � be a positive constant. Here, we define φ�,x : Rn → R as

φ�,x (d) := ψx (d) + �

2
‖d‖2,

where the functionψx is defined in (3.1). Clearly,φ�,x is strongly convex andφ�,x (0) =
0. Using this function, we define the search direction at an iteration k, which we call
proximal gradient direction, as dk = d�(xk), where

d�(x) := argmin
d∈Rn

φ�,x (d). (3.2)

Remark 3.1 1. When gi = 0, d�(x) given in (3.2) corresponds to the search direction
of the multiobjective steepest descent method [13]. On the other hand, when fi =
0, d�(x) given in (3.2) corresponds to the search direction of the multiobjective
proximal point method [8].

2. Since φ�,x is strongly convex, (3.2) has a unique solution, and so d�(x) is well-
defined.

3. Since φ�,x (0) = 0, we have φ�,x (d�(x)) ≤ 0.

Let β�(x) be the optimal value in (3.2), i.e.,

β�(x) := min
d∈Rn

φ�,x (d) = φ�,x (d�(x)). (3.3)

The following lemma characterizes the stationarity in terms of d�(·) and β�(·).
Lemma 3.2 Let d�(x) and β�(x) be defined in (3.2) and (3.3), respectively. Then, the
following statements hold.

1. If x is Pareto stationary, then d�(x) = 0 and β�(x) = 0. Conversely, if d�(x) = 0
and β�(x) = 0, then x is Pareto stationary.

2. If x is not Pareto stationary, then d�(x) �= 0 and β�(x) < 0. Conversely, if
d�(x) �= 0 and β�(x) < 0, then x is not Pareto stationary.

3. The mappings d�(·) and β�(·) are continuous.
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Proof 1. Let x be Pareto stationary. Suppose, for the purpose of contradiction, that
d�(x) �= 0 or β�(x) < 0. From statements 2 and 3 in Remark 3.1 it follows that
d�(x) �= 0 if and only if β�(x) < 0. This means that d�(x) �= 0 and β�(x) < 0.
Therefore, we see that

β�(x) = ψx (d�(x)) + �

2
‖d�(x)‖2 < 0. (3.4)

Since ψx is convex and ψx (0) = 0, we get

ψx (αd�(x)) = ψx (αd�(x) + (1 − α) · 0)
≤ αψx (d�(x)) + (1 − α)ψx (0)

= αψx (d�(x))

< −α�

2
‖d�(x)‖2 for all α ∈ (0, 1),

where the last inequality follows from (3.4). Thus, for all α ∈ (0, 1) we have

ψx (αd�(x))

α
< −�

2
‖d�(x)‖2.

Since d�(x) �= 0 and � > 0, letting α ↘ 0 we obtain

ψ ′
x (0; d�(x)) ≤ −�

2
‖d�(x)‖2 < 0.

It then follows from Lemma 3.1 that

max
i=1,...,m

F ′
i (x; d�(x)) < 0,

which contradicts the Pareto stationarity of x .
Let us now prove the converse. Then, suppose that d�(x) = 0 and β�(x) = 0. From

the definition of β�(x) given in (3.3), we have

φ�,x (d) = ψx (d) + �

2
‖d‖2 ≥ β�(x) = 0 for all d.

Let α ∈ (0, 1). We get

ψx (αd) + �
2‖αd‖2

α
≥ 0 for all d.

Letting α ↘ 0 and using Lemma 3.1, we obtain

max
i=1,...,m

F ′
i (x; d) ≥ 0,

which is our claim.
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2. This statement is equivalent to statement 1.
3. It is easy to see that the function

max
i=1,...,m

{
∇ fi (x)

�d + gi (x + d) − gi (x)
}

+ �

2
‖d‖2 (3.5)

is continuouswith respect to x and d. Therefore, the optimal value functionβ�(·) is also
continuous from [5, Maximum Theorem]. Moreover, since the optimal set mapping
d�(·) is unique, d�(·) is continuous from [18, Corollary 8.1]. ��

3.1 A proximal gradient method with line searches

In this section, we present the proposed method with line searches. To compute the
step length tk > 0, we use an Armijo rule. Let ρ ∈ (0, 1) be a prespecified constant.
The condition to accept tk is given by

Fi (x
k + tkd

k) ≤ Fi (x
k) + tkρψxk (d

k), i = 1, . . . ,m. (3.6)

We begin with tk = 1 and while (3.6) is not satisfied, we update

tk := ξ tk,

where ξ ∈ (0, 1). The following lemma demonstrates the finiteness of this procedure.

Lemma 3.3 Let dk be defined in (3.2) with x = xk and assume that xk is not Pareto
stationary. If ρ ∈ (0, 1), then there exists some t̄k > 0 such that

Fi (x
k + tdk) ≤ Fi (x

k) + tρψxk (d
k), i = 1, . . . ,m

for any t ∈ (0, t̄k].
Proof Let t ∈ (0, 1]. Since gi is convex for all i = 1, . . . ,m, we have

gi (x
k + tdk) − gi (x

k) = gi ((1 − t)xk + t(xk + dk)) − gi (x
k)

≤ (1 − t)gi (x
k) + tgi (x

k + dk) − gi (x
k)

= t(gi (x
k + dk) − gi (x

k)).

Therefore, from the differentiability of f we obtain

fi (x
k + tdk) + gi (x

k + tdk)

≤ fi (x
k) + gi (x

k) + t∇ fi (x
k)�dk + t

(
gi (x

k + dk) − gi (x
k)

)
+ o(t)

≤ fi (x
k) + gi (x

k) + tψxk (d
k) + o(t),
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where the last inequality comes from the definition (3.1) ofψxk . Since x
k is not Pareto

stationary, we have ψxk (d
k) < 0 from Lemma 3.2. Thus, if ρ ∈ (0, 1), then there

exists some t̄k > 0 such that

fi (x
k + tdk) + gi (x

k + tdk) ≤ fi (x
k) + gi (x

k) + tρψxk (d
k), i = 1, . . . ,m

for any t ∈ (0, t̄k]. ��

Finally, based on the previous discussions, we state below the proposed method,
considering line searches.

Algorithm 3.1

Step 1 Choose � > 0, ρ ∈ (0, 1), ξ ∈ (0, 1), x0 ∈ Rn and set k := 0.
Step 2 Compute dk by solving subproblem (3.2) with x = xk .
Step 3 If dk = 0, then stop.
Step 4 Compute the step length tk ∈ (0, 1] as the maximum of

Tk := {t = ξ j | j ∈ N, Fi (x
k + tkd

k) ≤ Fi (x
k) + tkρψxk (d

k), i = 1, . . . ,m}

Step 5 Set xk+1 := xk + tkdk , k := k + 1, and go to Step 2.

Observe that from Lemma 3.2, the algorithm stops at Step 3 with a Pareto stationary
point or produces an infinite sequence of nonstationary points {xk}. If Step 4 is reached
in some iteration k, it means that in Step 3, dk �= 0, or equivalently, β�(xk) < 0. Thus,
we have ψxk (d

k) < 0. From the Armijo condition, we conclude that all objective
functions decrease, i.e.,

Fi (x
k + tkd

k) ≤ Fi (x
k), i = 1, . . . ,m.

3.2 A proximal gradient method without line searches

In this section, we assume that ∇ fi is Lipschitz continuous with constant L . When
we set � > L/2 in (3.2), we can fix the step length tk = 1 for every iteration. We then
state below the proposed method.

Algorithm 3.2

Step 1 Choose � > L/2, x0 ∈ Rn and set k := 0
Step 2 Compute dk by solving subproblem (3.2) with x = xk .
Step 3 If dk = 0, then stop.
Step 4 Set xk+1 := xk + dk, k := k + 1, and go to Step 2.

Similarly to Algorithm 3.1, it stops with a Pareto stationary point or generates an
infinite sequence of nonstationary points. Moreover, as we can see in Lemma 4.3, the
objective function values also decrease in each iteration.
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4 Convergence analysis

In this section, we prove that the sequences generated by Algorithm 3.1 and Algo-
rithm 3.2 converge to Pareto stationary points, respectively. From now on, we assume
that an infinite sequence is generated. To beginwith,we recall the so-called three points
property, which is a key to show convergence of proximal point type algorithms.

Theorem 4.1 (Three points property) [9, Lemma 3.2] Let θ : Rn → R ∪ {∞} be
proper convex and define

x∗ = argmin
x∈Rn

{
θ(x) + 1

2
‖x − y‖2

}
.

Then, for all z ∈ Rn, we have

θ(x∗) − θ(z) ≤ −1

2
‖z − x∗‖2 − 1

2
‖y − x∗‖2 + 1

2
‖z − y‖2.

In order to show the convergence of the search direction,we first prove the following
lemma.

Lemma 4.1 Let {dk} be generated by Algorithms 3.1 or 3.2 and recall the definition
of ψx in (3.1). Then, we have

ψxk (d
k) ≤ −�‖dk‖2 for all k.

Proof Defining θ := ψxk/� we can rewrite (3.2) with x = xk as

dk = argmin
d∈Rn

{
θ(d) + 1

2
‖d − 0‖2

}
.

Thus, substituting x∗ = dk and y = z = 0 into Theorem 4.1, we get θ(dk) − θ(0) ≤
−‖dk‖2. Therefore, recalling that ψxk (0) = 0, we have

ψxk (d
k) ≤ −�‖dk‖2 for all k. ��

4.1 Convergence of Algorithm 3.1

Let us recall the algorithm with line searches. We first show the convergence of the
length of steps ‖xk+1 − xk‖.
Lemma 4.2 Let {dk} be generated by Algorithm 3.1 and suppose that {Fi (xk)} is
bounded from below for all i = 1, . . . ,m. Then, it follows that

∞∑
k=0

tk‖dk‖2 < ∞.
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Proof From Lemma 4.1 and from (3.6) it follows that

Fi (x
k + tkd

k) ≤ Fi (x
k) − tkρ�‖dk‖2, i = 1, . . . ,m.

Since {Fi (xk)} is bounded from below, there exists F̃i ≤ Fi (xk) for all i and k. Adding
up the above inequality from k = 0 to k = k̃, we obtain

Fi (x
k̃+1) ≤ Fi (x

0) − ρ�

k̃∑
k=0

tk‖dk‖2.

Thus, we have

k̃∑
k=0

tk‖dk‖2 ≤ 1

ρ�
(Fi (x

0) − F̃i ).

Taking k̃ → ∞, we have
∑∞

k=0 tk‖dk‖2 < ∞. ��
The next theorem is our main result. Basically, if the sequence produced by Algo-
rithm 3.1 has accumulation points, then they are all Pareto stationary.

Theorem 4.2 Every accumulation point of the sequence {xk} generated by Algo-
rithm 3.1, if it exists, is a Pareto stationary point. In particular, if the level set of each
Fi is bounded, then {xk} has accumulation points and they are all Pareto stationary.

Proof The second statement follows immediately from the first. Let x̄ be an accumu-
lation point of {xk} and let {xk j } be a subsequence converging to x̄ . From statement
3 of Lemma 3.2, we have dk j = d�(xk j ) → d�(x̄). Here, it is sufficient to show that
d�(x̄) = 0 because of statments 1 and 3 of Lemma 3.2. Suppose for contradiction that
d�(x̄) �= 0. Then, it follows from Lemma 4.2 that tk j → 0 since the existence of an
accumulation point of {xk} implies boundedness of {Fi (xk)} for all i . Therefore, by
the definition of tk j in Step 4 of Algorithm 3.1, for sufficiently large j there exists
some ik j ∈ {1, . . . ,m} such that

Fik j (x
k j + ξ−1tk j d

k j ) ≥ Fik j (x
k j ) + ξ−1tk j ρψ

xk j
(dk j ).

Since i only takes finite number of values {1, . . . ,m}, we can assume that ik j = ī
without loss of generality. We thus obtain

Fī (x
k j + ξ−1tk j d

k j ) − Fī (x
k j )

ξ−1tk j
≥ ρψ

xk j
(dk j ). (4.1)
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Recall that 0 < ξ−1tk j < 1. It follows from the definition (3.1) of ψ
xk j

that

ψ
xk j

(dk j )

≥ {∇ fī (x
k j )�dk j + gī (x

k j + dk j ) − gī (x
k j )}

≥ ξ−1tk j ∇ fī (x
k j )�dk j + gī (x

k j + ξ−1tk j d
k j ) − gī (x

k j )

ξ−1tk j

= fī (x
k j +ξ−1tk j d

k j )+gī (x
k j +ξ−1tk j d

k j )− fī (x
k j )−gī (x

k j ) + o(ξ−1tk j ‖dk j ‖)
ξ−1tk j

= Fī (x
k j + ξ−1tk j d

k j ) − Fī (x
k j )

ξ−1tk j
+ o(ξ−1tk j ‖dk j ‖)

ξ−1tk j
,

where the second inequality comes from the convexity of gi and Lemma 2.1, and the
first equality follows from the differentiability of f . Therefore, we get

ψ
xk j

(dk j ) ≥ Fi (xk j + ξ−1tk j d
k j ) − Fi (xk j )

ξ−1tk j
+ o(ξ−1tk j ‖dk j ‖)

ξ−1tk j
. (4.2)

From (4.1) and (4.2), we have

Fi (xk j + ξ−1tk j d
k j ) − Fi (xk j )

ξ−1tk j

≥ ρ
Fi (xk j + ξ−1tk j d

k j ) − Fi (xk j )

ξ−1tk j
+ ρ

o(ξ−1tk j ‖dk j ‖)
ξ−1tk j

.

We thus get

Fi (xk j + ξ−1tk j d
k j ) − Fi (xk j )

ξ−1tk j
≥

(
ρ

1 − ρ

)
o(ξ−1tk j ‖dk j ‖)

ξ−1tk j
. (4.3)

On the other hand, Lemma 4.1 yields

ψ
xk j

(dk j ) ≤ −�‖dk j ‖2.

Since dk j → d�(x̄) �= 0, there exists some δ > 0 such that

−δ ≥ ψ
xk j

(dk j )

≥ Fi (xk j + ξ−1tk j d
k j ) − Fi (xk j )

ξ−1tk j
+ o(ξ−1tk j ‖dk j ‖)

ξ−1tk j
,
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where the last inequality comes from (4.2). Therefore, we obtain

Fi (xk j + ξ−1tk j d
k j ) − Fi (xk j )

ξ−1tk j
≤ −δ − o(ξ−1tk j ‖dk j ‖)

ξ−1tk j
. (4.4)

From (4.3) and (4.4), it follows that

(
ρ

1 − ρ

)
o(ξ−1tk j ‖dk j ‖)

ξ−1tk j
≤ −δ − o(ξ−1tk j ‖dk j ‖)

ξ−1tk j
.

Taking j → ∞, we have 0 ≤ −δ, which contradicts the fact that δ > 0. Therefore,
we conclude that d�(x̄) = 0. ��

4.2 Convergence of Algorithm 3.2

Let us now show the convergence of the search direction for the algorithmwithout line
searches. Recall that we have to assume Lipschitz continuity of ∇ fi , with a constant
L > 0.

Lemma 4.3 Let {dk} be generated by Algorithm 3.2 and suppose that {Fi (xk)} is
bounded from below for all i = 1, . . . ,m. Then, we have

lim
k→∞ ‖dk‖ = 0.

Proof From the so-called descent Lemma [6, Proposition A.24] and by Lipschitz
continuity of ∇ fi , we obtain

fi (x
k + dk) ≤ fi (x

k) + ∇ fi (x
k)�dk + L

2
‖dk‖2. (4.5)

At the kth iteration, we have

fi (x
k + dk) + gi (x

k + dk)

= fi (x
k) + gi (x

k) + fi (x
k + dk) − fi (x

k) + gi (x
k + dk) − gi (x

k)

≤ fi (x
k) + gi (x

k) + ∇ fi (x
k)�dk + gi (x

k + dk) − gi (x
k) + L

2
‖dk‖2

≤ fi (x
k) + gi (x

k) + ψxk (d
k) + L

2
‖dk‖2

≤ fi (x
k) + gi (x

k) + L − 2�

2
‖dk‖2.

Here, the first inequality follows from (4.5), the second one follows from the defini-
tion (3.1) ofψxk , and the third one comes from Lemma 4.1. Since {Fi (xk)} is bounded
from below, there exists F̃i ≤ Fi (xk) = fi (xk) + gi (xk) for all i, k. Adding up the
above inequality from k = 0 to k = k̃, we obtain
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fi (x
k̃+1) + gi (x

k̃+1) ≤ fi (x
0) + gi (x

0) + L − 2�

2

k̃∑
k=0

‖dk‖2.

Since � > L/2, we have

k̃∑
k=0

‖dk‖2 ≤ 2

2� − L
( fi (x

0) + gi (x
0) − F̃i ).

Taking k̃ → ∞, we obtain

∞∑
k=0

‖dk‖2 < ∞

and hence limk→∞ ‖dk‖ = 0. ��
The next theorem directly follows from Lemmas 4.3 and 3.2.

Theorem 4.3 Every accumulation point of the sequence {xk} generated by Algo-
rithm 3.2, if it exists, is a Pareto stationary point. In particular, if the level set of each
Fi is bounded, then {xk} has accumulation points and they are all Pareto stationary.

5 Applications

In this section, we consider two applications of multiobjective optimization prob-
lem (1.1) with (1.2), and discuss how to solve subproblems (3.2) in these particular
applications.

5.1 Application to constrainedmultiobjective optimization

In this section, we consider the following constrained multiobjective optimization
problem:

min f (x)

s.t. x ∈ S,
(5.1)

where f : Rn → Rm is a vector-valued functionwith f := ( f1, . . . , fm)�and S ⊂ Rn

is convex. Suppose that each component fi of f is continuously differentiable. Let
g : Rn → Rm be a vector-valued function with g := (g1, . . . , gm)�, where each gi is
the indicator function of S, i.e.,

gi (x) =
{
0 x ∈ S,

∞ x /∈ S.
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Then, we can rewrite the search direction given in (3.2) with x = xk as

dk := argmin
d∈S−xk

{
max

i=1,...,m
{∇ fi (x

k)�d} + �

2
‖d‖2

}
,

which coincides with the projected gradient direction for multiobjective optimiza-
tion [17].

5.2 Application to robust multiobjective optimization

Now, let us apply the proposed algorithms to robust multiobjective optimization. Here,
we suppose that the problems include uncertain parameters. Moreover, suppose that
we can estimate the set of these uncertain parameters. Then, we try to optimize by
considering the worst scenario. We observe that studies about robust multiobjective
optimization is relatively new [11,14,19].

Here, we consider the convex function gi defined as follows:

gi (x) := max
u∈Ui

ĝi (x, u). (5.2)

We call Ui ⊆ Rn an uncertainty set. From now on, we assume Ui ⊂ Rn and ĝi : Rn ×
Rn → R to be convex with respect to x . It is easy to see that gi is also convex.
However, gi is not necessarily differentiable even if ĝi is differentiable. First, let us
reformulate the subproblem (3.2) by using an extra variable γ ∈ R as

min
γ,d

γ + �

2
‖d‖2

s.t. ∇ fi (x)
�d + gi (x + d) − gi (x) ≤ γ, i = 1, . . . ,m.

Note that gi is not easy to calculate, and thus, the subproblem is difficult to solve.
When ĝi and Ui have some special structure, the constraints can be written as explicit
formulae by using the duality of (5.2). Now, assume that the dual problem of the
maximization problem (5.2) is written as follows:

min
wi

g̃i (x, wi )

s.t. wi ∈ Ũi (x),

where g̃i : Rn × Rm → R and Ũi : Rn → 2R
m
. If strong duality holds, then we see

that the subproblem (3.2) is equivalent to

min
γ,d,wi

γ + �

2
‖d‖2

s.t. ∇ fi (x)
�d + g̃i (x + d, wi ) − gi (x) ≤ γ,

wi ∈ Ũi (x + d), i = 1, . . . ,m.

(5.3)
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When g̃i and Ũi have some explicit form, this problem is tractable. As we mention
below, in this case, we can convert the above subproblem to some well-known con-
vex optimization problems. This idea can be also seen in [4]. In the following, we
will introduce some robust multiobjective optimization problems where the subprob-
lems can be written as quadratic programming, second-order cone programming or
semidefinite programming problems.

(a) Linearly constrained quadratic programming problem case

Suppose that ĝi (x, u) = u�x and Ui = {u ∈ Rn | Aiu ≤ bi }, where Ai ∈ Rd×n

and bi ∈ Rd , that is, ĝi is linear in x , and Ui is a polyhedron. Suppose also that
Ui is nonempty and bounded. Then, we can rewrite (5.2) as the following linear
programming problem:

max
u

x�u

s.t. Aiu ≤ bi .
(5.4)

Its dual problem is given by

min
w

b�
i w

s.t. A�
i w = x,

w ≥ 0.

Since the strong duality holds, we can convert the subproblem (3.2) [or, equivalently
(5.3)] to a linearly constrained quadratic programming problem:

min
γ,d,wi

γ + �

2
‖d‖2

s.t. ∇ fi (x)
�d + b�

i wi − gi (x) ≤ γ,

A�
i wi = x + d,

wi ≥ 0, i = 1, . . . ,m.

(5.5)

(b) Second-order cone programming problem case

Suppose that ĝi (x, u) = u�x and Ui = {ai + Piv ∈ Rn | ‖v‖ ≤ 1, v ∈ Rn}, where
ai ∈ Rn and Pi ∈ Rn×n , that is, ĝi is once again linear in x and Ui is an ellipsoid.
Then, for all i = 1, . . . ,m we have

gi (x) = max
u∈Ui

ĝi (x, u)

= max
v:‖v‖≤1

(ai + Piv)�x

= a�
i x + max

v:‖v‖≤1
(P�

i x)�v.
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If P�
i x = 0, then max

v:‖v‖≤1
(P�

i x)�v = 0 = ‖P�
i x‖. If P�

i x �= 0, then
P�
i x

‖P |
i x‖

is a solution

of max
v:‖v‖≤1

(P�
i x)�v, and hence max

v:‖v‖≤1
(P�

i x)�v = ‖P�
i x‖. Consequently, we have

gi (x) = a�
i x + ‖P�

i x‖.

Therefore, introducing slack variables γ ∈ R and τ ∈ R, the subproblem (3.2) can be
written as

min
τ,γ,d

τ

s.t. ∇ fi (x)
�d + ‖P�

i (x + d)‖ − ‖P�
i x‖ + a�

i d ≤ γ, i = 1, . . . ,m,

γ + �

2
‖d‖2 ≤ τ.

Note that convex quadratic constraints can be converted to second-order cone con-
straints. Using the expression given in [1, Section 2.1], we get the following
second-order cone programming problem (SOCP):

min
τ,γ,d

τ

s.t.

[−(∇ fi (x) + ai )�d + γ + ‖P�
i x‖

P�
i (x + d)

]
∈ Kn+1,

⎡
⎣
1 − γ + τ

1 + γ − τ√
2�d

⎤
⎦ ∈ Kn+2,

(5.6)

where Kq := {(y0, ȳ) ∈ R × Rq−1 | y0 ≥ ‖ȳ‖} is the second-order cone in Rq . The
above SOCP can be solved efficiently with an interior point method [1].

(c) Semidefinite programming problem case

Suppose that1 ĝi (x, u) = (x + u)�Ai (x + u) and Ui = {ai + Piv ∈ Rn | ‖v‖ ≤ 1},
where Ai ∈ Rn×n and Ai � O, ai ∈ Rn and Pi ∈ Rn×n . Then, there exists a matrix
Mi ∈ Rn×n such that Ai = MiM�

i . Note that ĝi is convex quadratic and Ui is an
ellipsoid. Here, without loss of generality we can assume that A is a symmetric matrix
since (x + u)�Ai (x + u) = (x + u)�Ãi (x + u), where Ãi := (Ai + A�

i )/2. Then,
gi (x) can be given as

1 We denote A � (�)O when A is positive semidefinite (positive definite). Also, A � (�)B if and only if
A − B � (�)O .
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gi (x) = max
v:‖v‖≤1

(x + ai + Piv)�Ai (x + ai + Piv). (5.7)

Since problem (5.7) is a maximization problem of a convex function, it is not a convex
optimization problem. Fortunately, it can be seen as a subproblem of a trust region
method, so its optimal value gi (x) can be obtained efficiently. Considering (5.7), we
observe that

gi (x + d) = max
v:‖v‖≤1

(x + d + ai + Piv)�Ai (x + d + ai + Piv). (5.8)

From [2, Section 3], the Lagrangian dual of the maximization problem (5.8) is given
by

min
α,w

− w

s.t.

[ − P�
i Ai Pi − P�

i Ai (x + d + ai )
− (x + d + ai )�A�

i Pi − (x + d + ai )�Ai (x + d + ai ) − w

]

� α

[−In 0
0 1

]
,

α ≥ 0,

(5.9)

where In stands for the identity matrix of dimension n. Let (α∗, w∗) be an optimal
solution of (5.9) and assume that2 dim(ker(Ai + α∗ In)) �= 1. Since both (5.8) and
(5.9) have strictly feasible solutions and In � O , then the strong duality holds from [2,
Theorem 3.5]. Therefore, recalling (5.3), the subproblem (3.2) is equivalent to

min
γ,d,wi ,αi

γ + �

2
‖d‖2

s.t. ∇ fi (x)
�d − wi − gi (x) ≤ γ,[ −P�
i Ai Pi + αi In −P�

i Ai (x + d + ai )
−(x + d + ai )�A�

i Pi −(x + d + ai )�Ai (x + d + ai ) − wi − αi

]

� O,

αi ≥ 0, i = 1, . . . ,m.

Now, by using slack variables τ ∈ R and ζi ∈ R and converting the convex quadratic
constraints to second-order cone ones, we get the following semidefinite programming
problem:

2 Here, dim denotes dimension of a space and ker means kernel of a matrix.
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min
τ,αi ,wi ,γ,d

τ

s.t. ∇ fi (x)
�d − wi − gi (x) ≤ γ,⎡

⎣
1 − γ + τ

1 + γ − τ√
2�d

⎤
⎦ ∈ Kn+2,

[ − P�
i Ai Pi + αi In − P�

i Ai (x + d + ai )
− (x + d + ai )�A�

i Pi ζi

]
� O,

⎡
⎢⎢⎢⎣

1 − ζi − wi − αi

2
1 + ζi + wi + αi

2
M�

i (x + d + ai )

⎤
⎥⎥⎥⎦ ∈ Kn+2,

αi ≥ 0, i = 1, . . . ,m,

(5.10)

where O stands for a zero matrix with appropriate dimension. Note that the second-
order cone constraints can be converted further into semidefinite constraints.

6 Numerical experiments

In this section,we present some numerical results usingAlgorithm3.2 for the problems
in Sect. 5.2. The experiments are carried out on a machine with a 1.8GHz Intel Core
i5 CPU and 8GB memory, and we implement all codes in MATLAB R2017a. We
consider the problem (1.1), where n = 5, m = 2, fi (x) = 1

2 x
�Ai x + a�

i x, gi (x) =
maxu∈Ui ĝi (x, u), Ai ∈ Rn×n, ai ∈ Rn , and ĝi : Rn → R, i = 1, . . . ,m. Here, we
assume that each Ai is positive semidefinite, so it can be decomposed as Ai = MiM�

i ,
where Mi ∈ Rn×n . We generate Mi and ai by choosing every component randomly
from the standard normal distribution. To implement Algorithm 3.2, we make the
following choices.

Remark 6.1 – Every component of x0 is chosen randomly from the standard normal
distribution.

– In Experiments 1 and 3, we set the constant � = 5. In Experiment 2, we set the
constant � = 7.

– The terminate criteria is replaced by ‖dk‖ < ε := 10−6.

Also, we run each one of the following experiments 100 times from different ini-
tial points, and with δ = 0, 0.05, 0.1. Naturally, when δ = 0, no uncertainties are
considered.

Experiment 1

In the first experiment, we solve the problem of Sect. 5.2(a). We assume that gi (x) =
maxu∈Ui u

�x, i = 1, 2, where U1 = {u ∈ R5 | −δ ≤ ui ≤ δ, i = 1, . . . , 5}
and U2 = {u ∈ R5 | −δ ≤ (Bu)i ≤ δ, i = 1, . . . , 5}. Here, every component of
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Fig. 1 Result for Experiment 1

Fig. 2 Result for Experiment 2

B ∈ R5×5 is chosen randomly from the standard normal distribution and δ ≥ 0. We
use the MATLAB solver linprog to solve (5.4) and quadprog to solve (5.5). Figure 1
is the result for this experiment. For each δ, we obtained part of the Pareto frontier,
and as δ gets smaller the objective values become smaller.
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Fig. 3 Result for Experiment 3

Experiment 2

In the second experiment, we solve the problem of Sect. 5.2(b). We assume that
gi (x) = maxu∈Ui u

�x , where Ui = {u ∈ R5 | ‖u‖ ≤ δ}, i = 1, 2. We use the
MATLAB solver SeDuMi [21] to solve (5.6). Figure 2 is the result for this experiment.
Once again, we obtained part of the Pareto frontier for the problems with and without
uncertainties.

Experiment 3

Now, in the last experiment, we solve the problem of Sect. 5.2(c). We assume that
gi (x) = maxu∈Ui (u + x)�BB�(u + x), where Ui = {u ∈ R5 | ‖u‖ ≤ δ}, i = 1, 2.
Here, once again, every component of B ∈ R5×5 is chosen randomly from the standard
normal distribution and δ ≥ 0. We use the MATLAB solver fmincon to solve (5.7)
and SeDuMi to solve (5.10). As it can be seen in Fig. 3, we also obtained the Pareto
frontier in this case.

7 Conclusion

We proposed proximal gradient methods for unconstrained multiobjective optimiza-
tion problems with, and without line searches. Under reasonable assumptions, we
proved that each accumulation points of the sequences generated by the proposed algo-
rithms are Pareto stationary. Moreover, we presented some applications in constrained
optimization and robust multiobjective optimization. In constrained optimization, the
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proposed search direction is equivalent to the projected gradient direction, and in
some robust optimization problems we can convert the subproblems to well-known
optimization problems. Finally, we carried out some numerical experiments for robust
multiobjective optimization problems andwe observed that the Pareto frontier changes
when the uncertainty set is modified.

We have not analyzed the proposed methods in view of the convergence rate. It is
known that scalar-valued proximal gradient method is sublinear convergent under rea-
sonable assumptions [3]. In recent years, faster methods such as Newton’smethod [12]
for differentiablemultiobjective optimizationproblemhavebeen alsoproposed.There-
fore, an interesting topic for future research is to investigate the convergence rate of
the proposed methods and to propose a proximal Newton-type algorithm for multiob-
jective optimization.
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