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Abstract
Determining the set of all optimal solutions of a linear program with interval data is
one of the most challenging problems discussed in interval optimization. In this paper,
we study the topological and geometric properties of the optimal set and examine
sufficient conditions for its closedness, boundedness, connectedness and convexity.We
also prove that testing boundedness is co-NP-hard for inequality-constrained problems
with free variables. Furthermore, we prove that computing the exact interval hull of
the optimal set is NP-hard for linear programs with an interval right-hand-side vector.
We then propose a new decomposition method for approximating the optimal solution
set based on complementary slackness and show that the method provides the exact
description of the optimal set for problems with a fixed coefficient matrix. Finally, we
conduct computational experiments to compare our method with the existing orthant
decomposition method.

Keywords Interval linear programming · Optimal solution set · Decomposition
methods · Topological properties

1 Introduction

Throughout the years, linear programming has become a widely used mathematical
tool for modelling and solving practical optimization problems. However, real-world
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applications are often accompanied by various inaccuracies and measurement errors
in the input data, which can impair the results obtained by solving a linear program. In
order to achieve more realistic results, we need to consider these inexact or uncertain
quantities when formulating such a model.

Several different approaches to handling uncertainty and inexactness in optimiza-
tion have emerged, such as robust optimization, stochastic programming, fuzzy set
theory, parametric programming or interval analysis. In this paper, we adopt the
approach of interval linear programming, where the input data are given in the form of
intervals enclosing the exact coefficient values, and the coefficients perturb indepen-
dently within the fixed bounds. Interval linear programming can be viewed as a special
case of multiparametric programming without any dependencies among the uncertain
interval-valued parameters, but rather than focusing on the correspondence between
the parameters and the optimal values or solutions, in interval programming we are
also interested in the overall properties of the uncertain program. Some of the notions
discussed in interval programming are also related to robust optimization [2].However,
unlike the robust approach, interval programming is mainly focused on the solutions
of all possible realizations of the uncertain data and thus we do not necessarily assume
the worst-case scenario. While an optimistic approach is also partially introduced in
adjustable robust optimization by means of adjustable variables [3,4,33], the focus
still remains on the feasible or optimal solutions, which are robust with respect to the
realization of the uncertain parameters. Contrarily to this approach, we will address
the properties of the united sets of feasible and optimal solutions over all possible real-
izations of the data. Thus, even though both approaches present mathematical tools for
dealing with uncertain data in optimization, their respective solution methods and the
types of problems solved are quite different. Unlike stochastic or fuzzy programming,
we do not consider any assumptions about the probabilistic distributions or member-
ship functions on the input data—we simply assume a lower and upper bound given
for each coefficient.

Interval linear programs have been applied in solving practical problems from var-
ious fields, e.g. portfolio selection [8,18], solid waste management [15,21] or interval
matrix games [20]. There are several different motivations for choosing interval pro-
gramming over the other approaches to optimization under uncertainty. These include
guaranteed approximations without stochastic nature, representation of parameters
with fixed tolerances, discretization of continuous measurements or having insuffi-
cient information about the data. The interval approach is also useful for problems,
where we need to handle a whole set of data at once (see [14]).

There are twomain topics studied in interval linear programming: finding the range
of the optimal objective values [30] and describing the set of all possible optimal
solutions. Further problems related to these topics include formulating conditions
for weak and strong feasibility, optimality, boundedness or basis stability of a given
interval problem and the computational complexity of testing these properties (see [9]
for an overview of the results). This paper is devoted to the latter problem of describing
the set of all optimal solutions. From the theoretical point of view, we study the
topological, metric and geometric properties of the optimal solution set, which may
aid in the design of more efficient algorithms (see also [13,17] or [27] for applications
of similar ideas). Based on one of the theoretical results, we derive a decomposition
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On the optimal solution set in interval linear programming 271

algorithm for finding an outer approximation of the optimal set. The paper draws on
findings acquired during the work on the thesis of the first author [5], which also
provides further details on the discussed topics.

Regarding the description of the optimal set, the first algorithms designed to com-
pute guaranteed bounds for optimal vertices and the range of the optimal value used
an interval extension of the classical simplex method [16,22]. Some newer methods
use decomposition of the given interval program into submodels, such as the best and
the worst case method [1] or the enhanced-interval linear programming model [34]. In
analogy to linear programming, the theory of duality can be used to derive a parametric
description of the optimal solution set. This idea leads to the exponential-time orthant
decomposition method, and will also serve as a basis for the method introduced in
this paper. Stronger results can be achieved by considering only a special class of
programs, for which the exact solution set can be described. This includes methods
exploiting basis stability [12] or solvers for linear programs with an interval objective
function [23].

The paper is organized as follows. Section 2 introduces the basic notions used in
interval linear algebra and optimization and reviews some of the known results in this
area. In Sect. 3 we study various properties of the optimal solution set of an interval
linear program, namely its polyhedrality, closedness, convexity, connectedness and
boundedness. A new method for computing an approximation of the optimal solution
set based on duality and complementary slackness is proposed in Sect. 4. We compare
it with the existing orthant decomposition method and show that our method computes
the exact optimal set for problems with a fixed coefficient matrix. Furthermore, we
prove that finding the interval hull of the optimal set to a linear program with an
interval right-hand-side vector is NP-hard. Section 5 provides some final conclusions
and ideas for future research.

2 Interval linear programming

Let us first introduce some notation: for a vector x = (x1, . . . , xn)T , we denote by
diag(x) the diagonal matrix with entries x1, . . . , xn . The inequality relation ≤ on the
set of real (interval) matrices, as well as the absolute value operator |·|, is understood
entry-wise.

Given two matrices A, A ∈ R
m×n with A ≤ A, we define an interval matrix

A = [A, A] as the set
{
A ∈ R

m×n : A ≤ A ≤ A
}
.

The matrices A, A are called the lower and the upper bound of A, respectively. Here-
inafter, bold uppercase letters are used to represent intervalmatrices andbold lowercase
letters represent interval vectors and one-dimensional intervals. We denote by IRm×n

the set of all interval m-by-n matrices. For simplicity, we write IRm instead of IRm×1

to denote the set of real interval vectors of dimension m, and IR for the set of real
intervals. Alternatively, we can specify an interval matrix in terms of the center and
radius, which are in the following relation with the lower and upper bounds:
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Ac = 1

2

(
A + A

)
, A� = 1

2

(
A − A

)
.

When approximating a (bounded) set M ⊆ R
n by means of interval methods,

we often aim to compute an interval vector enclosing the set. The tightest possible
approximation of this type is the interval hull, which is defined as the interval vector

�M =
⋂{

x ∈ IR
n : M ⊆ x

}
.

Since computing the exact interval hull may be difficult, a weaker approximation is
often sufficient for practical purposes. Such an approximation can be given in the form
of an interval enclosure, which is any interval vector x ∈ IR

n satisfying M ⊆ x.
Let an interval matrix A ∈ IR

m×n and interval vectors b ∈ IR
m, c ∈ IR

n be
given. Unless specified otherwise, the term interval linear program (ILP) will refer to
a family of linear programs in the form

minimize cT x

subject to Ax = b, x ≥ 0, (1)

with A ∈ A, b ∈ b, c ∈ c. For the sake of brevity, we will write ILP (1) shortly as

minimize cT x

subject to Ax = b, x ≥ 0. (2)

A particular linear program in such a family is called a scenario. If some of the
coefficients are fixed real values, we will also use the term “scenario” to refer to
a choice of the remaining interval coefficients.

A vector x∗ ∈ R
n is said to be a (weakly) feasible solution to an interval linear

system Ax = b, if there exist A ∈ A and b ∈ b such that Ax∗ = b. Moreover, x∗
is said to be (weakly) optimal for an ILP determined by the triplet (A, b, c), if it is
optimal for some scenario (A, b, c). Hereinafter, the term optimal solution set refers
to the set of all weakly optimal solutions, and is denoted by S, i.e.

S(A, b, c) = {x ∈ R
n : x is an optimum of (1) for some A ∈ A, b ∈ b, c ∈ c}.

The following well-known theorem by Oettli and Prager [27] provides a convenient
characterization of the feasible set of an interval linear system: Given A ∈ IR

m×n and
b ∈ IR

m , a vector x ∈ R
n is a weak solution to the system Ax = b if and only if it

satisfies

|Acx − bc| ≤ A� |x | + b�.

A similar characterization due to Gerlach [6] describes the feasible set of inequality
systems: A vector x ∈ R

n is a weak solution to the system Ax ≤ b if and only if it
satisfies
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Acx ≤ A� |x | + b.

These descriptions also show an important geometric property: the feasible set forms
a convex polyhedron when restricted to one orthant. Thus, if we impose non-negativity
on the variables, the characterization of weak feasibility reduces to a linear system.

Using strong duality in linear programming, we can also obtain a straight-forward
characterization of the optimal solution set by the parametric system

Ax = b, x ≥ 0, (3a)

AT y ≤ c, (3b)

xT (c − AT y) = 0, (3c)

A ∈ A, b ∈ b, c ∈ c. (3d)

Constraints in system (3) ensure that a pair of optimal primal-dual solutions satisfies
primal feasibility (3a), dual feasibility (3b) and complementary slackness (3c) for
some scenario in the ILP. Alternatively, the complementary slackness constraint can
also be stated in the form cT x = bT y.

Note that while it is possible to rewrite an equation-constrained linear program into
inequalities or to impose non-negativity on free variables, such transformation is not
always applicable in the case of interval linear programs due to the so-called depen-
dency problem. Therefore, different types of ILPs may need to be treated separately,
when studying their properties. Other often used forms, in which the feasible set of an
interval linear program is given, include the inequality-constrained interval systems
Ax ≤ b and Ax ≤ b, x ≥ 0 or mixed systems.

3 Properties of the optimal solution set

Determining the exact optimal solution set of an interval linear program may be diffi-
cult, in general, because of its complex structure. In this section,we study the properties
of the optimal set in order to identify the sources of complexity in the problem of
describing the optimal set. A better understanding of the basic properties is essen-
tial for designing more efficient and accurate algorithms for computing a description
of the optimal set. We are also interested in formulating sufficient conditions under
which some stronger properties hold. Such conditions allow us to identify classes of
programs, for which the optimal set might be easier to describe.

Problem formulation:We study the following topological and geometric properties,
to aid in designing methods for finding a description of the optimal set:

– Convexity, polyhedrality (see Sects. 3.1 and 3.3): A convex set can be described
by means of classical linear programming. More generally, polyhedrality can lead
to techniques based on decomposition into a number of linear programming sub-
problems.

– Closedness (see Sect. 3.2): if a set is closed, we are able to utilize its limit points
or its boundary, which belong to the set itself.
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– Connectedness (see Sect. 3.3): in a connected set, it is sufficient to inspect a single
component to ensure that all possible solutions were considered.

– Boundedness (see Sect. 3.4): a bounded set can be approximated by a finitely large
enclosure, thus reducing the examined search space. Boundedness also provides
a guarantee that a search in any given direction inside the set will eventually
terminate in a point not included in the set.

First of all, it is easy to see that the optimal solution set of an interval linear
program is not a convex polyhedron, in general, even if the feasible set is convex. This
is illustrated by the following example of an ILP with a connected, but non-convex
optimal set.

Example 1 Consider the interval linear program

minimize [0, 1]x1 + x2
subject to x1 + x2 ≥ 2,

x1 ≥ 0,
x2 ≥ 1.

(4)

The optimal solution set for the scenario determined by the objective 0x1 + x2 is
the ray (1 + t, 1) with t ≥ 0. For the scenario 1x1 + x2, we have the optimal set

M(A, b) ∩ {(x1, x2) ∈ R
2: x1 + x2 = 2},

where M(A, b) denotes the feasible set of (4). For any other scenario αx1 + x2 with
0 < α < 1, there is a unique optimal solution in the vertex (1, 1). Obviously, this set
is non-convex (see Fig. 1). Also note that the (weakly) optimal set S is different from
the set of solutions, which remain optimal under all perturbations of the data, since
this only includes the point (1, 1).

Fig. 1 The feasible set (gray)
and the set of optimal solutions
(thick black) of ILP (4)
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3.1 Polyhedrality

Let us now consider a special class of interval linear programs in form (2) with a fixed
coefficient matrix A. Theorem 1 shows that in this case the optimal solution set S is
formed by a union of finitely many convex polyhedra.

Theorem 1 The set of optimal solutions of the interval linear program

minimize cT x

subject to Ax = b, x ≥ 0 (5)

is a union of at most 2n convex polyhedra.

Proof The optimal solution set of (5) can be described by the parametric system (3)
with a fixed coefficient matrix A. Moreover, we can view the parameters b and c as
variables (with given lower and upper bounds), thus forming a non-linear program.
Note that this transformation does not change the set of feasible solution vectors x
and y. We obtain the following system:

Ax = b, x ≥ 0,

AT y ≤ c,

xT (c − AT y) = 0,

b ≤ b ≤ b, c ≤ c ≤ c. (6)

Since A is a fixed real matrix, the only non-linear constraint is xT (c − AT y) = 0. In
order to deal with the non-linearity, we introduce an auxiliary variable z = c − AT y.
Taking into account the non-negativity conditions on x and z, the complementary
slackness constraint can be equivalently restated as

∀i ∈ {1, . . . , n} : xi = 0 ∨ zi = 0.

This restatement leads to 2n linear programs obtained by replacing xT z = 0 with
a collection of constraints in the form xi = 0 or zi = 0 for each index i . Therefore,
the feasible set of (6) is a union of 2n convex polyhedra. The projection, which maps
solutions of (6) onto the x-variable, preserves convexity and polyhedrality. Thus, the
set of optimal solutions of (5) is also a union of 2n convex polyhedra. 
�
Note that the proof of Theorem 1 can also be generalized to problems with linear
dependencies between the objective function coefficients and the right-hand-side vec-
tor. Considering the dual problem as primal, we can derive an analogous result for
inequality-constrained interval programs (and similarly for other types of ILPs).

Corollary 1 The set of optimal solutions of the interval linear program

minimize cT x

subject to Ax ≤ b

is a union of at most 2m convex polyhedra.
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3.2 Closedness

Let us by d(x, y) denote the Euclidean distance between points x, y ∈ R
n . A set

M ⊆ R
n is said to be open, if for every x ∈ M there exists a real number ε > 0, such

that every y ∈ R
n satisfying d(x, y) < ε belongs to M . A set M ⊆ R

n is said to be
closed, if the complement of M is open. Note that the properties of being open and
closed are not mutually exclusive, i.e. a set may be both open and closed. Moreover,
a set may also be neither open nor closed.

Before we proceed with examining closedness of the optimal set, let us first state
some continuity properties, which will be used later. Proofs of the following lemmas
can be found in [26].

Lemma 1 ([26, §19]) Let a function f : Rn → R
m be defined by the rule

f (x) = ( f1(x), . . . , fm(x)),

where fi : Rn → R. Then the function f is continuous if and only if each component
function fi is continuous.

Lemma 2 ([26, §18]) Let X ,Y be topological spaces and let f : X → Y be given.
The function f is continuous if and only if for every closed set M ⊆ Y , the preimage
f −1(M) is closed in X.

Lemma 3 ([26, §26]) Let X ,Y be topological spaces and assume Y is compact. Con-
sider the projection πX : X × Y → X. If M ⊆ X × Y is a closed set, then πX (M) is
a closed subset of X.

For the statement of the upcoming Theorem 2, we assume an ILP is given in the
form (2). However, the proof of the theorem can be directly generalized to other types
of ILPs as well.

Theorem 2 Assume the set of optimal solutions of the dual interval problem

maximize bT y

subject to AT y ≤ c

is bounded. Then the set of optimal solutions S is closed.

Proof Let us describe the set of all optimal solutions of (2) by the non-linear system

Ax = b, x ≥ 0,

AT y ≤ c,

cT x = bT y,

A ≤ A ≤ A, b ≤ b ≤ b, c ≤ c ≤ c. (7)

Wewill now prove that each of the constraints describes a closed set. Since the feasible
setM of system (7) is an intersection of the sets defined by the individual constraints,
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this argument will also yield its closedness. Let us consider the function g(A, x, b) :=
Ax − b. All components of g are polynomials of the form

n∑

k=1

Aik xk − bi

for i ∈ {1, . . . ,m} and therefore continuous functions. By Lemma 1, the function g
is also continuous. The set of all triplets (A, x, b) satisfying Ax = b, or equivalently
Ax − b = 0, can also be viewed as the preimage of {0} under g. Using Lemma 2 and
the fact that the set {0} is closed, we can also infer closedness of the set

{
(A, x, b) ∈ R

m×n+n+m : Ax = b
}
,

and of the set of all quintuples (A, b, c, x, y) satisfying Ax = b. By a similar argument,
we can also prove closedness of the sets defined by the constraints AT y ≤ c and
cT x = bT y. It is easy to see that the remaining inequality constraints in (7) also
define closed sets, so the feasible setM is closed.

The set of all dual optimal solutions is bounded by assumption, and thus we can
restrict the space of dual variables y to a compact subset Y of Rm (e.g. an interval
envelope). Consider the setM as a subset of the space

Z := A × b × c× R
n × Y

and let πx : Z → R
n denote the projection into the space of primal variables x . Since

A, b, c and Y are compact, their product is also compact and πx is a closed map by
Lemma 3. Therefore, the set πx (M) = S is also closed. 
�
A simple sufficient condition ensuring that the assumption in Theorem 2 is satisfied
is that the set of dual feasible solutions is also bounded. Boundedness of the optimal
solution set will be further discussed in Sect. 3.4.

The following theorem states another sufficient condition for closedness of the
optimal solution set, based on the results presented in Sect. 3.1.

Theorem 3 The set of optimal solutions of an interval linear program with a real
coefficient matrix A is closed.

Proof By Theorem 1 and Corollary 1, the optimal solution set of an ILP with a real
coefficient matrix is formed by a finite union of convex polyhedra. Employing the fact
that a finite union of closed sets is a closed set itself finishes the proof of the theorem.


�

3.3 Convexity and connectedness

Recall that a set is called convex, if for every pair of points from the set, the line segment
joining the points is also contained within the set. In linear programming, convexity
of the optimal set can be exploited to describe all optimal solutions. However, the
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optimal solution set of an interval linear program is only convex under some additional
assumptions. One of the sufficient conditions for convexity can be formulated using
the concept of basis stability.

Let us first introduce some terminology. An interval matrix A ∈ IR
n×n is said

to be regular, if each real matrix A ∈ A is non-singular, otherwise it is said to be
singular. Given an index set B ⊆ {1, . . . , n}, the symbol AB denotes the submatrix
of an interval matrix A ∈ IR

m×n formed by the columns of A corresponding to the
indices in B. Further, let a linear program be given by the triplet (A, b, c). The index
set B ⊆ {1, . . . , n} is said to be a basis, if the matrix AB is non-singular. A basis B
is called feasible, if A−1

B b ≥ 0 holds and it is called optimal, if it is feasible and for
N = {1, . . . , n}\B we have

cTN − cTB A
−1
B AN ≥ 0T .

Given a basis B, an ILP is said to be B-stable, if B is an optimal basis for each
scenario of the ILP. Furthermore, it is called unique B-stable if it is B-stable and the
optimal solution in each scenario is unique. The following characterization given by
Hladík [9], which is obtained by applying the Oettli–Prager theorem to the interval
system ABxB = b, summarizes the importance of (unique) basis stability in interval
linear programming: If there exists a basis B ⊆ {1, . . . , n}, such that ILP (2) is unique
B-stable, then the optimal solution set S can be described by the linear system

ABxB ≤ b, ABxB ≥ b,

xB ≥ 0, xN = 0. (8)

Furthermore, if the ILP is B-stable, then each solution in the set described by (8)
is optimal for some scenario, and conversely, each scenario has at least one optimal
solution contained in this set.

We proceed by studying the property of (path-)connectedness, which is aweakening
of convexity. A set M ⊆ R

n is said to be path-connected, if for every x, y ∈ M there
exists a continuous function (path) f : [0, 1] → M with f (0) = x and f (1) = y. The
set M is said to be connected, if for each pair of sets X ,Y ⊆ R

n with M = X ∪Y and
X ∩ Y = ∅, which are open in the subset topology induced on M , it holds that X = ∅
or Y = ∅.

In general, the feasible set (and thus also the optimal set) of an interval linear
program may be disconnected. However, even if the feasible set is connected, it is still
possible for the optimal set to be disconnected, as shown in the following example.

Example 2 Consider the inequality-constrained problem

maximize x2
subject to [−1, 1]x1 + x2 ≤ 0,

x2 ≤ 1.
(9)

For the scenario involving the constraint 0x1 + x2 ≤ 0, the set of optimal solutions is
formed by the line x2 = 0. Further, consider a scenariowith the constraintαx1+x2 ≤ 0
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-3 -2 -1 1 2 3

-1

1

Fig. 2 The union of all feasible sets (gray) and the set of all optimal solutions (thick black) of ILP (9)

for α �= 0. If we take the union of all optimal sets for α > 0, we obtain the ray
(−1 − t, 1) with t ≥ 0. For α < 0, we have the united optimal set (1 + t, 1) with
t ≥ 0. The overall optimal solution set of the interval program, which is formed by
the union of the two rays and the line, is (path-)disconnected (see Fig. 2).

Note that every path-connected set is also connected, but the converse does not
hold in general. Theorem 4 states a sufficient condition for path-connectedness of the
optimal solution set based on basis stability.

Theorem 4 If there exists a basis B ⊆ {1, . . . , n}, such that ILP (2) is B-stable, then
the optimal solution set S is path-connected.

Proof Let B be a basis, which is optimal for each scenario of the ILP and let S(B)

denote the set of all optimal basic solutions with the basis B. Furthermore, let x1, x2 ∈
S be arbitrary solutions optimal for some scenarios (A1, b1, c1) and (A2, b2, c2),
respectively.

Since the problem is B-stable, there exist basic solutions x B1 , x B2 ∈ S(B), which
are optimal for the scenarios (A1, b1, c1) and (A2, b2, c2). From the theory of linear
programming, we know that the optimal solution set of a fixed scenario is convex,
and therefore also path-connected. Thus, there exists a path p1 : [0, 1] → R

n with
p1(0) = x1 and p1(1) = x B1 and also a path p2 connecting x B2 to x2. By the description
stated in (8), the set S(B) is convex, which implies that there also exists a path
connecting x B1 to x B2 . Using transitivity of the path-connectedness relation, we obtain
a path p3 from p3(0) = x1 to p3(1) = x2. 
�
A similar result can also be achieved for other types of problems: even if we drop the
non-negativity constraint, the set S(B) still remains path-connected (even though not
necessarily convex) and the statement of the theorem holds.

Let us now return to the class of interval linear programs with a fixed coefficient
matrix. For such problems, Theorem 5 states a general result regarding connected-
ness of the optimal set, which is a consequence of the continuity properties of linear
programs proved by Meyer [24] (the result can also be extended to programs in other
forms). Recall that a correspondence f : X → 2Y is called upper hemicontinuous at
x ∈ X , if for every open neighborhoodU of f (x) there exists an open neighborhood V
of x such that f (z) ⊆ U holds for all z ∈ V .
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Theorem 5 The optimal solution set of the interval linear program

minimize cT x

subject to Ax = b, x ≥ 0 (10)

is connected.

Proof Let us define the following sets:

B = {b ∈ R
m : Ax = b, x ≥ 0 for some x ∈ R

n},
C = {c ∈ R

n : AT y ≤ c for some y ∈ R
m}.

Given two parameter vectors b ∈ b and c ∈ c, the corresponding scenario of the
interval program has an optimal solution if and only if (b, c) ∈ B × C. We observe
that the setB×C, as well as the set (B∩b)×(C∩c), is convex and thus also connected.

By [24, Theorem 2] we have that the optimal set correspondence SA fromB×C to
the power set ofRn is upper hemicontinuous. Since the image of a connected set under
an upper hemicontinuous connected-valued correspondence is also connected [7], it
only remains to show that the optimal set correspondence SA is connected-valued.
However, this is clear from the fact that the optimal set of a fixed linear program is
always a convex polyhedron. 
�

3.4 Boundedness

A set M ⊆ R
n is said to be bounded, if there exists a point s ∈ R

n and a real number
r > 0, such that every x ∈ M satisfies d(x, s) < r .

A sufficient condition for boundedness of the optimal solution set of an interval
linear program was formulated by Mostafaee, Hladík and Černý [25], based on the
results on continuity of some set-valued functions in linear programming proved by
Wets [32]. They showed that if the property

{x ∈ R
n : Ax = 0, cT x ≤ 0, x ≥ 0} = {0},

{y ∈ R
m : AT y ≤ 0, bT y ≥ 0} = {0},

holds for every A ∈ A, b ∈ b, c ∈ c, then the optimal solution set S is bounded.
We continue by studying the decision problem of checking boundedness of the

optimal solution set from a complexity-theoretic point of view. First, let us review
a theorem proved by Rohn [28] establishing a relationship between boundedness of
the feasible set of a square interval system and regularity of the coefficient matrix. He
proved that for an interval system Ax = b with the feasible set M(A, b) and a coef-
ficient matrix A ∈ IR

n×n containing at least one non-singular matrix, the following
assertions are equivalent:

1. A is regular,
2. M(A, b) is bounded for some b ∈ IR

n ,
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3. M(A, b) is bounded for each b ∈ IR
n .

For the purposes ofTheorem6,we consider an inequality-constrained interval linear
program. The proof exploits the fact that a feasibility problem can be formulated as
an optimization problem with a constant objective function, thus, the result also holds
for testing boundedness of the feasible set of interval systems.

Theorem 6 The problem of checking boundedness of the optimal set for an interval
linear program in the form

minimize cT x

subject to Ax ≤ b (11)

is co-NP-hard.

Proof To prove the desired result, we need to construct a polynomial-time reduction
from a decision problem, which is already known to be co-NP-hard, to the problem of
checking boundedness of the optimal set. From the proof of [31, Theorem 2.33], we
have that testing regularity of interval matrices is co-NP-hard on the set of matrices in
the form [A − eeT , A + eeT ] with a non-negative positive definite rational matrix A.

Since a positive definite matrix A has positive eigenvalues, it is also non-singular.
Thus, the matrix A = [A − eeT , A + eeT ] contains a non-singular matrix, namely
the central matrix Ac = A. This allows us to use the characterization of regularity of
an interval matrix given by Rohn [28].

Let us set b = 0. Then, A is regular if and only if the feasible set of the interval
system Ax = 0 is bounded. Using the results of [19], we can split the equation
constraint into two independent constraints A1x ≤ 0, A2x ≥ 0 with A1 = A2 = A,
while preserving the same feasible set. Therefore, the interval matrix A is regular if
and only if the optimal solution set of the interval linear program

minimize 0T x
subject to A1x ≤ 0,

−A2x ≤ 0,
(12)

is bounded. The reduction shows that there exists a class of problems in the form (12),
for which checking boundedness of the optimal solution set is at least as hard as testing
regularity of interval matrices. This implies that checking boundedness of the optimal
set is co-NP-hard on the class of programs of type (11), since this is a more general
decision problem. 
�

4 Approximating the optimal solution set

Since the shape and structure of the optimal solution set of an ILP may be very
complicated, it is often difficult to determine it precisely. Therefore, finding a tight
approximation (e.g. an interval envelope) of the optimal set is also desirable. In this
section we present two decomposition methods, which can be used to compute an
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approximation by means of a union of convex polyhedra or enclose the optimal set by
an interval box. The main focus is on interval linear programs with intervals occurring
only in the objective function and the right-hand-side vector. This class of ILPs includes
a wide range practical problems, where the coefficient matrix represents a graph (e.g.
uncertain transportation or minimum-cost flow problems).

Following the convention of [29], we say that a problem “maximize f (x) subject
to x ∈ X” is NP-hard, if the corresponding decision problem

“Is f (x) ≥ r for some x ∈ X?”

with r rational is NP-hard. While the restriction to programs with a fixed matrix
may seem like a strong assumption, some of the basic problems related to interval
optimization remain difficult. For example, computing the upper bound of the optimal
value range of ILP (6) with a fixed matrix is still NP-hard [29]. The lower bound
can be found in polynomial time, however, this is also true for the general case [30].
Theorem 7 proves that computing the interval hull of the optimal set is also an NP-hard
problem, even for the special class of ILPs with a fixed coefficient matrix and a fixed
objective vector.

Theorem 7 Let S(A, b, c) denote the optimal solution set of an ILP in the form

minimize cT x

subject to Ax = b, x ≥ 0.

Then, the problem

maximize xi
subject to x ∈ S(A, b, c)

for i ∈ {1, . . . , n} is NP-hard.

Proof Let us by f (A, b, c) denote the optimal value inf {cT x : Ax = b, x ≥ 0} of
a given linear program. From [29, Theorem 6.1] we have that computing the worst
optimal value f = sup { f (A, b, c) : b ∈ b} of an ILP is NP-hard on the class of
problems in the form

minimize eT x1 + eT x2
subject to Dx1 − Dx2 = [−e, e],

x1, x2 ≥ 0 (13)

with a positive definite matrix D and e = (1, . . . , 1)T . Note that the value f is finite
for ILP (13), since it is strongly bounded and feasible. Let us now formulate a similar
program as follows:
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minimize z

subject to z = eT x1 + eT x2,

Dx1 − Dx2 = [−e, e],
x1, x2, z ≥ 0. (14)

Since both variables x1, x2 are non-negative in program (13), the objective value
eT x1 + eT x2 represented by the variable z in program (14) is non-negative as well.
This implies that both programs are equivalent (with respect to the range of optimal
values). Therefore, the maximal value of z optimal for some scenario of program (14)
is equal to the worst objective value f of program (13), which is NP-hard to compute.


�

4.1 Orthant decomposition

First, we review the so-called orthant decomposition, which is based on an interval
relaxation of the parametric description of the optimal solution set given in (7). By
breaking dependencies between the coefficients, we obtain the interval linear system

A1x = b1, x ≥ 0, AT
2 y ≤ c1, cT2 x = bT2 y, (15)

with A1 = A2 = A, b1 = b2 = b and c1 = c2 = c. Next, we apply the results
on weak solvability of mixed interval systems [11] derived from the theorems of
Oettli–Prager and Gerlach. Note that the non-negativity of primal variables allows for
a simplification of the primal feasibility constraint, using the definitions of center and
radius of an interval matrix. Thus, it is possible to rewrite system (15) as

cTc x − bTc y ≤ cT�x + bT� |y| ,
cTc x − bTc y ≥ −cT�x − bT� |y| ,
Ax ≤ b,−Ax ≤ −b, x ≥ 0,

AT
c y − AT

� |y| ≤ c. (16)

Let us now define some related terms: Given s ∈ {±1}n , an orthant defined by s is
the set {x ∈ R

n : diag(s)x ≥ 0}. The vector s is called the signature of the orthant.
It is easy to see that restricting the dual variables y in system (16) to a single

orthant yields a linear system, since we can directly express the absolute value using
the signature of the orthant. Thus, we can proceed by searching each of the 2m orthants
and solving the respective linear systems. It is possible to exclude some orthants from
search by first computing a quicker and looser enclosure of the optimal set and then
searching the non-empty orthants to tighten it. For a fixed signature s ∈ {±1}m we
can formulate the description as follows:
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cTc x − bTc y ≤ cT�x + bT�diag(s)y,

cTc x − bTc y ≥ −cT�x − bT�diag(s)y,

Ax ≤ b, −Ax ≤ −b, x ≥ 0,

AT
c y − AT

�diag(s)y ≤ c,

diag(s)y ≥ 0. (17)

Note that for a program in the form Ax ≤ bwe decompose the corresponding system
with respect to the unrestricted primal variables into 2n orthants. A program in the
form Ax ≤ b, x ≥ 0 does not need to be decomposed at all, since both primal and
dual variables are constrained to one orthant. Therefore, in this case, the problem of
approximating the optimal solution set via an interval relaxation reduces to solving
a single linear system.

As presented so far, the method provides an approximation of the optimal set by
means of a set of convex polyhedra. In order to obtain an interval enclosure, we can
compute the interval hull of the union of the feasible sets described by (17). This can
be done by finding the minimal and maximal value of each primal variable xi over the
union of the feasible sets.

The exponential-time orthant decomposition method can also be modified into
a polynomial iterative contractor [10] providing a looser, but faster approximation.
The contractor uses a linear approximation of the absolute value function instead of
expressing it exactly in every orthant.

4.2 Decomposition by complementarity

Let us now introduce a new method for approximating the optimal solution set of
an ILP based on complementary slackness in linear programming. We also show that
this approach provides an exact description of the optimal set for a special class of
interval linear programs with a fixed coefficient matrix.

Using the idea developed in the proof of Theorem 1, we consider the parametric
description of the optimal set given in (3) as a non-linear system. We know that the
complementary slackness condition xT (c − AT y) = 0 is satisfied if and only if
xi = 0 or (c − AT y)i = 0 holds for each index i ∈ {1, . . . , n}. This implies that for
a fixed subset I ⊆ {1, . . . , n} with xi = 0 for i ∈ I , we only need to consider the
primal and dual feasibility conditions with the remaining equation constraints from
the complementary slackness condition to obtain the corresponding subset of optimal
solutions. In other words, we need to solve the 2n problems in the form

Ax = b,

xi = 0, (AT y)i ≤ ci , for i ∈ I ,

x j ≥ 0, (AT y) j = c j , for j /∈ I ,

A ∈ A, b ∈ b, c ∈ c.

(18)
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Consider now a special class of interval linear programs, in which the entries of
the matrix A are only degenerate intervals. In this case, the value of the variable A is
fixed, thus reducing system (18) to a linear problem. Therefore, we can directly obtain
the exact optimal set of a linear program with interval objective and right-hand side
by solving 2n linear subproblems. Similarly, we can also compute the exact interval
hull of the optimal solution set. In fact, the proposed algorithm can be directly applied
to a more general class of programs, for which the parameters b and c belong to an
easily characterizable set, e.g. a polyhedron.

The method can also be extended to the general case. For a problem with an inter-
val coefficient matrix A, the system (18) remains non-linear. In order to simplify
the problem, we can formulate an interval relaxation of the system by breaking the
dependencies between multiple occurrences of the variable A. After breaking the
dependencies, we obtain an interval linear system, whose weakly feasible set can be
described by the Oettli–Prager theorem. Moreover, since we have fixed the value of
some of the primal variables to 0, the corresponding columns of the system Ax = b
are also equal to 0 independent of the coefficient value. Therefore, the only relaxed
dependencies are present for indices j /∈ I .

Furthermore, let us examine the constraints

(AT y)i ≤ ci , for i ∈ I ,

(AT y) j = c j , for j /∈ I .
(19)

Since the dual variables do not appear in other constraints of the interval relaxation
of (18), we can treat (19) as an independent subsystem. As we are only interested in
the optimal solution set, which is formed by the projection of the feasible set onto
the primal variables, it is sufficient to test weak feasibility of system (19). If there are
no feasible solutions, then the interval relaxation of (18) is also strongly infeasible.
Otherwise we can fix a feasible scenario and solve the remaining primal constraints.
Moreover, if the subproblem (19) is infeasible for some index set I , then it is also
infeasible for all subsets of I and we do not need to check them.

Unfortunately, testing weak feasibility is also difficult due to the fact that the
variables in system (19) are unrestricted. For small problems, we can use orthant
decomposition on the subproblem and test weak feasibility directly. However, it is
also possible to simplify the test by checking some sufficient and necessary condi-
tions for weak feasibility of an interval system. A basic sufficient condition for weak
feasibility of (19) is feasibility of the central system

(AT
c y)i ≤ (cc)i , for i ∈ I ,

(AT
c y) j = (cc) j , for j /∈ I .

On the other hand, the well-known Farkas lemma implies that system (19) is strongly
infeasible if and only if the system
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AJ p + AI q = 0,
(
cT

)

J
p +

(
cT

)

I
q ≤ −1,

q ≥ 0

is strongly feasible, where J = {1, . . . , n}\I and the subscript denotes restriction of
a matrix to the columns indexed by the given set. A sufficient condition for testing
strong feasibility of an interval system, as well as the theorem of alternatives for mixed
linear systems derived from the Farkas lemma, can be found in [11].

This leads to a general method for approximating the optimal solution set of an ILP,
which is exponential in the number of variables. Similarly, an ILP in the form Ax ≤
b or Ax ≤ b, x ≥ 0 can be approached by decomposition into 2m subproblems
analogous to system (18). In this case, the dual variables are non-positive and weak
feasibility of the dual systemcan be tested efficiently (however,when solving problems
of type Ax ≤ b we have to deal with unrestricted primal variables).

4.3 Comparison of themethods

We have already seen that when the coefficient matrix of an interval linear program
is fixed, decomposition by complementarity yields the exact optimal solution set or
its interval hull. Example 3 shows that this is not true for the orthant decomposition
method, which may return an overestimated result even in this special case.

Example 3 Consider the interval program

minimize x1
subject to x1 − x2 = [−1, 1],

x1 ≥ 0, x2 ≥ 0.
(20)

When using the orthant decomposition method, we approximate the optimal solution
set of (20) by the union of feasible sets of linear systems in the form

x1 ≤ sy, x1 ≥ −sy,

x1 − x2 ≤ 1, −x1 + x2 ≤ 1, x1 ≥ 0, x2 ≥ 0,

y ≤ 1, −y ≤ 0,

sy ≥ 0,

with s ∈ {−1, 1}. For the choice s = −1, we have y = 0 and the feasible set of
x-solutions is formed by all pairs (x1, x2) with x1 = 0 and x2 ∈ [0, 1]. In the case of
s = 1, we obtain the set described by x1 ∈ [0, 1], x2 ≥ 0 and x1 − x2 ∈ [−1, 1]. Due
to the dependency problem, the approximation also contains solutions, which are not
optimal for the original ILP (see Fig. 3). Even if we only consider the interval enclosure
of the optimal set generated by orthant decomposition, it is still an overestimation of
the exact interval hull.
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Fig. 3 Feasible set (light gray)
and optimal set (thick black) of
ILP (20) and its approximation
obtained by orthant
decomposition (dark gray)

1 2 3

1

2

3

0

We proceed with an example of a simple linear program with an interval coefficient
matrix. In this case, neither of the presented methods can guarantee an exact result
in the form of an interval hull. Example 4 shows that at least for some problems,
decomposition by complementarity computes a tighter approximation of the optimal
set than the orthant decomposition.

Example 4 Consider the interval program

minimize −x2
subject to x1 + [1, 2]x2 = 1,

x1, x2 ≥ 0.
(21)

By applying the interval relaxation approach used in orthant decomposition, we obtain
an approximation of the optimal set described by the system

−x2 − y = 0, (22a)

x1 + x2 ≤ 1, (22b)

−x1 − 2x2 ≤ −1, (22c)

x1, x2 ≥ 0, (22d)

y − 0 |y| ≤ 0, (22e)

1.5y − 0.5 |y| ≤ −1. (22f)

Since constraint (22e) reads y ≤ 0, we only need to examine a single orthant and
no decomposition is needed. Moreover, constraint (22f) can then be rewritten as y ≤
− 1

2 , which combinedwith (22a) yields x2 ≥ 1
2 . The remaining constraints (22b), (22c)

and (22d) only restrict the approximation to the feasible region. The resulting set is
depicted in Fig. 4.

Let us now obtain an approximation of the optimal set using decomposition by
complementarity. First of all, we see that the vector (0, 0) is not even feasible and
thus setting I = {1, 2} yields no solutions. If we set x1 = 0, then we need to check
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Fig. 4 Feasible set (light gray)
and optimal set (thick black) of
ILP (21) and its approximation
obtained by orthant
decomposition (dark gray)

0.5 1

0.5

1

0

feasibility of the dual system [1, 2]y = −1, y ≤ 0. Clearly, the system is feasible
and adds to the approximation all vectors satisfying x1 = 0 and [1, 2]x2 = 1. Setting
x2 = 0, we obtain the infeasible dual system [1, 2]y ≤ −1, y = 0 and this also implies
infeasibility of the system corresponding to I = ∅. The resulting approximation is the
interval vector

(
0,

[ 1
2 , 1

])
, which is equal to the exact optimal solution set.

4.4 Computational experiments

Wehave performed an experiment in order to assess the advantage of using decomposi-
tion by complementarity in problems with a fixed coefficient matrix and the drawback
of its worse theoretical time complexity compared to orthant decomposition. Both
methods were implemented in Python 3.5 using the Gurobi 7.0.2 solver for linear
programming. The experiment was carried out on a computer with a 4 GB RAM and
an Intel Core i5-2410M (2.30GHz) processor.

We have used a data set of instances split into groups of 30, based on the number
of variables and constraints. The entries of the central vectors bc, cc and the matrix A
were chosen randomly from the interval [−1000, 1000], and entries of the radial
vectors b�, c� from [0, 100] with uniform distribution. Performance of the methods
was measured based on tightness of the generated interval enclosure and average time
needed to solve an instance.

Table 1 provides an overview of the results obtained in the experiment. The column
labelled “Ties” shows the number of instances, for which both methods computed
the same (optimal) interval enclosure, while the column “Won by Compl” shows the
number of instances, for which the orthant decomposition returned an overestimated
result. Average computation times (in seconds) of the orthant decomposition (Orth)
and decomposition by complementarity (Compl) on a single instance of given dimen-
sions are also presented. Note that bothmethods could easily be parallelized, providing
substantial room for speedup.

We can observe that the advantage of decomposition by complementarity in tight-
ness of approximation is present mainly for underdetermined problems with m < n,

123



On the optimal solution set in interval linear programming 289

Table 1 Comparison of decomposition by complementarity and orthant decomposition on instances with
a fixed coefficient matrix

n m Won by
Compl (%)

Ties (%) Avg time in s (Compl) Avg time in s (Orth)

5 1 90 10 0.35 0.04

5 2 83.3 16.7 0.40 0.09

5 3 86.7 13.3 0.44 0.21

5 4 83.3 16.7 0.49 0.47

5 5 0 100 0.51 1.04

10 1 76.7 23.3 34.03 0.11

10 5 96.7 3.3 47.30 2.87

10 10 0 100 78.50 168.90

15 5 90 10 3508.18 6.68

15 10 96.7 3.3 3712.06 260.70

15 15 0 100 5310.11 14,183.16

Table 2 Comparison of decomposition by complementarity and orthant decomposition on general instances

n m Won by
Compl (%)

Ties (%) Won by Orth
(%)

Avg time (Compl) Avg time (Orth)

5 1 63.3 33.4 3.3 0.05 0.04

5 2 50 43.3 6.7 0.16 0.10

5 3 43.3 46.7 10 0.34 0.21

5 4 23.3 73.4 3.3 0.59 0.49

5 5 0 100 0 0.56 1.03

10 1 13.3 86.7 0 7.11 0.09

10 5 26.7 66.6 6.7 48.74 2.57

10 10 0 100 0 90.28 138.72

which naturally also exhibit largest difference between computation times of the two
methods. For square systems, orthant decomposition was able to compute the exact
interval hull in all tested instances, but it also lost its time advantage over complemen-
tarity decomposition.

Table 2 summarizes the results obtained in a comparison of the two methods on
general problems with an interval matrix. For the decomposition by complementarity,
the basic variant with interval relaxation and an exponential-time condition for check-
ing dual weak feasibility was used. In this test, each of the algorithms was able to find
a tighter enclosure on some of the instances. Note that even in the case of a tie, the
two enclosures found by the algorithms need not be exactly the same—they can also
be incomparable with respect to inclusion.

The computational experiments confirm the advantage of the decomposition by
complementarity when aiming to find the exact optimal solution set in the special
class of programs with a fixed coefficient matrix. While orthant decomposition may
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be faster, depending on the size of the program, it was not able to obtain the optimal
result in a significant number of tested instances. In the general case, each of the
methods provided a better result on some of the instances, and in many cases the
results obtained by both methods were similar regarding the quality of the computed
approximation.

Recall that both of the tested algorithms require exponential time in the worst case,
which is justified by NP-hardness of the considered problem (even in the special
case with a fixed matrix). The computations times also indicate that directly using
these decompositions methods to obtain exact results, or tight approximations in the
general case, may be intractable for larger-sized programs. In such case, the idea of
the proposed decomposition by complementarity can be considered as a basis for
designing a new polynomial-time algorithm or heuristic for obtaining an approximate
solution or to solve smaller subprograms to optimality.

5 Conclusion

We have studied fundamental properties of the optimal solution set of an interval
linear program and formulated sufficient conditions for its closedness, boundedness
and connectedness. For the special class of problemswith a fixed coefficientmatrix, we
have shown that the optimal set is connected and polyhedral. Regarding the theoretical
complexity of testing the studied properties, we have proved that the problem of
checking boundedness of the optimal set is co-NP-hard for inequality-constrained
interval programs.

Further, we have also addressed the problem of computing an approximation of the
optimal solution set. Aiming for a tight enclosure, we have presented a new decom-
position method based on complementary slackness. Our method can be used to find
the exact optimal solution set for problems, in which intervals only occur in the right-
hand-side vector and the objective function. We have also proved that the problem of
computing the interval hull of the optimal set remains NP-hard even in this special
case, which justifies the use of an exponential-time algorithm. Finally, we have per-
formed computational experiments to evaluate the advantage of our method over the
existing orthant decomposition method on problems with a fixed coefficient matrix
and the time sacrificed in order to obtain a tight approximation.

Possible directions for future research include strengthening the theoretical results
regarding the properties of the optimal set, namely its polyhedrality and closedness.
From an algorithmic standpoint, methods providing a tight enclosure of the optimal
solution set for general problems are of interest. Suchmethods can also serve as a basis
for deriving faster approximation algorithms useful for practical purposes.
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25. Mostafaee,A.,Hladík,M., Černý,M.: Inverse linear programmingwith interval coefficients. J. Comput.

Appl. Math. 292, 591–608 (2016)
26. Munkres, J.: Topology. Pearson Custom Library. Pearson Education, Limited, Pearson (2013)
27. Oettli, W., Prager, W.: Compatibility of approximate solution of linear equations with given error

bounds for coefficients and right-hand sides. Numerische Mathematik 6(1), 405–409 (1964)
28. Rohn, J.: Enclosing solutions of linear interval equations isNP-hard. Computing 53(3), 365–368 (1994)
29. Rohn, J.: Complexity of some linear problemswith interval data. Reliab. Comput. 3(3), 315–323 (1997)
30. Rohn, J.: Interval linear programming. In: Linear Optimization Problems with Inexact Data, pp. 79–

100. Springer, New York (2006)
31. Rohn, J.: Solvability of systems of interval linear equations and inequalities. In: Linear Optimization

Problems with Inexact Data, pp. 35–77. Springer, New York (2006)

123

http://is.cuni.cz/webapps/zzp/detail/168259/?lang=en


292 E. Garajová, M. Hladík

32. Wets, R.J.B.: On the continuity of the value of a linear program and of related polyhedral-valued
multifunctions. In: Cottle, R.W. (ed.) Mathematical Programming Essays in Honor of George B.
Dantzig Part I, pp. 14–29. Springer, Berlin (1985)

33. Zhen, J., den Hertog, D., Sim, M.: Adjustable robust optimization via Fourier-Motzkin elimination.
Oper. Res. 66(4), 1086–1100 (2018). https://doi.org/10.1287/opre.2017.1714

34. Zhou, F., Huang, G.H., Chen, G.X., Guo, H.C.: Enhanced-interval linear programming. Eur. J. Oper.
Res. 199(2), 323–333 (2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1287/opre.2017.1714

	On the optimal solution set in interval linear programming
	Abstract
	1 Introduction
	2 Interval linear programming
	3 Properties of the optimal solution set
	3.1 Polyhedrality
	3.2 Closedness
	3.3 Convexity and connectedness
	3.4 Boundedness

	4 Approximating the optimal solution set
	4.1 Orthant decomposition
	4.2 Decomposition by complementarity
	4.3 Comparison of the methods
	4.4 Computational experiments

	5 Conclusion
	References




