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Abstract
This paper is concerned with the design of efficient exact and heuristic algorithms for
addressing a bilevel network pricing problem where demand is a nonlinear function
of travel cost. The exact method is based on the piecewise linear approximation of the
demand function, yielding mixed integer programming formulations, while heuristic
procedures are developed within a bilevel trust region framework.

Keywords Pricing · Bilevel programming · Elastic demand · Networks · Non-convex
programming · Mixed integer programming

1 Introduction

In its simplest form (see Labbé et al. [10]), the network pricing problem consists in
setting revenue maximizing tolls on a congestion-free, multi-commodity transporta-
tion network, under the assumption that flows are assigned to cheapest paths with
respect to a generalized cost. Kuiteing et al. [8] considered an extensionwhere demand
decreases linearly with travel cost, and the goal of the present work is to address the
case of nonlinear price-demand relationships, which is much more challenging from
the computational point of view.

The key elements of the paper are: a formulation of the bilevel model; the develop-
ment of a quasi-exact method based on approximation, discretization and linearization
techniques; the design of two heuristics based on the trust region paradigm (see Conn
et al. [4]); numerical experiments and sensitivity analysis with respect to demand
elasticity.
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2 Model formulation

Consider a network defined over the underlying graph G = (N ,A), with node setN
and arc setA = (A1,A2). Each arc ofA is endowed with a unit weight ca , while a toll
ta , to be determined by the leader, is associated with arcs in the subsetA1 ⊆ A. In this
context, the generic term ‘weight’ may designate an out-of-pocket cost, a delay, or any
attribute of disutility.We assume that weights and tolls are expressed in the same units,
yielding the generalized cost ca + ta . Let K denote the set of origin-destination (OD)
pairs or commodities. For each k ∈ K demand from the origin o(k) to its destination
d(k) is provided by a function nk(uk) of the minimal travel cost uk from o(k) to d(k).

For each k ∈ K, let hk
p denote the proportion of demand assigned to path p ∈ Pk ,

where Pk is the set of paths from o(k) to d(k). Since only cheapest paths with respect
to t can carry positive flow (proportions), we have that, for all k in K,

hk ∈ argmin
h′k

∑

p∈Pk

(∑

a∈p

ca +
∑

a∈p∩A1

ta
)

h
′k
p

s.t.
∑

p∈Pk

h
′k
p = 1,

and the cost of a cheapest path is denoted uk , where

uk =
∑

p∈Pk

(∑

a∈p

ca +
∑

a∈p∩A1

ta
)

hk
p.

The validity of the latter expression rests on the fact that paths with positive flow
proportions must bear the same cheapest cost, and the flow proportions must sum up
to one. This yields the bilevel mathematical program

P : max
t≥0,h,u

∑

k∈K

∑

p∈Pk

∑

a∈p∩A1

tank(uk)h
k
p

s.t. ∀ k ∈ K

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

uk =
∑

p∈Pk

(∑

a∈p

ca +
∑

a∈p
⋂A1

ta
)

hk
p

hk ∈ argmin
h′k

∑

p∈Pk

(∑

a∈p

ca +
∑

a∈p∩A1

ta
)

h
′k
p

s.t.
∑

p∈Pk

h
′k
p = 1.

Two remarks are in order:

• The equation that defines uk is an upper level constraint that must be enforced
by the leader. Its role is to ensure compatibility between the least costs and the
corresponding cheapest path flows. This constraint does not bind the followers,
i.e., the road users.

• In this ‘optimistic’ framework, the leader is allowed to select, among cheapest
paths, the ones that yield maximum revenue. It follows that there exists an optimal
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solution where, for each origin-destination pair k, only one variable h p
k is positive

and its value must equal 1. Without loss of generality, we henceforth assume that
flow proportions are binary-valued.

A single-level nonlinear reformulation of the bilevel model is readily obtained by
following the steps suggested in Didi-Biha et al. [6]: introduce variables T k equal to
the revenue per flow unit (equivalently the toll on cheapest path) and express the lower-
level optimality conditions as linear constraints involving big-M constants (see [8] for
their estimates). This yields the formulation

P : max
t,h,T ,u

∑

k∈K
nk(uk)T

k

s.t.
∑

a∈p

ca +
∑

a∈p∩A1

ta − Mk
p

(
1 − hk

p

)
≤ uk ∀ p ∈ Pk,∀ k ∈ K

(1)

uk ≤
∑

a∈p

ca +
∑

a∈p
⋂A1

ta ∀ p ∈ Pk,∀ k ∈ K

(2)

uk = T k +
∑

p∈Pk

hk
p

∑

a∈p

ca ∀ k ∈ K

(3)
∑

p∈Pk

hk
p = 1. ∀ k ∈ K

(4)

hk
p ∈ {0, 1} ∀p ∈ Pk,∀ k ∈ K

(5)

where constraints (1) and (2) ensure that flow is assigned to cheapest paths, (3)
establishes consistency between T k and uk , and constraints (4) and (5) ensure that
commodity flows are not split between paths. Based on Eq. (3), one can replace T k

by uk − ∑
p∈Pk

hk
p
∑

a∈p ca . This yields the nonlinear binary program

P1 : max
t,h,u

∑

k∈K
nk(uk)

(
uk −

∑

p∈Pk

hk
p

∑

a∈p

ca

)

s.t. (1) − (2) and (4) − (5),

which will be used from now on.
In this paper, travel demand either has a constant elasticity or decays exponentially,

i.e., nk(uk) = αku−βk
k or nk(uk) = αk exp(−βkuk), where αk ≥ 0 and βk > 1.

Both are convex and widely used in economics. (See Moore [12].) In both cases,
the resulting revenue function nk(uk)uk is either convex and decreasing, or pseudo-
concave (increasing then decreasing) as depicted in Fig. 1.
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nk(uk)uk nk(uk)uk

uk
ukukuk

function nk(uk)uk when

nk(uk) = αk exp (−βkuk)
function nk(uk)uk when

nk(uk) = αku
−βk

k with βk > 1

concave part convex part

Fig. 1 Graph of function nk (uk )uk ; uk is a lower bound on the cost of any path

3 An exact method

In this section,we describe an exactmethod inspired by the classical cutting plane prin-
ciple introduced by Kelley [9], and applied to the hypograph (respectively epigraph)
of the first term (respectively second term) in the objective. More precisely, similar to
Audet et al. [2] in the context of non-convex quadratic programming, we replace these
functions by piecewise linear over-estimations (respectively under-estimations), and
derive an MIP that provides an upper bound on the objective of P1.

3.1 Approximation of P1

The toll revenue in the objective of P1 can be expressed as the difference between the
total generalized cost and the total travel time, i.e.,

∑

k∈K
nk(uk)uk −

∑

k∈K
nk(uk)

(∑

p∈Pk

hk
p

∑

a∈p

ca

)
(6)

Let us first focus on the second term of (6). Since both forms of the demand function
nk(uk) are convex, the latter can be underestimated by its first-order Taylor develop-
ment

nk(u
l
k) + dnk(ul

k)

duk
(uk − ul

k).

Setting bl
k = dnk (ul

k )

duk
and al

k = nk(ul
k) − ul

kbl
k and upon introduction of the variable

yk , we append to the model the constraints

yk ≥ al
k + bl

kuk . (7)

At optimality, (uk, yk)must lie on a face of the polyhedron defined by constraints (7).
The process is initiated with lower and upper bounds uk and uk determined a priori
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0 0

nk(uk)

uk ukuk

feasible region
of (uk, yk)

uk

yk

uk and uk

tangent to nk(uk) at

Fig. 2 Under-approximation of nk (uk )

(see Fig. 2). For instance, uk and ūk can be set to the cost of a cheapest path for OD
pair k when, respectively, ta = 0 (no tolls) and ta = ∞ (no toll arcs are allowed) for
all a ∈ A1.

Upon substituting nk(uk) by yk , the expression nk(uk)
∑

p∈Pk
hk

p

∑
a∈p

ca in the

objective function becomes yk

∑
p∈Pk

hk
p

∑

a∈p

ca =
∑

p∈Pk
ykhk

p

∑
a∈p

ca . The

linearization of the bilinear term ykhk
p is obtained by introducing a variable y p

k set to
ykhk

p and a big-M constant Mk to force the equality yk
p = ykhk

p:

0 ≤ y p
k ≤ Mkhk

p ∀p ∈ Pk (8)

yk −
∑

p∈Pk

y p
k = 0. (9)

The parameter Mk can be set to nk(uk). In [8], it has been shown that this linearization
outperforms the onewhere (9) is substituted to−Mk(1−hk

p) ≤ yk−y p
k ≤ Mk(1−hk

p).
Let us now consider the piecewise linear approximation of the pseudo-concave

term nk(uk)uk , which is assumed concave over the interval [uk, uIk
k ], and convex over

[uIk
k , uk]. Note that we can limit our attention to this case, since it subsumes the case

when the function is convex.
Let wk denote an over-estimate of the generalized cost. For its concave portion, the

over-estimate is obtained using the tangential or first-order approximation (see Fig. 3):

wk ≤ ai
k + bi

kuk + Mi
ksk ∀ i = 1, . . . , Ik (10)

uk ≤ uIk
k (1 − sk) + uksk

sk ∈ {0, 1} (11)

where Mi
k = max

ξk≤uk≤uk
{nk(uk)uk} + |min{0, ai

k + bi
kuk}|, ai

k , bi
k are the coefficients of

the tangent to nk(uk)uk , and sk a binary variable equal to 0 if uk lies in the concave
part of nk(uk)uk and 1 otherwise.
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00 uk

wk

line joining two points

u1
k uIk

kuk uk
uk

feasible region
of (uk, wk)

in the convex part

points of the concave part
nk(uk)uk tangents to nk(uk)uk at

Fig. 3 Over-approximation of nk (uk )uk

At optimality, the pair (uk, wk) lies on a face of the polyhedron determined by the
tangents to nk(uk)uk .

The over-approximation of the convex part of nk(uk)uk is obtained by append-
ing to P1 a set of piecewise linear constraints. The interval [uIk

k , uk] is split into Jk

sub-intervals [u j
k , u j+1

k ] for j = 1, . . . , Jk − 1. With each sub-interval [u j
k , u j+1

k ] is
associated a binary variable z j

k that indicates whether uk belongs to it (z j
k = 1) or

not (z j
k = 0). The linear constraint that defines the over-approximation of nk(uk)uk

over the sub-interval [u j
k , u j+1

k ] corresponds to the segment joining the two points(
u j

k , nk(u
j
k )u

j
k

)
and

(
u j+1

k , nk(u
j+1
k )u j+1

k

)
. Mathematically, these constraints are

expressed in the following way:

wk ≤ a j
k + b j

k uk + M j
k (1 − z j

k ) + Nk(1 − sk) ∀ j = 1, . . . , Jk − 1 (12)

uk ≥ u j
k z j

k ∀ j = 1, . . . , Jk − 1 (13)

uk ≤ u j+1
k z j

k + uk(1 − z j
k ) ∀ j = 1, . . . , Jk − 1 (14)

z j
k ∈ {0, 1} ∀ j = 1, . . . , Jk − 1 (15)

Jk−1∑

j=1

z j
k = sk (16)

where

M j
k = max

ξk≤uk≤uk
{nk(uk)uk} + |min{0, ai

k + bi
kuk}|

Nk = max
uk≤uk≤ξk

{nk(uk)uk} − max
ξk≤uk≤uk

{nk(uk)uk}
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00

nk(uk) yk

ukuk

gap current point

new feasible region
of (uk, yk)

cut added to eliminate
the current point

uk uk

Fig. 4 Refining the under-approximation of nk (uk )

and a j
k , b j

k are parameters associated with the straight line going through
(
u j

k , nk(u
j
k )

u j
k

)
and

(
u j+1

k , nk(u
j+1
k )u j+1

k

)
.At optimality, (uk, wk) lies on a faceof thepolyhedron

bordered by piecewise linear functions defined over each sub-interval as depicted in
Fig. 3.

The approximation of nk(uk) and nk(uk)uk yields the mathematical program

P̃1 : max
t,h,T ,u,w,y,z,s

∑

k∈K

⎛

⎝wk −
∑

p∈Pk

y p
k

∑

a∈p

ca

⎞

⎠

s.t. (1) − (5) and (7) − (16).

which provides an upper bound on the leader’s revenue, as well as a lower bound
obtained by solving the original lower level problem with respect to its toll solution.

3.2 Refining the functional approximations

When a refinement of the objective function is required, for instance if the gap
between its actual value and the approximation is too wide at the current iterate
(t̃, h̃, T̃ , ũ, w̃, ỹ, z̃, s̃), we proceed as follows.

For the under-estimate, if the difference between ỹk and nk(ũk) is large, we improve
the approximation by appending the following tangential cut (see Fig. 4) to P̃1:

yk ≥ ak + bkuk (17)

Next, consider the over-approximation of nk(uk)uk . If ũk lies in the concave part
of nk(uk)uk , the refinement is obtained by appending to P̃1 the tangential cut (see
Fig. 5):
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00

nk(uk)uk wk

uk uk

current point

gap

new feasible region
of (uk, wk)

cut added to eliminate
the current point

uk uk

Fig. 5 Refining the over-approximation of nk (uk )uk over the concave part

00

wk

gap

current point

uj
k ukuk

uj+1
kuj

k uj+1
k

new feasible region
of (uk, wk)

the current point

nk(uk)uk

cuts added to eliminate

uk uk

Fig. 6 Refining the over-approximation of nk (uk )uk over the convex part

wk ≤ ak + bkuk + Mksk (18)

where sk is the binary variable that takes value 1 whenever ũk lies in the concave part,
and 0 otherwise.

If ũk belongs to the convex part of nk(uk)uk , with ũk ∈ [u j
k , u j+1

k ], we divide the
interval [u j

k , u j+1
k ] into two sub-intervals [u j

k , ũk] and [̃uk, u j+1
k ] and replace the cut

associated with [u j
k , u j+1

k ] by the piecewise linear cuts illustrated in Fig. 6.
For the sake of consistency, the following constraints are also introduced in P̃1:

wk ≤ a1
k + b1k uk + M1

k (1 − z1k) + Nk(1 − sk) (19)

uk ≥ u j
k z1k (20)

uk ≤ ũk z1k + M1
k (1 − z1k) (21)
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wk ≤ a2
k + b2k uk + M2

k (1 − z2k) + Nk(1 − sk) (22)

uk ≥ ũk z2k (23)

uk ≤ u j+1
k z2k + M2

k (1 − z2k) (24)

z1k , z2k ∈ {0, 1}. (25)

3.3 Lower bound and inverse optimization

Let (t̃, h̃, T̃ , ũ, w̃, ỹ, z̃, s̃) be a current solution to P̃1. Based on t̃ , we can solve the
lower level problem and derive a lower bound on the leader’s revenue. However, t̃
does not necessarily yield the maximum revenue with respect to the flow vector h̃.
Assuming that h̃ is known a priori, one can determine the compatible tolls that should
be imposed in order to maximize the leader’s revenue. This corresponds to solving an
inverse optimization problem.

More precisely, let p̃k be the path used by commodity k, i.e., h̃k
p̃k

= 1 and h̃k
p = 0

for all p ∈ Pk\{ p̃k}. We write

uk = T k +
∑

a∈ p̃k

ca

nk(uk) = nk

⎛

⎝T k +
∑

a∈ p̃k

ca

⎞

⎠ T k

and consider the problem, for fixed vector flow h̃, defined as

IOP(̃h) : max
t,T ,u

∑

k∈K
nk

⎛

⎝
∑

a∈ p̃k

ca + T k

⎞

⎠ T k

s.t. T k =
∑

a∈ p̃k∩A1

ta ∀k ∈ K (26)

uk ≤
∑

a∈q

ca +
∑

a∈q∩A1

ta ∀q ∈ Pk : h̃k
q = 0 ∀k ∈ K (27)

uk = T k +
∑

a∈ p̃k

ca ∀k ∈ K. (28)

In the above objective, each term

nk

⎛

⎝
∑

a∈ p̃k

ca + T k

⎞

⎠ T k
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inside the summation can be expressed as

nk

⎛

⎝
∑

a∈ p̃k

ca + T k

⎞

⎠

⎛

⎝
∑

a∈ p̃k

ca + T k

⎞

⎠ − nk

⎛

⎝
∑

a∈ p̃k

ca + T k

⎞

⎠
∑

a∈ p̃k

ca,

whose first term is pseudo-concave and the second is convex. By using the technique
described in Sect. 3.1, an over-approximation of IOP(̃h) can be formulated as an MIP.

Once IOP(̃h) is solved, assume that the optimal value of IOP(̃h) is less than the
incumbent lower bound, i.e., the optimal solution of the original problem does not
match the solution associated with the vector flow h̃. In order to forbid h̃, the following
‘flow cut’ is appended:

∑

k∈K
hk

p̃k
≤ |K| − 1. (29)

3.4 Upper bound

Let pk
0 (respectively pk∞) denote the cheapest path fromo(k) tod(k)obtained by setting

tolls to 0 (respectively +∞) and let γ k
0 (respectively γ k∞) denote the corresponding

travel cost, i.e.,

γ k
0 =

∑

a∈pk
0

ca

γ k∞ =
∑

a∈pk∞

ca .

If there is a path from o(k) to d(k) in G(N ,A2), γ k∞ equals the cost of the cheapest
path on the subnetwork. Otherwise, all paths include at least one arc with infinite toll,
and must therefore bear an infinite cost.

Proposition 1 Let

T
k =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min

⎧
⎪⎨

⎪⎩
γ k∞ − γ k

0 ,
1

βk − 1

∑

a∈pk
0

ca

⎫
⎪⎬

⎪⎭
if nk(uk) = αku−βk

k

min
{
γ k∞ − γ k

0 , 1
βk

}
if nk(uk) = αk exp (−βkuk).

An upper bound of the leader’s revenue is given by:

UB =
∑

k∈K
nk

⎛

⎜⎝
∑

a∈pk
0

ca + T
k

⎞

⎟⎠ T
k
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Proof The leader’s objective function for commodity k is nk(uk)T k . Since path pk
0

has the smallest travel fixed cost for commodity k and nk is strictly decreasing, then

nk(uk)T
k ≤ nk

⎛

⎜⎝
∑

a∈pk
0

ca + T k

⎞

⎟⎠ T k .

The function nk(
∑

a∈pk
0

ca + T k)T k is pseudo-concave (increasing then decreasing)

and reaches its optimal value atπk , the zero of its derivative, which is equal to (1/(βk −
1))

∑
a∈pk

0
ca (respectively 1/βk) when nk(uk) = αk(uk)

−βk (respectively nk(uk) =
αk exp (−βkuk)). Since γ k∞ −γ k

0 is an upper bound on one unit of the leader’s revenue
T k raised from commodity k, it follows that the maximum value of T k is min{γ k∞ −
γ k
0 , πk}. 
�

As a corollary to the previous theorem, it follows that a valid upper bound on the
leader’s objective is provided by the smaller value between UB and the objective value
of P̃1 constitutes a valid upper bound.

3.5 Bounds on uk

As mentioned by Al-Khayyal [1], the difficulty of obtaining tight bounds on uk , with
the aim of obtaining good approximations of the functions nk(uk) and nk(uk)uk , is
related to the number of commodities.

Let [uk, uk] be the range of admissible generalized cost values uk , and let N k
i j be an

upper bound on the toll on arc (i, j) with respect to commodity k. Let ci (respectively
c j ) denote the cheapest path from o(k) to i (respectively from j to d(k)). In the fixed
demand case, the upper bound

N
k
i j = γ k∞ − (c−

i + ci j + c+
j )

holds under the assumption that there exists a toll-free path from o(k) to d(k). If no

such path exists, N
k
i j = ∞ (see Dewez et al. [5]). However, when demand is elastic,

an alternative bound can be derived, which holds even in the absence of toll-free paths.

Lemma 1 For t = 0, let c−
ki and c+

jk be the cost of the cheapest path, respectively, from
o(k) to i and from j to d(k), and define

�k
i j =

⎧
⎪⎪⎨

⎪⎪⎩

c−
ki +ca+c+

jk
βk−1 if nk(uk) = αku−βk

k

1
βk

if nk(uk) = αk exp (−βkuk).
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If toll arc a = (i, j) belongs to the path used by commodity k, then an upper bound
on the corresponding toll is given by:

N k
i j = min{N

k
i j ,�

k
i j }

Proof If the path used by commodity k goes through arc a = (i, j), then uk = c−
ki +

ca + c+
jk + T k . This implies that the leader’s revenue raised by commodity k satisfies

nk(uk)T k = nk

(
c−

ki + ca + c+
jk + T k

)
T k . Since the function on the right-hand side

is pseudo-concave and reaches its maximum at T k = �k
i j , the result follows. 
�

Proposition 2 Let Ak
1 be the set of toll arcs that can be used by commodity k, and Ka

the set of commodities that can use toll arc a = (i, j). The following lower and upper
bounds on the total cost of any path used by commodity k hold:

uk =
∑

a∈pk
0

ca

uk = min

⎧
⎪⎨

⎪⎩
γ k∞ − γ k

0 +
∑

a∈pk
0

ca, max
a∈Ak

1

{
c−

ki + ca + c+
jk + max

k′∈Ka
N k′

i j

}
⎫
⎪⎬

⎪⎭
.

Proof Since path pk
0 has the smallest fixed travel cost among the paths of commodity

k, we have that uk ≥
∑

a∈pk
0

ca . Now, it follows from Lemma 1 that a toll arc

a = (i, j) will not carry any flow whenever its toll exceeds max
k′∈Ka

N k′
i j , which implies

that uk ≤ max
a∈Ak

1

{c−
ki + ca + c+

jk + max
k′∈Ka

N k′
i j }. Since γ k∞ − γ k

0 is an upper bound

on one unit of the leader’s revenue, T k , raised from commodity k, we have that
uk ≤ γ k∞ − γ k

0 +
∑

a∈pk
0

ca . Combining both upper bounds yields the desired result.


�

3.6 The exact method and a variant thereof

The exact algorithm can be divided into two parts. The first consists in over-
approximating the objective function after having computed bounds on variables uk

and T k . The second step iteratively solves the approximated problem and refines the
over-approximation.
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Algorithm 1 Exact method

Require: n-point approximation of nonlinear functions; tolerance factor ε.

Compute bounds on variables uk and T k .

k ← 0, LB ← −∞ and compute UB such as described in Sect. 3.4.

Let (t∗, h∗) be the best solution found.
StopCriterion ← false

repeat

k ← k + 1

(̃t, h̃, T̃ , ũ, w̃, ỹ, z̃, s̃) ← solution of P̃1.

Z̃ ← objective value of P̃1.

UB ← max{UB, Z̃}
ZI O P ← optimal value of IOP(̃h).

t ← optimal solution of IOP(̃h).

if LB < ZIOP then

LB ← ZIOP

(t∗, h∗) ← (t, h̃)

else if LB > ZIOP then

Append the ‘flow’ cut (29)

end if

StopCriterion ← true

for each commodity k ∈ K do

if ỹk < nk (̃uk) − ε then

StopCriterion ← false

Append the linear constraint (17) to P̃1.

end if

if w̃k − ε > nk (̃uk )̃uk then

StopCriterion ← false

if ũk lies in the concave part of nk(uk)uk then

Append the linear constraint (18) to P̃1.

else

Append the piecewise linear constraints (19)–(25) to P̃1.

end if

end if

end for

until StopCriterion or LB + ε < UB
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We now consider a variant of the exact method involving amore tractable objective.
To this aim, we introduce the slack variable τ k :

τ k = uk −
∑

a∈pk
0

ca . (30)

By substituting uk for (30) in the objective function, we obtain

nk (uk) uk − nk (uk)
∑

p∈Pk

∑

a∈p

cahk
p

= nk (uk)

⎛

⎜⎝τ k +
∑

a∈pk
0

ca

⎞

⎟⎠ − nk (uk)
∑

p∈Pk

hk
p

∑

a∈p

ca

= nk (uk) τ k − nk (uk)

⎛

⎜⎝
∑

p∈Pk

hk
p

∑

a∈p

ca −
∑

a∈pk
0

ca

⎞

⎟⎠

= nk

⎛

⎜⎝τ k +
∑

a∈pk
0

ca

⎞

⎟⎠ τ k + nk (uk)

⎛

⎜⎝
∑

p∈Pk

hk
p

∑

a∈p

ca −
∑

p∈Pk

hk
p

∑

a∈pk
0

ca

⎞

⎟⎠

= nk

⎛

⎜⎝τ k +
∑

a∈pk
0

ca

⎞

⎟⎠ τ k − nk (uk)
∑

p∈Pk

hk
p

⎛

⎜⎝
∑

a∈p

ca −
∑

a∈pk
0

ca

⎞

⎟⎠ . (31)

This yields the mathematical program obtained by replacing the objective of P by
(31) and appending constraints (30).

P2: max
t,h,T ,u

∑

k∈K
nk

⎛

⎜⎝τ k +
∑

a∈pk
0

ca

⎞

⎟⎠ τ k − nk (uk)
∑

p∈Pk

hk
p

⎛

⎜⎝
∑

a∈p

ca −
∑

a∈pk
0

ca

⎞

⎟⎠

s.t. uk = τ k +
∑

a∈pk
0

ca ∀k ∈ K

(1) − (2) and (4) − (5) .

To solve P2, we adopt the strategy used for solving P1, and over-approximate nk(τ
k +∑

a∈pk
0

ca)τ k in place of nk(uk)uk . Note that the bounds on variables T k are valid for

the variable τ k .
We observe that P2 is likely to outperform P1 in terms of speed. Indeed, the convex

part of the function nk(uk)uk is always larger than the one of nk(τ
k +

∑
a∈pk

0

ca)τ k ,

thus the over-approximation of nk(uk)uk involves a larger number of binary variables
than the over-approximation of nk(τ

k +
∑

a∈pk
0

ca)τ k . This leads to a lesser quality

of the upper bound of P1 compared to P2.
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4 Two heuristic algorithms

In this section, we present two heuristics based on the trust region paradigm, follow-
ing the framework proposed by Colson et al. [3] to solve general non-linear bilevel
programs. At each iteration, the trust region ‘model’ corresponds to a bilevel program
where all functions are linearized, with the exception of the lower-level objective,
which is replaced by a second-order approximation. Upon replacing the quadratic
lower-level program by its optimality conditions, the resulting quadratic MIP can be
solved using a commercial software.

Two strategies have been considered. In the first, linearization of the demand func-
tion yields the network pricing problem studied in [8]. In the second, one replaces the
lower-level by its optimality conditions in order to derive a single-level program P1
whose major difficulty rests in the nonlinearity of the objective function.

4.1 The first heuristic model

Let (̃t, h̃, T̃ , ũ) denote the incumbent solution of P. By linearizing the demand function
nk(uk) at ũk for each commodity, we have that nk(uk) ≈ ak − bkuk , where ak and
bk are the coefficients of the tangent line to nk(uk) at ũk . For each commodity k, we
substitute nk(uk) for ak − bkuk in P and append the constraint t̃ − 
t ≤ t ≤ t̃ + 
t ,
where 
t is the radius of the trust region:

TR1 : max
t≥0, h,u

∑

k∈K

∑

p∈Pk

(ak − bk uk )
∑

a∈p

tahk
p

s.t. uk =
∑

p∈Pk

⎛

⎝
∑

a∈p

ca +
∑

a∈p
⋂A1

ta

⎞

⎠ hk
p

∀k ∈ K

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

hk ∈ argmin
h′k

∑

p∈Pk

⎛

⎝
∑

a∈p

ca +
∑

a∈p∩A1

ta

⎞

⎠ h
′k
p

s.t.
∑

p∈Pk

h
′k
p = 1

h′k
p ∈ {0, 1}.

t̃a − 
ta ≤ ta ≤ t̃a + 
ta ∀a ∈ A1.

This problem, which corresponds to the linear demand case, is efficiently addressed
by the algorithm proposed in [8].

4.2 The second heuristic model

Let (̃t, h̃, T̃ , ũ) be the incumbent solution of P and let nk be the variable associated
with the function nk(uk). The linearization of the revenue function of commodity k at
(T̃ , ũ) is:

nk(uk)T
k ≈ nk (̃uk)T̃

k + nk (̃uk)(T
k − T̃ k) + T̃ k(nk − nk (̃uk))

= nk(ũk)T
k + T̃ knk − nk (̃uk)T̃

k .

For each commodity k, we substitute nk(uk)T k for nk (̃uk)T k + T̃ knk −nk (̃uk)T̃ k in P
and append the constraint t̃ −
t ≤ t ≤ t̃ +
t . Since the variable nk does not appear
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in P , we impose the constraint nk ≤ ak − bkuk where ak , bk are the coefficients of
tangents to nk(uk) at the point ũk . This latter constraint prevents nk from assuming an
infinite value and enforces its proximity to the actual demand. This leads to the MIP

TR2: max
t,h,T ,u

∑

k∈K
(nk (̃uk)T

k + T̃ knk − nk (̃uk)T̃k)

s.t. (1) − (2) and (4) − (5)

t̃a − 
ta ≤ ta ≤ t̃a + 
ta ∀a ∈ A1

nk ≤ ak − bkuk ∀k ∈ K.

The single-level reformulation of TR1 involves
∑

k∈K |Pk | − |K| continuous vari-
ables and

∑
k∈K |Pk | more constraints than TR2.

5 Numerical results

Numerical tests have been performed on randomly generated grid networks, a topology
that has been shown to be challenging for network pricing problems. Grid Networks
were designed as indicated in [8]. It has been observed in practice that exact solutions
to TR1 and TR2 are not necessary to obtain good toll solutions.

Themain parameters of the test problems are |N | (number of nodes), |A| (number of
arcs), %t (the percentage of toll arcs), and |K| (number of commodities). We consider
demand functions as described in Sect. 2, i.e, they either have a constant elasticity or
decay exponentially. The parameters of the demand functions were chosen to make
most commodities attractive. When the demand functions have a constant elasticity,
we set

αk =
⌈

ξk(1.5Ck)
1.5

105

⌉
,

where Ck is the average fixed cost of paths associated with OD pair k, and ξk a random
number drawn from the uniform distribution over the interval

[
exp

(
8

{
1

2
+ 3

2

γ ∞
k

Ck

})]
,

[
exp

(
8.5

{
1

2
+ 3

2

γ ∞
k

Ck

})]
.

For demand functions with exponential decay,

αk =
⌈

ξk exp(1.5Ck)

105

⌉
,

with the aim of generating significant demand for all commodities.
Algorithms were coded in C++ and solved by the commercial MIP solver Cplex [7]

under its default settings. The procedure ‘IloPiecewiseLinear’ of the ‘ILOG CPLEX
Callable Library’ allowed the introduction of the piecewise linear cuts. The algorithms
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Algorithm 2 Heuristic algorithm

Require: Trust region parameters 
0, 
min, η1 ≤ η2 < 1, < δ1 < 1 < δ2, kmax, ε.

Let (t (0), h(0), T (0), u(0)) be an initial feasible solution.

k ← 0

StopCriterion ← false.

repeat

Solve sub-problems (TR1 or TR2) for the respective solution (t, h, T , u).

t∗ ← IOP(h)

Let R (respectively Rm) be the objective function of P (respectively TR1 or TR2).

Let φk ← R(t (k), h(k), T (k), u(k)) − R(t∗, h, T ∗, u∗)
Rm(t (k), h(k), T (k), u(k)) − Rm(t, h, T , u)

if φk < η1 then

(t (k+1), h(k+1), T (k+1), u(k+1)) ← (t (k), h(k), T (k), u(k))


k+1 ← δ1
k

else

(t (k+1), h(k+1), T (k+1), u(k+1)) ← (t∗, h, T ∗, u∗)
if φk ≥ η2 then


k+1 ← δ2
k .

end if

end if

if k > kmax or ‖t (k+1) − t (k)‖ ≤ ε or φk ≈ 1 or 
k+1 < 
min or

|Rm(t (k), h(k), T (k), u(k)) − Rm(t, h, T , u)| ≤ ε then

StopCriterion ← true

else

k ← k + 1

end if

until StopCriterion

were run on an Intel Core 2 Duo (2.13GHz) processor PC, under the GNU/Linux
openSUSE operating system.

The major issue concerning the exact algorithm is the solution P̃1, which takes 99%
of the CPU time. In order to take advantage of the information provided by the Branch-
and Bound (BB) procedure, inverse optimization was implemented with respect to the
flow vectors, at every 1000th iteration. Whenever the inverse optimization yielded an
objective value inferior to the incumbent lower bound, a flow cut (29) was appended
to the model. Otherwise, the incumbent lower bound was updated. At each iteration
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Fig. 7 Comparison between P1 and P2 on instances of 5 commodities. Constant elasticity set to 2. Average
taken over 10 random instances. ‘Best gap P1’ is the absolute difference between the best solution achieved
by P1 and the upper bound provided by P2

of the exact algorithm, an initial solution to P̃1 provides a lower bound, used to prune
nodes in the BB tree. At each iteration, initial flows are assigned to the cheapest paths
according to the travel costs obtained at the previous iteration.

Figures 7 and 8 illustrate the respective performance of formulations P1 and P2,
whendemand elasticity is constant. The time limit is set to 1000s, the stopping criterion
to ε = .001, and the number of discretization points to 20.

We observe that the best solution found by both methods are almost identical, but
that the upper bound associated with P1 decreases very slowly compared to the upper
bound provided by P2. Indeed, the over-approximation of nk(uk)uk in the objective of
P1 requires several additional cuts (extra binary variables) before reaching an accept-
able solution, in contrast with nk(

∑
p∈pk

0

ca +τ k)τ k in the objective of P̃2. Moreover,

whenever elasticity increases, the difficulty of solving P1 (respectively P2) increases
(respectively decreases). This is mainly due to the convex part of nk(uk)uk becoming
wider and the curvature of nk(uk)uk higher as the elasticity increases, while the convex
part of nk(

∑
p∈pk

0

ca + τ k)τ k shrinks. Since these observations hold for all demand

functions, we will only consider formulation P2 from now on.
From a computational point of view, a trade-off must be achieved between compu-

tational tractability and accuracy. We observe that it is worth increasing the number
of discretization points, since the combinatorics of the problem comes more from the
number of paths involved in the model than the number of linear pieces in the approx-
imations of the functions. Of course, beyond a certain threshold, additional pieces are
simply useless. Following experiments with 5, 10, 20 or 30 discretization points, it
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Fig. 8 Comparison between P1 and P2 on instances of 5 commodities. Constant elasticity set to 6. Average
taken over 10 random instances
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Fig. 9 Comparison between 5 and 20 discretization points. Average taken over 10 generated problems for
10 commodities. Constant elasticity set to 2

was observed that the number 20 represented a suitable compromise. For instance, see
Fig. 9 for a comparison between 5 versus 20 discretization points.
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Fig. 10 Impact of flow cuts in formulation P2. Averages taken over 10 instances of 30 commodities
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Figure 10 highlights the performance of the exact method when flow cuts are
appended to the original formulation. These allow to avoid paths with estimated high
revenue, but actual revenue less than the incumbent lower bound. This resulted in
an upper bound that decreases very fast, as well as a lower bound that increases in
a stepwise manner (this behaviour can be observed on Fig. 11). We notice the good
performance of the exact method when flow cuts are introduced during the process.
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Table 3 Parameters for the exact method and column headers for tables

Parameters

Stopping criterion (ε) 1e−2

Time limit 10,800s

Percentage of toll arcs Varies from 10 to 100%

Column headers

cpu Running time (s)

cpu* Instant when the method achieves the best solution

gap Gap between the upper and lower bounds

gap* Gap between the best upper and lower bound

#it Number of iterations

#fcuts Number of flow cuts added

#tlimit Number of instances that have reached the time limit
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Fig. 12 Cpu times with respect to elasticity (left) and percentage of toll arcs (right). Average taken over 10
generated problems for 5–10 commodities

To assess the potential of the exact method on P2, we applied it to instances ranging
from10 to 40 commodities. The results of our computational experiments are presented
inTables 1 and2 , each table summarizing an average takenover 10 randomlygenerated
problems. The values of parameters and column headers for the tables are displayed
in Table 3.

Formulation P2 allows to solve small to medium scale problems (up to 10,000
paths) at quasi optimality in <1,h of CPU time. On the larger instances, the running
time increases very fast due to the number of binary variables that grows exponentially
with network size. It is interesting to note (see Fig. 12) that running time decreases
as elasticity increases. Intuitively, large elasticities imply a fast decrease of demand,
which makes the path with smallest fixed travel cost all the more attractive for the
leader. This reasoning is supported by the results displayed in Fig. 13, where the gap
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Fig. 13 Gap between upper bound provided by exact method and solution found when selected paths are
the shortest ones with respect to the fixed travel cost. Average taken over 10 generated problems for 10, 20,
30 and 40 commodities

between the upper bound provided by P̃2 and an inverse optimization performed on
flows assigned to cheapest paths (with respect to fixed costs) decreases as elasticities
increase. On the other hand, no clear conclusion can be drawn concerning the sensitiv-
ity with respect to the percentage of toll arcs. Notwithstanding, the solution obtained
by selecting the paths with smallest fixed travel cost provides a good lower bound,
although exact methods fail to provide a small gap, due to the bad quality of the upper
bound. Note that, as a general rule, it is easier to solve instances where all arcs can be
tolled.

We finally assessed the efficiency of the two heuristics, setting the parameters
to those recommended in [3], with the exception of the number of iterations kmax
and the maximum number of unsuccessful iterations mxnuns. These values are
reported in Table 4 where nbpoint (respectively ptuns) denotes the number of starting
points (respectively the number of consecutive points where the best solution is not
improved).

While the models arising in the trust region algorithm are simpler than the original
bilevel program, they are yet strongly NP-hard. For this reason, we decided to set
the time limit to 1000s and to allow more time for diversification. Alternatively, one
can avoid generating already encountered flows through the introduction of the flow
cut (29). In both cases, inverse optimization can be used to optimize revenues with
respect to current feasible flowpatterns. Table 5 illustrates the efficiency of the heuristic
algorithms when elasticity is set to 2, comparing with P2 for various problem sizes.

We observe that the quality of solutions provided by the exact and heuristic method
are similar when the number of commodities is small. This can also be observed
on Figs. 14, 15 and 16. Heuristic algorithms always find quickly the best solution
compared to the exact method (see column cpu*). Table 6 summarizes the ratio of
running time over the three methods when they find the best solution.

Whenever the number of commodities exceeds 30, the ratio P1/TR2 increases and
reaches 2.27, while no firm conclusion can be drawn concerning the ratio P2/TR1.
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Table 4 Parameters for the
heuristic algorithms

Trust region parameters


0 10

η1 0.01

η2 0.9

γ1 0.6

γ2 1.4

nbpoint 11

Stopping criteria

kmax 30


min 1e − 6

ε 1e − 6

mxnuns 10

ptuns 5

Time limit 10,800s

As can be observed in column #fcuts, the number of flow cuts is highest with TR2,
followed by TR1 and the exact method, whichmight explain why TR2 finds good solu-
tions quickly. Due to the difficulty of solving sub-problems involving a large number
of commodities, #fcuts decreases as the number of commodities increases. Figure 17
shows that #fcuts is concave (increasing then decreasing) with respect to the percent-
age of toll arcs, and reaches its maximum (respectively minimum) value between 40
and 50% (respectively when all arcs are tolled). In summary, the heuristics provide
a good compromise between computational time and solution quality whenever the
number of commodities exceeds 30 and elasticities are small. When elasticities are
high, the exact method is to be preferred.

6 Conclusion

In this paper, we have considered efficient formulations and algorithms for addressing
a network pricing problem involving nonlinear demand functions. We proposed for
its solution an asymptotically exact method, as well as powerful heuristic procedures
based on a bilevel approximation of the original problem, cast within the framework of
trust region methods. The numerical tests illustrate the good behavior of our methods
and the robustness of the associated code. From a qualitative point of view, it was
observed that the instances involving high elasticities were easier to solve, due to a
decrease in the combinatorial complexity of the problem.

Although the introduction of variable and nonlinear demand is an important step
forward, yet it does not account for situations where commodity flows are not assigned
to the same path. For instance, dispersion of traffic along the paths of the network could
result from congestion, or from the presence of rigid link capacities. In both cases,
the structure of the lower-level problem is significantly modified, and the resulting
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Fig. 14 Comparison between exact method and heuristics. Average taken over 10 generated problems for
40 commodities. Elasticity set to 2
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Fig. 15 Comparison between exact method and heuristics. Average taken over 10 generated problems for
50 commodities. Elasticity set to 2

model calls for a different algorithmic approach. Another key assumption of ourmodel
is that the value-of-time parameter is uniform throughout the user population, i.e.,
given the choice between two paths of equal costs, users always select the one with
highest toll. This drawback could be eliminated by introducing a range of value-of-time
parameters across users. If this range is continuous, the lower level problem becomes
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Fig. 16 TR2: Comparison between exact method and heuristics. Average taken over 10 generated problems
for 60 commodities. Elasticity set to 2

Table 6 Running time ratio between exact method and heuristic algorithms; βk = 2

#OD Constant elasticity Non-constant elasticity

P2/TR1 P2/TR2 TR1/TR2 P2/TR1 P2/TR2 TR1/TR2

20 0.86 1.71 1.99 0.85 1.07 1.26

30 1.16 1.46 1.26 1.25 1.24 0.99

40 1.66 1.71 1.03 2.06 1.67 0.81

50 1.43 2.27 1.59 1.55 2.11 1.36

60 1.62 1.80 1.11 1.83 2.19 1.20
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Fig. 17 Number of flow cuts (29) added during execution of heuristics with respect to the percentage of
toll arcs. Average taken over 10 generated problems for 10, 20, 30, 40 and 50 commodities
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an infinite-dimensional linear problem. As indicated by Marcotte and Zhu [11], an
efficient solution to this lower level problem can be obtained by solving a parametric
cheapest path problem. These extensions of the model are left to future studies.
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