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Abstract
Nonconvex and nonsmooth optimization problems are frequently encountered inmuch
of statistics, business, science and engineering, but they are not yet widely recognized
as a technology in the sense of scalability. A reason for this relatively low degree
of popularity is the lack of a well developed system of theory and algorithms to
support the applications, as is the case for its convex counterpart. This paper aims to
take one step in the direction of disciplined nonconvex and nonsmooth optimization. In
particular, we consider in this paper some constrained nonconvex optimizationmodels
in block decision variables,with orwithout coupled affine constraints. In the absence of
coupled constraints,we showa sublinear rate of convergence to an ε-stationary solution
in the form of variational inequality for a generalized conditional gradient method,
where the convergence rate is dependent on the Hölderian continuity of the gradient
of the smooth part of the objective. For the model with coupled affine constraints,
we introduce corresponding ε-stationarity conditions, and apply two proximal-type
variants of the ADMM to solve such a model, assuming the proximal ADMM updates
can be implemented for all the block variables except for the last block, for which
either a gradient step or a majorization–minimization step is implemented. We show
an iteration complexity bound of O(1/ε2) to reach an ε-stationary solution for both
algorithms. Moreover, we show that the same iteration complexity of a proximal BCD
method follows immediately. Numerical results are provided to illustrate the efficacy
of the proposed algorithms for tensor robust PCA and tensor sparse PCA problems.

Keywords Structured nonconvex optimization · ε-Stationary solution · Iteration
complexity · Conditional gradient method · Alternating direction method of
multipliers · Block coordinate descent method

Bo Jiang: Research of this author was supported in part by NSFC Grants 11771269 and 11831002, and
Program for Innovative Research Team of Shanghai University of Finance and Economics. Shiqian Ma:
Research of this author was supported in part by a startup package in Department of Mathematics at UC
Davis. Shuzhong Zhang: Research of this author was supported in part by the National Science
Foundation (Grant CMMI-1462408), and in part by Shenzhen Fundamental Research Fund under Grant
No. KQTD2015033114415450.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-018-0034-y&domain=pdf
http://orcid.org/0000-0002-8924-3185


116 B. Jiang et al.

Mathematics Subject Classification 90C26 · 90C06 · 90C60

1 Introduction

In this paper, we consider the following nonconvex and nonsmooth optimization prob-
lem with multiple block variables:

min f (x1, x2, . . . , xN ) +
N−1∑

i=1
ri (xi )

s.t.
N∑

i=1
Ai xi = b, xi ∈ Xi , i = 1, . . . , N − 1,

(1.1)

where f is differentiable and possibly nonconvex, and each ri is possibly nonsmooth
and nonconvex, i = 1, . . . , N − 1; Ai ∈ R

m×ni , b ∈ R
m , xi ∈ R

ni ; and Xi ⊆ R
ni are

convex sets, i = 1, 2, . . . , N − 1. One restriction of model (1.1) is that the objective
function is required to be smooth with respect to the last block variable xN . However,
in Sect. 4 we shall extend the result to cover the general case where rN (xN ) may
be present and that xN maybe constrained as well. A special case of (1.1) is when
the affine constraints are absent, and there is no block structure of the variables (i.e.,
x = x1 and other block variables do not show up in (1.1)), which leads to the following
more compact form

min �(x) := f (x) + r(x), s.t. x ∈ S ⊂ R
n, (1.2)

where S is a convex and compact set. In this paper, we propose several first-order
algorithms for computing an ε-stationary solution (to be defined later) for (1.1) and
(1.2), and analyze their iteration complexities. Throughout, we assume the following
condition.

Assumption 1.1 The sets of the stationary solutions for (1.1) and (1.2) are non-empty.

Problem (1.1) arises from a variety of interesting applications. For example, one
of the nonconvex models for matrix robust PCA can be cast as follows (see, e.g.,
[51]), which seeks to decompose a given matrix M ∈ R

m×n into a superposition of a
low-rank matrix Z , a sparse matrix E and a noise matrix B:

min
X ,Y ,Z ,E,B

‖Z − XY�‖2F + αR(E), s.t. M = Z + E + B, ‖B‖F ≤ η, (1.3)

where X ∈ R
m×r , Y ∈ R

n×r , with r < min(m, n) being the estimated rank of Z ;
η > 0 is the noise level, α > 0 is a weighting parameter; R(E) is a regularization
function that can improve the sparsity of E . One of the widely used regularization
functions is the �1 norm, which is convex and nonsmooth. However, there are also
many nonconvex regularization functions that are widely used in statistical learning
and information theory, such as smoothly clipped absolute deviation (SCAD) [23],
log-sum penalty (LSP) [15], minimax concave penalty (MCP) [58], and capped-�1
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penalty [59,60], and they are nonsmooth at point 0 if composed with the absolute
value function, which is usually the case in statistical learning. Clearly (1.3) is in
the form of (1.1). Another example of the form (1.1) is the following nonconvex
tensor robust PCA model (see, e.g., [55]), which seeks to decompose a given tensor
T ∈ R

n1×n2×···×nd into a superposition of a low-rank tensor Z , a sparse tensor E and
a noise tensor B:

min
Xi ,C,Z,E,B

‖Z − C ×1 X1 ×2 X2 ×3 · · · ×d Xd‖2F + αR(E),

s.t. T = Z + E + B, ‖B‖F ≤ η,

where C is the core tensor that has a smaller size than Z , and Xi are matrices with
appropriate sizes, i = 1, . . . , d. In fact, the “low-rank” tensor in the above model
corresponds to the tensor with a small core; however a recent work [35] demonstrates
that the CP-rank of the core regardless of its size could be as large as the original tensor.
Therefore, if one wants to find the low CP-rank decomposition, then the following
model is preferred:

min
Xi ,Z,E,B

‖Z − �X1, X2, . . . , Xd�‖2F + αR(E) + αN ‖B‖2F , s.t. T = Z + E + B,

for Xi = [ai,1, ai,2, . . . , ai,R] ∈ R
ni×R , 1 ≤ i ≤ d and �X1, X2, . . . , Xd� :=

∑R
r=1 a

1,r ⊗ a2,r ⊗· · ·⊗ ad,r , where“⊗” denotes the outer product of vectors, and R
is an estimation of the CP-rank. In addition, the so-called sparse tensor PCA problem
[1], which seeks the best sparse rank-one approximation for a given d-th order tensor
T , can also be formulated in the form of (1.1):

min −T (x1, x2, . . . , xd)+α

d∑

i=1

R(xi ), s.t. xi ∈ Si ={x | ‖x‖22≤1}, i = 1, 2, . . . , d,

(1.4)
where T (x1, x2, . . . , xd) =∑i1,...,id Ti1,...,id (x1)i1 . . . (xd)id .

The convergence and iteration complexity for various nonconvex and nonsmooth
optimization problems have recently attracted considerable research attention; see e.g.
[3,6,7,10,11,19,20,27,28,41,46]. In this paper, we study several solution methods that
use only the first-order information of the objective function, including a generalized
conditional gradient method, variants of alternating direction method of multipliers,
and a proximal block coordinate descent method, for solving (1.1) and (1.2). Specif-
ically, we apply a generalized conditional gradient (GCG) method to solve (1.2). We
prove that the GCG can find an ε-stationary solution for (1.2) in O(ε−q) iterations
under certain mild conditions, where q is a parameter in the Hölder condition that
characterizes the degree of smoothness for f . In other words, the convergence rate
of the algorithm depends on the degree of “smoothness” of the objective function. It
should be noted that a similar iteration bound that depends on the parameter q was
reported for convex problems [13], and for general nonconvex problem, [14] analyzed
the convergence results, but there was no iteration complexity result. Furthermore,
we show that if f is concave, then GCG finds an ε-stationary solution for (1.2) in
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O(1/ε) iterations. For the affinely constrained problem (1.1), we propose two algo-
rithms (called proximal ADMM-g and proximal ADMM-m in this paper), both can
be viewed as variants of the alternating direction method of multipliers (ADMM).
Recently, there has been an emerging research interest on the ADMM for noncon-
vex problems (see, e.g., [2,32,33,38,52,53,56]). However, the results in [38,52,53,56]
only show that the iterates produced by the ADMM converge to a stationary solution
without providing an iteration complexity analysis. Moreover, the objective function
is required to satisfy the so-called Kurdyka–Łojasiewicz (KL) property [8,9,36,42] to
enable those convergence results. In [33], Hong et al. analyzed the convergence of the
ADMM for solving nonconvex consensus and sharing problems. Note that they also
analyzed the iteration complexity of the ADMM for the consensus problem. However,
they require the nonconvex part of the objective function to be smooth, and nonsmooth
part to be convex. In contrast, ri in our model (1.1) can be nonconvex and nonsmooth
at the same time. Moreover, we allow general constraints xi ∈ Xi , i = 1, . . . , N − 1,
while the consensus problem in [33] only allows such constraint for one block variable.
A very recent work of Hong [32] discussed the iteration complexity of an augmented
Lagrangian method for finding an ε-stationary solution for the following problem:

min f (x), s.t. Ax = b, x ∈ R
n, (1.5)

under the assumption that f is differentiable. We will compare our results with [32]
in more details in Sect. 3.

Before proceeding, let us first summarize:

Our contributions

(i) We provide definitions of ε-stationary solution for (1.1) and (1.2) using the vari-
ational inequalities. For (1.1), our definition of the ε-stationary solution allows
each ri to be nonsmooth and nonconvex.

(ii) We study a generalized conditional gradient method with a suitable line search
rule for solving (1.2). We assume that the gradient of f satisfies a Hölder condi-
tion, and analyze its iteration complexity for obtaining an ε-stationary solution
for (1.2). After we released the first version of this paper, we noticed there are
several recent works that study the iteration complexity of conditional gradient
method for nonconvex problems. However, our results are different from these.
For example, the convergence rate given in [57] is worse than ours, and [43,44]
only consider smooth nonconvex problem with Lipschitz continuous gradient,
but our results cover nonsmooth models.

(iii) We study two ADMM variants (proximal ADMM-g and proximal ADMM-m)
for solving (1.1), and analyze their iteration complexities for obtaining an ε-
stationary solution for nonconvex problem (1.1). In addition, the setup and the
assumptions of our model are different from other recent works. For instance,
[38] considers a two-block nonconvex problemwith an identity coefficientmatrix
for one block variable in the linear constraint, and requires the coerciveness of
the objective or the boundedness of the domain. [53] assumes that the objective
function is coercive over the feasible set and the nonsmooth objective is restricted
prox-regular or piece-wise linear. While our algorithm assumes the gradient
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of the smooth part of the objective function is Lipschitz continuous and the
nonsmooth part does not involve the last block variable, which is weaker than
the assumptions on the objective functions in [38,53].

(iv) As an extension, we also show how to use proximal ADMM-g and proximal
ADMM-m to find an ε-stationary solution for (1.1) without assuming any con-
dition on AN .

(v) When the affine constraints are absent inmodel (1.1), as a by-product, we demon-
strate that the iteration complexity of proximal block coordinate descent (BCD)
method with cyclic order can be obtained directly from that of proximal ADMM-
g and proximal ADMM-m. Although [11] gives an iteration complexity result
of nonconvex BCD, it requires the KL property, and the complexity depends on
a parameter in the KL condition, which is typically unknown.

Notation ‖x‖2 denotes the Euclidean norm of vector x , and ‖x‖2H denotes x�Hx for
some positive definite matrix H . For set S and scalar p > 1, we denote diam p(S) :=
maxx,y ∈S ‖x−y‖p , where ‖x‖p = (

∑n
i=1 |xi |p)1/p.Without specification, we denote

‖x‖ = ‖x‖2 and diam(S) = diam2(S) for short. We use dist(x, S) to denote the
Euclidean distance of vector x to set S. Given a matrix A, its spectral norm and
smallest singular value are denoted by ‖A‖2 and σmin(A) respectively. We use 	a
 to
denote the ceiling of a.

OrganizationThe rest of this paper is organized as follows. In Sect. 2 we introduce the
notion of ε-stationary solution for (1.2) and apply a generalized conditional gradient
method to solve (1.2) and analyze its iteration complexity for obtaining an ε-stationary
solution for (1.2). In Sect. 3 we give two definitions of ε-stationarity for (1.1) under
different settings and propose two ADMM variants that solve (1.1) and analyze their
iteration complexities to reach an ε-stationary solution for (1.1). In Sect. 4 we provide
some extensions of the results in Sect. 3. In particular, we first show how to remove
some of the conditions that we assume in Sect. 3, and then we apply a proximal BCD
method to solve (1.1) without affine constraints and provide an iteration complexity
analysis. In Sect. 5, we present numerical results to illustrate the practical efficiency
of the proposed algorithms.

2 A generalized conditional gradient method

In this section, we study a GCG method for solving (1.2) and analyze its iteration
complexity. The conditional gradient (CG) method, also known as the Frank-Wolfe
method, was originally proposed in [24], and regained a lot of popularity recently due
to its capability in solving large-scale problems (see, [4,5,25,30,34,37,47]). However,
these works focus on solving convex problems. Bredies et al. [14] proved the conver-
gence of a generalized conditional gradient method for solving nonconvex problems
in Hilbert space. In this section, by introducing a suitable line search rule, we provide
an iteration complexity analysis for this algorithm.

We make the following assumption in this section regarding (1.2).

Assumption 2.1 In (1.2), r(x) is convex and nonsmooth, and the constraint set S is
convex and compact. Moreover, f is differentiable and there exist some p > 1 and
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ρ > 0 such that

f (y) ≤ f (x) + ∇ f (x)�(y − x) + ρ

2
‖y − x‖p

p, ∀x, y ∈ S. (2.1)

The above inequality (2.1) is also known as the Hölder condition and was used in
other works on first-order algorithms (e.g., [21]). It can be shown that (2.1) holds for
a variety of functions. For instance, (2.1) holds for any p when f is concave, and is
valid for p = 2 when ∇ f is Lipschitz continuous.

2.1 An�-stationary solution for problem (1.2)

For smooth unconstrained problem minx f (x), it is natural to define the ε-stationary
solution using the criterion ‖∇ f (x)‖2 ≤ ε.Nesterov [48] and Cartis et al. [17] showed
that the gradient descent type methods with properly chosen step size need O(1/ε2)
iterations to find such a solution. Moreover, Cartis et al. [16] constructed an example
showing that the O(1/ε2) iteration complexity is tight for the steepest descent type
algorithm. However, the case for the constrained nonsmooth nonconvex optimization
is subtler. There exist someworks on how to define ε-optimality condition for the local
minimizers of various constrained nonconvex problems [18,22,28,32,49]. Cartis et al.
[18] proposed an approximatemeasure for smooth problemwith convex set constraint.
[49] discussed general nonsmooth nonconvex problem in Banach space by using the
tool of limiting Fréchet ε-subdifferential. Ngai et al. [22] showed that under certain
conditions ε-KKT solutions can converge to a stationary solution as ε → 0. Here the
ε-KKT solution is defined by relaxing the complimentary slackness and equilibrium
equations of KKT conditions. Ghadimi et al. [28] considered the following notion of
ε-stationary solution for (1.2):

PS(x, γ ) := 1

γ
(x − x+), where x+ = argmin

y∈S ∇ f (x)�y + 1

γ
V (y, x) + r(y),

(2.2)

where γ > 0 and V is a prox-function. They proposed a projected gradient algorithm
to solve (1.2) and proved that it takes no more than O(1/ε2) iterations to find an x
satisfying

‖PS(x, γ )‖22 ≤ ε. (2.3)

Our definition of an ε-stationary solution for (1.2) is as follows.

Definition 2.2 We call x an ε-stationary solution (ε ≥ 0) for (1.2) if the following
holds:

ψS(x) := inf
y∈S{∇ f (x)�(y − x) + r(y) − r(x)} ≥ −ε. (2.4)

If ε = 0, then x is called a stationary solution for (1.2).
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Observe that if r(·) is continuous then any cluster point of ε-stationary solutions
defined above is a stationary solution for (1.2) as ε → 0. Moreover, the stationarity
condition is weaker than the usual KKT optimality condition. To see this, we first
rewrite (1.2) as the following equivalent unconstrained problem

min
x

f (x) + r(x) + ιS(x)

where ιS(x) is the indicator function of S. Suppose that x is any local minimizer of
this problem and thus also a local minimizer of (1.2). Since f is differentiable, r and
ιS are convex, Fermat’s rule [50] yields

0 ∈ ∂ ( f (x) + r(x) + ιS(x)) = ∇ f (x) + ∂r(x) + ∂ιS(x), (2.5)

which further implies that there exists some z ∈ ∂r(x) such that

(∇ f (x) + z)�(y − x) ≥ 0, ∀y ∈ S.

Using the convexity of r(·), it is equivalent to

∇ f (x)�(y − x) + r(y) − r(x) ≥ 0, ∀y ∈ S. (2.6)

Therefore, (2.6) is a necessary condition for local minimum of (1.2) as well.
Furthermore, we claim that ψS(x) ≥ −ε implies ‖PS(x, γ )‖22 ≤ ε/γ with the

prox-function V (y, x) = ‖y − x‖22/2. In fact, (2.2) guarantees that
(

∇ f (x) + 1

γ
(x+ − x) + z

)�
(y − x+) ≥ 0, ∀ y ∈ S, (2.7)

for some z ∈ ∂r(x+). By choosing y = x in (2.7) one obtains

∇ f (x)�(x − x+) + r(x) − r(x+) ≥ (∇ f (x) + z)� (x − x+) ≥ 1

γ
‖x+ − x‖22.

(2.8)

Therefore, if ψS(x) ≥ −ε, then ‖PS(x, γ )‖22 ≤ ε
γ
holds.

2.2 The algorithm

For given point z, we define an approximation of the objective function of (1.2) to be:

�(y; x) := f (x) + ∇ f (x)�(y − x) + r(y), (2.9)

which is obtained by linearizing the smooth part (function f ) of � in (1.2). Our
GCG method for solving (1.2) is described in Algorithm 1, where ρ and p are from
Assumption 2.1.
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Algorithm 1 Generalized Conditional Gradient Algorithm (GCG) for solving (1.2)

Require: Given x0 ∈ S
for k = 0, 1, . . . do

[Step 1] yk = argminy∈S �(y; xk ), and let dk = yk − xk ;

[Step 2] αk = argminα∈[0,1] α ∇ f (xk )�dk + α p ρ
2 ‖dk‖pp + (1 − α)r(xk ) + αr(yk );

[Step 3] Set xk+1 = (1 − αk )x
k + αk y

k .
end for

In each iteration of Algorithm 1, we first perform an exact minimization on the
approximated objective function �(y; x) to form a direction dk . Then the step size αk

is obtained by an exact line search (which differentiates the GCG from a normal CG
method) along the direction dk , where f is approximated by p-powered function and
the nonsmooth part is replaced by its upper bound. Finally, the iterate is updated by
moving along the direction dk with step size αk .

Note that here we assumed that solving the subproblem in Step 1 of Algorithm 1
is relatively easy. That is, we assumed the following assumption.

Assumption 2.3 All subproblems in Step 1 of Algorithm 1 can be solved relatively
easily.

Remark 2.4 Assumption 2.3 is quite common in conditional gradient method. For a
list of functions r and sets S such that Assumption 2.3 is satisfied, see [34].

Remark 2.5 It is easy to see that the sequence {�(xk)} generated by GCG is mono-
tonically nonincreasing [14], which implies that any cluster point of {xk} cannot be a
strict local maximizer.

2.3 An iteration complexity analysis

Before we proceed to the main result on iteration complexity of GCG, we need the
following lemma that gives a sufficient condition for an ε-stationary solution for
(1.2). This lemma is inspired by [27], and it indicates that if the progress gained
by minimizing (2.9) is small, then z must already be close to a stationary solution for
(1.2).

Lemma 2.6 Define z� := argminx∈S �(x; z). The improvement of the linearization at
point z is defined as

��z := �(z; z) − �(z�; z) = −∇ f (z)�(z� − z) + r(z) − r(z�).

Given ε ≥ 0, for any z ∈ S, if ��z ≤ ε, then z is an ε-stationary solution for (1.2) as
defined in Definition 2.2.

Proof From the definition of z�, we have

�(y; z) − �(z�; z) = ∇ f (z)�(y − z�) + r(y) − r(z�) ≥ 0,∀y ∈ S,
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which implies that

∇ f (z)�(y − z) + r(y) − r(z)

= ∇ f (z)�(y − z�) + r(y) − r(z�) + ∇ f (z)�(z� − z) + r(z�) − r(z)

≥ ∇ f (z)�(z� − z) + r(z�) − r(z),∀y ∈ S.

It then follows immediately that if ��z ≤ ε, then ∇ f (z)�(y − z) + r(y) − r(z) ≥
−��z ≥ −ε. ��

Denoting �∗ to be the optimal value of (1.2), we are now ready to give the main
result of the iteration complexity of GCG (Algorithm 1) for obtaining an ε-stationary
solution for (1.2).

Theorem 2.7 For any ε ∈ (0, diam p
p(S)ρ), GCG finds an ε-stationary solution for

(1.2) within
⌈
2(�(x0)−�∗)(diamp

p(S)ρ)q−1

εq

⌉
iterations, where 1

p + 1
q = 1.

Proof For ease of presentation, we denote D := diam p(S) and ��k := ��xk . By
Assumption 2.1, using the fact that ε

Dpρ
< 1, and by the definition ofαk inAlgorithm1,

we have

(ε/(Dpρ))
1

p−1 ��k − 1

2ρ1/(p−1)
(ε/D)

p
p−1

≤ −(ε/(Dpρ))
1

p−1 (∇ f (xk)�(yk − xk) + r(yk) − r(xk))

−ρ

2
(ε/(Dpρ))

p
p−1 ‖yk − xk‖p

p

≤ −αk

(
∇ f (xk)�(yk − xk) + r(yk) − r(xk)

)
− ρα

p
k

2
‖yk − xk‖p

p

≤ −∇ f (xk)�(xk+1 − xk) + r(xk) − r(xk+1) − ρ

2
‖xk+1 − xk‖p

p

≤ f (xk) − f (xk+1) + r(xk) − r(xk+1) = �(xk) − �(xk+1), (2.10)

where the third inequality is due to the convexity of function r and the fact that
xk+1 − xk = αk(yk − xk), and the last inequality is due to (2.1). Furthermore, (2.10)
immediately yields

��k ≤ (ε/(Dpρ))
− 1

p−1 (�(xk) − �(xk+1)) + ε

2
. (2.11)

For any integer K > 0, summing (2.11) over k = 0, 1, . . . , K − 1, yields

K min
k∈{0,1,...,K−1} ��k ≤

K−1∑

k=0

��k ≤ (ε/(Dpρ))
− 1

p−1

(
�(x0) − �(xK )

)
+ ε

2
K

≤ (ε/(Dpρ))
− 1

p−1 (�(x0) − �∗) + ε

2
K ,
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where �∗ is the optimal value of (1.2). It is easy to see that by setting K =⌈
2(�(x0)−�∗)(Dpρ)q−1

εq

⌉
, the above inequality implies ��xk∗ ≤ ε, where k∗ ∈

argmink∈{0,...,K−1} ��k . According to Lemma 2.6, xk
∗
is an ε-stationary solution for

(1.2) as defined in Definition 2.2. ��

Finally, if f is concave, then the iteration complexity can be improved as O(1/ε).

Proposition 2.8 Suppose that f is a concave function. If we setαk = 1 for all k inGCG

(Algorithm 1), then it returns an ε-stationary solution for (1.2) within
⌈

�(x0)−�∗
ε

⌉

iterations.

Proof By setting αk = 1 in Algorithm 1 we have xk+1 = yk for all k. Since f is
concave, it holds that

��k = −∇ f (xk)�(xk+1 − xk) + r(xk) − r(xk+1) ≤ �(xk) − �(xk+1).

Summing this inequality over k = 0, 1, . . . , K − 1 yields K mink∈{0,1,...,K−1} ��k ≤
�(x0) − �∗, which leads to the desired result immediately. ��

3 Variants of ADMM for solving nonconvex problems with affine
constraints

In this section, we study two variants of the ADMM (Alternating Direction Method of
Multipliers) for solving the general problem (1.1), and analyze their iteration complex-
ities for obtaining an ε-stationary solution (to be defined later) under certain conditions.
Throughout this section, the following two assumptions regarding problem (1.1) are
assumed.

Assumption 3.1 The gradient of the function f is Lipschitz continuous with Lipschitz
constant L > 0, i.e., for any (x11 , . . . , x

1
N ) and (x21 , . . . , x

2
N ) ∈ X1×· · ·×XN−1×R

nN ,
it holds that

∥
∥
∥∇ f (x11 , x

1
2 , . . . , x

1
N ) − ∇ f (x21 , x

2
2 , . . . , x

2
N )

∥
∥
∥

≤ L
∥
∥
∥
(
x11 − x21 , x

1
2 − x22 , . . . , x

1
N − x2N

)∥
∥
∥ , (3.1)

which implies that for any (x1, . . . , xN−1) ∈ X1 × · · · × XN−1 and xN , x̂N ∈ R
nN ,

we have

f (x1, . . . , xN−1, xN )≤ f (x1, . . . , xN−1, x̂N )+(xN − x̂N )�∇N f (x1, . . . , xN−1, x̂N )

+ L

2
‖xN − x̂N‖2. (3.2)
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Assumption 3.2 f and ri , i = 1, . . . , N−1 are all lower bounded over the appropriate
domains defined via the sets X1,X2, . . . ,XN−1,R

nN , and we denote

f ∗ = inf
xi∈Xi ,i=1,...,N−1;xN∈RnN

{ f (x1, x2, . . . , xN )}

and r∗
i = inf

xi∈Xi

{ri (xi )} for i = 1, 2, . . . , N − 1.

3.1 Preliminaries

To characterize the optimality conditions for (1.1) when ri is nonsmooth and noncon-
vex, we need to recall the notion of the generalized gradient (see, e.g., [50]).

Definition 3.3 Let h : Rn → R∪ {+∞} be a proper lower semi-continuous function.
Suppose h(x̄) is finite for a given x̄ . For v ∈ R

n , we say that

(i). v is a regular subgradient (also called Fréchet subdifferential) of h at x̄ , written
v ∈ ∂̂h(x̄), if

lim
x �=x̄

inf
x→x̄

h(x) − h(x̄) − 〈v, x − x̄〉
‖x − x̄‖ ≥ 0;

(ii). v is a general subgradient of h at x̄ , written v ∈ ∂h(x̄), if there exist sequences
{xk} and {vk} such that xk → x̄ with h(xk) → h(x̄), and vk ∈ ∂̂h(xk) with
vk → v when k → ∞.

The following proposition lists some well-known facts about the lower semi-
continuous functions.

Proposition 3.4 Let h : Rn → R ∪ {+∞} and g : Rn → R ∪ {+∞} be proper lower
semi-continuous functions. Then it holds that:

(i) (Theorem 10.1 in [50]) Fermat’s rule remains true: if x̄ is a local minimum of h,
then 0 ∈ ∂h(x̄).

(ii) If h(·) is continuously differentiable at x, then ∂(h + g)(x) = ∇h(x) + ∂g(x).
(iii) (Exercise 10.10 in [50]) If h is locally Lipschitz continuous at x, then ∂(h +

g)(x) ⊂ ∂h(x) + ∂g(x).
(iv) Suppose h(x) is locally Lipschitz continuous, X is a closed and convex set,

and x̄ is a local minimum of h on X. Then there exists v ∈ ∂h(x̄) such that
(x − x̄)�v ≥ 0,∀x ∈ X.

In our analysis, we frequently use the following identity that holds for any vectors
a, b, c, d,

(a − b)�(c − d) = 1

2

(
‖a − d‖22 − ‖a − c‖22 + ‖b − c‖22 − ‖b − d‖22

)
. (3.3)
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Table 1 ε-stationary solution of (1.1) in two settings

ri , i = 1, . . . , N − 1 Xi , i = 1, . . . , N − 1 ε-stationary solution

Setting 1 Lipschitz continuous Xi ⊂ R
ni compact Definition 3.5

Setting 2 Lower semi-continuous Xi = R
ni Definition 3.6

3.2 An�-stationary solution for problem (1.1)

We now introduce notions of ε-stationarity for (1.1) under the following two settings:
(i) Setting 1: ri is Lipschitz continuous, andXi is a compact set, for i = 1, . . . , N −1;
(ii) Setting 2: ri is lower semi-continuous, and Xi = R

ni , for i = 1, . . . , N − 1.

Definition 3.5 (ε-stationary solution for (1.1) in Setting 1) Under the conditions in
Setting 1, for ε ≥ 0, we call

(
x∗
1 , . . . , x

∗
N

)
an ε-stationary solution for (1.1) if there

exists a Lagrange multiplier λ∗ such that the following holds for any (x1, . . . , xN ) ∈
X1 × · · · × XN−1 × R

nN :

(
xi − x∗

i

)� [
g∗
i + ∇i f (x

∗
1 , . . . , x

∗
N ) − A�

i λ∗] ≥ −ε, i = 1, . . . , N − 1, (3.4)
∥
∥
∥∇N f (x∗

1 , . . . , x
∗
N−1, x

∗
N ) − A�

Nλ∗
∥
∥
∥ ≤ ε, (3.5)

∥
∥
∥
∥
∥

N∑

i=1

Ai x
∗
i − b

∥
∥
∥
∥
∥

≤ ε, (3.6)

where g∗
i is a general subgradient of ri at point x∗

i . If ε = 0, we call
(
x∗
1 , . . . , x

∗
N

)
a

stationary solution for (1.1).

If Xi = R
ni for i = 1, . . . , N − 1, then the VI style conditions in Definition 3.5

reduce to the following.

Definition 3.6 [ε-stationary solution for (1.1) in Setting 2] Under the conditions in
Setting 2, for ε ≥ 0, we call

(
x∗
1 , . . . , x

∗
N

)
to be an ε-stationary solution for (1.1) if

there exists a Lagrange multiplier λ∗ such that (3.5), (3.6) and the following holds for
any (x1, . . . , xN ) ∈ X1 × · · · × XN−1 × R

nN :

dist
(
−∇i f (x

∗
1 , . . . , x

∗
N ) + A�

i λ∗, ∂ri (x∗
i )
)

≤ ε, i = 1, . . . , N − 1, (3.7)

where ∂ri (x∗
i ) is the general subgradient of ri at x∗

i , i = 1, 2, . . . , N − 1. If ε = 0,
we call

(
x∗
1 , . . . , x

∗
N

)
to be a stationary solution for (1.1).

The two settings of problem (1.1) considered in this section and their corresponding
definitions of ε-stationary solution, are summarized in Table 1.

A very recent work of Hong [32] proposes a definition of an ε-stationary solution
for problem (1.5), and analyzes the iteration complexity of a proximal augmented
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Lagrangian method for obtaining such a solution. Specifically, (x∗, λ∗) is called an
ε-stationary solution for (1.5) in [32] if Q(x∗, λ∗) ≤ ε, where

Q(x, λ) := ‖∇xLβ(x, λ)‖2 + ‖Ax − b‖2,

and Lβ(x, λ) := f (x) − λ� (Ax − b) + β
2 ‖Ax − b‖2 is the augmented Lagrangian

function of (1.5). Note that [32] assumes that f is differentiable and has bounded
gradient in (1.5). It is easy to show that an ε-stationary solution in [32] is equivalent
to an O(

√
ε)-stationary solution for (1.1) according to Definition 3.6 with ri = 0 and

f being differentiable. Note that there is no set constraint in (1.5), and so the notion
of the ε-stationarity in [32] is not applicable in the case of Definition 3.5.

Proposition 3.7 Consider the ε-stationary solution in Definition 3.6 applied to prob-
lem (1.5), i.e., one block variable and ri (x) = 0. Then x∗ is a γ1

√
ε-stationary solution

in Definition 3.6, with Lagrange multiplier λ∗ and γ1 = 1/(
√
2β2‖A‖22 + 3), implies

Q(x∗, λ∗) ≤ ε. On the contrary, if Q(x∗, λ∗) ≤ ε, then x∗ is a γ2
√

ε-stationary solu-

tion from Definition 3.6 with Lagrange multiplier λ∗, where γ2 =
√
2(1 + β2‖A‖22).

Proof Suppose x∗ is a γ1
√

ε-stationary solution as defined in Definition 3.6. We have
‖∇ f (x∗) − A�λ∗‖ ≤ γ1

√
ε and ‖Ax∗ − b‖ ≤ γ1

√
ε, which implies that

Q(x∗, λ∗) = ‖∇ f (x∗) − A�λ∗ + βA�(Ax∗ − b)‖2 + ‖Ax∗ − b‖2
≤ 2‖∇ f (x∗) − A�λ∗‖2 + 2β2‖A‖22‖Ax∗ − b‖2 + ‖Ax∗ − b‖2
≤ 2γ 2

1 ε + (2β2‖A‖22 + 1)γ 2
1 ε = ε.

On the other hand, if Q(x∗, λ∗) ≤ ε, then we have ‖∇ f (x∗) − A�λ∗ + βA�(Ax∗ −
b)‖2 ≤ ε and ‖Ax∗ − b‖2 ≤ ε. Therefore,

‖∇ f (x∗) − A�λ∗‖2
≤ 2‖∇ f (x∗) − A�λ∗ + βA�(Ax∗ − b)‖2 + 2‖ − βA�(Ax∗ − b)‖2
≤ 2‖∇ f (x∗) − A�λ∗ + βA�(Ax∗ − b)‖2 + 2β2‖A‖22‖Ax∗ − b‖2
≤ 2(1 + β2‖A‖22) ε.

The desired result then follows immediately. ��
In the following, we introduce two variants of ADMM, to be called proximal

ADMM-g and proximal ADMM-m, that solve (1.1) under some additional assump-
tions on AN . In particular, proximal ADMM-g assumes AN = I , and proximal
ADMM-m assumes AN to have full row rank.

3.3 Proximal gradient-based ADMM (proximal ADMM-g)

Our proximal ADMM-g solves (1.1) under the condition that AN = I . In this case,
the problem reduces to a so-called sharing problem in the literature which has the
following form
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min f (x1, . . . , xN ) +
N−1∑

i=1
ri (xi )

s.t.
N−1∑

i=1
Ai xi + xN = b, xi ∈ Xi , i = 1, . . . , N − 1.

For applications of the sharing problem, see [12,33,39,40]. Our proximalADMM-g for
solving (1.1)with AN = I is described inAlgorithm2. It can be seen fromAlgorithm2
that proximal ADMM-g is based on the framework of augmented Lagrangian method,
and can be viewed as a variant of the ADMM. The augmented Lagrangian function
of (1.1) is defined as

Lβ(x1, . . . , xN , λ) := f (x1, . . . , xN )

+
N−1∑

i=1

ri (xi ) −
〈

λ,

N∑

i=1

Ai xi − b

〉

+ β

2

∥
∥
∥
∥
∥

N∑

i=1

Ai xi − b

∥
∥
∥
∥
∥

2

2

,

where λ is the Lagrange multiplier associated with the affine constraint, and β > 0 is
a penalty parameter. In each iteration, proximal ADMM-g minimizes the augmented
Lagrangian function plus a proximal term for block variables x1, . . . , xN−1, with other
variables being fixed; and then a gradient descent step is conducted for xN , and finally
the Lagrange multiplier λ is updated. The interested readers are referred to [26] for
gradient-based ADMM and its various stochastic variants for convex optimization.

Algorithm 2 Proximal Gradient-basedADMM(proximal ADMM-g) for solving (1.1)
with AN = I

Require: Given
(
x01 , x02 , . . . , x0N

)
∈ X1 × · · · × XN−1 × R

nN , λ0 ∈ R
m

for k = 0, 1, . . . do

[Step 1] xk+1
i := argminxi∈Xi

Lβ(xk+1
1 , . . . , xk+1

i−1 , xi , x
k
i+1, . . . , x

k
N , λk ) + 1

2

∥
∥
∥xi − xki

∥
∥
∥
2

Hi
for

some positive definite matrix Hi , i = 1, . . . , N − 1
[Step 2] xk+1

N := xkN − γ∇NLβ(xk+1
1 , xk+1

2 , . . . , xkN , λk )

[Step 3] λk+1 := λk − β
(∑N

i=1 Ai x
k+1
i − b

)

end for

Remark 3.8 Note that here we actually assumed that all subproblems in Step 1 of
Algorithm 2, though possibly nonconvex, can be solved to global optimality. Many
important problems arising from statistics satisfy this assumption. In fact, when the
coupled objective is absent or can be linearized, after choosing some proper matrix
Hi , the solution of the corresponding subproblem is given by the proximal mappings
of ri . As we mentioned earlier, many nonconvex regularization functions such as
SCAD, LSP, MCP and Capped-�1 admit closed-form proximal mappings. Moreover,
in Algorithm 2, we can choose
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β > max

(
18

√
3 + 6

13
L, max

i=1,2,...,N−1

6L2

σmin(Hi )

)

, (3.8)

and

γ ∈
(
13β −√13β2 − 12βL − 72L2

6L2 + βL + 13β2 ,
13β +√13β2 − 12βL − 72L2

6L2 + βL + 13β2

)

(3.9)

which guarantee the convergence rate of the algorithm as shown in Lemma 3.9 and
Theorem 3.12.

Before presenting the main result on the iteration complexity of proximal ADMM-
g, we need some lemmas.

Lemma 3.9 Suppose the sequence {(xk1 , . . . , xkN , λk)} is generated by Algorithm 2.
The following inequality holds

‖λk+1 − λk‖2 ≤ 3(β − 1/γ )2‖xkN − xk+1
N ‖2

+ 3((β − 1/γ )2 + L2)‖xk−1
N − xkN‖2 + 3L2

N−1∑

i=1

‖xk+1
i − xki ‖2.

(3.10)

Proof Note that Steps 2 and 3 of Algorithm 2 yield that

λk+1 = (β − 1/γ )(xkN − xk+1
N ) + ∇N f (xk+1

1 , . . . , xk+1
N−1, x

k
N ). (3.11)

Combining (3.11) and (3.1) yields that

‖λk+1 − λk‖2
≤ ‖(∇N f (xk+1

1 , . . . , xk+1
N−1, x

k
N ) − ∇N f (xk1 , . . . , x

k
N−1, x

k−1
N ))

+(β − 1/γ )(xkN − xk+1
N ) − (β − 1/γ )(xk−1

N − xkN )‖2
≤ 3‖∇N f (xk+1

1 , . . . , xk+1
N−1, x

k
N ) − ∇N f (xk1 , . . . , x

k
N−1, x

k−1
N )‖2

+3(β − 1/γ )2‖xkN − xk+1
N ‖2 + 3

[

β − 1

γ

]2 ∥
∥
∥xk−1

N − xkN

∥
∥
∥
2

≤ 3

[

β − 1

γ

]2 ∥
∥
∥xkN − xk+1

N

∥
∥
∥
2 + 3

[(

β − 1

γ

)2

+ L2

]
∥
∥
∥xk−1

N − xkN

∥
∥
∥
2

+3L2
N−1∑

i=1

∥
∥
∥xk+1

i − xki

∥
∥
∥
2
.

��
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Wenow define the following function, whichwill play a crucial role in our analysis:

�G (x1, x2, . . . , xN , λ, x̄)

= Lβ(x1, x2, . . . , xN , λ) + 3

β

[(

β − 1

γ

)2

+ L2

]

‖xN − x̄‖2 . (3.12)

Lemma 3.10 Suppose the sequence {(xk1 , . . . , xkN , λk)} is generated by Algorithm 2,
where the parameters β and γ are taken according to (3.8) and (3.9) respectively.
Then �G(xk+1

1 , . . . , xk+1
N , λk+1, xkN ) monotonically decreases over k ≥ 0.

Proof From Step 1 of Algorithm 2 it is easy to see that

Lβ

(
xk+1
1 , . . . , xk+1

N−1, x
k
N , λk

)
≤ Lβ

(
xk1 , . . . , x

k
N , λk

)
−

N−1∑

i=1

1

2

∥
∥
∥xki − xk+1

i

∥
∥
∥
2

Hi
.

(3.13)
From Step 2 of Algorithm 2 we get that

0 =
(
xkN − xk+1

N

)� [∇ f (xk+1
1 , . . . , xk+1

N−1, x
k
N ) − λk

+β
(∑N−1

i=1 Ai x
k+1
i + xkN − b

)
− 1

γ

(
xkN − xk+1

N

)]

≤ f (xk+1
1 , . . . , xk+1

N−1, x
k
N ) − f (xk+1

1 , . . . , xk+1
N )

+ L
2

∥
∥
∥xkN − xk+1

N

∥
∥
∥
2 −

(
xkN − xk+1

N

)�
λk

+β
2

∥
∥
∥xkN − xk+1

N

∥
∥
∥
2 + β

2

∥
∥
∥
∥

N−1∑

i=1
Ai x

k+1
i + xkN − b

∥
∥
∥
∥

2

−β
2

∥
∥
∥
∥

N−1∑

i=1
Ai x

k+1
i + xk+1

N − b

∥
∥
∥
∥

2

− 1
γ

∥
∥
∥xkN − xk+1

N

∥
∥
∥
2

= Lβ(xk+1
1 , . . . , xk+1

N−1, x
k
N , λk) − Lβ(xk+1

1 , . . . , xk+1
N , λk)

+
(
L+β
2 − 1

γ

) ∥
∥
∥xkN − xk+1

N

∥
∥
∥
2
,

(3.14)

where the inequality follows from (3.2) and (3.3). Moreover, the following equality
holds trivially

Lβ(xk+1
1 , . . . , xk+1

N , λk+1) = Lβ(xk+1
1 , . . . , xk+1

N , λk) + 1

β

∥
∥
∥λk − λk+1

∥
∥
∥
2
. (3.15)

Combining (3.13), (3.14), (3.15) and (3.10) yields that

Lβ(xk+1
1 , . . . , xk+1

N , λk+1) − Lβ(xk1 , . . . , x
k
N , λk)

≤
(
L + β

2
− 1

γ

)∥
∥
∥xkN − xk+1

N

∥
∥
∥
2 −

N−1∑

i=1

1

2

∥
∥
∥xki − xk+1

i

∥
∥
∥
2

Hi
+ 1

β

∥
∥
∥λk − λk+1

∥
∥
∥
2
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≤
(
L + β

2
− 1

γ
+ 3

β

[

β − 1

γ

]2
)
∥
∥
∥xkN − xk+1

N

∥
∥
∥
2

+ 3

β

[(

β − 1

γ

)2

+ L2

]
∥
∥
∥xk−1

N − xkN

∥
∥
∥
2

+
N−1∑

i=1

(
xki − xk+1

i

)� (3L2

β
I − 1

2
Hi

)(
xki − xk+1

i

)
,

which further implies that

�G(xk+1
1 , . . . , xk+1

N , λk+1, xkN ) − �G(xk1 , . . . , x
k
N , λk, xk−1

N )

≤
(
L + β

2
− 1

γ
+ 6

β

[

β − 1

γ

]2
+ 3L2

β

)
∥
∥
∥xkN − xk+1

N

∥
∥
∥
2

−
N−1∑

i=1

∥
∥
∥xki − xk+1

i

∥
∥
∥
2

1
2 Hi− 3L2

β
I
. (3.16)

It is easy to verify that when β > 18
√
3+6

13 L , then γ defined as in (3.9) ensures that
γ > 0 and

L + β

2
− 1

γ
+ 6

β

[

β − 1

γ

]2
+ 3L2

β
< 0. (3.17)

Therefore, choosing β > max

(
18

√
3+6

13 L, max
i=1,2,...,N−1

6L2

σmin(Hi )

)

and γ as in (3.9)

guarantees that �G(xk+1
1 , . . . , xk+1

N , λk+1, xkN ) monotonically decreases over k ≥ 0.
In fact, (3.17) can be verified as follows. By denoting z = β − 1

γ
, (3.17) is equivalent

to

12z2 + 2βz +
(
6L2 + βL − β2

)
< 0,

which holds when β > 18
√
3+6

13 L and −β−
√

13β2−12βL−72L2

12 < z <

−β+
√

13β2−12βL−72L2

12 , i.e.,

−13β −√13β2 − 12βL − 72L2

12
< − 1

γ
<

−13β +√13β2 − 12βL − 72L2

12
,

which holds when γ is chosen as in (3.9). ��
Lemma 3.11 Suppose the sequence {(xk1 , . . . , xkN , λk)} is generated by Algorithm 2.
Under the same conditions as in Lemma 3.10, for any k ≥ 0, we have

�G

(
xk+1
1 , . . . , xk+1

N , λk+1, xkN

)
≥

N−1∑

i=1

r∗
i + f ∗,
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where r∗
i and f ∗ are defined in Assumption 3.2.

Proof Note that from (3.11), we have

Lβ(xk+1
1 , . . . , xk+1

N , λk+1)

=
N−1∑

i=1

ri (x
k+1
i ) + f (xk+1

1 , . . . , xk+1
N )

−
(
N−1∑

i=1

Ai x
k+1
i + xk+1

N − b

)�
∇N f (xk+1

1 , . . . , xk+1
N )

+β

2

∥
∥
∥
∥
∥

N−1∑

i=1

Ai x
k+1
i + xk+1

N − b

∥
∥
∥
∥
∥

2

−
(
N−1∑

i=1

Ai x
k+1
i + xk+1

N − b

)�
×
[(

β − 1

γ

)(
xkN − xk+1

N

)

+
(
∇N f (xk+1

1 , . . . , xk+1
N−1, x

k
N ) − ∇N f (xk+1

1 , . . . , xk+1
N )

) ]

≥
N−1∑

i=1

ri (x
k+1
i ) + f (xk+1

1 , . . . , xk+1
N−1, b −

N−1∑

i=1

Ai x
k+1
i )

+
(

β

2
− β

6
− L

2

)∥∥
∥
∥
∥

N−1∑

i=1

Ai x
k+1
i + xk+1

N − b

∥
∥
∥
∥
∥

2

− 3

β

[(

β − 1

γ

)2

+ L2

]
∥
∥
∥xkN − xk+1

N

∥
∥
∥
2

≥
N−1∑

i=1

r∗
i + f ∗ − 3

β

[(

β − 1

γ

)2

+ L2

]
∥
∥
∥xkN − xk+1

N

∥
∥
∥
2
,

where the first inequality follows from (3.2), and the second inequality is due to
β ≥ 3L/2. The desired result follows from the definition of �G in (3.12). ��

Now we are ready to give the iteration complexity of Algorithm 2 for finding an
ε-stationary solution of (1.1).

Theorem 3.12 Suppose the sequence {(xk1 , . . . , xkN , λk)} is generated by Algorithm 2.
Furthermore, suppose that β satisfies (3.8) and γ satisfies (3.9). Denote

κ1 := 3
β2

[(
β− 1

γ

)2 +L2
]

, κ2 :=
(
|β− 1

γ
|+L

)2
, κ3 := max

1≤i≤N−1
(diam(Xi ))

2 ,

κ4 :=
(

L + β
√
N max

1≤i≤N

[‖Ai‖22
]+ max

1≤i≤N
‖Hi‖2

)2
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and

τ := min

{

−
(
L + β

2
− 1

γ
+ 6

β

[

β − 1

γ

]2
+ 3L2

β

)

,

min
i=1,...,N−1

{

−
(
3L2

β
− σmin(Hi )

2

)}}

> 0. (3.18)

Then to get an ε-stationary solution, the number of iterations that the algorithm runs
can be upper bounded by:

K :=
⎧
⎨

⎩

⌈
2max{κ1,κ2,κ4·κ3}

τ ε2

(
�G(x11 , . . . , x1N , λ1, x0N )−∑N−1

i=1 r∗
i − f ∗)⌉ , for Setting 1

⌈
2max{κ1,κ2,κ4}

τ ε2

(
�G(x11 , . . . , x1N , λ1, x0N ) −∑N−1

i=1 r∗
i − f ∗)⌉ , for Setting 2

(3.19)

and we can further identify one iteration k̂ ∈ argmin
2≤k≤K+1

∑N
i=1

(
‖xki − xk+1

i ‖2

+‖xk−1
i − xki ‖2

)
such that (xk̂1 , . . . , x

k̂
N ) is an ε-stationary solution for optimiza-

tion problem (1.1) with Lagrange multiplier λk̂ and AN = I , for Settings 1 and 2
respectively.

Proof For ease of presentation, denote

θk :=
N∑

i=1

(‖xki − xk+1
i ‖2 + ‖xk−1

i − xki ‖2). (3.20)

By summing (3.16) over k = 1, . . . , K , we obtain that

�G(xK+1
1 , . . . , xK+1

N , λK+1, xKN ) − �G(x11 , . . . , x
1
N , λ1, x0N )

≤ −τ

K∑

k=1

N∑

i=1

∥
∥
∥xki − xk+1

i

∥
∥
∥
2
, (3.21)

where τ is defined in (3.18). By invoking Lemmas 3.10 and 3.11, we get

min
2≤k≤K+1

θk ≤ 1

τ K

[

�G(x11 , . . . , x
1
N , λ1, x0N ) + �G(x21 , . . . , x

2
N , λ2, x1N ) − 2

N∑

i=1

r∗
i − 2 f ∗

]

≤ 2

τ K

[

�G(x11 , . . . , x
1
N , λ1, x0N ) −

N∑

i=1

r∗
i − f ∗

]

.

We now derive upper bounds on the terms in (3.5) and (3.6) through θk . Note that
(3.11) implies that
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‖λk+1 − ∇N f (xk+1
1 , . . . , xk+1

N )‖
≤ |β − 1

γ
| ‖xkN − xk+1

N ‖+‖∇N f (xk+1
1 , . . . , xk+1

N−1, x
k
N ) − ∇ f (xk+1

1 , . . . , xk+1
N )‖

≤
[

|β − 1

γ
|+L

]

‖xkN −xk+1
N ‖,

which yields

‖λk+1 − ∇N f (xk+1
1 , . . . , xk+1

N )‖2 ≤
[

|β − 1

γ
| + L

]2
θk . (3.22)

From Step 3 of Algorithm 2 and (3.10) it is easy to see that

∥
∥
∥
∥

N−1∑

i=1
Ai x

k+1
i + xk+1

N − b

∥
∥
∥
∥

2

= 1
β2 ‖λk+1 − λk‖2

≤ 3
β2

[
β − 1

γ

]2 ∥∥
∥xkN − xk+1

N

∥
∥
∥
2 + 3

β2

[(
β − 1

γ

)2 + L2
] ∥
∥
∥xk−1

N − xkN

∥
∥
∥
2

+ 3L2

β2

∑N−1
i=1

∥
∥
∥xki − xk+1

i

∥
∥
∥
2

≤ 3
β2

[(
β − 1

γ

)2 + L2
]

θk .

(3.23)

We now derive upper bounds on the terms in (3.4) and (3.7) under the two settings
in Table 1, respectively.

Setting 2 Because ri is lower semi-continuous and Xi = R
ni , i = 1, . . . , N − 1,

it follows from Step 1 of Algorithm 2 that there exists a general subgradient gi ∈
∂ri (x

k+1
i ) such that

dist
(
−∇i f (x

k+1
1 , . . . , xk+1

N ) + A�
i λk+1, ∂ri (x

k+1
i )

)

≤
∥
∥
∥gi + ∇i f (x

k+1
1 , . . . , xk+1

N ) − A�
i λk+1

∥
∥
∥

=
∥
∥
∥
∥∇i f (x

k+1
1 , . . . , xk+1

N ) − ∇i f (x
k+1
1 , . . . , xk+1

i , xki+1, . . . , x
k
N )

+βA�
i

( N∑

j=i+1

A j (x
k+1
j − xkj )

)

− Hi (x
k+1
i − xki )

∥
∥
∥
∥

≤ L

√
√
√
√

N∑

j=i+1

‖xkj − xk+1
j ‖2 + β ‖Ai‖2

N∑

j=i+1

‖A j‖2‖xk+1
j − xkj ‖

+‖Hi‖2‖xk+1
i − xki ‖2
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≤
(

L + β
√
N max

i+1≤ j≤N

[‖A j‖2
] ‖Ai‖2

)
√
√
√
√

N∑

j=i+1

‖xkj − xk+1
j ‖2

+‖Hi‖2‖xk+1
i − xki ‖2

≤
(

L + β
√
N max

1≤i≤N

[
‖Ai‖22

]
+ max

1≤i≤N
‖Hi‖2

)√
θk . (3.24)

By combining (3.24), (3.22) and (3.23) we conclude that Algorithm 2 returns an ε-
stationary solution for (1.1) according to Definition 3.6 under the conditions of Setting
2 in Table 1.

Setting 1 Under this setting, we know ri is Lipschitz continuous and Xi ⊂ R
ni

is convex and compact. From Assumption 3.1 and the fact that Xi is compact, we
know ri (xi ) + f (x1, . . . , xN ) is locally Lipschitz continuous with respect to xi for
i = 1, 2, . . . , N − 1. Similar to (3.24), for any xi ∈ Xi , Step 1 of Algorithm 2 yields
that

(
xi − xk+1

i

)� [
gi + ∇i f (x

k+1
1 , . . . , xk+1

N ) − A�
i λk+1

]

≥
(
xi − xk+1

i

)� [∇i f (x
k+1
1 , . . . , xk+1

N ) − ∇i f (x
k+1
1 , . . . , xk+1

i , xki+1, . . . , x
k
N )

+βA�
i

( N∑

j=i+1

A j (x
k+1
j − xkj )

)

− Hi (x
k+1
i − xki )

]

≥ −L diam(Xi )

√
√
√
√

N∑

j=i+1

‖xkj − xk+1
j ‖2

−β‖Ai‖2 diam(Xi )

N∑

j=i+1

‖A j‖2‖xk+1
j − xkj ‖ − diam(Xi ) ‖Hi‖2‖xk+1

i − xki ‖2

≥ −
(

β
√
N max

1≤i≤N

[
‖Ai‖22

]
+ L + max

1≤i≤N
‖Hi‖2

)

max
1≤i≤N−1

[diam(Xi )]
√

θk,

(3.25)

where gi ∈ ∂ri (x
k+1
i ) is a general subgradient of ri at x

k+1
i . By combining (3.25),

(3.22) and (3.23) we conclude that Algorithm 2 returns an ε-stationary solution for
(1.1) according to Definition 3.5 under the conditions of Setting 1 in Table 1. ��
Remark 3.13 Note that the potential function �G defined in (3.12) is related to the
augmented Lagrangian function. The augmented Lagrangian function has been used
as a potential function in analyzing the convergence of nonconvex splitting andADMM
methods in [2,31–33,38]. See [32] for a more detailed discussion on this.

Remark 3.14 In Step 1 of Algorithm 2, we can also replace the function

f (xk+1
1 , . . . , xk+1

i−1 , xi , x
k
i+1, . . . , x

k
N )
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by its linearization

f (xk+1
1 , . . . , xk+1

i−1 , xki , x
k
i+1, . . . , x

k
N )

+
(
xi − xki

)� ∇i f (x
k+1
1 , . . . , xk+1

i−1 , xki , x
k
i+1, . . . , x

k
N ),

so that the subproblem can be solved by computing the proximal mappings of ri , with
some properly chosen matrix Hi for i = 1, . . . , N − 1, and the same iteration bound
still holds.

3.4 Proximal majorization ADMM (proximal ADMM-m)

Our proximal ADMM-m solves (1.1) under the condition that AN has full row rank. In
this section, we use σN to denote the smallest eigenvalue of AN A�

N . Note that σN > 0
because AN has full row rank. Our proximal ADMM-m can be described as follows

Algorithm 3 Proximal majorization ADMM (proximal ADMM-m) for solving (1.1)
with AN being full row rank

Require: Given
(
x01 , x02 , . . . , x0N

)
∈ X1 × · · · × XN−1 × R

nN , λ0 ∈ R
m

for k = 0, 1, . . . do

[Step 1] xk+1
i := argminxi∈Xi

Lβ(xk+1
1 , . . . , xk+1

i−1 , xi , x
k
i+1, . . . , x

k
N , λk ) + 1

2

∥
∥
∥xi − xki

∥
∥
∥
2

Hi
for

some positive definite matrix Hi , i = 1, . . . , N − 1
[Step 2] xk+1

N := argminxN U (xk+1
1 , . . . , xk+1

N−1, xN , λk , xkN )

[Step 3] λk+1 := λk − β
(∑N

i=1 Ai x
k+1
i − b

)

end for

In Algorithm 3, U (x1, . . . , xN−1, xN , λ, x̄) is defined as

U (x1, . . . , xN−1, xN , λ, x̄)

= f (x1, . . . , xN−1, x̄) + (xN − x̄)� ∇N f (x1, . . . , xN−1, x̄)

+ L

2
‖xN − x̄‖2 −

〈

λ,

N∑

i=1

Ai xi − b

〉

+ β

2

∥
∥
∥
∥
∥

N∑

i=1

Ai xi − b

∥
∥
∥
∥
∥

2

.

Moreover, β can be chosen as

β > max

{
18L

σN
, max

1≤i≤N−1

{
6L2

σNσmin(Hi )

}}

. (3.26)

to guarantee the convergence rate of the algorithm shown in Lemma 3.16 and Theo-
rem 3.18.

It isworth noting that the proximalADMM-mand proximalADMM-gdiffer only in
Step 2: Step 2 of proximalADMM-g takes a gradient step of the augmentedLagrangian
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function with respect to xN , while Step 2 of proximal ADMM-m requires to minimize
a quadratic function of xN .

We provide some lemmas that are useful in analyzing the iteration complexity of
proximal ADMM-m for solving (1.1).

Lemma 3.15 Suppose the sequence {(xk1 , . . . , xkN , λk)} is generated by Algorithm 3.
The following inequality holds

∥
∥
∥λk+1 − λk

∥
∥
∥
2≤ 3L2

σN

∥
∥
∥xkN − xk+1

N

∥
∥
∥
2+6L2

σN

∥
∥
∥xk−1

N − xkN

∥
∥
∥
2+3L2

σN

N−1∑

i=1

∥
∥
∥xki − xk+1

i

∥
∥
∥
2
.

(3.27)

Proof From the optimality conditions of Step 2 of Algorithm 3, we have

0 = ∇N f (xk+1
1 , . . . , xk+1

N−1, x
k
N ) − A�

Nλk + βA�
N

(
N∑

i=1

Ai x
k+1
i − b

)

−L
(
xkN − xk+1

N

)

= ∇N f (xk+1
1 , . . . , xk+1

N−1, x
k
N ) − A�

Nλk+1 − L
(
xkN − xk+1

N

)
,

where the second equality is due to Step 3 of Algorithm 3. Therefore, we have

‖λk+1 − λk‖2
≤ σ−1

N ‖A�
Nλk+1 − A�

Nλk‖2
≤ σ−1

N ‖(∇N f (xk+1
1 , . . . , xk+1

N−1, x
k
N )

−∇N f (xk1 , . . . , x
k
N−1, x

k−1
N )) − L(xkN − xk+1

N ) + L(xk−1
N − xkN )‖2

≤ 3

σN
‖∇N f (xk+1

1 , . . . , xk+1
N−1, x

k
N ) − ∇N f (xk1 , . . . , x

k
N−1, x

k−1
N )‖2

+3L2

σN
(‖xkN − xk+1

N ‖2 + ‖xk−1
N − xkN‖2)

≤ 3L2

σN
‖xkN − xk+1

N ‖2 + 6L2

σN
‖xk−1

N − xkN‖2 + 3L2

σN

N−1∑

i=1

‖xki − xk+1
i ‖2.

��
We define the following function that will be used in the analysis of proximal

ADMM-m:

�L (x1, . . . , xN , λ, x̄) = Lβ(x1, . . . , xN , λ) + 6L2

βσN
‖xN − x̄‖2 .

Similar to the function used in proximal ADMM-g, we can prove the monotonicity
and boundedness of function �L .
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Lemma 3.16 Suppose the sequence {(xk1 , . . . , xkN , λk)} is generated by Algorithm 3,
whereβ is chosen according to (3.26). Then�L(xk+1, . . . , xk+1

N , λk+1, xkN )monoton-
ically decreases over k > 0.

Proof By Step 1 of Algorithm 3 one observes that

Lβ

(
xk+1
1 , . . . , xk+1

N−1, x
k
N , λk

)
≤ Lβ

(
xk1 , . . . , x

k
N , λk

)
−

N−1∑

i=1

1

2

∥
∥
∥xki − xk+1

i

∥
∥
∥
2

Hi
,

(3.28)
while by Step 2 of Algorithm 3 we have

0 =
(
xkN − xk+1

N

)� [∇N f (xk+1
1 , . . . , xk+1

N−1, x
k
N ) − AN

�λk

+βAN
�
(∑N

i=1 Ai x
k+1
i − b

)
− L

(
xkN − xk+1

N

)]

≤ f (xk+1
1 , . . . , xk+1

N−1, x
k
N ) − f (xk+1

1 , . . . , xk+1
N ) − L

2

∥
∥
∥xkN − xk+1

N

∥
∥
∥
2

−
(∑N−1

i=1 Ai x
k+1
i + AN xkN − b

)�
λk +

(∑N
i=1 Ai x

k+1
i − b

)�
λk

+ β
2

∥
∥
∥
∑N−1

i=1 Ai x
k+1
i + AN xkN − b

∥
∥
∥
2 − β

2

∥
∥
∥
∑N

i=1 Ai x
k+1
i − b

∥
∥
∥
2

− β
2

∥
∥
∥AN xkN − AN x

k+1
N

∥
∥
∥
2

≤ Lβ(xk+1
1 , . . . , xk+1

N−1, x
k
N , λk) − Lβ(xk+1

1 , . . . , xk+1
N , λk) − L

2

∥
∥
∥xkN − xk+1

N

∥
∥
∥
2
,

(3.29)

where the first inequality is due to (3.2) and (3.3). Moreover, from (3.27) we have

Lβ(xk+1
1 , . . . , xk+1

N , λk+1) − Lβ(xk+1
1 , . . . , xk+1

N , λk)

= 1

β
‖λk − λk+1‖2

≤ 3L2

βσN
‖xkN − xk+1

N ‖2 + 6L2

βσN
‖xk−1

N − xkN‖2 + 3L2

βσN

N−1∑

i=1

‖xki − xk+1
i ‖2. (3.30)

Combining (3.28), (3.29) and (3.30) yields that

Lβ(xk+1
1 , . . . , xk+1

N , λk+1) − Lβ(xk1 , . . . , x
k
N , λk)

≤
(
3L2

βσN
− L

2

)

‖xkN − xk+1
N ‖2 +

N−1∑

i=1

‖xki − xk+1
i ‖2

3L2
βσN

I− 1
2 Hi

+ 6L2

βσN
‖xk−1

N − xkN‖2,

which further implies that

�L(xk+1
1 , . . . , xk+1

N , λk+1, xkN ) − �L(xk1 , . . . , x
k
N , λk, xk−1

N )
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≤
(
9L2

βσN
− L

2

)∥
∥
∥xkN − xk+1

N

∥
∥
∥
2 +

N−1∑

i=1

(
3L2

βσN
− σmin(Hi )

2

)∥
∥
∥xki − xk+1

i

∥
∥
∥
2

< 0,

(3.31)

where the second inequality is due to (3.26). This completes the proof. ��
The following lemma shows that the function �L is lower bounded.

Lemma 3.17 Suppose the sequence {(xk1 , . . . , xkN , λk)} is generated by Algorithm 3.
Under the same conditions as in Lemma 3.16, the sequence {�L(xk+1, . . . , xk+1

N ,

λk+1, xkN )} is bounded from below.

Proof From Step 3 of Algorithm 3 we have

�L (xk+1
1 , . . . , xk+1

N , λk+1, xkN )

≥ Lβ(xk+1
1 , . . . , xk+1

N , λk+1)

=∑N−1
i=1 ri (x

k+1
i ) + f (xk+1

1 , . . . , xk+1
N )

−
(∑N

i=1 Ai x
k+1
i − b

)�
λk+1 + β

2

∥
∥
∥
∑N

i=1 Ai x
k+1
i − b

∥
∥
∥
2

=∑N−1
i=1 ri (x

k+1
i ) + f (xk+1

1 , . . . , xk+1
N ) − 1

β (λk − λk+1)�λk+1 + 1
2β ‖λk − λk+1‖2

=∑N−1
i=1 ri (x

k+1
i ) + f (xk+1

1 , . . . , xk+1
N ) − 1

2β ‖λk‖2 + 1
2β ‖λk+1‖2 + 1

β ‖λk − λk+1‖2

≥∑N−1
i=1 r∗

i + f ∗ − 1
2β ‖λk‖2 + 1

2β ‖λk+1‖2,
(3.32)

where the third equality follows from (3.3). Summing this inequality over k =
0, 1, . . . , K − 1 for any integer K ≥ 1 yields that

1

K

K−1∑

k=0

�L

(
xk+1
1 , . . . , xk+1

N , λk+1, xkN

)
≥

N−1∑

i=1

r∗
i + f ∗ − 1

2β

∥
∥
∥λ0
∥
∥
∥
2
.

Lemma 3.16 stipulates that {�L(xk+1
1 , . . . , xk+1

N , λk+1, xkN )} is a monotonically
decreasing sequence; the above inequality thus further implies that the entire sequence
is bounded from below. ��

We are now ready to give the iteration complexity of proximal ADMM-m, whose
proof is similar to that of Theorem 3.12.

Theorem 3.18 Suppose the sequence {(xk1 , . . . , xkN , λk)} is generated by proximal
ADMM-m (Algorithm 3), and β satisfies (3.26). Denote

κ1 := 6L2

β2σN
, κ2 := 4L2, κ3 := max

1≤i≤N−1
(diam(Xi ))

2 ,

κ4 :=
(

L + β
√
N max

1≤i≤N

[
‖Ai‖22

]
+ max

1≤i≤N
‖Hi‖2

)2

,
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and

τ := min

{

−
(
9L2

βσN
− L

2

)

, min
i=1,...,N−1

{

−
(
3L2

βσN
− σmin(Hi )

2

)}}

> 0. (3.33)

Then to get an ε-stationary solution, the number of iterations that the algorithm runs
can be upper bounded by:

K :=
⎧
⎨

⎩

⌈
2max{κ1,κ2,κ4·κ3}

τ ε2
(�L (x11 , . . . , x1N , λ1, x0N ) −∑N−1

i=1 r∗
i − f ∗)

⌉
, for Setting 1

⌈
2max{κ1,κ2,κ4}

τ ε2
(�L (x11 , . . . , x1N , λ1, x0N ) −∑N−1

i=1 r∗
i − f ∗)

⌉
, for Setting 2

(3.34)

and we can further identify one iteration k̂ ∈ argmin
2≤k≤K+1

∑N
i=1

(
‖xki − xk+1

i ‖2

+‖xk−1
i − xki ‖2

)
, such that (xk̂1 , . . . , x

k̂
N ) is an ε-stationary solution for (1.1) with

Lagrange multiplier λk̂ and AN being full row rank, for Settings 1 and 2 respectively.

Proof By summing (3.31) over k = 1, . . . , K , we obtain that

�L(xK+1
1 , . . . , xK+1

N , λK+1, xKN ) − �L(x11 , . . . , x
1
N , λ1, x0N )

≤ −τ

K∑

k=1

N∑

i=1

∥
∥
∥xki − xk+1

i

∥
∥
∥
2
, (3.35)

where τ is defined in (3.33). From Lemma 3.17 we know that there exists a constant
�∗

L such that �(xk+1
1 , . . . , xk+1

N , λk+1, xkN ) ≥ �∗
L holds for any k ≥ 1. Therefore,

min
2≤k≤K+1

θk ≤ 2

τ K

[
�L(x11 , . . . , x

1
N , λ1, x0N ) − �∗

L

]
, (3.36)

where θk is defined in (3.20), i.e., for K defined as in (3.34), θk̂ = O(ε2).
We now give upper bounds to the terms in (3.5) and (3.6) through θk . Note that

Step 2 of Algorithm 3 implies that

‖A�
Nλk+1 − ∇N f (xk+1

1 , . . . , xk+1
N )‖

≤ L ‖xkN − xk+1
N ‖ + ‖∇N f (xk+1

1 , . . . , xk+1
N−1, x

k
N ) − ∇N f (xk+1

1 , . . . , xk+1
N )‖

≤ 2L ‖xkN − xk+1
N ‖,

which implies that

‖A�
Nλk+1 − ∇N f (xk+1

1 , . . . , xk+1
N )‖2 ≤ 4L2θk . (3.37)
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By Step 3 of Algorithm 3 and (3.27) we have

∥
∥
∥
∥
∥

N∑

i=1

Ai x
k+1
i − b

∥
∥
∥
∥
∥

2

= 1

β2 ‖λk+1 − λk‖2

≤ 3L2

β2σN

∥
∥
∥xkN − xk+1

N

∥
∥
∥
2 + 6L2

β2σN

∥
∥
∥xk−1

N − xkN

∥
∥
∥
2 + 3L2

β2σN

N−1∑

i=1

∥
∥
∥xki − xk+1

i

∥
∥
∥
2

≤ 6L2

β2σN
θk . (3.38)

The remaining proof is to give upper bounds to the terms in (3.4) and (3.7). Since
the proof steps are almost the same as Theorem 3.12, we shall only provide the key
inequalities below.

Setting 2 Under conditions in Setting 2 in Table 1, the inequality (3.24) becomes

dist
(
−∇i f (x

k+1
1 , . . . , xk+1

N ) + A�
i λk+1, ∂ri (x

k+1
i )

)

≤
(

L + β
√
N max

1≤i≤N

[
‖Ai‖22

]
+ max

1≤i≤N
‖Hi‖2

)√
θk . (3.39)

By combining (3.39), (3.37) and (3.38) we conclude that Algorithm 3 returns an ε-
stationary solution for (1.1) according to Definition 3.6 under the conditions of Setting
2 in Table 1.

Setting 1 Under conditions in Setting 1 in Table 1, the inequality (3.25) becomes

(
xi − xk+1

i

)� [
gi + ∇i f (x

k+1
1 , . . . , xk+1

N ) − A�
i λk+1

]

≥ −
(

β
√
N max

1≤i≤N

[
‖Ai‖22

]
+ L + max

1≤i≤N
‖Hi‖2

)

max
1≤i≤N−1

[diam(Xi )]
√

θk .

(3.40)

By combining (3.40), (3.37) and (3.38) we conclude that Algorithm 3 returns an ε-
stationary solution for (1.1) according to Definition 3.5 under the conditions of Setting
1 in Table 1. ��

Remark 3.19 In Step 1 of Algorithm 3, we can replace the function f (xk+1
1 , . . . , xk+1

i−1 ,

xi , xki+1, . . . , x
k
N ) by its linearization

f (xk+1
1 , . . . , xk+1

i−1 , xki , x
k
i+1, . . . , x

k
N )

+
(
xi − xki

)� ∇i f (x
k+1
1 , . . . , xk+1

i−1 , xki , x
k
i+1, . . . , x

k
N ).
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Under the same conditions as in Remark 3.14, the same iteration bound follows by
slightly modifying the analysis above.

4 Extensions

4.1 Relaxing the assumption on the last block variable xN

It is noted that in (1.1), we have some restrictions on the last block variable xN , i.e.,
rN ≡ 0 and AN = I or is full row rank. In this subsection, we show how to remove
these restrictions and consider the more general problem

min f (x1, x2, . . . , xN ) +
N∑

i=1
ri (xi )

s.t.
∑N

i=1 Ai xi = b,
(4.1)

where xi ∈ R
ni and Ai ∈ R

m×ni , i = 1, . . . , N .
Before proceeding, we make the following assumption on (4.1).

Assumption 4.1 Denote n = n1 + · · · + nN . For any compact set S ⊆ R
n , and any

sequence λ j ∈ R
m with ‖λ j‖ → ∞, j = 1, 2, . . ., the following limit

lim
j→∞ dist(−∇ f (x1, . . . , xN ) + A�λ j ,

N∑

i=1

∂ri (xi )) → ∞

holds uniformly for all (x1, . . . , xN ) ∈ S, where A = [A1, . . . , AN ].
Remark that the above implies A to have full row-rank. Furthermore, if f is con-

tinuously differentiable and ∂ri (S) :=⋃x∈S ∂ri (x) is a compact set for any compact
set S, and A has full row rank, then Assumption 4.1 trivially holds. On the other hand,
for popular non-convex regularization functions, such as SCAD, MCP and Capped
�1-norm, it can be shown that the corresponding set ∂ri (S) is indeed compact set for
any compact set S, and so Assumption 4.1 holds in all these cases.

We introduce the following problem that is closely related to (4.1):

min f (x1, x2, . . . , xN ) +
N∑

i=1
ri (xi ) + μ(ε)

2 ‖y‖2

s.t.
∑N

i=1 Ai xi + y = b,
(4.2)

where ε > 0 is the target tolerance, and μ(ε) is a function of ε which will be specified
later.Now, proximalADMM-m is ready to be used for solving (4.2) because AN+1 = I
and y is unconstrained.We have the following iteration complexity result for proximal
ADMM-m to obtain an ε-stationary solution of (4.1); proximal ADMM-g can be
analyzed similarly.
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Theorem 4.2 Consider problem (4.1) under Setting 2 in Table 1. Suppose that Assump-
tion 4.1 holds, and the objective in (4.1), i.e., f +∑N

i=1 ri , has a bounded level set.
Furthermore, suppose that f has a Lipschitz continuous gradient with Lipschitz con-
stant L, and A is of full row rank. Now let the sequence {(xk1 , . . . , xkN , yk, λk)} be
generated by proximal ADMM-m for solving (4.2) with initial iterates y0 = λ0 = 0,
and (x01 , . . . , x

0
N ) such that

∑N
i=1 Ai x0i = b. Assume that the target tolerance ε sat-

isfies

0 < ε < min

{
1

L
,
1

6τ̄

}

, where τ̄ = 1

2
min

i=1,...,N
{σmin(Hi )}. (4.3)

Then in no more than O(1/ε4) iterations we will reach an iterate (x K̂+1
1 , . . . , x K̂+1

N ,

yK̂+1) that is an ε-stationary solution for (4.2)with Lagrange multiplier λK̂+1. More-

over, (x K̂+1
1 , . . . , x K̂+1

N ) is an ε-stationary solution for (4.1)with Lagrange multiplier

λK̂+1.

Proof Denote the penalty parameter as β(ε). The augmented Lagrangian function of
(4.2) is given by

Lβ(ε)(x1, . . . , xN , y, λ)

:= f (x1, . . . , xN ) +∑N
i=1 ri (xi ) + μ(ε)

2 ‖y‖2 − 〈λ,
N∑

i=1
Ai xi + y − b〉

+ β(ε)
2 ‖

N∑

i=1
Ai xi + y − b‖2.

Now we set
μ(ε) = 1/ε, and β(ε) = 3/ε. (4.4)

From (4.3) we have μ(ε) > L . This implies that the Lipschitz constant of
f (x1, x2, . . . , xN ) + μ(ε)

2 ‖y‖2, which is the smooth part of the objective in (4.2),
is equal to μ(ε). Then from the optimality conditions of Step 2 of Algorithm 3,
we have μ(ε)yk−1 − λk − μ(ε)(yk−1 − yk) = 0, which further implies that
μ(ε)yk = λk,∀k ≥ 1.

Similar to Lemma 3.16, we can prove thatLβ(ε)(xk1 , . . . , x
k
N , yk, λk)monotonically

decreases. Specifically, since μ(ε)yk = λk , combining (3.28), (3.29) and the equality
in (3.30) yields,

Lβ(ε)(x
k+1
1 , . . . , xk+1

N , yk+1, λk+1) − Lβ(ε)(x
k
1 , . . . , x

k
N , yk, λk)

≤ −1

2

N∑

i=1

‖xki − xk+1
i ‖2Hi

−
(

μ(ε)

2
− μ(ε)2

β(ε)

)

‖yk − yk+1‖2 < 0, (4.5)

where the last inequality is due to (4.4).
Similar to Lemma 3.17, we can prove that Lβ(ε)(xk1 , . . . , x

k
N , yk, λk) is bounded

from below, i.e., the exists a constant L∗ = f ∗ +∑N
i=1 r

∗
i such that

Lβ(ε)(x
k
1 , . . . , x

k
N , yk, λk) ≥ L∗, for all k.
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Actually the following inequalities lead to the above fact:

Lβ(ε)(x
k
1 , . . . , x

k
N , yk, λk)

= f (xk1 , . . . , x
k
N ) +

N∑

i=1

ri (x
k
i ) + μ(ε)

2
‖yk‖2 −

〈

λk,

N∑

i=1

Ai x
k
i + yk − b

〉

+β(ε)

2

∥
∥
∥
∥
∥

N∑

i=1

Ai x
k
i + yk − b

∥
∥
∥
∥
∥

2

= f (xk1 , . . . , x
k
N ) +

N∑

i=1

ri (x
k
i ) + μ(ε)

2
‖yk‖2 −

〈

μ(ε)yk,
N∑

i=1

Ai x
k
i + yk − b

〉

+β(ε)

2

∥
∥
∥
∥
∥

N∑

i=1

Ai x
k
i + yk − b

∥
∥
∥
∥
∥

2

≥ L∗+μ(ε)

⎡

⎣1

2

∥
∥
∥
∥
∥

N∑

i=1

Ai x
k
i −b

∥
∥
∥
∥
∥

2

+
(

β(ε)−μ(ε)

2μ(ε)

)∥∥
∥
∥
∥

N∑

i=1

Ai x
k
i +yk−b

∥
∥
∥
∥
∥

2⎤

⎦≥L∗,

(4.6)

where the second equality is from μ(ε)yk = λk , and the last inequality is due to (4.4).
Moreover, denote L0 ≡ Lβ(ε)(x01 , . . . , x

0
N , y0, λ0), which is a constant independent

of ε.
Furthermore, for any integer K ≥ 1, summing (4.5) over k = 0, . . . , K yields

Lβ(ε)(x
K+1
1 , . . . , xK+1

N , yK+1, λK+1) − L0 ≤ −τ̄

K∑

k=0

θk, (4.7)

where θk :=∑N
i=1 ‖xki − xk+1

i ‖2 +‖yk − yk+1‖2. Note that (4.7) and (4.6) imply that

min
0≤k≤K

θk ≤ 1

τ̄K

(
L0 − L∗) . (4.8)

Similar to (3.24), it can be shown that for i = 1, . . . , N ,

dist
(
−∇i f (x

k+1
1 , . . . , xk+1

N ) + A�
i λk+1, ∂ri (x

k+1
i )

)

≤
(
L + β(ε)

√
N max1≤i≤N ‖Ai‖22 + max1≤i≤N ‖Hi‖2

)√
θk .

(4.9)

Set K = 1/ε4 and denote K̂ = argmin0≤k≤K θk . Then we know θK̂ = O(ε4). As
a result,

∥
∥
∥
∥
∥

N∑

i=1

Ai x
K̂+1
i + yK̂+1 − b

∥
∥
∥
∥
∥

2
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= 1

β(ε)2
‖λK̂+1 − λK̂ ‖2 = μ(ε)2

β(ε)2
‖yK̂+1 − yK̂ ‖2 ≤ 1

9
θK̂ = O(ε4). (4.10)

Note that (4.6) also implies that f (xk1 , . . . , x
k
N )+∑N

i=1 ri (x
k
i ) is upper-bounded by a

constant. Thus, from the assumption that the level set of the objective is bounded, we
know (xk1 , . . . , x

k
N ) is bounded. Then Assumption 4.1 implies that λk bounded, which

results in ‖yk‖ = O(ε). Therefore, from (4.10) we have

∥
∥
∥
∥
∥

N∑

i=1

Ai x
K̂+1
i − b

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

N∑

i=1

Ai x
K̂+1
i + yK̂+1 − b

∥
∥
∥
∥
∥

+
∥
∥
∥yK̂+1

∥
∥
∥ = O(ε),

which combining with (4.9) yields that (x K̂+1
1 , . . . , x K̂+1

N ) is an ε-stationary solution

for (4.1) with Lagrange multiplier λK̂+1, according to Definition 3.6. ��
Remark 4.3 Without Assumption 4.1, we can still provide an iteration complexity of
proximalADMM-m, but the complexity bound isworse thanO(1/ε4). To see this, note
that because Lβ(ε)(xk1 , . . . , x

k
N , yk, λk) monotonically decreases, the first inequality

in (4.6) implies that

μ(ε)
1

2

∥
∥
∥
∥
∥

N∑

i=1

Ai x
k
i − b

∥
∥
∥
∥
∥

2

≤ L0 − L∗,∀k. (4.11)

Therefore, by setting K = 1/ε6, μ(ε) = 1/ε2 and β(ε) = 3/ε2 instead of (4.4), and

combining (4.9) and (4.11), we conclude that (x K̂+1
1 , . . . , x K̂+1

N ) is an ε-stationary

solution for (4.1) with Lagrange multiplier λK̂+1, according to Definition 3.6.

4.2 Proximal BCD (block coordinate descent)

In this section, we apply a proximal block coordinate descent method to solve the
following variant of (1.1) and present its iteration complexity:

min F(x1, x2, . . . , xN ) := f (x1, x2, . . . , xN ) +
N∑

i=1
ri (xi )

s.t. xi ∈ Xi , i = 1, . . . , N ,

(4.12)

where f is differentiable, ri is nonsmooth, and Xi ⊂ R
ni is a closed convex set for

i = 1, 2, . . . , N . Note that f and ri can be nonconvex functions. Our proximal BCD
method for solving (4.12) is described in Algorithm 4.

Similar to the settings in Table 1, depending on the properties of ri and Xi , the
ε-stationary solution for (4.12) is as follows.

Definition 4.4 (x∗
1 , . . . , x

∗
N , λ∗) is called an ε-stationary solution for (4.12), if
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Algorithm 4 A proximal BCD method for solving (4.12)

Require: Given
(
x01 , x02 , . . . , x0N

)
∈ X1 × · · · × XN

for k = 0, 1, . . . do
Update block xi in a cyclic order, i.e., for i = 1, . . . , N (Hi positive definite):

xk+1
i := argmin

xi∈Xi

F(xk+1
1 , . . . , xk+1

i−1 , xi , x
k
i+1, . . . , x

k
N ) + 1

2

∥
∥
∥xi − xki

∥
∥
∥
2

Hi
. (4.13)

end for

(i) ri is Lipschitz continuous, Xi is convex and compact, and for any xi ∈ Xi , i =
1, . . . , N , it holds that (gi = ∂ri (x∗

i ) denotes a generalized subgradient of ri )

(
xi − x∗

i

)� [∇i f (x
∗
1 , . . . , x

∗
N ) + gi

] ≥ −ε;

(ii) or, if ri is lower semi-continuous, Xi = R
ni for i = 1, . . . , N , it holds that

dist
(−∇i f (x

∗
1 , . . . , x

∗
N ), ∂ri (x

∗
i )
) ≤ ε.

We now show that the iteration complexity of Algorithm 4 can be obtained from
that of proximal ADMM-g. By introducing an auxiliary variable xN+1 and an arbitrary
vector b ∈ R

m , problem (4.12) can be equivalently rewritten as

min f (x1, x2, . . . , xN ) +
N∑

i=1
ri (xi )

s.t. xN+1 = b, xi ∈ Xi , i = 1, . . . , N .

(4.14)

It is easy to see that applying proximal ADMM-g to solve (4.14) (with xN+1 being
the last block variable) reduces exactly to Algorithm 4. Hence, we have the following
iteration complexity result of Algorithm 4 for obtaining an ε-stationary solution of
(4.12).

Theorem 4.5 Suppose the sequence {(xk1 , . . . , xkN )} is generated by proximal BCD
(Algorithm 4). Denote

κ5 := (L + max
1≤i≤N

‖Hi‖2)2, κ6 := max
1≤i≤N

(diam(Xi ))
2.

Letting

K :=
⎧
⎨

⎩

⌈
κ5·κ6
τ ε2

(�G(x11 , . . . , x
1
N , λ1, x0N ) −∑N

i=1 r
∗
i − f ∗)

⌉
for Setting 1

⌈
κ5

τ ε2
(�G(x11 , . . . , x

1
N , λ1, x0N ) −∑N

i=1 r
∗
i − f ∗)

⌉
for Setting 2

with τ being defined in (3.18), and K̂ := min1≤k≤K
∑N

i=1

(
‖xki − xk+1

i ‖2
)
, we have

that (x K̂1 , . . . , x K̂N ) is an ε-stationary solution for problem (4.12).
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Proof Note that A1 = · · · = AN = 0 and AN+1 = I in problem (4.14). By

applying proximal ADMM-g with β > max
{
18L, max1≤i≤N

{
6L2

σmin(Hi )

}}
, Theo-

rem 3.12 holds. In particular, (3.24) and (3.25) are valid in different settings with
β
√
N maxi+1≤ j≤N+1

[‖A j‖2
] ‖Ai‖2 = 0 for i = 1, . . . , N , which leads to the

choices of κ5 and κ6 in the above. Moreover, we do not need to consider the opti-
mality with respect to xN+1 and the violation of the affine constraints, thus κ1 and κ2
in Theorem 3.12 are excluded in the expression of K , and the conclusion follows. ��

5 Numerical experiments

5.1 Robust tensor PCAmodel

We consider the following nonconvex and nonsmooth model of robust tensor PCA
with �1 norm regularization for third-order tensor of dimension I1 × I2 × I3. Given
an initial estimate R of the CP-rank, we aim to solve the following problem:

minA,B,C,Z,E,B ‖Z − �A, B,C�‖2F + α ‖E‖1 + αN ‖B‖2F
s.t. Z + E + B = T ,

(5.1)

where A ∈ R
I1×R , B ∈ R

I2×R , C ∈ R
I3×R . The augmented Lagrangian function of

(5.1) is given by

Lβ(A, B,C,Z, E,B,�)

= ‖Z − �A, B,C�‖2F + α ‖E‖1 + αN ‖B‖2F − 〈�,Z + E + B − T 〉
+β

2
‖Z + E + B − T ‖2F .

The following identities are useful for our presentation later:

‖Z − �A, B,C�‖2F = ‖Z(1) − A(C � B)�‖2F
= ‖Z(2) − B(C � A)�‖2F
= ‖Z(3) − C(B � A)�‖2F ,

where Z(i) stands for themode-i unfolding of tensorZ and� stands for theKhatri-Rao
product of matrices.

Note that there are six block variables in (5.1), and we choose B as the last block
variable. A typical iteration of proximal ADMM-g for solving (5.1) can be described
as follows (we chose Hi = δi I , with δi > 0, i = 1, . . . , 5):
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ak+1 =
(
(Z)k(1)(C

k � Bk) + δ1
2 Ak

) (
((Ck)�Ck) ◦ ((Bk)�Bk) + δ1

2 IR×R

)−1

Bk+1 =
(
(Z)k(2)(C

k � Ak+1) + δ2
2 Bk

) (
((Ck)�Ck) ◦ ((Ak+1)�Ak+1) + δ2

2 IR×R

)−1

Ck+1 =
(
(Z)k(3)(B

k+1 � Ak+1) + δ3
2 C

k
) (

((Bk+1)�Bk+1) ◦ ((Ak+1)�Ak+1) + δ3
2 IR×R

)−1

Ek+1
(1) = S

(
β

β+δ4
(T(1) + 1

β
�k

(1) − Bk
(1) − Zk

(1)) + δ4
β+δ4

Ek
(1),

α
β+δ4

)

Zk+1
(1) = 1

2+2δ5+β

(
2Ak+1(Ck+1 � Bk+1)� + 2δ5 (Z(1))

k + �k
(1) − β(Ek+1

(1) + Bk
(1) − T(1))

)

Bk+1
(1) = Bk

(1) − γ
(
2αN Bk

(1) − �k
(1) + β(Ek+1

(1) + Zk+1
(1) + Bk

(1) − T(1))
)

�k+1
(1) = �k

(1) − β
(
Zk+1

(1) + Ek+1
(1) + Bk+1

(1) − T(1)

)

where ◦ is the matrix Hadamard product and S stands for the soft shrinkage operator.
The updates in proximal ADMM-m are almost the same as proximal ADMM-g except
B(1) is updated as

Bk+1
(1) = 1

L + β

(
(L − 2αN )Bk

(1) + �k
(1) − β(Ek+1

(1) + Zk+1
(1) − T(1))

)
.

On the other hand, note that (5.1) can be equivalently written as

min
A,B,C,Z,E

‖Z − �A, B,C�‖2F + α ‖E‖1 + αN ‖Z + E − T ‖2F , (5.2)

which can be solved by the classical BCD method as well as our proximal BCD
(Algorithm 4). In addition, we can apply GCG (Algorithm 1) to solve a variant of
(5.1). Note that GCG requires a compact constraint set and thus it does not apply to
(5.1) directly. As a result, we consider the following variant of (5.1), where the new
quadratic regularization terms in the objective are added to help construct the compact
constraint sets.

min ‖Z − �A, B,C�‖2F + α ‖E‖1 + αN ‖Z + E − T ‖2F + αA
2 ‖A‖2F + αB

2 ‖B‖2F+αC
2 ‖C‖2F + αZ

2 ‖Z‖2F
s.t. ‖A‖F ≤ ρ1, ‖B‖F ≤ ρ2, ‖C‖F ≤ ρ3, ‖Z‖F ≤ ρ4, ‖E‖1 ≤ ρ5.

(5.3)
The new parameter ρ1 can be identified by the following observation:

αA

2
‖A∗‖2F ≤ f (A∗, B∗,C∗,Z∗, E∗) ≤ f (0) = αN ‖T ‖2F ,

which implies that ρ1 =
√

2αN
αA

‖T ‖F . Other parameters ρ2, . . . , ρ5 can be computed
in the same manner.

In the following we shall compare the numerical performance of GCG, BCD,
proximal BCD, proximal ADMM-g and proximal ADMM-m for solving (5.1). We
let α = 2/max{√I1,

√
I2,

√
I3} and αN = 1 in model (5.1). We apply proximal

ADMM-g and proximal ADMM-m to solve (5.1), apply BCD and proximal BCD to
solve (5.2), and apply GCG to solove (5.3) with αA = αB = αC = 10 and αZ=1.

123



Structured nonconvex and nonsmooth optimization… 149

Table 2 Choices of parameters in the two ADMM variants

Hi , i = 1, . . . , 5 β γ

Proximal ADMM-g 1
2β · I 4 1

β

Proximal ADMM-m 2
5β · I 5 –

In all the four algorithms we set the maximum iteration number to be 2000, and the
algorithms are terminated either when the maximum iteration number is reached or
when θk as defined in (3.20) is less than 10−6. The parameters used in the two ADMM
variants are specified in Table 2.

In the experiment, we randomly generate 20 instances for fixed tensor dimension
and CP-rank. Suppose the low-rank part Z0 is of rank RCP. It is generated by

Z0 =
RCP∑

r=1

a1,r ⊗ a2,r ⊗ a3,r ,

where vectors ai,r are generated from standard Gaussian distribution for i = 1, 2, 3,
r = 1, . . . , RCP. Moreover, a sparse tensor E0 is generated with cardinality of 0.001 ·
I1 I2 I3 such that each nonzero component follows from standardGaussian distribution.
Finally, we generate noise B0 = 0.001 ∗ B̂, where B̂ is a Gaussian tensor. Then we
set T = Z0 + E0 + B0 as the observed data in (5.1). A proper initial guess R of
the true rank RCP is essential for the success of our algorithms. We can borrow the
strategy in matrix completion [54], and start from a large R (R ≥ RCP) and decrease
it aggressively once a dramatic change in the recovered tensor Z is observed. We
report the average performance of 20 instances of the four algorithms with initial
guess R = RCP, R = RCP + 1 and R = RCP + 	0.2 ∗ RCP
 in Tables 3, 4 and 5,
respectively.

In Tables 3, 4 and 5, “Err.” denotes the averaged relative error ‖Z∗−Z0‖F
‖Z0‖F of the low-

rank tensor over 20 instances, where Z∗ is the solution returned by the corresponding
algorithm; “Iter.” denotes the averaged number of iterations over 20 instances; “#”
records the number of solutions (out of 20 instances) that have relative error less than
0.01.

Tables 3, 4 and 5 suggest that BCD mostly converges to a local solution rather
than the global optimal solution, GCG easily gets stuck at a local solution in a few
iterations for this particular problem, while the other three methods are much better
in finding the global optimum.

It is interesting to note that the results presented in Table 5 are better than that of
Tables 4 and 3 when a larger basis is allowed in tensor factorization. Moreover, in
this case, the proximal BCD usually consumes less number of iterations than the two
ADMM variants.
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Table 6 Numerical results for sparse tensor PCA problem

Inst. # BCD Proximal BCD GCG

Val.
∑d

i=1 ‖xi‖0 Iter. Val.
∑d

i=1 ‖xi‖0 Iter. Val.
∑d

i=1 ‖xi‖0 Iter.

Dimension n = 8

1 4.63 11 144 5.45 11 199 6.22 16 210

2 9.01 19 113 8.68 21 224 6.36 13 303

3 5.71 13 124 7.42 16 116 6.79 17 374

4 6.09 15 2000 6.30 13 231 6.11 16 381

5 4.79 16 2000 4.13 7 238 0.00 0 15

6 7.45 16 66 6.79 16 169 7.45 16 145

7 5.83 13 105 6.57 17 116 0.00 0 17

8 6.98 19 312 6.00 14 285 0.00 0 13

9 6.83 18 2000 8.27 20 163 8.27 20 89

10 7.24 18 103 7.13 15 94 6.95 12 107

Dimension n = 12

1 8.22 21 2000 8.22 23 153 8.22 23 117

2 9.07 28 643 8.50 22 617 8.09 20 319

3 8.28 22 153 8.15 18 220 0.00 0 12

4 8.44 24 114 9.51 29 230 9.51 29 146

5 8.93 23 233 7.77 19 274 0.00 0 11

6 8.91 22 113 8.24 22 249 8.24 22 165

7 8.38 20 159 8.98 24 566 7.50 20 118

8 8.17 21 342 6.98 15 326 0.00 0 10

9 8.15 23 2000 5.70 13 152 5.33 24 90

10 8.06 23 2000 8.60 21 116 8.60 21 82

Dimension n = 20

1 10.55 32 188 11.53 38 282 0.00 0 11

2 10.53 36 2000 12.07 42 430 10.31 34 326

3 9.26 31 2000 11.59 38 149 0.00 0 11

4 11.35 40 563 10.75 34 359 12.21 38 170

5 11.85 42 2000 11.71 41 1130 12.14 42 384

6 12.18 39 267 12.35 45 251 7.96 42 110

7 12.04 41 1282 11.77 42 142 11.77 42 170

8 10.59 31 507 11.83 41 411 11.98 42 351

9 0.87 30 2000 11.56 37 169 11.07 34 189

10 10.87 32 2000 11.75 37 422 8.93 47 100

Dimension n = 30

1 12.89 49 2000 14.16 57 304 13.56 51 140

2 0.01 40 2000 15.58 65 926 15.03 60 398

3 14.46 52 2000 16.00 61 936 13.60 51 239

4 2.07 50 2000 14.28 54 319 13.81 54 241

5 12.30 42 2000 14.40 57 510 14.84 56 437
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Table 6 continued

Inst. # BCD Proximal BCD GCG

Val.
∑d

i=1 ‖xi‖0 Iter. Val.
∑d

i=1 ‖xi‖0 Iter. Val.
∑d

i=1 ‖xi‖0 Iter.

6 0.69 42 2000 13.97 52 491 13.69 51 272

7 0.63 35 2000 14.53 59 227 13.77 53 253

8 14.31 52 2000 15.20 54 660 14.28 54 346

9 0.02 34 2000 14.55 55 263 13.37 48 143

10 0.77 37 2000 15.11 57 283 14.03 54 145

5.2 Computing the leading sparse principal component of tensor

In this subsection, we consider the problem (1.4) of finding the leading sparse principal
component of a given tensor. To apply the GCG method in the previous section, we
adopt ‖ · ‖1 as regularizer, and arrive at the following formulation

min −T (x1, x2, . . . , xd) + α
d∑

i=1
‖xi‖1

s.t. ‖xi‖2 ≤ 1, i = 1, 2, . . . , d.

(5.4)

The subproblem in GCG is in the form of min‖y‖22≤1{−y�b + ρ‖y‖1}, which has a
closed form solution

y∗ =
{
z/‖z‖2, if ‖z‖2 �= 0
0, otherwise.

where z( j) = sign(b( j))max{|b( j)| − ρ, 0} ∀ j = 1, 2, . . . , n.
One undesirable property of the formulation (5.4) is that wemay possibly get a zero

solution, i.e. xi = 0 for some i , which leads to T (x1, x2, . . . , xd) = 0. To prevent this
from happening, we also apply the BCD method and proximal BCD method to the
following equality constrained problem:

min −T (x1, x2, . . . , xd) + α
d∑

i=1
‖xi‖1

s.t. ‖xi‖2 = 1, i = 1, 2, . . . , d,

(5.5)

and compare the results with those returned by our proposed algorithms in Table 6.
In the tests, we let α = 0.85, and set the maximum iteration number to be 2000. For

each fixed dimension, we randomly generate 10 instances which are the fourth order
tensors and the corresponding problems are solved by the three methods, starting from
the same initial point. In Table 6, ‘Val.’ refers to the value T (x1, x2, . . . , xd). From
this table, we see that GCG is capable of finding a nonzero local optimum within a
few hundred steps in most cases, with reasonably sparsity. The three approaches in
Table 6 are comparable to each other in terms of the value T (x1, x2, . . . , xd), but BCD
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consumes the maximum 2000 iterations in quite a few instances, while GCG finds the
best local optimum in a few instances (e.g. instances 6 and 9 for n = 8, and instances
5 and 8 for n = 20).

Acknowledgements Wewould like to thank Professor Renato D. C.Monteiro and two anonymous referees
for their insightful comments, which helped improve this paper significantly.
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