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Abstract

Given a connected graph G = (V, E), the d-Minimum Branch Vertices (d-MBV)
problem consists in finding a spanning tree of G with the minimum number of vertices
with degree strictly greater than d. We developed a Miller—Tucker—Zemlin based
formulation with valid inequalities for this problem. The results obtained for different
values of d show the effectiveness of the proposed method, which has solved several
instances faster than previous methods. Also, an heuristic is proposed for this problem,
that was tested on several instances of the Minimum Branch Vertices problem, which
is the d-MBYV problem, when d = 2.

Keywords Spanning tree - Branch vertice - Integer programming - Metaheuristic

1 Introduction

Optimization problems related to finding a spanning tree of an undirected graph have
been extensively studied in the literature [1,3,4,9,11]. The criterion for choosing this
tree depends on the particular problem and may be associated with properties of the
vertices, edges, or both.

The Minimum Branch Vertices (MBV) problem is associated to the degree of ver-
tices. The goal of this problem is to find a spanning tree with the lowest number of
vertices of degree greater than 2. This problem was introduced by Gargano et al. [6] to
help the design of optical networks. In Cerrulli et al. [4], a mixed integer modeling and
three heuristics for this problem were developed. Other approaches in the literature,
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besides proposing mathematical models, presented heuristics or metaheuristics [18]
to solve this problem.

In Silva et al. [15] a heuristic was developed based on an exchange of edges, in
which edges of higher weight are replaced by edges of lower weight. The weights of
the edges were determined by the degrees of the end vertices of the edge. A refinement
of this heuristic was proposed by Silva et al. [16]. Other two heuristics were proposed
by Carrabas et al. [3], and tested on a wide set of instances. In Marin [9], a new model
was presented, as well as a heuristic with the best average results for the instances
used in Carrabas et al. [3].

Silvestri et al. [17] developed a hybrid formulation containing undirected and
directed variables. This formulation was solved by a branch-and-cut algorithm,
improving the results obtained by Marin [9]. Finally, Melo et al. [11] proposed an
effective constructive heuristic, which takes into consideration the problem structure
in order to obtain good feasible solutions. Also, a decomposition approach based on
bridges and cut vertices of the graph was developed, reducing the size of the subprob-
lems to solve.

Recently, a generalization of the MBV problem was proposed by Merabet et al.
[12]. This problem uses the concept of k-branch, which is a vertex with degree strictly
greater than k + 2. The value of k is considered as a tolerance parameter for the design
of optical networks, since if a light signal is splitted into k copies, the signal power of
one copy will be reduced with, at least, a factor of 1/k of the original signal power. The
k-Minimum Branch Vertices problem (k-MBV) consists in searching for a spanning
tree with the minimum number of k-branch vertices. Merabet et al. [12] proved that
this problem is NP-hard whatever the value of k. Also, an ILP based on a single flow
formulation was developed and applied on sparse graphs for different values of the
parameter k.

To simplify the notation, we introduce a parameter d = k + 2 and call a node in
the graph with degree strictly greater than d, (d > 2) of a d-branch vertex. According
to this definition the d-MBYV problem is defined as:

Problem (d-MBYV problem) Given an undirected graph G = (V, E) with n = |V|
vertices, the d-Minimum Branch Vertices (d-MBV) problem consists in finding a
spanning tree of G with the minimum number of vertices with degree greater than a
fixed integer value d, (d > 2).

The remainder of this paper is organized as follows: Section 2 presents a mathemat-
ical formulation for this problem and the strategies developed to solve it using exact
methods. Section 3 describes the proposed heuristic algorithm. Section 4 presents
the results obtained for the heuristic and exact method. Finally, the conclusions are
discussed in Sect. 5.

2 Mathematical formulation
First, a mathematical formulation for the problem based on the Miller—Tucker—Zemlin

formulation is presented. Then, the strategies used to reduce the time to solve the
problem using exact methods based on this formulation are discussed.
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2.1 Miller-Tucker-Zemlin based formulation

Given an undirected graph G = (V, E), where V denotes the set of vertices (|V| = n)
and E the set of edges, a neighborhood in G of vertex v € V is defined as Ng (v) =
{u e V|{u,v} € E}wheredg(v) = |Ng(v)|is denoted degree of vertex v. Similarly,

the neighborhood of a subset S € V is defined as Ng(S) = U Ng(u) .

ues
A usual way to model the MBYV problem is through formulations based on creating

an arborescence with root r € V and the use of a set of arcs A, such that for all
{i, j} € E, then (i, j), (j, i) € A. The main difference between these formulations is
how to avoid cycles.

In this work, the Miller—Tucker-Zemlin (MTZ) constraints [13] are used to avoid
cycles. The idea to solve the problem is finding an arborescence with vertex source
r. We define variable y; equal to 1 if the node i € V is a d-branch vertex, otherwise
it is equal to 0. We also define variable x;;, which will take the value 1 if and only if
arc (i, j) € A belongs to the solution. Variable z; represents the level of vertex i € V
on the arborescence (the root is at level 0). These variables are used to prevent cycles
(e.g. if arc x;; belongs to the solution then z; > z;). The following formulation for
the d-MBYV problem is shown below.

n
min Y~ y; (1)
i=1

Subject to:
Z xji=1, VieV,i#r )
JjeVi(j,i)eA
Z xijj=n—1, 3)
(i,j)EA
Xij+x; <1, V{i,jleE “)
Y. xjs=Wgl)—dyi+d—1 VieV.i#r ®)
JeV, j#r:(i,j)eA
Y. % =Wdo() —d)y, +d ©)
jevVi(j.r)eA
Z x]-r =0 (7)
(J,r)€eA
=0 ®)
zjzzitxijn+xjin—=2)—m—-1), Vi,j) €A, j#r )
y; €{0,1}, VieV (10)
xij €0, 1}, YG,j)eA (1n
zi€Z,ziel0O,n—1], VieV (12)
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The objective function (1) requires minimizing the number of d-branch vertices in
the tree. Constraints (2) indicate that there must be exactly one edge entering each
vertex, with the exception of the root vertex. Constraints (3) forces that the arbores-
cence contains exactly n — 1 edges. Constraints (4) require that there is at most one arc
between any pair of vertices. Moreover, constraints (5) ensure that a vertex (different
from the root) is d-branch if more than d — 1 arcs leave it, while constraints (6) assure
that the root vertex is d-branch if at least d 4+ 1 arcs leave it. Constraints (7) impose
that no arcs enter the root vertex. Constraints (8) define that the level of the root vertex
is 0, and Constraints (9) determine that the level of each vertex j is greater than the
level of the vertex i, if the arc (i, j) belongs to the arborescence. Finally, constraints
(10) to constraints (12) ensure the integrality requirements on the variables.

2.2 Graph decomposition

A graph decomposition approach was developed for the MBV problem by Melo et al.
[11] and also recently by Landete et al. [7]. The basic idea is to analyze the problem
by decomposing the graph into subgraphs that are easier to solve, and then recombine
the solutions of these subgraphs to generate a solution to the problem. To implement
this decomposition, they detect and analyze bridges and articulation points (or cut
vertices) of the graph.

2.2.1 Decomposition based on bridges

A bridge in a graph G is an edge that when removed from the graph increases the
number of connected components of G. Finding the set Bg of bridges in the original
graph G allows to characterize some of its vertices as obligatorily d-branch vertices.

Let S(v) be the number of bridges incident on the vertex v, then we define the
following sets:

- Op={ueV]dgu) >dn pu) = d}
- Np ={u € Vl]dg(u) < d}

Note that set Op only contains vertices that will be d-branch in the optimal solution. If
the number of adjacent bridges is greater than d, then the vertex has to be d-branch in
the optimal solution. Moreover, suppose that vertex v has exactly d adjacent bridges.
In this case, if these bridges were removed, the vertex v would belong to a component
consisting of more than one vertex (dg(v) > d) and therefore, for any spanning
tree on this component, it would be necessary at least one edge incident to vertex
v. As a consequence v have at least d + 1 incident edges and therefore has to be a
d-branch.

On the other hand, the set Np contains the vertices that cannot be d-branch in
any solution, since none of these vertices have enough incident edges to become a
d-branch.

As in Melo et al. [11], a decomposition approach can be applied to solve smaller
subgraphs using the previous formulation and combining the solutions. The idea is
to eliminate each bridge and in its place incorporate the parameter /(v) associated
with each vertex that indicates the number of bridges incident to vertex v. If k is the
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number of resultant connected components, then the optimal solution of the problem is
k

f= Z fx, where f is the optimal value obtained for the k-th connected component

i=1
Gr = (Vi, Ey) , with |Vi| = ng. The formulation for the -MBYV problem in Gy is
presented below.

ng
min Z Vi (13)
i=1

Subject to:
(2)—(4), (9)~(12); (replacing n by ny)

D xij 416 < (dg, () + 1) —d)yi +(d—1), VieV,iEr (14)
JEV.j#ri.jea

Z Xpj 1) < (dg,(r) +1(r) —d)y, +d (15)
JEV:i(r,j)eA
Yi = ]1 Vi € OD (16)
yvi=0, VieNp an

All bridges must be in any spanning tree of the graph. Since every vertex v has
associated the value /(v) (i.e. the number of incident bridges), constraints (14), (15)
are sufficient to determine whether or not a vertex will be a d-branch vertex in the
solution. Note that, except for the root, all the vertices have an incident arc. Therefore,
if the number of arcs coming out of the vertex plus the number of adjacent bridges
(obligatory edges) is greater than or equal to d, the vertex will be d-branch. For the
root the same principle applies: the root vertex will be d-branch if the number of arcs
leaving it plus the number of bridges adjacent to it is greater than or equal to d + 1.
Finally, constraints (16) and (17) are related to the preprocessing phase and are used
to help speed up the problem solving process.

2.2.2 Decomposition based on articulation point

Melo et al. [11] showed that it is possible to further decompose the graph consider-
ing the articulation points (cutting vertices) which increase the number of connected
components of the graph when removed.

Let Gy = (Vk, Ex) be one of the connected graphs obtained after removing all
bridges as explained before such that each vertex v € Vi has associated the number
[(v) of adjacent bridges. Let cg, (v) be the number of connected components by
eliminating v of G, and suppose cg,(v) > 1. Note that the only way to connect
these ¢, (v) components is using an edge incident to v. Therefore, cg, (v) represents
a number of obligatory incident edges to v. Since /(v) also represents a number of
obligatory incident edges to v, then the vertex v will be ad-branchif c¢g, (v)+I(v) > d.

The Algorithm 1 named SOLVEGRAPH was developed to solve the d-MBV problem
for the subgraphs G’ obtained by eliminating the bridges from G. It receives as input
the subgraph G’ = (V’, E’), the values [(v") associated to each vertex v’ € V' and
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the set Cutp = {v' € V' |cg (V') > 1 A ¢ (V') +1(v") > d} which contains all cut
vertices that will necessarily be d-branch vertices in the optimal solution.

The procedure SolveModel in line 3 is used to solve the proposed model presented
in the Sect. 2.2.1 for the subcomponents Gy that are subgraphs of G’ after removing
all cut vertices v € Cutp. In each step, the method delete a vertex v € Cutp (line
5) and create ¢’ connected components by duplicating vertex v’ in each component
k=1,...,cc/ (V) (lines 10 and 11). The neighborhood of the new vertex (denoted
as v,) is defined as the set of vertices to which v’ is adjacent in the component k (line
12). Furthermore, the value l(v,’{) will not necessarily hold the same value after this
process, since /(v; ) is incremented by the number of edges incident to v’ that do not
belong to the component k. Note that vertex v; will be classified as a d-branch vertex
in each of the connected components, so the value ¢ (v") — 1 must be subtracted from
the number of vertices of the solution in G’ (line 13).

2.3 Analyzing the 2-cocycles

Let G = (V, E) be a connected graph. A 2-cocycle is defined as a set of two edges
{e, f} € E suchthat (V, E\ {e, f}) is not connected, while (V, E \ {e}) and (V, E \
{f}) are connected. So, at least one of the edges of a 2-cocyle has to belong to any
feasible solution and the following constraints may be added [9,17]:

Xe+x; =1, Ve, fYeC (18)

Algorithm 1: SOLVEGRAPH

Input: A graph without bridges G’ = (V’, E’) and the value /(v') associated to each vertex v’ € V'
and the set Cutp.
Output: The optimal solution for the -MBV problem
15«0
2 if Cutp = ¢ then
3 L s < SolveModel(G")

4 else
5 | Choose any v € Cutp and delete it from G’
6 Obtain the connected components Gy = (V, Ex) k=1,..., cgr )

7| LetCutY) = Cutp N Vi, k=1,...,cq(v)
8 for k < 1to cg/(v') do

9 /* create a copy of vertex v’ in each component k */
10 Vi < VU {U];}

1 Ex = Ep Ul v} |u' € Vi A, v} € E')

12 L) < L) +dgr (v — dg,, (v})

13 s <5+ SolveGraph(Gk,Cutg))

| ses—cep)+1

15 return s
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where C denotes the set of 2-cocycles of G. We also consider some important prop-
erties related to 2-cocycles. Note that the following equivalent definition of 2-cocycle
highlights an interesting property:

Definition 1 The pair of edges {e, f}is a2-cocycles, if edge e becomes a bridge when
edge f is removed.

Therefore, when removing the edges e and f, the graph will be divided into exactly
two connected components. This definition leads to the following propositions:

Proposition 1 If the pair of edges {e, f} is a 2-cocycle, then there is a simple cycle in
G that contains both edges.

Proof Consider the edges {e, f} € C, where e = {uy, us} and f = {vy, vo}. If the
edges {e, f} are removed, the graph G is split into two connected components. Note
that there will be a vertex of each edge in each component. Suppose that vertices
and v; belong to component 1, and vertices u; and v, belong to the component 2. As
they are connected components, there must be simple paths p(u1, v1) and p(u2, v2)
that connect these vertices in each component, then { e, p(u2, v2),f, p(vi,u1) }isa
simple cycle in the original graph. O

Proposition 2 [f the pair of edges {e, [} is a 2-cocycle, then they belong to the same
set of simple cycles.

Proof Consider the edges {e¢, f} € C, where ¢ = {uj,us} and f = {vy, v2}. As
demonstrated in Proposition 1, there is a common cycle c; in G that contains e and f.
Suppose that e belongs to other simple cycle c;, while f does not belong to ¢;. Note
that, if edge f is removed from G, the graph G — { '} continues connected (because f
belong to cycle c1). On the other hand, if edge e is removed from G — { f}, the graph
G — {f, e} also remains connected (because e belong to cycle c;). This would be a
contradiction, as {e, f} € C, so the only possibility is that they belong to the same set
of simple cycles. O

Proposition 3 [fthe pair of edges e and f belong to the same (not empty) set of simple
cycles, then {e, f} € C.

Proof If the edges ¢ and f belong to the same (not empty) set of simple cycles, then,
they are not bridges. Moreover, if edge e is removed, then all cycles containing edge
f are eliminated, converting f into a bridge and therefore {e, f} € C. O

An important implication of the above propositions is the following theorem:

Theorem 1 The edges {e, f} € C, if and only if they belong to the same (not empty)
set of simple cycles.

Now we define the binary relation ~ as e ~ f, if and only if {e, f} € C. The
following proposition is offered as the 1st step towards a new class of valid inequalities:

Proposition 4 The relation e ~ f is transitive.
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Proof Consider that ¢ ~ f and f ~ g. Then by Theorem 1, e and f belong to the
same set of simple cycles S| # @. On the other hand, f and g belong to the same set
of simple cycles S» # @. So, S1 = > and edges ¢ and g belong to the same set of
simple cycles. This means that (by Theorem 1) {e, g} € C, and consequently e ~ g.
O

Based on Proposition 4, we define the concept of co-class of an edge.

Definition 2 The co-class of an edge e, denoted as C,, is defined as: C, = {f €
Ele~ flUl{e}

By the transitivity (and symmetry) of ~, if f € C,, then Cy = C,. Note that each
edge that belongs to a co-class C, also belongs to a 2-cocycle structure with each
other edge from C,. Therefore, any two edges from C, cannot be outside the d-MBV
solution at the same time (i.e. the solution would be a disconnected graph). For this
reason, the following stronger constraints are used in the model instead those used by
Marin [9] and Silvestri et al. [17]:

> xp=|Col =1, VC, # 0. withe € E (19)
fec

In this work, we use the same method used in Marin [9] for the detection of 2-
cocycles. The method consists of removing a non-bridge edge and applying the bridge
detection algorithm proposed by Schmidt [14]. Note that if an edge belongs to a
calculated co-class, it is not necessary to perform the procedure to find the associated
2-cocycles, decreasing the required computational time needed.

2.4 Other valid inequalities

In addition to the constraints presented for the d-MBV model, the following inequal-
ities are useful to strengthen the formulation.

Z Xij+l(i)2dyi, YieV,i#r (20)
eV, j#rii,j)eA
Z Xpj 1) = dyr +1 @n
JjeVi(j,r)eA

Furthermore, a new family of valid inequalities were developed to the d-MBV
problem by extending the valid inequalities proposed in Silvestri et al. [17] for the
2-MBV problem.

Proposition5 Forallv e V\{r}, S C Né‘(v) with |S| >d —1(v) andl(v) < d:

D xu )+ 1< (SI+1W) +1—d)y, +d (22)
(v,u)es

where N (v) = {u € V | (v,u) € A}.
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Proof For any subset S C N (v), if the sum of the arcs leaving v (i.e. > (wyes Xvu)
with the number of adjacent leaves (i.e. [(v)) and the incident arc on v (i.e. + 1)
exceeds the value of d in the solution, then vertex v has to be a d-branch. O

The separation of inequalities in Proposition 5 is pretty straight forward. Let (x,y)
be a feasible solution for the linear programming relaxation and x,, C X be the set of all
values of variables X, Vu € Ng (v). For each vertice v\ {r} where dg (v) > d > [(v),
we first sort in descending order the values of x,. Then, search for the minimal k for
the set Sfj ={uce Ng(v) | Xy, 1s one of the first k elements of X, } where

Y T+l + 1> (k+10) +1—d)y, +d

uesk

if we find such inequality, then the following cut is added to the formulation

Y T+l + 1> (k+10) +1—d)y, +d

uesk

3 ILS heuristic for the D-MBV problem

The metaheuristic Iterated Local Search (ILS) [8] has been used in several optimization
problems and has obtained good quality results [2,5,19].
The pseudocode for the metaheuristic ILS is presented in Algorithm 2.

Algorithm 2: ITERATED LOCAL SEARCH
Input: The graph G.
Output: A valid solution 7.

1 xg < Initial_Solution(G)

2 x* <« Local_Search(G)

3 repeat

4 | x’ < Perturbation(x*)

s | x* < Local_Search(x')

. . / .
6 | x* < AcceptanceCriterion(x™, x* , history)
7 until termination condition met
8 return x*

First, an initial solution is generated for the problem (line 1) and a local search
is applied in this solution to improve the quality of the constructed solution (line 2).
Between lines 3 and 7, iterations are performed until a stopping criterion is reached.
In each iteration, a perturbation in the current solution is done trying to escape of local
optimum and then a local search is performed. In line 6, a criterion is used to decide
if the current solution will be replaced by the new generated solution.

We propose an ILS heuristic aiming to provide a good quality solution to be used
as an upper bound for the previous proposed formulation. The metaheuristic will
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be applied to each of the connected subgraphs G’ = (V’, E’) resulting from the
decomposition process (Sect. 2.2), where G’ is a graph without bridges. The solution
(upper bound) for the original graph G will be achieved by merging the solutions
obtained for each subgraph, using Algorithm 1, replacing method SolveModel(G")
(line 13) with the metaheuristic ILS(G").

Procedures for generating the initial solution, performing local search and pertur-
bation were developed. The acceptance criterion updates the current solution if the
solution obtained in the local search has less number of d-branch vertices than the
best solution found in previous iterations. The termination condition is met when
perturbation can no longer be applied. More details are provided in Sect. 3.3.

3.1 Building an initial solution

A heuristic based on the selection of edges of the undirected graph G that are not
already in the tree was developed to generate an initial solution.
The following weights wsop and w,op of an edge {u, v} are defined as:

wsop = dc W) +1(u) +dcg() +1() — fp(u) -n— fp) -n
and
Waop = dc) +1(u) +dc() +1(v) + fpw) -n+ fp(v) -n

respectively. Moreover, the function fp(v) defines if a vertex v belongs to the set Op
and is defined as:

(1 ifveop
fD(”)—{o itfv ¢ Op

Algorithm 3 contains the pseudo-code of the strategy used for the initial construction
of the solution. A tree T is initialized with all vertices of G without any edges. In this
algorithm, the set of arcs A of the graph (as defined in Sect. 2.1) is explored to select
the edges that will be in T. Between lines 3 and 6, the arc (u, v) with associated edge
{u, v} of minimum w;op value is selected if (i) vertex u has no incident edges in T,
(i) vertex v is incident to T and (iii) the sum of the degree of v in T with its associated
I (v) value is different from d. For this selected arc, the associated edge will be added
in 7. This added edge will not create neither cycles nor new d-branch vertices in 7.
Also, selecting arcs with minimum w; o p values for the associated edges prioritizes
those arcs whose vertices are d-branch vertices and have a small degree in the graph
G. In this way, the obligatory vertices will have more added edges.

Between lines 7 and 9, arcs are selected according to the following ordered criteria.
First, in criterion (a) an arc (u, v) is selected if vertex u has a degree less than d and if
vertex v is a d-branch vertex, so inserting the associated edge will not generate new d-
branch vertices in 7'. This criterion prioritizes arcs whose vertices have to be d-branch
vertices in the final solution and have large degree in G. If no vertices are found in
criterion a, then an arc with maximum w, o p value in T for the associated edge and
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Algorithm 3: INITIAL SOLUTION

Input: A graph G = (V, E) without bridges, the value /(v) associated to each vertex, the set Op
and the set of arcs A such that for all {i, j} € E, then (i, j), (j,i) € A.
Output: A spanning tree 7 of the graph
1 T« (V,0)
2m <0
3 repeat
4 Find the arc (u, v) € A such that d7 (u) = 0 and d7 (v) + [(v) # d and whose associated edge
{u, v} has minimum wg o p value; then, add the edge {u, v}in 7.
m<«—m+1
until There is no arc that satisfies this condition
repeat
Consider criteria (a)-(f), whose priorities are in descending order ((a) has the highest priority).
Find an arc (u, v) in A with associated edge {u, v}, such that 7 U {u, v} is a tree and no other arc
satisfies a higher priority criterion.
(a) arc (u, v) has maximum value dg (v) + [(v) + n - fp(v) such that
dr(u) +1(u) <d,dr()+1(v) >d.
(b) edge {u, v} has maximum w,pp in T, and arc (u, v) with
dr () +1(u) >d,drw)+1(v) >d.
(c) edge {u, v} has minimum wg o p in 7 and arc (u, v) with
dr(u) +1(u) <d,dr()+1(v) <d.
(d) edge {u, v} has maximum w,pp in T and arc (u, v) with
dr(u) +1(u) >d,dr () +1(v) =d.
(e) edge {u, v} has maximum w, o p in T and arc (u, v) with
dr(u) +1(u) <d,dr()+1(v) =d.
(f) edge {u, v} has maximum w, o p in T and arc (u, v) with
dr() + 1) =d ,dp(v) +1(v) = d.

® 2 & wm

Add {u,v}inT
m<—m+1
ountilm < |V| -1
10 return 7

whose both vertices are already d-branch vertices is selected (criterion (b)), so that
the number of d-branch vertices is not incremented. This criterion also prioritizes arcs
whose vertices have to be d-branch vertices and have large degree. Again, if no vertices
are found in criterion (b), an arc is selected if both vertices are not already d-branch
vertices in T in such a way that when an edge is inserted in 7' none of them turns to be a
d-branch vertex (criterion (c)). This criterion prioritizes arcs whose vertices have small
degrees, letting the vertices with larger degrees to be analyzed later. Moreover, criteria
(d), (e) and (f) choose arcs whose associated edges will create new d-branch vertices,
(one when using (d) and (e) and two when using ( f)). These criteria select arcs whose
vertices have large degrees, so when a vertex turns to be a d-branch vertex, there is
a chance that new edges will be chosen incident to this vertex in the next selections.
The edge associated to the arc selected in line 8 will be inserted in the tree 7.

3.2 Local search

There is no guarantee that the initial solution returns a locally optimal solution with
respect to some neighborhood. Therefore, the tree obtained by Algorithm 3 may be
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improved by the local search procedure described in Algorithm 4. In line 1, the
best current solution 7p,s; is initialized with the solution T, and the procedure
FirstBest_Neighbor (line 4), described in Algorithm 5, is executed while there is
improvement in the current solution.

Algorithm 4: LOCAL SEARCH

Input: The current solution Ty
Output: The best solution Tp,; .
Tpest < Teurr
repeat
improvement < 0
T <FirstBest_Neighbor(G,Tpest, Op)
if T # Tpss then
L Tpest < T

B N S T

improvement < 1

8 until improvement =0
9 return Tpq;

Algorithm 5: FIRSTBEST_NEIGHBOR

Input: A graph G = (V, E) without bridges, the current solution 7, and the set Op of
obligatory d-branch vertices.
Output: The solution 7.
1T < Teurr
2 Lp < Op
3 DB« {veV\Op|dr) +I1) >d}
4 Sort DB in ascending order by value (d7 (v) + [(v))
5 foreach v € DB do

6 foreach u € N7 (v) do

7 Remove the edge {u, v} from T

8 e <Find_Edge(u,v, T, Lp)

9 if ¢ # () then

10 | Insert the edge e in T

11 else

12 L Insert the edge {u, v} in T

13

14 /* v or u are d—branch vertices no more */
15 if dy(v) +1(v) <dor ((dy(u) +1(u) <d) A (u € DB)) then
16 L return 7

17 | Lp < LpU{v}

18 return T

The FirstBest_Neighbor method (Algorithm 5) looks for a neighbor solution (i.e.
a solution obtained by swapping some edges) with less d-branch vertices than the
current solution. The aim of this procedure is to remove edges from a d-branch vertex
until its degree is equal or less than d. In line 3 the list of candidate vertices DB

@ Springer



An exact and heuristic approach for the d-minimum branch... 841

Algorithm 6: FIND EDGE

Input: Vertices u and v, a forest 7', where T, = (V, E,) and T}, = (Vy, Ey) are the connected
subtrees containing u and v respectively, and the set L p of d-branch vertices.

Output: An edge e # {u, v} between T, and T}, or ¢ if not exists.

U <~ Lpny,

Uy <~ {w eV, |dr(w)+1l(w) <d}

Uy < {weVy\Lp |dr(w)+Il(w)>d}

Vi< LpnV,
Vo < {w e Vy | dr(w)+1(w) <d}
V3 < {weVy\Lp |drw)+I1w) > d}

R 7. I S

e < {u’, v} such that {u’, v} # {u, v}, u’ € Uj,v' € V; and (i, j) is lexicographically smaller than
any other valid pair (i, j € {1, 2, 3}).

10 return e

=)

is initialized with vertices that are not obligatory and whose degree is greater than
d. The d-branch vertices in DB with smaller degree should be easier to process, so
DB is sorted in ascending order related to the degree of vertices in 7. Then, for each
v € DB, each one of its neighbors u is analyzed. In lines 5 to 17, the procedure tries
to find another edge (different from the one that connects «# and v in 7') that does not
create new d-branch vertices. If a new tree is obtained with fewer d-branch vertices
the procedure returns it in line 16. Otherwise, vertex v is inserted in the list Lp of
d-branch vertices.

Algorithm 6 shows the procedure that tries to find an edge different from {u, v} that
connects the subtrees 7, and T, so that T has fewer d-branch vertices. Subtree 7}, is the
subtree obtained from 7 when {u, v} is removed and contains vertex u, while subtree
T, is the subtree that contains vertex v. The following sets of vertices are defined for
each subtree T, and T, :

— Uy, V1: contain vertices that are obligatory d-branch vertices or have already been
processed by Algorithm 5 and are considered d-branch vertices.

— U,,V5: contain vertices that are not d-branch vertices and if an edge incident to
them is inserted, they do not turn to be d-branch vertices.

— Us,V3: contain vertices that are d-branch vertices but are not obligatory d-branch
vertices or have not yet been considered d-branch vertices by the Algorithm 5.

The search of a new edge is performed by looking for edges {u’, v’} (or {v’, u’}) such
thatu’ € U;, v' € V; withi, j € {1, 2, 3}, in the following order:

1. u' € Uyand v’ € V) and the edge {u’, v} has the smallest value dg (') +dg (v') —
n- fp’)—n- fp(v"). This prioritizes edges whose vertices are obligatory d-branch
vertices and have small degree.

2. u' € Uy and v' € V; and the edge {u’, v’} has the smallest value dg(u') — n -
fpW') + dg(v'). In this case, one of the vertices of the edge is a obligatory d-
branch and the other vertex has a small degree in the graph. The aim of this criterion
is to choose an edge that has one obligatory d-branch vertex and the other one has
small degree so that a vertex with small degree is chosen to be part of the solution.
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3.

u' € Uy and v/ € V3 and the edge {u’, v} has the smallest value dg (') — n -
fp) —dr (v"). In this case, the objective is to look for an edge with a obligatory
d-branch and a non-obligatory d-branch with a large degree, which probably is a
d-branch vertex in the optimal solution.

u' € Uy and v’ € V, and the edge {u’, v’} has the smallest value dg (u”) + dg (V').
The vertices of these edges are not d-branch vertices and will not turn to be d-
branch vertices if an edge incident to them is inserted. The objective is to choose
vertices with small degrees.

. u' € Uyand v' € V3 and the edge {1, v’} has the smallest value dg (u") — dr (V').

The objective is to find an edge with one vertex (non d-branch) with a small degree
in the graph, and the other vertex is a non-obligatory d-branch vertex with large
degree in the tree.

u' € Usandv' € V3andtheedge {u’, v’} has the highest value dr (v')+dr (u’). The
objective is to find an edge whose vertices are non-obligatory d-branch vertices
with large degree. This type of vertices are probably in the optimal solution.

In all described cases, the inserted edge will not generate a tree 7 with new d-branch

vertices.

3.3 Perturbation

Th

e perturbation method should enable the algorithm to escape from local optima

and provide diversification to the ILS. The method attempts to replace an edge

{u,
{u’
V)

v} of T, which has at least one non-obligatory d-branch vertex, by another edge
,V'} # {u, v}, withu’ € T, and v’ € Ty, creating another d-branch vertex (1’ or
. Algorithm 7 presents the pseudocode of the implemented perturbation movement.

Algorithm 7: PERTURBATION

P N N SR S

10

11
12

13

Input: A graph G = (V, E) without bridges, the current solution 7, and the set Op of
obligatory d-branch vertices.
Output: The solution 7.
T < Teurr
DB <~ {veV\Op |drw) +1(v) >d}
Sort DB in ascending order by value (dg (v) + [(v))
foreach v € DB do
foreach u € N7 (v) do
Remove the edge {u, v} from T
Let {u’, v'} = argminy; jy{dg (i) +dg(j)|i € Ty,
j € Ty suchdy (i) = d ordy(j) = d, butnot both } and {u’, v’} is not forbidden
if {u’, v’} # 0 then
Insert the edge {1/, v’} in T and mark this edge as forbidden.
L return 7

else
L Insert the edge {u, v} in T

return 7
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Each vertex v is analyzed according to the value dg (v) + /(v) in ascending order.
Among all possible edges to be added, the chosen edge {’, v} that will reconnect the
tree and create (exactly) one d-branch vertex (i.e. dy (u') = d or d7 (v') = d), should
be the one that minimizes:

{u', v} = argminy j{de (i) + dg(j)}

This criterion selects edges whose vertices have small degree in G. In this way,
when inserting the new edge, the other vertices with larger degree in G will have more
chance to “steal” edges from the d-branch vertices during the local search.

The inserted edges are marked as forbidden and cannot be manipulated by the
perturbation process until the method finds a better solution. This rule was established
with the purpose of not creating cycles of moves by adding and deleting the same
edge without having an improvement over the best value found. The ILS method halts
when is not possible to find any unmarked edges to proceed with the perturbation.

4 Computer experiments

To validate the effectiveness of the proposed method, several computational experi-
ments were performed. First, experiments were executed with the most used instances
in the literature for the 2-MBV problem: 500 instances proposed by Carrabas et al.
[3], which contain sparse graphs with different densities, and 21 instances proposed
by Silva et al. [16], which are based on graphs that have a Hamiltonian path and
therefore it is possible to find spanning trees without branch vertices. Second, we con-
ducted experiments to investigate the impact of different values of d in a set of random
instances. The experiments were developed on an Intel (R) Core i5-4460S CPU @
2.90 GHz, with 6 Mb of cache and 8 Gb of RAM using Linux and all methods were
programmed in C++ language using the gcc compiler.

4.1 Heuristic results

2-MBYV results

Tables 1 and 2 show the results obtained by the developed heuristic for the group of
instances proposed by Carrabas et al. [3] classified as Medium Instances (Table 1)
and Large Instances (Table 2) for the MBV problem (d = 2). These instances were
also studied in Melo et al. [11], but the authors only presented the results of a subset
of instances. In addition, the results presented in Melo et al. [11] did not improve
those obtained by Marin [9] in that group of instances and for that reason were not
considered in Tables 1 and 2.

Each row represents a group of 25 graphs in Table 1 and a group of 5 graphs
in Table 2. The first two columns represent the number of vertices and the average
number of edges of each group. Columns 3 and 4 represent the number of vertices and
edges respectively (after decomposition). The opt column shows the optimal value
of each group of instances. The column ubM presents the results obtained by the
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Table 1 Results of the heuristic for Medium Instances for the MBV problem (d = 2)

n’ m’ np mp Opt ubM gapM ILS Gap Time
20 41.8 18.1 39.9 0.8 0.8 0.0 0.8 0.0 0.00
40 70.8 334 64.2 2.8 2.9 3.6 3.0 7.1 0.00
60 95.0 46.0 81.0 6.3 6.6 4.8 6.7 6.3 0.00
80 119.8 58.1 97.8 9.2 9.5 33 9.6 43 0.00
100 144.0 69.0 112.9 13.3 13.9 4.5 13.8 3.8 0.00
120 168.8 80.0 128.7 17.5 18.0 2.9 18.2 4.0 0.01
140 193.0 92.1 145.0 20.9 21.8 43 21.6 33 0.01
160 217.8 103.1 160.8 25.0 25.8 32 25.9 3.6 0.02
180 242.0 112.9 174.8 29.1 30.3 4.1 30.2 38 0.02
200 266.8 122.4 189.2 32.6 33.8 3.7 33.8 37 0.02
250 321.0 145.4 216.4 44.6 46.0 3.1 45.7 25 0.03
300 380.0 164.2 2442 57.4 59.0 2.8 58.7 23 0.05
350 434.8 188.7 273.3 68.6 70.3 2.5 70.1 22 0.08
400 489.0 204.3 293.2 81.8 83.8 2.4 83.5 21 0.11
450 548.0 228.9 326.7 93.4 95.7 2.5 95.3 2.0 0.15
500 602.8 243.7 346.4 106.7 109.4 2.5 108.6 18 0.19

heuristic developed by Marin [9] and the column gapM shows the gap obtained by his
heuristic in relation to optimum value. The last three columns show the value obtained
by the ILS heuristic, the gap in relation to the optimum value, and the average time
to process the group of instances in seconds. The gap shows the percentage difference
of the value obtained by the heuristic method in relation to the optimum value, using
the following equation: gap = he”{f—_t”m x 100. Moreover, if a gap value is better (or
equal) than gapM, it is represented in boldface.

Marin [9] presented the best result achieved after executing 100 times each instance
using his proposed heuristic (ubM). The execution times for Medium and Large
instances were 239s and 264 s respectively leading to a total of 503 s using an Intel
Core 2 Quad CPU Q9300, 2.50 GHz x 4, with 3 Gb of RAM memory and running on
Linux. The heuristic developed in this work consumed 17.5s and 28.7 s to solve the
Medium and Large instances respectively with a total time of 46.2s.

In these Tables 1 and 2 we can see that the gap value decreases as the instance size
is increased, which indicates that the proposed heuristic maintains a small absolute
difference with respect to the optimum. On the other hand, as the instances become
more complex, the proposed heuristic begins to perform better than the one proposed
by Marin [9]. For the 25 Large instances, the ILS heuristic obtained 19 better results and
2 ties, while Marin heuristic obtained 4 better values. For the 41 groups of instances,
the proposed heuristic obtained strictly better results in 65.8% of the instances and
equal results in 9.7% of the instances. The average gap for the heuristic proposed in
Marin [9] was 2.6, while the average gap obtained by the ILS heuristic was 2.0.

Table 3 shows the results obtained for 21 instances proposed in Silva et al. [16],
also for the MBV problem (d = 2), where each line represents a graph. The first three
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Table 2 Results of the heuristic for Large Instances for the MBV problem (d = 2)

n’ m’ np mp Opt ubM gapM ILS Gap Time
600 637 106.4 143.4 183.8 184.0 0.1 185.0 0.7 0.0
600 674 162.6 236.6 167.2 168.8 1.0 168.6 0.8 0.1
600 712 205.6 317.6 150.6 154.8 2.8 153.0 1.6 0.1
600 749 236.6 385.6 138.8 144.0 3.7 140.4 12 0.1
600 787 266.4 453.2 125.8 132.8 5.6 128.8 24 0.2
700 740 123.2 163.2 214.4 215.0 0.3 215.4 0.5 0.0
700 780 181.6 261.6 198.0 199.6 0.8 199.8 0.9 0.1
700 821 229.8 350.8 180.0 184.0 22 182.4 13 0.2
700 861 263.4 424.4 164.0 169.2 32 167.4 21 0.2
700 902 296.8 498.8 154.2 161.8 4.9 157.0 1.8 0.2
800 843 133.2 176.2 245.6 246.6 0.4 246.6 0.4 0.0
800 886 200.6 286.6 227.6 229.6 0.9 229.8 1.0 0.1
800 930 253.4 3834 208.4 213.0 22 2114 14 0.1
800 973 294.2 467.2 194.2 200.2 3.1 197.2 15 0.3
800 1017 331.8 548.8 176.2 184.0 4.4 179.6 1.9 0.4
900 944 143.6 187.6 279.6 280.6 0.4 280.6 0.4 0.1
900 989 214.4 303.4 259.2 261.6 0.9 261.0 0.7 0.2
900 1034 267.0 401.0 240.6 245.4 2.0 243.6 12 0.3
900 1079 316.4 495.4 2232 229.8 3.0 226.6 15 0.5
900 1124 3524 576.4 206.0 214.8 43 209.4 1.7 0.4
1000 1047 150.4 197.4 312.0 3134 0.4 3132 0.4 0.1
1000 1095 233.0 328.0 290.0 292.4 0.8 2922 0.8 0.3
1000 1143 295.0 438.0 2712 275.8 1.7 275.0 14 0.4
1000 1191 342.4 5334 251.0 257.8 2.7 254.8 15 0.5
1000 1239 390.2 629.2 2352 244.6 4.0 238.6 14 0.9

columns of the tables present the file name, the number of vertices n and the number
of edges m of the graph. Unfortunately, the decomposition process does not bring any
benefits to these instances, so, we omit columns 7, and m ,. Furthermore, columns 4,
6 and 7 show, respectively, the results for these instances obtained by the heuristics of
Marin [9] (ubM), Melo etal. [11] (MPE) and the proposed heuristic in this work (ILS).
Finally, columns 5 and 8 show the times (in seconds) used by the heuristics ubM and
ILS respectively. In the case of the heuristic MPE, the times used to obtain these results
are not presented by the authors. Furthermore, if a ILS solution (column 7) is better
(or equal) than the previous bounds (ubM and MPE), it is represented in boldface.

The proposed ILS heuristic presents superior performance in time and quality of the
results. The optimal value was reached in all instances of the first two groups (dimacs
and stein). For tcp instances, the heuristic obtained better values in much less time
than required by other heuristics. The value ubM is the minimum value obtained in
100 executions, while heuristics MEP and ILS were executed only once.
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Table 3 Heuristics results for dimacs, stein and tcp instances for the MBV problem (d = 2)

Instance n m ubM ubM-time MPE ILS ILS-time
1e450_15a 450 5714 0 1.5 0 0 0.2
1e450_15b 450 5734 0 0.7 0 0 0.2
1e450_15¢ 450 9803 0 7.2 0 0 0.7
1e450_15d 450 9757 0 2.5 0 0 0.8
1e450_25a 450 8168 0 0.4 0 0 0.2
1e450_25b 450 8169 0 5.5 0 0 0.2
1e450_25¢ 450 16680 0 0.4 0 0 0.8
1e450_25d 450 16750 0 0.4 1 0 0.8
le450_5a 450 8260 0 0.2 0 0 0.1
1e450_5b 450 8263 0 0.2 0 0 0.1
1e450_5c¢ 450 17343 0 0.5 0 0 0.3
1e450_5d 450 17425 0 0.4 0 0 0.3
steind11 1000 5000 4 45.1 0 0 0.3
steind12 1000 5000 4 47.8 1 0 0.3
steind13 1000 5000 4 45.0 0 0 0.2
steind14 1000 5000 4 42.0 1 0 0.3
steind15 1000 5000 4 48.7 1 0 0.3
alb1000 1000 1998 9 84.0 16 1 1.0
alb2000 2000 3996 19 697.0 28 2 7.8
alb3000a 3000 5999 29 2467.0 43 4 35.5
alb4000 4000 7997 39 8783.0 58 4 67.5

d-MBYV results
In Merabet et al. [12] the authors presented results for the d-MBYV problem over a set
of random instances with different values of d. Their instances have d-branch vertices
for high values of d. Unfortunately, we were not able to use these instances to compare
with our method because they were not available. The authors informed that the set of
instances was disposed after the experimental analysis, but they provided the generator
used by them to create the graphs. So, we used this generator to create new instances
which are similar to the instances used by them.

As in Merabet et al. [12] we consider 9 values for the number of vertices |V | €
{50, 100, 200, 300, 400, 500, 600, 700, 800} and, for the number of edges m, we used
the same equation:

m=[IVI=1+ixLsx [Vivi]]

withi € {1, 2, 3}. We have generated 30 instances for each pair (|V|, i) and performed
experiments for several values of d. Tables 4 and 5 show the results obtained for values
ofd € {2,3,4,5}andd € {6, 7, 8, 9}. Each row represents a group of 30 graphs. First
column indicates the number of vertices of the group. Columns ILS and time show
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Table 4 Heuristic results for d € {2, 3, 4, 5} on random instances
V| i=1 i=2 i=3

ILS Time Gap ILS Time Gap ILS Time Gap
d=2
50 6.60 0.000 0.5 3.80 0.001 10.7 2.13 2.134 25.5
100 17.17 0.001 0.6 12.43 0.004 4.5 8.87 0.006 12.2
200 38.00 0.005 0.9 28.93 0.018 3.0 22.30 0.032 8.1
300 60.07 0.011 0.4 47.87 0.045 1.6 37.97 0.089 44
400 82.47 0.017 0.2 68.80 0.073 1.2 56.97 0.163 2.6
500 105.20 0.025 0.2 87.73 0.108 1.2 74.93 0.325 2.7
600 128.23 0.039 0.2 107.93 0.188 0.9 93.67 0.428 2.2
700 151.00 0.044 0.2 130.43 0.232 0.7 111.23 0.630 2.0
800 174.77 0.056 0.0 151.47 0.347 0.6 131.23 0.879 1.8
d=3
50 1.03 0.000 0.0 0.23 0.000 0.0 0.10 0.100 0.0
100 4.77 0.001 1.4 1.37 0.000 0.0 0.37 0.000 0.0
200 11.47 0.002 2.1 5.30 0.002 1.3 1.53 0.001 0.0
300 20.50 0.005 0.7 10.30 0.008 1.3 5.03 0.004 2.7
400 29.87 0.010 0.8 18.27 0.020 1.9 9.87 0.011 3.1
500 38.60 0.015 0.4 25.40 0.034 2.1 13.87 0.024 4.0
600 50.17 0.020 0.5 32.03 0.061 1.4 19.70 0.046 2.1
700 60.43 0.031 0.3 39.67 0.084 1.5 24.97 0.078 2.3
800 69.67 0.038 0.3 47.43 0.139 1.6 32.63 0.154 32
d=4
50 0.13 0.000 0.0 0.03 0.000 0.0 0.00 0.000 0.0
100 1.07 0.000 0.0 0.10 0.000 0.0 0.07 0.000 0.0
200 2.57 0.000 0.0 0.43 0.001 0.0 0.10 0.001 0.0
300 5.47 0.001 0.0 1.37 0.001 0.0 0.47 0.002 0.0
400 8.93 0.003 0.8 3.07 0.002 0.0 1.77 0.002 0.0
500 11.93 0.004 0.8 4.80 0.003 0.0 1.83 0.003 0.0
600 15.80 0.006 0.2 6.73 0.004 0.0 293 0.005 0.0
700 19.57 0.010 0.3 9.23 0.007 0.0 4.17 0.006 0.0
800 24.57 0.013 0.7 10.17 0.009 1.3 5.33 0.007 0.0
d=>5
50 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0
100 0.20 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0
200 0.47 0.000 0.0 0.03 0.000 0.0 0.03 0.000 0.0
300 1.40 0.000 0.0 0.23 0.000 0.0 0.10 0.000 0.0
400 1.90 0.000 0.0 0.60 0.000 0.0 0.27 0.000 0.0
500 3.60 0.000 0.9 0.93 0.000 0.0 0.30 0.000 0.0
600 3.87 0.000 0.0 1.77 0.000 0.0 0.23 0.000 0.0
700 4.83 0.000 0.0 1.93 0.000 0.0 0.80 0.000 0.0
800 6.77 0.000 0.0 1.87 0.000 0.0 1.10 0.000 0.0
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Table 5 Heuristic results for d € {6, 7, 8, 9} on random instances

4 i=1 i=2 i=3
ILS Time Gap ILS Time Gap ILS Time Gap
d=6
50 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0
100 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0
200 0.07 0.001 0.0 0.00 0.001 0.0 0.00 0.001 0.0
300 0.33 0.001 0.0 0.00 0.001 0.0 0.00 0.001 0.0
400 0.57 0.001 0.0 0.03 0.001 0.0 0.00 0.002 0.0
500 0.90 0.002 0.0 0.17 0.002 0.0 0.03 0.003 0.0
600 1.00 0.002 0.0 0.53 0.003 0.0 0.07 0.003 0.0
700 1.27 0.003 0.0 0.30 0.004 0.0 0.17 0.004 0.0
800 1.60 0.003 0.0 0.40 0.004 0.0 0.17 0.006 0.0
d=17
50 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0
100 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0
200 0.03 0.000 0.0 0.00 0.001 0.0 0.00 0.001 0.0
300 0.07 0.001 0.0 0.00 0.001 0.0 0.00 0.001 0.0
400 0.10 0.001 0.0 0.00 0.001 0.0 0.00 0.002 0.0
500 0.10 0.001 0.0 0.00 0.002 0.0 0.00 0.003 0.0
600 0.20 0.002 0.0 0.10 0.003 0.0 0.00 0.003 0.0
700 0.17 0.003 0.0 0.07 0.003 0.0 0.03 0.004 0.0
800 0.37 0.003 0.0 0.07 0.004 0.0 0.03 0.005 0.0
=8
50 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0
100 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0
200 0.00 0.000 0.0 0.00 0.001 0.0 0.00 0.001 0.0
300 0.03 0.001 0.0 0.00 0.001 0.0 0.00 0.001 0.0
400 0.03 0.001 0.0 0.00 0.001 0.0 0.00 0.002 0.0
500 0.03 0.001 0.0 0.00 0.002 0.0 0.00 0.002 0.0
600 0.00 0.002 0.0 0.00 0.003 0.0 0.00 0.003 0.0
700 0.03 0.002 0.0 0.00 0.003 0.0 0.00 0.004 0.0
800 0.00 0.003 0.0 0.03 0.004 0.0 0.00 0.005 0.0
d=9
50 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0
100 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0
200 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0
300 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.001 0.0
400 0.00 0.001 0.0 0.00 0.001 0.0 0.00 0.002 0.0
500 0.00 0.001 0.0 0.00 0.002 0.0 0.00 0.002 0.0
600 0.00 0.002 0.0 0.00 0.002 0.0 0.00 0.003 0.0
700 0.00 0.002 0.0 0.00 0.003 0.0 0.00 0.004 0.0
800 0.00 0.003 0.0 0.00 0.003 0.0 0.00 0.005 0.0
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the upper bound and computational time obtained by the proposed heuristic. Column
gap shows the gap relative to the optimum. It can be observed that the number of
d-branch vertices decreases rapidly while increasing the d value. Our heuristic again
shows a good performance, presenting a very small gap relative to the optimum within
low computational time. As shown in Tables 4 and 5, our heuristic yielded the optimal
value several times, mainly for d > 4.

4.2 Exactresults

2-MBYV results

Tables 6 and 7 show the computational time required to obtain exact solutions for the
MBY problem (d = 2). These optimal values were obtained by solving the model
developed in Sect. 2 using Constraints (2) and (21). If the obtained solution was not
an integer solution then a search for violated Constraints (22) was performed, and the
violated cuts were added to the model.

The first two columns represent the number of vertices and the average number of
edges for each group of instances. Columns 3 and 4 show the average number of co-
classes and optimal value for each group. Columns 5 and 6 correspond to the times in
seconds to find the optimal value by the methods proposed in Marin [9] and Silvestri
et al. [17] respectively. Silvestri et al. [17] used one Intel Xeon X5675 running at
3.07 GHz with 96 GB of RAM and a 64-bit Linux operating system. Melo et al. [11]
method had a poor performance in this group of instance so we chose to compare our
results only with Marin [9] and Silvestri et al. [17].

Table 6 Exact results for Medium Instances for the MBV problem (d = 2)

n’ m’ Co-class Opt timeM timeS Time Cuts Nodes
20 41.8 2.4 0.8 0.0 0.0 0.0 0.4 0.0
40 70.8 7.5 2.8 0.1 0.1 0.0 3.0 2.7
60 95.0 12.2 6.3 1.4 0.5 0.1 14.7 17.9
80 119.8 16.4 9.2 2.2 0.7 0.1 18.0 4.5
100 144.0 20.2 133 2.9 1.0 0.2 234 234
120 168.8 24.7 17.5 3.7 1.1 0.4 28.8 28.0
140 193.0 28.7 20.9 4.9 2.0 0.6 354 71.4
160 217.8 31.9 25.0 6.1 1.9 0.7 38.0 36.4
180 242.0 35.6 29.1 6.8 2.5 1.0 43.0 86.8
200 266.8 38.4 32.6 7.8 3.1 0.8 43.1 41.4
250 321.0 46.1 44.6 11.3 3.1 13 48.1 101.8
300 380.0 51.8 57.4 13.6 42 15 51.9 79.7
350 434.8 60.1 68.6 20.3 6.9 31 68.7 221.7
400 489.0 64.9 81.8 24.2 9.1 25 67.3 181.8
450 548.0 72.3 93.4 29.7 9.5 39 70.1 335.3
500 602.8 79.0 106.7 353 9.8 33 70.0 206.2
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Table 7 Exact results for Large Instances for the MBV problem (d = 2)

n’ m’ Co-class Opt timeM timeS Time Cuts Nodes
600 637 37.6 183.8 5.1 32 0.3 30.0 18.2
600 674 52.8 167.2 10.9 8.7 1.4 45.6 94.0
600 712 56.8 150.6 19.9 10.3 1.9 64.4 30.0
600 749 50.0 138.8 26.7 17.6 23 70.2 85.2
600 787 47.8 125.8 39.2 16.2 3.9 62.8 197.4
700 740 42.0 214.4 6.5 8.7 0.5 37.0 20.0
700 780 58.8 198.0 16.8 11.0 2.0 57.8 170.0
700 821 64.6 180.0 37.8 12.5 20.0 74.8 1591.2
700 861 58.4 164.0 39.7 17.4 75 75.4 904.8
700 902 59.2 154.2 57.8 14.7 75 932 812.0
800 843 45.8 245.6 6.7 10.3 04 39.4 7.6
800 886 67.4 227.6 19.1 11.2 1.8 62.8 178.0
800 930 74.4 208.4 85.0 22.7 58 90.6 365.4
800 973 74.0 194.2 65.6 48.8 98 88.0 695.8
800 1017 69.4 176.2 167.2 37.1 11.3 103.8 568.6
900 944 51.0 279.6 10.0 12.6 0.8 44.6 46.0
900 989 69.8 259.2 23.4 66.2 28 63.2 268.8
900 1034 79.0 240.6 44.5 30.2 194 92.6 1121.2
900 1079 86.0 2232 94.0 90.5 9.0 105 406.8
900 1124 712 206.0 81.2 30.7 91 94.6 322.0
1000 1047 524 312.0 10.6 26.2 1.1 422 62.6
1000 1095 78.8 290.0 71.1 17.0 4.0 86.0 172.0
1000 1143 91.4 271.2 1124 57.1 7.8 99.4 458.0
1000 1191 91.6 251.0 150.2 75.4 16.1 109.4 1138.6
1000 1239 96.4 235.2 642.9 62.6 31.0 110.0 1920.8

Column 7 shows the execution time obtained by the proposed model in this work
using the IBM ILOG CPLEX 12.6 solver. We use the CPLEX default settings and
configure it to run over a single thread of execution and a time limit of one hour. The
value reported in this column includes the time used to execute all pre-processing
operations described in Sect. 2 and the heuristic described in Sect. 3 to define an
upper bound. Finally, the last two columns contain the number of the user’s cuts
(constraints 19) and nodes. Moreover, the times obtained by our exact method (column
7) that are better (or equal) than the ones obtained in [9] and [17] (columns 5 and 6)
are highlighted in boldface.

Martinez et al. [10] showed that the time to solve a based Miller-Tucker-Zemlin
formulation may be influenced by the vertex that is chosen as the arborescence root.
Moreover, Akgun et al. [1] proposed a methodology to select this root node. In this
context, we developed the following criterion to select the root node:

r=argmax,ey {dgu) — (d + 1) - l@) +n- fp@)+ Y do@) 1+ fp(v))

veENG (1)
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Table 8 Exact results for 7cp instances for the MBV problem (d = 2)
Instance n m Opt timeMelo Time Cuts Nodes
alb1000 1000 1998 0 30.13 284.3 0 875
alb2000 2000 3996 0 180.18 1856.7 0 1094
alb3000a 3000 5999 0 74.770 3600.0 0 40
alb4000 4000 7997 0 1778.87 3600.0 0 0
Table 9 Exact results for values of d € {2, 3, 4} on random instances
V] i=1 i=2 i=3

Opt Time Nodes Opt Time Nodes Opt Time Nodes
d=2
50 6.57 0.0 0.1 3.43 0.0 3.8 1.70 1.8 20.7
100 17.07 0.0 1.4 11.90 0.1 3.0 7.90 0.3 31.5
200 37.67 0.0 1.5 28.10 0.1 1.3 20.63 0.7 31.1
300 59.83 0.1 16.3 47.10 0.3 46.5 36.37 0.8 68.9
400 82.33 0.1 0.0 68.00 0.2 0.4 55.53 1.0 343
500 105.00 0.1 3.1 86.70 0.4 51.5 72.93 1.5 108.0
600 127.97 0.1 4.8 107.00 0.5 10.5 91.63 1.4 6.5
700 150.70 0.1 0.0 129.53 0.5 11.3 109.10 2.6 114.5
800 174.70 0.1 0.0 150.57 0.8 30.3 128.93 2.8 401.2
d=3
50 1.03 0.0 13.0 0.23 0.0 0.6 0.10 0.1 2.8
100 4.70 0.0 5.7 1.37 0.1 255.6 0.37 0.0 2.5
200 11.23 0.1 523 5.23 0.6 806.9 1.53 0.1 30.3
300 20.37 0.1 2.3 10.17 0.5 294.6 4.90 0.2 35.1
400 29.63 0.1 0.0 17.93 0.2 24.3 9.57 0.2 16.5
500 38.43 0.1 6.6 24.87 0.2 11.0 13.33 0.5 333
600 49.90 0.1 2.5 31.60 0.5 24.1 19.30 0.6 37.1
700 60.27 0.1 3.6 39.07 0.5 335 24.40 0.9 58.8
800 69.47 0.2 5.2 46.67 0.7 27.9 31.63 6.6 1503.1
d=4
50 0.13 0.0 0.1 0.03 0.0 0.3 0.00 0.0 0.0
100 1.07 0.0 0.0 0.10 0.0 1.0 0.07 0.0 1.7
200 2.57 0.0 0.9 0.43 0.0 4.7 0.10 0.1 6.4
300 5.47 0.0 3.3 1.37 0.1 10.8 0.47 0.1 13.4
400 8.87 0.1 47.5 3.07 0.1 4.5 1.77 0.2 24.6
500 11.83 0.1 1.3 4.80 0.2 38.5 1.83 0.2 10.6
600 15.77 0.4 302.1 6.73 0.2 38.0 2.93 0.3 26.6
700 19.50 0.1 6.6 9.23 0.3 40.4 4.17 0.3 22.8
800 24.40 0.3 104.3 10.03 0.3 38.0 5.33 0.4 35.8
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Table 10 Exact results for values of d € {5, 6,7, 8, 9} on random instances

V| i=1 i=2 i=3
Opt Time Nodes Opt Time Nodes Opt Time Nodes

d=5

50 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0
100 0.20 0.0 0.0 0.00 0.0 1.1 0.00 0.0 0.2
200 0.47 0.0 0.7 0.03 0.0 0.0 0.03 0.0 1.9
300 1.40 0.0 2.5 0.23 0.0 33 0.10 0.1 6.3
400 1.90 0.0 0.7 0.60 0.1 9.2 0.27 0.1 10.8
500 3.57 0.1 5.1 0.93 0.1 2.1 0.30 0.2 8.8
600 3.87 0.2 211.3 1.77 0.1 5.8 0.23 0.2 10.6
700 4.83 0.1 373 1.93 0.2 42.0 0.80 0.3 42.9
800 6.77 0.1 9.7 1.87 0.2 27.2 1.10 0.3 34.2
d=06

50 0.00 0.0 0.0 0.00 0.0 1.2 0.00 0.0 0.1
100 0.00 0.0 0.0 0.00 0.0 0.1 0.00 0.0 1.5
200 0.07 0.0 0.0 0.00 0.0 0.1 0.00 0.0 0.0
300 0.33 0.0 3.6 0.00 0.0 2.5 0.00 0.1 4.3
400 0.57 0.0 53 0.03 0.1 44 0.00 0.1 2.3
500 0.90 0.0 10.3 0.17 0.1 1.2 0.03 0.2 10.8
600 1.00 0.0 1.9 0.53 0.1 26.8 0.07 0.2 2.8
700 1.27 0.1 6.6 0.30 0.1 9.2 0.17 0.2 3.7
800 1.60 0.1 4.7 0.40 0.2 17.5 0.17 0.3 16.4
d=17

50 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0
100 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.8
200 0.03 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.3
300 0.07 0.0 1.4 0.00 0.0 2.7 0.00 0.1 22
400 0.10 0.0 0.9 0.00 0.0 0.2 0.00 0.1 1.0
500 0.10 0.0 14 0.00 0.1 1.1 0.00 0.1 22
600 0.20 0.0 4.3 0.10 0.1 2.6 0.00 0.2 6.1
700 0.17 0.0 2.6 0.07 0.1 2.3 0.03 0.2 5.5
800 0.37 0.1 1.1 0.07 0.1 1.6 0.03 0.2 33
d=38

50 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0
100 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0
200 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0
300 0.03 0.0 0.0 0.00 0.0 0.0 0.00 0.1 0.1
400 0.03 0.0 0.8 0.00 0.0 0.7 0.00 0.1 1.0
500 0.03 0.0 0.6 0.00 0.1 2.3 0.00 0.1 44
600 0.00 0.0 0.3 0.00 0.1 2.0 0.00 0.1 0.4
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Table 10 continued

V] i=1 i=2 i=3
Opt Time Nodes Opt Time Nodes Opt Time Nodes

700 0.03 0.0 0.0 0.00 0.1 0.4 0.00 0.2 32
800 0.00 0.1 0.5 0.03 0.1 4.7 0.00 0.2 2.8
d=9

50 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0
100 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0
200 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0
300 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0
400 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.1 0.0
500 0.00 0.0 1.0 0.00 0.0 3.0 0.00 0.1 0.9
600 0.00 0.0 0.3 0.00 0.1 1.0 0.00 0.1 4.6
700 0.00 0.0 1.0 0.00 0.1 0.7 0.00 0.1 1.2
800 0.00 0.0 0.6 0.00 0.1 0.5 0.00 0.2 1.6

The first term (dg (u) — (d+1)-1(u)+n- fp(u)) considers the particular characteristics
of vertex u. Vertices that are obligatorily d-branch vertices (fp(u) = 1), with large
degree and small /() value (adjacent leaves) have a greater chance of being chosen
as root. The second term of the expression (ZveNG(u) dg(v) - (1 4+ fp(v))) benefits
those vertices that are in a dense zone of the graph and with adjacent vertices that are
obligatorily d -branch vertices. We believe that a good root will be in a dense zone of
the graph, reducing the height of the resulting arborescence.

The results show the effectiveness of the proposed exact method. All groups of
instances in Table 6 were solved faster than the previous exact methods. The results
presented in Table 7 shows that for all instances, excepting the group of graphs with
700 vertices and 821 edges, the optimal values were reached using the proposed for-
mulation in shorter times than previous works. We believe this behavior were obtained
due to the preprocessing method, which made it possible to obtain graphs with smaller
dimensions, and also allowed to fix the value of several variables by using Constraints
(16) and (17), resulting in a lighter formulation.

Table 8 shows the results only for the fcp instances, since instances dimacs and stein
were exactly solved by the ILS (the method found a 0 bound). As we stated before,
the decomposition process does not bring any benefits to these instances because none
of them have cut vertices that split the graph into three or more components and only
instance 1le450_15b has two bridges. For this reason, two (out of four) of these instances
were not solved by the proposed exact method into the time limit. On the other hand,
Melo et al. [11] method seems to perform particularly well in these instances. As we
can see in Table 8, their method could solve the 4 instances into the time limit with a
faster machine (Intel Core i7-4790K (4.00 GHz) CPU and 16 GB of RAM).
d-MBYV results
The results for the exact approach are presented in Tables 9 and 10, for d €
{2,3,4,5,6,7,8,9}.
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In Merabet et al. [12] the results obtained by using an exact method with their
formulation are shown for different values of d. Their results have shown that the
problem becomes more difficult to solve as the parameter d increases. So, we have
tested our approach to solve similar instances using exact methods and we came to a
different conclusion.

We notice that instances with greater value of d are “easier” to solve because less
computational time has been spent to solve them. We believe that the inclusion of
the constraints (16) and (17) in our formulation is the main reason for this difference.
With the increment of the parameter d it is easier to classify a vertex as non obligatory
d-branch. On the other hand, it is also more difficult to classify a vertex as obligatory
d-branch.

5 Conclusion

In this work, methods were developed for obtaining exact and heuristic solutions for
the d-MBV problem. A decomposition scheme was applied based on the bridges
and articulation points of the graph. In the computational experiments, the average
number of vertices in relation to the original graph was reduced in 42.3% and the
average number of edges was reduced in 52.7%.

An ILS heuristic was developed and obtained good quality results for different d
values. Particularly, for the 2—MBYV problem, the heuristic provided better results in
65.8% of the instances and equal results in 9.7% for the instances of Carrabas et al.
[3]. For the instances used in Silva et al. [16] the heuristic obtained better results in
all instances which previous works have not reached the optimal value.

A based Miller—Tucker—Zemlin formulation and some new valid inequalities were
proposed for the problem. The computational results show the effectiveness of the
proposed method, since 97.6% of the instances of Carrabas et al. [3] were solved
faster than previous works (for the 2—MBYV problem).

Moreover, the experiments on the analyzed instances created based on [12] have
shown that the number of solved instances increases and the computational time
decreaes as the d value rises, since the number of non-obligatorily vertices is increased.
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