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Abstract

Nonconvex and nonsmooth optimization problems are frequently encountered in much
of statistics, business, science and engineering, but they are not yet widely recognized
as a fechnology in the sense of scalability. A reason for this relatively low degree
of popularity is the lack of a well developed system of theory and algorithms to
support the applications, as is the case for its convex counterpart. This paper aims to
take one step in the direction of disciplined nonconvex and nonsmooth optimization. In
particular, we consider in this paper some constrained nonconvex optimization models
in block decision variables, with or without coupled affine constraints. In the absence of
coupled constraints, we show a sublinear rate of convergence to an e-stationary solution
in the form of variational inequality for a generalized conditional gradient method,
where the convergence rate is dependent on the Holderian continuity of the gradient
of the smooth part of the objective. For the model with coupled affine constraints,
we introduce corresponding e-stationarity conditions, and apply two proximal-type
variants of the ADMM to solve such a model, assuming the proximal ADMM updates
can be implemented for all the block variables except for the last block, for which
either a gradient step or a majorization—minimization step is implemented. We show
an iteration complexity bound of O(1/€?) to reach an e-stationary solution for both
algorithms. Moreover, we show that the same iteration complexity of a proximal BCD
method follows immediately. Numerical results are provided to illustrate the efficacy
of the proposed algorithms for tensor robust PCA and tensor sparse PCA problems.
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1 Introduction

In this paper, we consider the following nonconvex and nonsmooth optimization prob-
lem with multiple block variables:

N—1
min f(xp, %2, ..., x8) + 30 rixi)

v i=l (1.1)
S.t. ZA,‘)C,‘ZZ?, x;€X,i=1,...,N—1,

i=1

where f is differentiable and possibly nonconvex, and each r; is possibly nonsmooth
and nonconvex,i =1,...,N—1; A; e R™*" p e R", x; € R";and X; C R" are
convex sets, 7 = 1,2, ..., N — 1. One restriction of model (1.1) is that the objective
function is required to be smooth with respect to the last block variable x. However,
in Sect. 4 we shall extend the result to cover the general case where ry (xy) may
be present and that x maybe constrained as well. A special case of (1.1) is when
the affine constraints are absent, and there is no block structure of the variables (i.e.,
x = x1 and other block variables do not show up in (1.1)), which leads to the following
more compact form

min ®(x) := f(x) +r(x), st.x € S C R, (1.2)

where S is a convex and compact set. In this paper, we propose several first-order
algorithms for computing an e-stationary solution (to be defined later) for (1.1) and
(1.2), and analyze their iteration complexities. Throughout, we assume the following
condition.

Assumption 1.1 The sets of the stationary solutions for (1.1) and (1.2) are non-empty.

Problem (1.1) arises from a variety of interesting applications. For example, one
of the nonconvex models for matrix robust PCA can be cast as follows (see, e.g.,
[51]), which seeks to decompose a given matrix M € R™*" into a superposition of a
low-rank matrix Z, a sparse matrix E and a noise matrix B:

min _||[Z— XY |32 +aR(E), st M=Z+E+B, |B|lr<n (13
X,Y,Z,E,B

where X € R™*" Y € R™, with r < min(m, n) being the estimated rank of Z;
n > 0 is the noise level, « > 0 is a weighting parameter; R(E) is a regularization
function that can improve the sparsity of E. One of the widely used regularization
functions is the £; norm, which is convex and nonsmooth. However, there are also
many nonconvex regularization functions that are widely used in statistical learning
and information theory, such as smoothly clipped absolute deviation (SCAD) [23],
log-sum penalty (LSP) [15], minimax concave penalty (MCP) [58], and capped-¢;
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penalty [59,60], and they are nonsmooth at point O if composed with the absolute
value function, which is usually the case in statistical learning. Clearly (1.3) is in
the form of (1.1). Another example of the form (1.1) is the following nonconvex
tensor robust PCA model (see, e.g., [55]), which seeks to decompose a given tensor
T e Rm>nm2xXnd jnto a superposition of a low-rank tensor Z, a sparse tensor £ and
anoise tensor 3:

min Z—Cx1 X1 x2 X2 %3 xg Xg|% + aR(E),
X,.C.2Z,E.B8 I 1 A1 X242 X3 d Xallx &)

st T =Z+E+B, |IBlr <,

where C is the core tensor that has a smaller size than Z, and X; are matrices with
appropriate sizes, i = 1,...,d. In fact, the “low-rank” tensor in the above model
corresponds to the tensor with a small core; however a recent work [35] demonstrates
that the CP-rank of the core regardless of its size could be as large as the original tensor.
Therefore, if one wants to find the low CP-rank decomposition, then the following
model is preferred:

Lmin 12— [X1, X0, Xa)lI3 + a RE) +an|Bl|3, st.T =Z+E+ B,

14

for X; = [a"!,a"?,...,a"R] € R'*R 1 < i < dand [X1,X2,....X4] ==
Zle a'" @a*>" ®---®@a®", where“®” denotes the outer product of vectors, and R
is an estimation of the CP-rank. In addition, the so-called sparse tensor PCA problem
[1], which seeks the best sparse rank-one approximation for a given d-th order tensor
T, can also be formulated in the form of (1.1):

d
min —7 (x1, x2, ... ,xd)—i—otZR(x,-), st.x; €8 ={x]| ||x||%§ 1},i=1,2,...,d,
= (1.4)
where T(xl s X2y eeny xd) = Zil ..... ig /Tils--uid(‘xl)il . (xd)id'

The convergence and iteration complexity for various nonconvex and nonsmooth
optimization problems have recently attracted considerable research attention; see e.g.
[3,6,7,10,11,19,20,27,28,41,46]. In this paper, we study several solution methods that
use only the first-order information of the objective function, including a generalized
conditional gradient method, variants of alternating direction method of multipliers,
and a proximal block coordinate descent method, for solving (1.1) and (1.2). Specif-
ically, we apply a generalized conditional gradient (GCG) method to solve (1.2). We
prove that the GCG can find an e-stationary solution for (1.2) in O(e~7) iterations
under certain mild conditions, where ¢ is a parameter in the Holder condition that
characterizes the degree of smoothness for f. In other words, the convergence rate
of the algorithm depends on the degree of “smoothness” of the objective function. It
should be noted that a similar iteration bound that depends on the parameter ¢ was
reported for convex problems [13], and for general nonconvex problem, [14] analyzed
the convergence results, but there was no iteration complexity result. Furthermore,
we show that if f is concave, then GCG finds an e-stationary solution for (1.2) in
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O (1/¢) iterations. For the affinely constrained problem (1.1), we propose two algo-
rithms (called proximal ADMM-g and proximal ADMM-m in this paper), both can
be viewed as variants of the alternating direction method of multipliers (ADMM).
Recently, there has been an emerging research interest on the ADMM for noncon-
vex problems (see, e.g., [2,32,33,38,52,53,56]). However, the results in [38,52,53,56]
only show that the iterates produced by the ADMM converge to a stationary solution
without providing an iteration complexity analysis. Moreover, the objective function
is required to satisfy the so-called Kurdyka—t.ojasiewicz (KL) property [8,9,36,42] to
enable those convergence results. In [33], Hong et al. analyzed the convergence of the
ADMM for solving nonconvex consensus and sharing problems. Note that they also
analyzed the iteration complexity of the ADMM for the consensus problem. However,
they require the nonconvex part of the objective function to be smooth, and nonsmooth
part to be convex. In contrast, ; in our model (1.1) can be nonconvex and nonsmooth
at the same time. Moreover, we allow general constraints x; € X, i =1,..., N — 1,
while the consensus problem in [33] only allows such constraint for one block variable.
A very recent work of Hong [32] discussed the iteration complexity of an augmented
Lagrangian method for finding an e-stationary solution for the following problem:

min f(x), st. Ax =b,x € R", (1.5)

under the assumption that f is differentiable. We will compare our results with [32]
in more details in Sect. 3.
Before proceeding, let us first summarize:

Our contributions

(i) We provide definitions of e-stationary solution for (1.1) and (1.2) using the vari-
ational inequalities. For (1.1), our definition of the e-stationary solution allows
each r; to be nonsmooth and nonconvex.

(i) We study a generalized conditional gradient method with a suitable line search
rule for solving (1.2). We assume that the gradient of f satisfies a Holder condi-
tion, and analyze its iteration complexity for obtaining an e-stationary solution
for (1.2). After we released the first version of this paper, we noticed there are
several recent works that study the iteration complexity of conditional gradient
method for nonconvex problems. However, our results are different from these.
For example, the convergence rate given in [57] is worse than ours, and [43,44]
only consider smooth nonconvex problem with Lipschitz continuous gradient,
but our results cover nonsmooth models.

(iii) We study two ADMM variants (proximal ADMM-g and proximal ADMM-m)
for solving (1.1), and analyze their iteration complexities for obtaining an e-
stationary solution for nonconvex problem (1.1). In addition, the setup and the
assumptions of our model are different from other recent works. For instance,
[38] considers a two-block nonconvex problem with an identity coefficient matrix
for one block variable in the linear constraint, and requires the coerciveness of
the objective or the boundedness of the domain. [53] assumes that the objective
function is coercive over the feasible set and the nonsmooth objective is restricted
prox-regular or piece-wise linear. While our algorithm assumes the gradient
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of the smooth part of the objective function is Lipschitz continuous and the
nonsmooth part does not involve the last block variable, which is weaker than
the assumptions on the objective functions in [38,53].

(iv) As an extension, we also show how to use proximal ADMM-g and proximal
ADMM-m to find an e-stationary solution for (1.1) without assuming any con-
dition on Ay.

(v) When the affine constraints are absent in model (1.1), as a by-product, we demon-
strate that the iteration complexity of proximal block coordinate descent (BCD)
method with cyclic order can be obtained directly from that of proximal ADMM-
g and proximal ADMM-m. Although [11] gives an iteration complexity result
of nonconvex BCD, it requires the KL property, and the complexity depends on
a parameter in the KL condition, which is typically unknown.

Notation ||x || denotes the Euclidean norm of vector x, and || x ||%1 denotes x " Hx for
some positive definite matrix H. For set S and scalar p > 1, we denote diam(S) :=
maxy yes |[x—yllp, where [lx||, = Q-7 |xi |P)1/P . Without specification, we denote
lx|l = llx|l2 and diam(S) = diam;(S) for short. We use dist(x, S) to denote the
Euclidean distance of vector x to set S. Given a matrix A, its spectral norm and
smallest singular value are denoted by || A||2 and opin (A) respectively. We use [a] to
denote the ceiling of a.

Organization The rest of this paper is organized as follows. In Sect. 2 we introduce the
notion of e-stationary solution for (1.2) and apply a generalized conditional gradient
method to solve (1.2) and analyze its iteration complexity for obtaining an e-stationary
solution for (1.2). In Sect. 3 we give two definitions of e-stationarity for (1.1) under
different settings and propose two ADMM variants that solve (1.1) and analyze their
iteration complexities to reach an e-stationary solution for (1.1). In Sect. 4 we provide
some extensions of the results in Sect. 3. In particular, we first show how to remove
some of the conditions that we assume in Sect. 3, and then we apply a proximal BCD
method to solve (1.1) without affine constraints and provide an iteration complexity
analysis. In Sect. 5, we present numerical results to illustrate the practical efficiency
of the proposed algorithms.

2 A generalized conditional gradient method

In this section, we study a GCG method for solving (1.2) and analyze its iteration
complexity. The conditional gradient (CG) method, also known as the Frank-Wolfe
method, was originally proposed in [24], and regained a lot of popularity recently due
to its capability in solving large-scale problems (see, [4,5,25,30,34,37,47]). However,
these works focus on solving convex problems. Bredies et al. [14] proved the conver-
gence of a generalized conditional gradient method for solving nonconvex problems
in Hilbert space. In this section, by introducing a suitable line search rule, we provide
an iteration complexity analysis for this algorithm.
We make the following assumption in this section regarding (1.2).

Assumption 2.1 In (1.2), r(x) is convex and nonsmooth, and the constraint set S is
convex and compact. Moreover, f is differentiable and there exist some p > 1 and
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p > 0 such that
S fO+VI@T—x)+ glly —x|p. Vx,yeSs. (2.1

The above inequality (2.1) is also known as the Holder condition and was used in
other works on first-order algorithms (e.g., [21]). It can be shown that (2.1) holds for
a variety of functions. For instance, (2.1) holds for any p when f is concave, and is
valid for p = 2 when V f is Lipschitz continuous.

2.1 An e-stationary solution for problem (1.2)

For smooth unconstrained problem min, f(x), it is natural to define the e-stationary
solution using the criterion ||V f(x)|l2 < €. Nesterov [48] and Cartis et al. [17] showed
that the gradient descent type methods with properly chosen step size need O (1/€%)
iterations to find such a solution. Moreover, Cartis et al. [16] constructed an example
showing that the O(1/€?) iteration complexity is tight for the steepest descent type
algorithm. However, the case for the constrained nonsmooth nonconvex optimization
is subtler. There exist some works on how to define e-optimality condition for the local
minimizers of various constrained nonconvex problems [18,22,28,32,49]. Cartis et al.
[18] proposed an approximate measure for smooth problem with convex set constraint.
[49] discussed general nonsmooth nonconvex problem in Banach space by using the
tool of limiting Fréchet e-subdifferential. Ngai et al. [22] showed that under certain
conditions €-KKT solutions can converge to a stationary solution as € — 0. Here the
€-KKT solution is defined by relaxing the complimentary slackness and equilibrium
equations of KKT conditions. Ghadimi et al. [28] considered the following notion of
€-stationary solution for (1.2):

1 1
Ps(x,y) = —(x —xT), wherex’ = arg min VI Ty + =V (y,x)+r),
14 ye 14
(2.2)
where y > 0 and V is a prox-function. They proposed a projected gradient algorithm
to solve (1.2) and proved that it takes no more than O(1/ €2) iterations to find an x
satisfying

I Ps(x, Y3 < e. (2.3)

Our definition of an e-stationary solution for (1.2) is as follows.

Definition 2.2 We call x an e-stationary solution (¢ > 0) for (1.2) if the following
holds:

Ys(x) = ;rég{Vf(x)T(y —X)+r(y) —r@)}) = —e (24)
If € = 0, then x is called a stationary solution for (1.2).
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Observe that if r(-) is continuous then any cluster point of e-stationary solutions
defined above is a stationary solution for (1.2) as € — 0. Moreover, the stationarity
condition is weaker than the usual KKT optimality condition. To see this, we first
rewrite (1.2) as the following equivalent unconstrained problem

min f(x) +7r(x) + ts(x)

where (s (x) is the indicator function of S. Suppose that x is any local minimizer of
this problem and thus also a local minimizer of (1.2). Since f is differentiable, » and
ts are convex, Fermat’s rule [50] yields

0e€d(f(x)+rx)+is(x))=Vfx)+arx)+ dis(x), (2.5)
which further implies that there exists some z € dr(x) such that

(VI +2)T(y—x) 20, Vyes.
Using the convexity of r(-), it is equivalent to
V@) (v —x)+r() —rkx) >0, Vy €S. (2.6)

Therefore, (2.6) is a necessary condition for local minimum of (1.2) as well.

Furthermore, we claim that ¥g(x) > —e implies || Ps(x, )/)||% < €/y with the
prox-function V (y, x) = ||y — x||% /2. In fact, (2.2) guarantees that

1 T
(Vf(X)+—(x+—X)+z> (y—xH =0, Vyes, (2.7)
14
for some z € dr(xT). By choosing y = x in (2.7) one obtains

1
VIO = x) +r@x) —ra™) > (V) +2)" (x —xh) > ;nx+ — x|I3.

2.8)

Therefore, if ys(x) > —e, then || Ps(x, y)ll% < ; holds.
2.2 The algorithm

For given point z, we define an approximation of the objective function of (1.2) to be:

L) = O+ V)T =) +r(), 2.9)
which is obtained by linearizing the smooth part (function f) of ® in (1.2). Our

GCG method for solving (1.2) is described in Algorithm 1, where p and p are from
Assumption 2.1.
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Algorithm 1 Generalized Conditional Gradient Algorithm (GCG) for solving (1.2)
Require: Given Wes
fork=0,1,...do
[Step 1] yk = argminyeg £(y; xk), and let @ = yk —X
[Step 2] o = argmingepo, 17 V £ (xK) Tak +aP & 1dk |15 + (1 — e)r (xb) + ar (%)
[Step 3] Set k= - (xk)xk + akyk.
end for

k.

In each iteration of Algorithm 1, we first perform an exact minimization on the
approximated objective function £(y; x) to form a direction dj. Then the step size o
is obtained by an exact line search (which differentiates the GCG from a normal CG
method) along the direction dy, where f is approximated by p-powered function and
the nonsmooth part is replaced by its upper bound. Finally, the iterate is updated by
moving along the direction dj with step size a.

Note that here we assumed that solving the subproblem in Step 1 of Algorithm 1
is relatively easy. That is, we assumed the following assumption.

Assumption 2.3 All subproblems in Step 1 of Algorithm 1 can be solved relatively
easily.

Remark 2.4 Assumption 2.3 is quite common in conditional gradient method. For a
list of functions r and sets S such that Assumption 2.3 is satisfied, see [34].

Remark 2.5 It is easy to see that the sequence {® (x¥)} generated by GCG is mono-

tonically nonincreasing [14], which implies that any cluster point of {xk} cannot be a
strict local maximizer.

2.3 An iteration complexity analysis

Before we proceed to the main result on iteration complexity of GCG, we need the
following lemma that gives a sufficient condition for an e-stationary solution for
(1.2). This lemma is inspired by [27], and it indicates that if the progress gained
by minimizing (2.9) is small, then z must already be close to a stationary solution for
(1.2).

Lemma 2.6 Define zy := argmin, g £(x; z). The improvement of the linearization at
point z is defined as

A= 0(z;2) —€(ze:2) = =V (@) (20 — 2) +r(z) — r(z0).

Givene > 0, forany z € S, if AL, < €, then 7 is an e-stationary solution for (1.2) as
defined in Definition 2.2.

Proof From the definition of z;, we have
y;2) =Lz 2) =V Q@) (y—z20) +r() —r(ze) = 0,¥y €S,
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which implies that

VIR (=2 +r() —r@)
=V —z0)+r®) —r@z) + V@ (2 —2) +rz) —r(2)
> Vf(z)T(ze —2)+r(z¢e) —r(z),Vy € S.

It then follows immediately that if A¢. < e, then Vf(z) (y —2) +r(y) — r(z) >
—Al, > —e. O

Denoting ®* to be the optimal value of (1.2), we are now ready to give the main
result of the iteration complexity of GCG (Algorithm 1) for obtaining an e-stationary
solution for (1.2).

Theorem 2.7 For any € € (0, diamﬁ(S)p), GCG finds an e-stationary solution for

0\ _ d* i P g—1
(1.2) within |'2(<I>(x )P )Slam”(s)p) —‘ iterations, where % + % =1

Proof For ease of presentation, we denote D := diam,(S) and JNAEES AL k. By
Assumption 2.1, using the fact that < 1, and by the definition of ot in Algorithm 1,
we have

€
Drp

1
1

1 _r
(e/(D?p)) T A = s 6/ D)7

< —(e/(DP o) T (V£ T (5% — 58y 4 r(55) — r(xF))

—g(e/(Dﬁp»p—' % — k|12

p
< —ar (VAEHTOF =55 4708 = r(eh) = It = a4
< _vf(xk)T(xk+l _)Ck) +r(xk) _ r(karl) _ g||xk+l _ xkng

< FG5) = FOY 4 ) = rF = oK) — ok hH,  (2.10)

where the third inequality is due to the convexity of function r and the fact that

Xk k= oy (yk — xk), and the last inequality is due to (2.1). Furthermore, (2.10)

immediately yields

ALk < (€/(DPp))” T (D (xF) — b (k1)) + g (2.11)

For any integer K > 0, summing (2.11) overk =0, 1, ..., K — 1, yields
K—1 1 .
K in A< S ALK < (e/(DP *Tl(cb % _ o K) ‘K
ke{O,?,].TK—l} - ]; < (€/(D%p)) v ") )+ 2

1 €
< (e/(DPp) P T (d(x%) — &%) + 5K
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where ®* is the optimal value of (1.2). It is easy to see that by setting K =
[2<<1>(x0)f<1>*><Dpp)‘f*‘

7 —‘, the above inequality implies Al i« < €, where k* €

.....

(1.2) as defined in Definition 2.2. O

Finally, if f is concave, then the iteration complexity can be improved as O (1/¢).

Proposition 2.8 Supposethat f is a concave function. [fwe set ay = 1 forallk in GCG

(Algorithm 1), then it returns an €-stationary solution for (1.2) within {M—‘

iterations.

Proof By setting ax = 1 in Algorithm 1 we have x¥*! = y* for all k. Since f is
concave, it holds that

AE = -V T K)o (h) = r(F ) < 0 (F) — ok,

Summing this inequality overk =0, 1, ..., K — 1 yields K ming¢(o,1,... .k —1) ALk <
@ (x%) — ®*, which leads to the desired result immediately. O

3 Variants of ADMM for solving nonconvex problems with affine
constraints

In this section, we study two variants of the ADMM (Alternating Direction Method of
Multipliers) for solving the general problem (1.1), and analyze their iteration complex-
ities for obtaining an e-stationary solution (to be defined later) under certain conditions.
Throughout this section, the following two assumptions regarding problem (1.1) are
assumed.

Assumption 3.1 The gradient of the function f is Lipschitz continuous with Lipschitz

constant L > 0, i.e., for any (xll, R x}v)and (xf, A xlzv) eEX|x- - xXy_| xR™W,
it holds that
HVf(xll,x%,...,x}v) —Vf(xlz,x%,...,xlzv)H
§LH(x11—xlz,le—x%,...,x}v—x]zv) , 3.1
which implies that for any (xq,...,xy—1) € X] X -+ X Xy_1 and xy, Xy € R"V,
we have
FOs o XN—1, XN) < f (X oo XN, EN) F oy —3N) T Vv (X, - XN—1, £N)
L A
+ 5 llen — &Nl (3.2)
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Assumption 3.2 fandr;,i = 1,..., N—1areall lower bounded over the appropriate
domains defined via the sets X}, Xa, ..., Xnv_1, R"™Y, and we denote
fr= inf {fx1,x2,...,xn8))

xi€X,i=l1,..., N—1;xyeR"N

and rj = inf {r; ()} fori =1,2,..., N — 1.
Xij €A

3.1 Preliminaries

To characterize the optimality conditions for (1.1) when r; is nonsmooth and noncon-
vex, we need to recall the notion of the generalized gradient (see, e.g., [S0]).

Definition 3.3 Let 4 : R” — R U {400} be a proper lower semi-continuous function.
Suppose h(x) is finite for a given x. For v € R”, we say that

@1). vis a regular subgradient (also called Fréchet subdifferential) of & at X, written
v € 0h(x),if

. h(x) = h(x) — (v, x —X)
lim inf -
XAX X=X [lx — x|

> 0;

(ii). v is a general subgradient of & at x, written v € dh(x), if there exisAt sequences
{x*} and {v*} such that x¥* — X with h(x*) — h(%), and v* € dh(x¥) with
v¥ — v when k — oo.
The following proposition lists some well-known facts about the lower semi-
continuous functions.

Proposition3.4 Leth : R" — RU {400} and g : R" — R U {400} be proper lower
semi-continuous functions. Then it holds that:

(1) (Theorem 10.1 in [50]) Fermat’s rule remains true: if X is a local minimum of h,

then 0 € oh(x).

(i) If h(.) is continuously differentiable at x, then d(h 4+ g)(x) = Vh(x) + dg(x).

(iii) (Exercise 10.10 in [50]) If h is locally Lipschitz continuous at x, then d(h +
g)(x) C dh(x) + g (x).

(iv) Suppose h(x) is locally Lipschitz continuous, X is a closed and convex set,
and x is a local minimum of h on X. Then there exists v € 0h(Xx) such that
(x—x%Tv>0,Vx € X.

In our analysis, we frequently use the following identity that holds for any vectors
a,b,c,d,

1
@=b"c—d) =3 (la=dB —lla—cl3+b—cl3 =16 —-dI}). (33
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Table 1 e-stationary solution of (1.1) in two settings

risi=1,..., N -1 X,i=1,..., N —1 e-stationary solution
Setting 1 Lipschitz continuous X; C R" compact Definition 3.5
Setting 2 Lower semi-continuous X; = R"i Definition 3.6

3.2 An e-stationary solution for problem (1.1)

We now introduce notions of e-stationarity for (1.1) under the following two settings:
(i) Setting 1: r; is Lipschitz continuous, and A; is a compact set, fori = 1,..., N — 1,
(ii) Setting 2: r; is lower semi-continuous, and X; = R", fori =1,..., N — 1.

Definition 3.5 (e-stationary solution for (1.1) in Setting 1) Under the conditions in
Setting 1, for € > 0, we call (x;", e, x}’(,) an e-stationary solution for (1.1) if there
exists a Lagrange multiplier A* such that the following holds for any (x1,...,xy) €
Xl X oo X Ay x R™W:

(i =) [ + Vit - AT | 2 —e i=1 N = 1,34
[V rots i xi) — Al = e (3.5)
N
> Aixf—b| <e, (3.6)
i=1
where g¥ is a general subgradient of r; at point x. If € = 0, we call (x},...,x})a

stationary solution for (1.1).

If&x; =R"% fori = 1,..., N — 1, then the VI style conditions in Definition 3.5
reduce to the following.

Definition 3.6 [e-stationary solution for (1.1) in Setting 2] Under the conditions in
Setting 2, for € > 0, we call (xi‘, R xj(,) to be an e-stationary solution for (1.1) if
there exists a Lagrange multiplier A* such that (3.5), (3.6) and the following holds for
any (xg,...,xy) € X} X +-- X Ay_1 x R"™:

dist (—Vif(xi", x5+ AT, ar,-(x;")) <e, i=1,....N—1, (37
where 0r; (x}) is the general subgradient of r; at x',i = 1,2,...,N — 1. If e = 0,

we call (x7, ..., x}) to be a stationary solution for (1.1).

The two settings of problem (1.1) considered in this section and their corresponding
definitions of e-stationary solution, are summarized in Table 1.

A very recent work of Hong [32] proposes a definition of an e-stationary solution
for problem (1.5), and analyzes the iteration complexity of a proximal augmented
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Lagrangian method for obtaining such a solution. Specifically, (x*, A*) is called an
e-stationary solution for (1.5) in [32] if Q(x*, A*) < €, where

O(x, A) = Vo Lg(x, VI + | Ax — b||?,

and Lg(x, A) == f(x) — AT (Ax —b) + g |Ax — b]|? is the augmented Lagrangian
function of (1.5). Note that [32] assumes that f is differentiable and has bounded
gradient in (1.5). It is easy to show that an e-stationary solution in [32] is equivalent
to an O (4/€)-stationary solution for (1.1) according to Definition 3.6 with r; = 0 and
f being differentiable. Note that there is no set constraint in (1.5), and so the notion
of the e-stationarity in [32] is not applicable in the case of Definition 3.5.

Proposition 3.7 Consider the e-stationary solution in Definition 3.6 applied to prob-
lem (1.5), i.e., one block variable and r; (x) = 0. Then x* is a y| \/€-stationary solution
in Definition 3.6, with Lagrange multiplier \* and y| = 1/(,/2/32||A||% + 3), implies
O(x*, A*) < €. On the contrary, if Q(x*, A*) < ¢, then x* is a y»/e-stationary solu-
tion from Definition 3.6 with Lagrange multiplier \*, where y, = /2(1 + B2|| A ||%).

Proof Suppose x* is a y|/e-stationary solution as defined in Definition 3.6. We have
IV Ff(x*) — ATA*|| < y14/€ and ||Ax* — b|| < y;4/€, which implies that

Q¥ A% = [VF(x*) — ATA* + BAT (Ax* — b)|> + | Ax* — b|?
<2V FE*) — ATAM 12 4+ 282 AN Ax* — B> + [ Ax* — b2
<2pfe + CBIAIZ + Dyfte = e

On the other hand, if Q(x*, A*) < €, then we have |V f(x*) — ATA* + BAT (Ax* —
b)||? < € and ||Ax* — b||? < €. Therefore,

IV f(x*) — ATA*|?

* T4 % T * 2 T * 2
<2V — ATAF 4+ BAT(Ax* = b)|> + 2] — BAT (Ax* — b)|
<2V S(*) — ATA* 4+ BAT (Ax* — b)|I> + 27| All3 Il Ax* — b||?
<2(1+B7|All5) €.

The desired result then follows immediately. O

In the following, we introduce two variants of ADMM, to be called proximal
ADMM-g and proximal ADMM-m, that solve (1.1) under some additional assump-
tions on Ay. In particular, proximal ADMM-g assumes Ay = I, and proximal
ADMM-m assumes Ay to have full row rank.

3.3 Proximal gradient-based ADMM (proximal ADMM-g)
Our proximal ADMM-g solves (1.1) under the condition that Ay = I. In this case,
the problem reduces to a so-called sharing problem in the literature which has the

following form
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N—-1
min f(xy, ..., xn) + Y ri(x;)
i=1
N—-1 l
S.t. Z Aixi+xy=b, x;e X, i=1,...,N—1.

i=1

For applications of the sharing problem, see [12,33,39,40]. Our proximal ADMM-g for
solving (1.1) with Ay = I isdescribed in Algorithm 2. It can be seen from Algorithm 2
that proximal ADMM-g is based on the framework of augmented Lagrangian method,
and can be viewed as a variant of the ADMM. The augmented Lagrangian function
of (1.1) is defined as

,C/g(xl, ce XN, A) = f(X, ., XN)

N-1 N 5
+ ; ri(x;) — <)», ;Am - b> + 5

2

)

2

N
Z A,'xl' —b
i=1

where A is the Lagrange multiplier associated with the affine constraint, and g > 0 is
a penalty parameter. In each iteration, proximal ADMM-g minimizes the augmented
Lagrangian function plus a proximal term for block variables x, . .., xy_1, with other
variables being fixed; and then a gradient descent step is conducted for x, and finally
the Lagrange multiplier A is updated. The interested readers are referred to [26] for
gradient-based ADMM and its various stochastic variants for convex optimization.

Algorithm 2 Proximal Gradient-based ADMM (proximal ADMM-g) for solving (1.1)
with Ay =1
Require: Given (x?,xg ..... x%) €EX] XX Xy_1 xRN, )0 e rm

fork=0,1,...do

k+1 . . k+1 k+1 1
[Step 1] xi+ = argminy, ¢ x, [,ﬁ(x]"' ,...,xij'l,xi,xg‘ﬂ ..... xﬁ‘v,kk)Jr

some positive definite matrix H;, i = 1,..., N —1
[Step 2] x];v"'l = xllﬁ] —yVNE,g(x{"H, ]2""1 xllﬁ,,}\k)
[Step 3] Ak+1 .= 2k _ g ( N A - b)

end for

Remark 3.8 Note that here we actually assumed that all subproblems in Step 1 of
Algorithm 2, though possibly nonconvex, can be solved to global optimality. Many
important problems arising from statistics satisfy this assumption. In fact, when the
coupled objective is absent or can be linearized, after choosing some proper matrix
H;, the solution of the corresponding subproblem is given by the proximal mappings
of r;. As we mentioned earlier, many nonconvex regularization functions such as
SCAD, LSP, MCP and Capped-£¢; admit closed-form proximal mappings. Moreover,
in Algorithm 2, we can choose
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18V3+6 6L>
B > max <LL max —) , (3.8)

13 i=1,2,-,N—1 Omin (H;)

and

136 — /1387~ 12BL 7212 136+ 3 —12PL —TAL?\ .
© 6L2 + BL + 1362 ’ 6L2 + L + 1362 '

which guarantee the convergence rate of the algorithm as shown in Lemma 3.9 and
Theorem 3.12.

Before presenting the main result on the iteration complexity of proximal ADMM-
g, we need some lemmas.

Lemma 3.9 Suppose the sequence {(x]f, ey va, AYY is generated by Algorithm 2.
The following inequality holds

I =517 < 38 = 1/p) Iy — 2P
N—-1
+3((B = 1/y)* + L)y = xp P+ 307 ) [ = xf 2.
i=1
(3.10)
Proof Note that Steps 2 and 3 of Algorithm 2 yield that
A = (B —1/p) k= x5 + Wy FOf k). (3.11)

Combining (3.11) and (3.1) yields that

AL k2
< IOVNFORT xRy — iy p ok kX )
HB =1y —xy) = (B =1/ = xN>||
§3||VNf(x{(+1, foJrll,x[k\,)—VNf(x’f,.. ,xk 1va H12

138 — 1))k — k+1”2 43 [ﬂ %T ijli/ 1 _xjc\,”z

<oy bt [l (o ) | -]

N—1 )
2 k+1 k

+3L E Hxi+ —xi) .
i=1

O
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We now define the following function, which will play a crucial role in our analysis:

VG (X1, X2, ..., XN, A, X)

2
= Lp(x1, %2, ..., XN, A)+ﬂ |:(,8——) 2] lxy — %1%, (3.12)

Lemma 3.10 Suppose the sequence {(x{‘, ceey xf\,, 1)) is generated by Algorithm 2,
where the parameters  and y are taken according to (3.8) and (3.9) respectively.

Then Vg (xk+1, e, ﬁ,‘H pLans xﬁ,) monotonically decreases over k > 0.

Proof From Step 1 of Algorithm 2 it is easy to see that

N—

1 2
k+1 k+1 _k k k 1k k+1
L;;( e XN Xy, A )Sﬁﬁ(xl,...,x,\,,k) ZE HH,-'

(3.13)
From Step 2 of Algorithm 2 we get that
0= (x vaﬂ) [Vf(xkﬂ’ xj{\/-Hl’ va) Y
-+ (ZlNz_ll Aix(‘H + xk — b) - % (x;‘\, ﬁ,‘“)]
< FOETT R Ky - paf Rk
2
bl (4 m o
2
(3.14)
+§ va xﬁ/ﬂ” k+1 +xN b
B Nt k+1 k+1 ? 1|k k+1
-£ 21 Aix; T +xyT = b — v HxN XN ”
iz
= ,Cﬁ(xlf+1 xj‘le, xf‘v, ky — Eﬂ(x'fH, .. k“ L)

2
Ltp _ 1 k+1
(58 3) [ -]

where the inequality follows from (3.2) and (3.3). Moreover, the following equality
holds trivially

ﬁ (Xk+1, . k+l )\'k+1) E (.Xk+1, -~1va+la)\k)+%H)\'k_)"k+1”2- (315)

Combining (3.13), (3.14), (3.15) and (3.10) yields that

LaeM Ky pa(ak x]’i,, 2%

NI S
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L+p 1 3[ 1]2 ko kel |2
Ry
( v B v N

2
1\? 2
[(ﬂ - m} Ny

which further implies that

\Ifg(xlfH,...,xk+],kk+l,x§,)—\Ilg(x{‘,...,lei,,)»k,vafl)
L+ 1 6 177 312 2
< —ﬁ——+—[ﬂ——} + 2 ) [ -
2 y B Y B
N-—1 2
k k+1
X [at - " w, (3.16)
1=

It is easy to verify that when 8 > HS‘(#L, then y defined as in (3.9) ensures that

y > 0and
L 1 6 17> 312
L——-i——[ﬁ——] 4+ — <0. (3.17)
2 y B 14 B
. 2 .
Therefore, choosing f > max I&(%L, i:l,IZI,l.z.l.),(N—l %) and y as in (3.9)
guarantees that Wg ()c]f‘|r1 e, va"’l, )J”‘l, xﬂ‘v) monotonically decreases over k > 0.

In fact, (3.17) can be verified as follows. By denoting z = 8 — %, (3.17) is equivalent
to

1222 + 282 + (6L2 +BL — ,32) <0,

. —B—./ 2_ _ 2
which holds when B8 > %L and L=V 138 1212ﬂL 2L < z <
_ 7_ oL .

B++/138 1212/3L 2L e

—138 — /1382 — 128L — 7212 1 —138+/1382 — 128L — 7212
<——<

12 y 12 ’
which holds when y is chosen as in (3.9). O
Lemma 3.11 Suppose the sequence {(x{‘, ey xlf\,, Ak)} is generated by Algorithm 2.

Under the same conditions as in Lemma 3.10, for any k > 0, we have
N—1
k+1 k+1 4 k+1 _k
Vg (xl seea Xy LA + ,xN) > Z"?"‘f*s
i=1
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where r and f* are defined in Assumption 3.2.

Proof Note that from (3.11), we have

Ly (xk+1’“ Ikv+1’)»k+1)
N—1
_ Zrl(ka)—Ff(ka,...,Xff})
i=1
N—1 T
(ZA,xk“ k+‘—b) Vn f it Xk
i=1
By ’
k+1 k+1
+5 Z tay —b
N—1 T ]
Z Alxk-i-l k+1 _») x [(ﬁ . _) (va _va+1>
i=I Y
(V f(-xk+]’ ""xf\]tllv-x]\]) - va(xk+l7 .."leil+l)>i|
N-1 -
> Y n e el e = Y A
i=1 i
2
N-1
B B L
i=1

2l(e-2) 2l
= NZ_erf* - % [(ﬁ— %)2“2} | _x,kvﬂ\z
i=1

where the first inequality follows from (3.2), and the second inequality is due to
B > 3L /2. The desired result follows from the definition of W¢ in (3.12). m]

3

Now we are ready to give the iteration complexity of Algorithm 2 for finding an
e-stationary solution of (1.1).

Theorem 3.12 Suppose the sequence {(xlf, ey xllil, 1YY is generated by Algorithm 2.
Furthermore, suppose that B satisfies (3.8) and y satisfies (3.9). Denote

B2 Y 1<i<N-1

Kl = = [(ﬂ_l)z +L2i| . Ky = <|,3—%|+L)2, k3:= max (diam(X;))?,

2
Ky = L+,3\/N max [|A 13] + max [|H;|>
I<i<N

@ Springer



Structured nonconvex and nonsmooth optimization... 133

and

| (s 1 g[ _lT 312
r._mm: (—2 y+,3 B > +_,3 ,
. 3L2 Omin(H;)
i (55 )} e a1

Then to get an e-stationary solution, the number of iterations that the algorithm runs
can be upper bounded by:

2 K2, K4+ N—-1 .
s 7111“{”{‘ :22 Kak3) (\Ilc;(xll, ...,x}v, AL, xlov)—zl |- f*ﬂ , for Setting 1
- 2 K2, N—1 .
w (\Ilc;(xll, .. .,x}v, Al,x%) Y - *)—‘ , for Setting 2
(3.19)
and we can further identify one iteration k e argmin ZN (||xk —)ck+1||2
[ g i=1 i i
2<k<K+1
—I—I|xffl — xl{‘||2> such that (x’f, ...,xf\,) is an e-stationary solution for optimiza-

tion problem (1.1) with Lagrange multiplier Ak and A N = I, for Settings 1 and 2
respectively.

Proof For ease of presentation, denote

N
Ok == _(llxf — x4 = xR (3.20)
By summing (3.16) over k = 1, ..., K, we obtain that
W ekt ETUAE Ky w2 x)
K N
e [ (321)

k=1i=1

where 7 is defined in (3.18). By invoking Lemmas 3.10 and 3.11, we get

min 6
2<k<K+1

| /\

N
1
— [\pc(xl, o AL Fwed, L xE a2 § = 2f*i|
i=1

IA

N
2 1 1 1 .0 * *
e {\Il(;(xl ..... Xy AT, Xy) — E ri—=f".

i=1

We now derive upper bounds on the terms in (3.5) and (3.6) through 6. Note that
(3.11) implies that
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”)\‘k“r] \vi f(xk+1, ) k+1)”
<|B- %| llxfy — k+1||+||va<xk“, ) = Vet
< [m — l|+L} Ik =L
Y
which yields
1 2
W — Wy f et xR < [m ik L} Or. (3.22)
From Step 3 of Algorithm 2 and (3.10) it is easy to see that
N—1 2
El Apxf it —p
— %”Akﬂ — k2
e R N A=Y [ AWl | Mt eeD

2
2
3L 5N ka Xt H

<% [(ﬂ — %)2 + Lﬂ Ok.

We now derive upper bounds on the terms in (3.4) and (3.7) under the two settings
in Table 1, respectively.

Setting 2 Because r; is lower semi-continuous and X; = R%,i =1,...,N — 1,
it follows from Step 1 of Algorithm 2 that there exists a general subgradient g; €

ar; (xf“) such that
dist( Vf(xk—&-l, ) k+1)+AT)\k+1 arl(xk+1))

Hgl FVFER k) — ATk H

k+1 k—H k+1 k+1 _k k
HVf(x . =VifOm, S Xl e XN)

N
+ﬂAiT< Yo AT —xf)) — H;(xFT - x5

j=it1

N N
k k+1 k+1 k
<L | ) =X gAY Al = X
J=i+1 j=i+l
k+1 k
HIH: 20l — x 2
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N
< . . k _ L k+1)2
< <L+ﬁ~/Nl_+{rgX§N[IIAJII2] ||Az||z> 2 =T
j=i+1
I H; 2l =l

(L—l—,Bx/_ max [|A ||2] + max [|H, ||2>f (3.24)

By combining (3.24), (3.22) and (3.23) we conclude that Algorithm 2 returns an e-
stationary solution for (1.1) according to Definition 3.6 under the conditions of Setting
2 in Table 1.

Setting 1 Under this setting, we know r; is Lipschitz continuous and X; C R™
is convex and compact. From Assumption 3.1 and the fact that &; is compact, we
know ri(x;) + f(x1,...,xy) is locally Lipschitz continuous with respect to x; for
i=1,2,..., N — 1. Similar to (3.24), for any x; € X;, Step 1 of Algorithm 2 yields
that

(xl- — x“‘l) [gz + Vi f(xk+1, e va"’_l) - AiTAk+l]

> (xi —xf“) [v FORT kY Cw ek k)

N
+,3AI< > oA —x§)> — H;(x! —xf)}

j=i+1

N
. k+1
> —Ldiam(X) | Y ok — 22
j=i+1

N
—BllAilla diam(X;) Y A ll2 x5 — Xk — diam(X) | Hi |2 l1xf T = xf 12
j=i+1
> —(ﬂf max [14;]3] + L+ max IIHllz) max [diam(X)] v/,
(3.25)

where g; € dr; (xk+]) is a general subgradient of 7; at xf“. By combining (3.25),
(3.22) and (3.23) we conclude that Algorithm 2 returns an e-stationary solution for

(1.1) according to Definition 3.5 under the conditions of Setting 1 in Table 1. O

Remark 3.13 Note that the potential function W defined in (3.12) is related to the
augmented Lagrangian function. The augmented Lagrangian function has been used
as a potential function in analyzing the convergence of nonconvex splitting and ADMM
methods in [2,31-33,38]. See [32] for a more detailed discussion on this.

Remark 3.14 In Step 1 of Algorithm 2, we can also replace the function
f(x{“rl,. xf*l,xl, lkJrl,...,x];/)
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by its linearization

k+1 k+1 _k _k k
fx) s s XL X Xy s s Xy)
T
k k+1 k+1 _k _k k
—i—(x,'—x,-) Vi f(x) ,...,xi_l,xi,x[H,...,xN),

so that the subproblem can be solved by computing the proximal mappings of r;, with
some properly chosen matrix H; fori = 1,..., N — 1, and the same iteration bound
still holds.

3.4 Proximal majorization ADMM (proximal ADMM-m)

Our proximal ADMM-m solves (1.1) under the condition that A 5 has full row rank. In
this section, we use o to denote the smallest eigenvalue of Ay A;. Note that oy > 0
because Ay has full row rank. Our proximal ADMM-m can be described as follows

Algorithm 3 Proximal majorization ADMM (proximal ADMM-m) for solving (1.1)
with Ay being full row rank

Require: Given (x?,xg ..... xl({,) eX] x- - x Xy_1] xRN, 20 e rm
fork=0,1,...do
2
[Step 1] xf“ i= argminy, ¢y, llﬂ(xlfJrl ----- X,kjlquisxlkﬂ ----- X;(v, Ay + % Xj —X,k H for
1
some positive definite matrix H;, i = 1,..., N —1
[Step 2] xI;V'H = argminXN U(x{('H ..... xl;,tll,xN,)Lk,xﬁ/)
[Step 3] AK+! .= 2k — g (Zg"zl Akt b)
end for
In Algorithm 3, U(x1, ..., xNy—1, XN, A, X) is defined as
g
Ui, ..., XN—1, XN, A, X)
- - T -
= f(x1, .., xN=1,X) + (xy —X) VN f(x1, ..., xn-1, %)
2

L al B
+5 ey = %12 = <A, EAix,- - b> +3
1=

N
ZA,'X[ —b
i=1

Moreover, 8 can be chosen as

{18L { 6L> }}
B > max { ——, max —_— . (3.26)

on 1<i<N-1 | onOmin(H;)

to guarantee the convergence rate of the algorithm shown in Lemma 3.16 and Theo-
rem 3.18.

It is worth noting that the proximal ADMM-m and proximal ADMM-g differ only in
Step 2: Step 2 of proximal ADMM-g takes a gradient step of the augmented Lagrangian
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function with respect to x, while Step 2 of proximal ADMM-m requires to minimize
a quadratic function of xy.

We provide some lemmas that are useful in analyzing the iteration complexity of
proximal ADMM-m for solving (1.1).

Lemma 3.15 Suppose the sequence {(xll‘, R va, 29} is generated by Algorithm 3.
The following inequality holds

2
ot T et [ e -

+— | x —X
oN N N

e H
(3.27)

Proof From the optimality conditions of Step 2 of Algorithm 3, we have

N
0=Vyfeith . xﬁﬂJ@)—A;M+¢m;<§:AMF4—b)
i=1
k+1
—L (x — Xy )
= Uy FEET Lk xky ATk g (leil xﬁ/ﬂ) 7

where the second equality is due to Step 3 of Algorithm 3. Therefore, we have

||Ak+1 —)»k||2

<aN ||(va(x"+‘, xz’fv“l,xx)

—va<x1,.. XN AN D) = Ly — x4+ Loy = x)IP
<—||V f(ka,...,vaJr_ll,x;‘V)—VNf(xlf,.. x];, l,xN )||

3 k
+1 k=1 _ k2
_+0N (g = <P+ Dy = 1)

N—-1
3L7 6L L?
k k+1,2 k—1 k 2 k41,2
< llxk —xyTIP A =l =P+ an .
ON ON

O

We define the following function that will be used in the analysis of proximal
ADMM-m:

2
WL (X1, XN, A B) = Lp(xr, o Xy, A) 4+ o oy — X7
Bon
Similar to the function used in proximal ADMM-g, we can prove the monotonicity
and boundedness of function ¥ .
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Lemma 3.16 Suppose the sequence {(x{‘, .. xlli], AV} is generated by Algorithm 3,
wherep is chosen according to (3.26). Then \IIL (kL xﬁ,“, AkEL xj‘v) monoton-

ically decreases over k > 0.

Proof By Step 1 of Algorithm 3 one observes that

k+1 H

I+

X — X

)

l\)l’-‘

H;
(3.28)

N—
Eﬁ( k+1, va"'ll,xN,)\k) <Lg (x],...,xf‘\,,)»k) Z

while by Step 2 of Algorithm 3 we have

0= (v} - ) O Gk ATk
+panT (XI, At =) —L(xﬁ xf‘v“)]
2
< fet ) = et - HXN — H

:

— (SIS At Ay - b) 4 (DI A - b) o (329)
2 2

+ 5|t At vl — b = 8 | A - b

2
— 5 HAN)CN — Aka+l H
2
< Eﬂ(xk"'l va"'ll,xN, Ak) — Eﬂ(xk+1, .. .,va"_l, Ak) — % fov xj‘\,ﬂ‘ ,

where the first inequality is due to (3.2) and (3.3). Moreover, from (3.27) we have

Eﬂ(x]f+l, R x];,"’l, AkH) - E,g(x]f"’l, . ,xf\,H, Ak)
1
3L2 6L2 302
< ﬂTN”xk NP+ = Bon ——|lxy " =2yl + on DIk = X2 (3.30)
i=1

Combining (3.28), (3.29) and (3.30) yields that

Eﬂ(xk'H, ..,va+l,)»k+1) —E,g(xlf, .. xf‘v,kk)
3L LY\, 4 e e
<{——=)1x + x
< (M 2) ey = 2 Z I ||§5V,7%Hi
6L2 5
= Xk %
ﬂ N

which further implies that

k+1 k+1 1 k+1 _k k k k _k—1
\I/L(x1+,...,xN+,A+,xN)—\DL(x1,...,xN,A,xN )
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2 N- 2
(2 o B (2 ) o
~ \Bon N — \ oy 2 b ’
(3.31)
where the second inequality is due to (3.26). This completes the proof. O
The following lemma shows that the function Wy, is lower bounded.
Lemma 3.17 Suppose the sequence {(xll‘, ey xj‘v, 1KV} is generated by Algorithm 3.
Under the same conditions as in Lemma 3.16, the sequence {V[, (xk'H, e, x];/"_l,
Ak xﬁ‘\,)} is bounded from below.
Proof From Step 3 of Algorithm 3 we have
Wy (T KL kT k)
> E,ﬂ(xk+l k+1 )\'k-‘rl)
Z,Nl r,<x"+1)+f< LRk .
k+1 k+1
— (X At —p) W BN At |
— ZlN:—ll ri(-xl(H_l) + f(xllc+l, o, 5CV+1) l(}»k _ Ak+l)TAk+l + 2L”)\‘k _ )»k+1||2
/3 B
= 2 G 4+ pa Tt = g IEIZ 4 IR 4 kAR 2
B B B

D I A i U I LR e
(3.32)
where the third equality follows from (3.3). Summing this inequality over k =
0,1,..., K — 1 for any integer K > 1 yields that

K-

1 2
Z ( kL kD kL x}/;) > Zr"*-’_f*_ﬁukon
k=0 i=1

Lemma 3.16 stipulates that {¥ (xk+1, R x],i,"’l, Ak+1, xlf\,)} is a monotonically
decreasing sequence; the above inequality thus further implies that the entire sequence
is bounded from below. O

We are now ready to give the iteration complexity of proximal ADMM-m, whose
proof is similar to that of Theorem 3.12.

Theorem 3.18 Suppose the sequence {(x]f, ...,xlli,, AYY is generated by proximal
ADMM-m (Algorithm 3), and B satisfies (3.26). Denote

61> 5 , )
K| = , kp:=4L", k3:= max (diam(&X;))",
Bon 1<i<N—1

2
Ky = <L+,3«/_ max [|A ||2]+ max ||H||2> ,
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and

{ <9L2 L) . { <3L2 amin(Hi)>}}
t:=min{—[— —=1), min - - =" >0. (3.33)
Bony 2/ i=1,..,N-1 Bon 2

Then to get an e-stationary solution, the number of iterations that the algorithm runs
can be upper bounded by:

TeE

2 N—1 .
w(qj (xl""’levJ]’x%)—Z, L f*)] for Setting 2

[ Fmax{wzwﬂm(xl,...,x}v,xl,xg)—Z,N G- f*)] . for Setting 1
K Ppp—

(3.34)

. . . . . N k k+1,2

and we can further identify one iteration k € argmin ) ;= ([lx;f —x; " ||
2<k<K+1

—|—||)cf*1 — x{‘||2>, such that (xll‘, e xﬁ‘v) is an e-stationary solution for (1.1) with

Lagrange multiplier Ak and A N being full row rank, for Settings 1 and 2 respectively.

Proof By summing (3.31) overk = 1,..., K, we obtain that
Wy K S AR Ky v xh A x )
K N 5
s—t 3 |- (3.35)

where t is defined in (3.33). From Lemma 3.17 we know that there exists a constant

W7 such that ‘-IJ(ka, .. 1’§,+1 , Ak xlli,) > W7 holds for any k > 1. Therefore,
2
i 9<—[\IJ s xh Al x? —qr*], 3.36
25113;11[(1“ k K L(x1 XN XN) L ( )

where 6 is defined in (3.20), i.e., for K defined as in (3.34), 6; = 0(e?).
We now give upper bounds to the terms in (3.5) and (3.6) through 6;. Note that
Step 2 of Algorithm 3 implies that

JARAFY — Wy At LX)
<L ||xN - va-‘rl Il + ||VNf(xk+1, vaﬂl’xN) — VNf(Xk+1, _ k+1)”

< 2L |lxy — x5,
which implies that

JALAFY — Vi F e X2 < 4126 (3.37)
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By Step 3 of Algorithm 3 and (3.27) we have

2
k+1
it —-b

1

3L | nt|?
< oo |5 =]+

6L2 k—1 = k+l
ey Rl = ol MR
Bon P

Ok. (3.38)

~ BPon

The remaining proof is to give upper bounds to the terms in (3.4) and (3.7). Since
the proof steps are almost the same as Theorem 3.12, we shall only provide the key
inequalities below.

Setting 2 Under conditions in Setting 2 in Table 1, the inequality (3.24) becomes

dist( Vi kL "+1)+A,TA’<+1,ar,-(x{<+1)>

(L—i—ﬁ«/— max [lA ||2]+ max ||H||2>\F (3.39)

By combining (3.39), (3.37) and (3.38) we conclude that Algorithm 3 returns an e-
stationary solution for (1.1) according to Definition 3.6 under the conditions of Setting
2 in Table 1.

Setting 1 Under conditions in Setting 1 in Table 1, the inequality (3.25) becomes

(x, _xk+1> [g +v, f(xk+1’“.’xlli]+1)_A;l')Lk+l]

> —(N‘ max [14;13] + L+ max ||H||2> max_ [diam ()] V6.
(3.40)

By combining (3.40), (3.37) and (3.38) we conclude that Algorithm 3 returns an e-
stationary solution for (1.1) according to Definition 3.5 under the conditions of Setting

1 in Table 1. o
Remark 3.19 In Step 1 of Algorithm 3, we can replace the function f (xk+l, cees lk‘"ll,
Xi, X f+1, R xN) by its linearization
k+1 k+1 _k _k k
f(x+,...,xi+l,x Xifls e Xn)
k k+1 k+1 _k _k k
+(xl~—xi> Vf(x+,.. xl+l,xl,xt+1,...,xN).
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Under the same conditions as in Remark 3.14, the same iteration bound follows by
slightly modifying the analysis above.

4 Extensions
4.1 Relaxing the assumption on the last block variable xy

It is noted that in (1.1), we have some restrictions on the last block variable xy, i.c.,
ry = 0and Ay = I or is full row rank. In this subsection, we show how to remove
these restrictions and consider the more general problem

N
min f(x1, x2,...,xN) + > ri(x;)

=1 “4.1)
S.t. ZIN=1 Aix; = b,

where x; € R% and A; e R™*" [ =1,...,N.
Before proceeding, we make the following assumption on (4.1).

Assumption 4.1 Denote n = nj + --- + ny. For any compact set § € R”, and any
sequence A/ € R™ with ||A/|| - oo, j =1, 2, ..., the following limit

N
lim dist(—V f(x1.....xn) + AT D i (1) — o0
I i=1

holds uniformly for all (xq,...,xy) € §, where A = [Ay, ..., An].

Remark that the above implies A to have full row-rank. Furthermore, if f is con-
tinuously differentiable and dr; (S) := |, cs 0ri(x) is a compact set for any compact
set S, and A has full row rank, then Assumption 4.1 trivially holds. On the other hand,
for popular non-convex regularization functions, such as SCAD, MCP and Capped
£1-norm, it can be shown that the corresponding set dr; (S) is indeed compact set for
any compact set S, and so Assumption 4.1 holds in all these cases.

We introduce the following problem that is closely related to (4.1):

N
min f(x1, %2, ..., x8) + 30 ri(x) + 42 y))?

= 4.2)
st. YN Aixi+y=bh,

where € > 0 is the target tolerance, and i (€) is a function of € which will be specified

later. Now, proximal ADMM-m is ready to be used for solving (4.2) because Ay = 1

and y is unconstrained. We have the following iteration complexity result for proximal

ADMM-m to obtain an e-stationary solution of (4.1); proximal ADMM-g can be

analyzed similarly.
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Theorem 4.2 Consider problem (4.1) under Setting 2 in Table 1. Suppose that Assump-
tion 4.1 holds, and the objective in (4.1), i.e., f + Z;N=1 ri, has a bounded level set.
Furthermore, suppose that f has a Lipschitz continuous gradient with Lipschitz con-

stant L, and A is of full row rank. Now let the sequence {(x{‘, ceey xj‘\,, vk, 25} be
generated by proximal ADMM-m for solving (4.2) with initial iterates y° = 10 = 0,
and (x?, e, x?\,) such that ZINII Aix? = b. Assume that the target tolerance € sat-
isfies
11 _ 1 .
0 < € < min {z, 6_f} , where T = 3 i:l}}.l.l.l,N{amin(Hi)}' 4.3)
Then in no more than 0(1/64) iterations we will reach an iterate (le“Ll, el xﬁ“,

yk"'l) that is an e-stationary solution for (4.2) with Lagrange multiplier AR+, More-

over, (le+1 s x,’é‘“) is an e-stationary solution for (4.1) with Lagrange multiplier

)\‘13+1

Proof Denote the penalty parameter as B(¢). The augmented Lagrangian function of
(4.2) is given by

Lﬁ(é)(xlv <o XN, yv)")
N
= e xn) S i)+ B2 — Y A +y — b)

i=1

Ble) o >
—I—TIIZA,-)C,-—i—y—bII .

=

Now we set
u(e) =1/e, and B(e) = 3/e. “4.4)

From (4.3) we have wu(e) > L. This implies that the Lipschitz constant of
fxt,x2,...,x8) + #Hy”z, which is the smooth part of the objective in (4.2),
is equal to w(e). Then from the optimality conditions of Step 2 of Algorithm 3,
we have u(e)y*=1 — 2% — p(e)(y¥~! — y¥) = 0, which further implies that
w(e)yk =1k vk > 1.

Similar to Lemma 3.16, we can prove that Eﬂ(e)(x’f, el va, yk, Ak) monotonically
decreases. Specifically, since p(€) yk =2k, combining (3.28), (3.29) and the equality
in (3.30) yields,

L T xR — Lo b, Xk vE AR
N 2
1 k k+12 ue)  pu(e) k k+1,2
= =y 2 f =t — (T e ) D <0 6

where the last inequality is due to (4.4).
Similar to Lemma 3.17, we can prove that Eﬁ(e)(xlf, R xﬁ,, yk, Ak) is bounded

from below, i.e., the exists a constant £* = f* 4 ZZNZ 77 such that

Eﬁ(e)(xlf, cees va, yk, Ay > £ forall k.
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Actually the following inequalities lead to the above fact:
Eﬁ(e)(x{‘, .. xf‘v yk )»k)

N
= fxf, ... xN>+Zr,(x’<)+ ()n “IP - <A",2Aix{‘+y"—b>
i=1 i=1
2

ﬁ(e)

ZAx +yk -

N
=[xy, ... xN)+Z () + ()ny 1> - <u<e)y",ZA,-xf+yk—b>

i=1 i=1

2
ﬁ(e)

ZAx +yk -

2

> L%+ u(e) > L,

N
o +(£929) S et

i=1

(4.6)
where the second equality is from w(€) yk = ¥, and the last inequality is due to (4.4).
Moreover, denote £0 = Eﬁ(é)(x?, R xg,, yo, AO), which is a constant independent

of €.
Furthermore, for any integer K > 1, summing (4.5) over k =0, ..., K yields

Loy T ay TR AR — 20 < 2 "oy, @.7)

where 6 := Y| lxk —xFTH2 4 vk — yF1)12. Note that (4.7) and (4.6) imply that

1
min 6 < — (£° - £*). 4.8)
0<k<K K
Similar to (3.24), it can be shown that fori = 1,..., N,
dist (—v SOk AT gy (xf“))
4.9)

< (L + B(e)V'N max <<y || A |13 + maxi <<y | H; ||2) V.

Set K = 1/¢* and denote K = argming < < g k. Then we know 6 = O(e*). As
a result,

N
ZAisz+l R+ g

i=1
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AR K2 = pe)? K+1 12”2<

B Op = 0(e).  (4.10)

\OI'—*

ﬁ(e)2 IA

Note that (4.6) also implies that f (x{‘, e xf\,) + Z,N: Lt (xf) is upper-bounded by a
constant. Thus, from the assumption that the level set of the objective is bounded, we
know (x’f e xﬂ‘v) is bounded. Then Assumption 4.1 implies that ¥ bounded, which
results in || yk || = O(e). Therefore, from (4.10) we have

N N
ZAixiK+l b ZAixiK—H NN S S ”yK+1” — 0(e),
i=1 i=1
which combining with (4.9) yields that (xK o K Jrl) is an e-stationary solution
for (4.1) with Lagrange multiplier Ak + according to Definition 3.6. O

Remark 4.3 Without Assumption 4.1, we can still provide an iteration complexity of
proximal ADMM-m, but the complexity bound is worse than O (1/€*). To see this, note
that because Lﬂ(e)(x{‘, e, x];,, yk, Ak) monotonically decreases, the first inequality
in (4.6) implies that

,u(e)% < L0 — ", Vk. 4.11)

N
Z Aixf‘ —b
i=1

Therefore, by setting K = 1/6 u(e) = 1/6 and ,3(6) = 3/6 instead of (4.4), and

combining (4.9) and (4.11), we conclude that (xK o K Jrl) is an e-stationary

solution for (4.1) with Lagrange multiplier Ak + according to Definition 3.6.

4.2 Proximal BCD (block coordinate descent)

In this section, we apply a proximal block coordinate descent method to solve the
following variant of (1.1) and present its iteration complexity:

min F(x1,x2,...,xN) = f(x1,x2, ..., x5) + D ri(x;)

& (4.12)

st. x;€X;,i=1,...,N,

where f is differentiable, r; is nonsmooth, and &X; C R™ is a closed convex set for
i=1,2,...,N.Note that f and r; can be nonconvex functions. Our proximal BCD
method for solving (4.12) is described in Algorithm 4.

Similar to the settings in Table 1, depending on the properties of r; and A;, the
e-stationary solution for (4.12) is as follows.

Definition 4.4 (x}, ..., x}, A¥) is called an e-stationary solution for (4.12), if
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Algorithm 4 A proximal BCD method for solving (4.12)

Require: Given (x?,xg ..... x?\,) € X XX XN
fork=0,1,...do

Update block x; in a cyclic order, i.e., fori = 1,..., N (H;j positive definite):
. 1 2
x!""l := argmin F(x]f'H, o xl{‘fll,x,-, xlk_H ..... xlfv) + o ki x{‘ " 4.13)
xj €X; 1
end for

(1) r; is Lipschitz continuous, &; is convex and compact, and for any x; € &, i =
1,..., N,itholds that (g; = dr; (x;") denotes a generalized subgradient of r;)

T
(xi —xf) [VifGf, .o xy) +8i] = —€
(>i1) or, if r; is lower semi-continuous, X; = R™ fori = 1, ..., N, it holds that
dist (—V,'f(xf, cee,XN), Ori (xl-*)) <e.

We now show that the iteration complexity of Algorithm 4 can be obtained from
that of proximal ADMM-g. By introducing an auxiliary variable x4 and an arbitrary
vector b € R™, problem (4.12) can be equivalently rewritten as

N
min f(x1,x2,...,xN) + ri (x;
f( 1 2 N) i; l( l) (414)
st. xyy1=b, x;€d;,i=1,...,N.

It is easy to see that applying proximal ADMM-g to solve (4.14) (with x4 being
the last block variable) reduces exactly to Algorithm 4. Hence, we have the following
iteration complexity result of Algorithm 4 for obtaining an e-stationary solution of
(4.12).

Theorem 4.5 Suppose the sequence {(x{‘, cees va)} is generated by proximal BCD
(Algorithm 4). Denote

ks = (L + max [|H;|2)%, k¢ := max (diam(X;))>.
1<i<N I<i=N
Letting

. %(\Pc(xll,...,x}v,kl,x%) — vazl ¥ — f*)—‘ for Setting 1
. X5 (\Ilg(xll,...,x}v,)ul,xl(i,) _ZIN=1 rk —f*)—l for Setting 2

T2

with t being defined in (3.18), and K = minj <<k ZIN=1 <||xl(‘ — )cl.k'"1 ||2>, we have

that (x112 ey leg ) is an e-stationary solution for problem (4.12).
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Proof Note that Ay = --- = Ay = 0 and Ayy; = [ in problem (4.14). By
applying proximal ADMM-g with > max [18L, maxj<j<ny [#&)H, Theo-

rem 3.12 holds. In particular, (3.24) and (3.25) are valid in different settings with
BvNmax;yi<j<n+1[IIAjl2]1Ail. = 0 fori = 1,..., N, which leads to the
choices of k5 and k¢ in the above. Moreover, we do not need to consider the opti-
mality with respect to x4 and the violation of the affine constraints, thus x1 and «2
in Theorem 3.12 are excluded in the expression of K, and the conclusion follows. O

5 Numerical experiments
5.1 Robust tensor PCA model

We consider the following nonconvex and nonsmooth model of robust tensor PCA
with £1 norm regularization for third-order tensor of dimension /1 x Iy x I3. Given
an initial estimate R of the CP-rank, we aim to solve the following problem:

ming g.c z.£8 12 = [A B, ClI +a €l +an B}

St Z+E4+B=T, .

where A € RI'*R B e RXR ¢ e RB*R The augmented Lagrangian function of
(5.1) is given by

Ls(A,B,C,Z,E,B, \)
= 1Z—[A. B.CJI3 +a|&l1 +an|BlI% — (A, Z+E+B—T)
+§||z FE+B-T|>.

The following identities are useful for our presentation later:

I1Z —[A, B, ClI% = 1Zay — ACCOB) "%
=1Z@ - B(CO A%
=Z3 - CBO A%,

where Z; stands for the mode-i unfolding of tensor Z and © stands for the Khatri-Rao
product of matrices.

Note that there are six block variables in (5.1), and we choose B as the last block
variable. A typical iteration of proximal ADMM-g for solving (5.1) can be described
as follows (we chose H; = §; I, with§; > 0,i =1,...,5):
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A = (@04 (€50 BY + 44%) ((CHTCH o (BYTBY + 4 Iisr)

Ck+1

(
Bk+1 — ((Z)I(cz)(ck O ARy 4 %Bk> («Ck)TCk) o ((AKH1)T AkH1y 4 %IRXR)_I
()t (B © A1) 4 5:CF) (BT BH1) 0 ((AF)T AR + 5 gg)
Bt =S (ls%n(T(l) + 5 A0 — Bl = Z0) + 585 By, ﬁ)
Z(kl+)1 — m <2Ak+l(ck+1 © BT 4285 (Zayk + Ak £ - ﬁ(E(kl+)1 I B(l) _ T(l)))

k+1 k+l k+1
By = By~ (2“/\/3(1) — Ay +BEG + 25+ Bl — Ta)

k+1 k+1 k+1 k+1
AR = Ak ,3(2(1) + B+ BR T(l))

where o is the matrix Hadamard product and S stands for the soft shrinkage operator.
The updates in proximal ADMM-m are almost the same as proximal ADMM-g except
B(1y is updated as

k1 _ k+1 k+1
O TIL1p <(L 200 By + Ay — BEEG) + 2 — T<1>)) :
On the other hand, note that (5.1) can be equivalently written as

i Z—[A,B 2 zZ — T2 2
i l [A,B,Cllg +«llEli +anlZ+E - Tl%, (5.2)

which can be solved by the classical BCD method as well as our proximal BCD
(Algorithm 4). In addition, we can apply GCG (Algorithm 1) to solve a variant of
(5.1). Note that GCG requires a compact constraint set and thus it does not apply to
(5.1) directly. As a result, we consider the following variant of (5.1), where the new
quadratic regularization terms in the objective are added to help construct the compact
constraint sets.

min || 2 ZC[[A’ g, C]]i'f +a2||€||1 +an|Z+E—TI%+ %LIAlI% + %21BI%
+LICI% + %1 21%
st. 1AllF < p1, 1BllF < 02, ICIF < p3, 1 Z1F < pa, 1€ < ps.

(5.3)
The new parameter p; can be identified by the following observation:
an
TIIA*II% < f(A*,B*,C*, 2*,£%) < f(0) = an||T I}
which implies that p; = Z—S‘AM |7 || . Other parameters pa, ..., ps5 can be computed

in the same manner.

In the following we shall compare the numerical performance of GCG, BCD,
proximal BCD, proximal ADMM-g and proximal ADMM-m for solving (5.1). We
let @ = 2/ max{/I|, /1>, ~/Iz} and apr = 1 in model (5.1). We apply proximal
ADMM-g and proximal ADMM-m to solve (5.1), apply BCD and proximal BCD to
solve (5.2), and apply GCG to solove (5.3) with ¢y = ap = a¢c = 10 and az—.
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Table 2 Choices of parameters in the two ADMM variants

H,i=1,...,5 B Y
Proximal ADMM-g 181 4 %
Proximal ADMM-m % B-1 5 _

In all the four algorithms we set the maximum iteration number to be 2000, and the
algorithms are terminated either when the maximum iteration number is reached or
when 6y as defined in (3.20) is less than 107°. The parameters used in the two ADMM
variants are specified in Table 2.

In the experiment, we randomly generate 20 instances for fixed tensor dimension
and CP-rank. Suppose the low-rank part Z° is of rank Rcp. It is generated by

Rcp
0 — Zal,r ®a2,r ®a3,r7
r=1

where vectors a'*" are generated from standard Gaussian distribution fori = 1, 2, 3,
r=1,..., Rcp. Moreover, a sparse tensor £ is generated with cardinality of 0.001 -

VEWEYE such that each nonzero component follows from standard Gaussian distribution.
Finally, we generate noise 8% = 0.001 B, where B is a Gaussian tensor. Then we
set T = 20 4+ £9 4 BY as the observed data in (5.1). A proper initial guess R of
the true rank Rcp is essential for the success of our algorithms. We can borrow the
strategy in matrix completion [54], and start from a large R (R > Rcp) and decrease
it aggressively once a dramatic change in the recovered tensor Z is observed. We
report the average performance of 20 instances of the four algorithms with initial
guess R = Rcp, R = Rcp+ 1 and R = Rcp + [0.2 * Rcp] in Tables 3, 4 and 5,

respectively.

125 =2
. . ) 1200 F ]
rank tensor over 20 instances, where Z* is the solution returned by the corresponding

algorithm; “Iter.” denotes the averaged number of iterations over 20 instances; “#”
records the number of solutions (out of 20 instances) that have relative error less than
0.01.

Tables 3, 4 and 5 suggest that BCD mostly converges to a local solution rather
than the global optimal solution, GCG easily gets stuck at a local solution in a few
iterations for this particular problem, while the other three methods are much better
in finding the global optimum.

It is interesting to note that the results presented in Table 5 are better than that of
Tables 4 and 3 when a larger basis is allowed in tensor factorization. Moreover, in
this case, the proximal BCD usually consumes less number of iterations than the two
ADMM variants.

In Tables 3,4 and 5, “Err.” denotes the averaged relative error of the low-
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Table 6 Numerical results for sparse tensor PCA problem

Inst. # BCD Proximal BCD GCG

val. Y% xillo Tter.  Val. Y4 fxllo Iter.  Val.

d
2iet llxillo  Tter.

Dimensionn = 8

1 463 11 144 545 11 199 6.22
2 9.01 19 113 8.68 21 224 6.36
3 571 13 124 742 16 116 6.79
4 6.09 15 2000 6.30 13 231 6.11
5 479 16 2000 4.13 7 238 0.00
6 745 16 66 6.79 16 169 7.45
7 583 13 105 6.57 17 116 0.00
8 6.98 19 312 6.00 14 285 0.00
9 6.83 18 2000 8.27 20 163 8.27
10 7.24 18 103 7.13 15 94 6.95
Dimension n = 12
1 8.22 21 2000 8.22 23 153 8.22
2 9.07 28 643 8.50 22 617 8.09
3 8.28 22 153 8.15 18 220 0.00
4 8.44 24 114 9.51 29 230 9.51
5 893 23 233 777 19 274 0.00
6 891 22 113 8.24 22 249 8.24
7 838 20 159 898 24 566 7.50
8 8.17 21 342 6.98 15 326 0.00
9 815 23 2000 5.70 13 152 5.33
10 8.06 23 2000 8.60 21 116 8.60
Dimension n = 20
1 10.55 32 188 11.53 38 282 0.00
2 10.53 36 2000 12.07 42 430  10.31
3 9.26 31 2000 11.59 38 149 0.00
4 11.35 40 563 10.75 34 359 1221
5 11.85 42 2000 11.71 41 1130  12.14
6 12.18 39 267 12.35 45 251 7.96
7 12.04 41 1282  11.77 42 142 11.77
8 10.59 31 507 11.83 41 411 11.98
9 0.87 30 2000 11.56 37 169 11.07
10 10.87 32 2000 11.75 37 422 8.93
Dimension n = 30
1 12.89 49 2000 14.16 57 304 13.56
2 0.01 40 2000 1558 65 926  15.03
3 1446 52 2000 16.00 61 936  13.60
4 2.07 50 2000 14.28 54 319 13.81
5 12.30 42 2000 1440 57 510 14.84

16
13
17
16

16

20
12

23
20

29

22
20

24
21

51
60
51
54
56

210
303
374
381
15
145
17
13
89
107

117
319

12
146

11
165
118

90
82

11
326

11
170
384
110
170
351
189
100

140
398
239
241
437
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Table 6 continued

Inst. # BCD Proximal BCD GCG
Val. Y4 lxillo Iter.  Val. Y4 ixllo Iter  Val. Y4kl lter

6 0.69 42 2000 13.97 52 491  13.69 51 272
7 0.63 35 2000 1453 59 227 1377 53 253
8 1431 52 2000 1520 54 660 1428 54 346
9 0.02 34 2000 1455 55 263 13.37 48 143
10 0.77 37 2000 15.11 57 283  14.03 54 145

5.2 Computing the leading sparse principal component of tensor

In this subsection, we consider the problem (1.4) of finding the leading sparse principal
component of a given tensor. To apply the GCG method in the previous section, we

adopt || - ||1 as regularizer, and arrive at the following formulation
d
min —7 (x1,x2,...,x7) +« X;
( 1 2 d) igl ” l”l (54)

st lxillo<1,i=1,2,...,d.

The subproblem in GCG is in the form of min”y”%fl{—yTb + pllyll1}, which has a
closed form solution

v = {Z/llzllz, if lzll2 #0

0, otherwise.

where z(j) = sign(b(j)) max{|b(j)| — p,0}Vj=1,2,...,n.

One undesirable property of the formulation (5.4) is that we may possibly get a zero
solution, i.e. x; = 0 for some i, which leads to 7 (x1, x2, ..., xg) = 0. To prevent this
from happening, we also apply the BCD method and proximal BCD method to the
following equality constrained problem:

d
min —7 (x1,x2, ..., + i
(x1, x2 Xq) ai; llxi 111 5.5)

st lxila=1,i=1,2,....d,

and compare the results with those returned by our proposed algorithms in Table 6.
In the tests, we let « = 0.85, and set the maximum iteration number to be 2000. For
each fixed dimension, we randomly generate 10 instances which are the fourth order
tensors and the corresponding problems are solved by the three methods, starting from
the same initial point. In Table 6, “Val.” refers to the value 7 (x1, x2, ..., x4). From
this table, we see that GCG is capable of finding a nonzero local optimum within a
few hundred steps in most cases, with reasonably sparsity. The three approaches in
Table 6 are comparable to each other in terms of the value 7 (x1, x2, ..., x4), but BCD
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consumes the maximum 2000 iterations in quite a few instances, while GCG finds the
best local optimum in a few instances (e.g. instances 6 and 9 for n = 8, and instances
5 and 8 for n = 20).
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