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Abstract
This work is concerned with optimal control problems where the objective functional
consists of a tracking-type functional and an additional “multibang” regularization
functional that promotes optimal control taking values from a given discrete set point-
wise almost everywhere. Under a regularity condition on the set where these discrete
values are attained, error estimates for the Moreau–Yosida approximation (which
allows its solution by a semismooth Newton method) and the discretization of the
problem are derived. Numerical results support the theoretical findings.

Keywords Multibang control · Moreau-Yosida approximation · Finite element
discretization · Error estimates · Semi-smooth Newton method

1 Introduction

We consider linear-quadratic optimal control problems where the optimal control
is only allowed to take values at discrete values u1 < · · · < ud ∈ R with d ∈
N. Such problems occur, e.g., in topology optimization, nondestructive testing or
medical imaging; a similar task also arises as a sub-step in segmentation or labeling
problems in image processing. However, such problems are inherently nonconvex and,
more importantly, not weakly lower semi-continuous and hence cannot be treated by
standard techniques. A classical remedy is convex relaxation, where the nonconvex
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constraint u(x) ∈ {u1, . . . , ud} is replaced by the convex constraint u(x) ∈ [u1, ud ],
but this leads to ignoring the intermediate parameter values. In [3,5–8], it was therefore
proposed to promote all desired control values using a convex multibang penalty

G(u) : L2(�) → R, u �→
∫

�

g(u(x))dx,

for a suitable convex integrand g : R → R with a polyhedral epigraph whose vertices
correspond to the desired control values u1, . . . , ud . We thus consider the multibang
control problem

min
u∈L2(�)

1

2
‖Ku − z‖2Y + αG(u) (1.1)

with α > 0, z ∈ Y for a Hilbert space Y , and K : L2(�) → Y a linear and
continuous operator (e.g., the solution operator for a linear elliptic partial differential
equation). Just as in L1 regularization for sparsity (and in linear optimization), it
can be expected that minimizers are found at the vertices of G, thus yielding the
desired structure. Furthermore, it was shown in [3,4,7] that this leads to a primal-
dual optimality system that can be solved by a superlinearly convergent semismooth
Newton method in function space [14,22] if a suitable Moreau–Yosida approximation
(of the Fenchel conjugate G∗, see Proposition 2.2 below) is introduced. It turns out
that this approximation can be expressed in primal form as

min
u∈L2(�)

1

2
‖Ku − z‖2Y + αG(u) + γ

2
‖u‖2L2(�)

(1.2)

for a parameter γ > 0. We remark that this approach (i.e., applying the approximation
toG∗ instead ofG) does not destroy the non-differentiability ofG and hence preserves
the structural properties of (1.1). Standard lower semicontinuity techniques can then
be applied to show that the solutions to (1.2) converge weakly to the solution to (1.1)
as γ → 0; see [7, §4.1]. The aim of this paper is to establish strong convergence and
in particular approximation error estimates for ‖ū − uγ ‖L2(�).

Let us recall some literature and already known results. For the case d = 2 we
obtain the minimization problem

min
u1≤u≤u2

1

2
‖Ku − z‖2Y . (1.3)

and if the associated adjoint state p̄(x) �= 0 almost everywhere, it is well-known that ū
exhibits a bang-bang structure, i.e. ū(x) ∈ {u1, u2} almost everywhere. This problem
has been studied intensively in the literature, see [20,21,23,24,26] and the references
therein. Note that this list is far away frombeing complete. For this problem a structural
assumption has been established in [24,26], which controls the behavior of the adjoint
state around a singular set and guarantees that the optimal control ū exhibits a bang-
bang structure. Using this assumption, error estimates for the approximation of (1.3)
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can be proven; see [24]. A related question is the Moreau–Yosida approximation of
state constraints; see [10,11].

If d = 3 and u1 < u2 = 0 < u3, the problem (1.1) resembles the minimization
problem

min
u1≤u≤u2

1

2
‖Ku − z‖2Y + α‖u‖L1(�), (1.4)

see, e.g., [20]. The structural assumption used to prove error rates for the approximation
of (1.3) can be generalized to problem (1.4). Again, approximation error estimates
can be proven; see [23,24,26] and the reference therein.

We will generalize this structural assumption to the multibang control problem
(1.1). We will show that this assumption is sufficient to guarantee that an optimal
control ū of (1.1) satisfies ū(x) ∈ {u1, . . . , ud} for almost all x ∈ �. Furthermore, we
will use this condition to prove approximation error estimates of the form

‖ū − uγ ‖L2(�) = O
(
γ

κ
2

)

with a constant κ > 0 depending only on the structural assumption.
The paper is organized as follows. In Sect. 2 we recall some preliminary results

which are needed for the convergence analysis.Our structural assumption is introduced
in Sect. 3 and used to derive the approximation error estimates. This is also the main
result of this paper. In Sect. 4, we establish discretization error estimates under our
structural assumption. We introduce an active set method for the solution of (1.2) and
show its equivalence to a semismooth Newton method in Sect. 5. Finally, numerical
results to support our theoretical findings can be found in Sect. 6.

2 Preliminary results

Let u1 < u2 < · · · < ud be some given real numbers with d ≥ 2, and let � ⊂ R
n be

a bounded domain. Following [3,5–7], we define the piecewise linear function

g(v) :=
{

1
2 ((ui + ui+1)v − uiui+1) if v ∈ [ui , ui+1], 1 ≤ i < d,

∞ else.

As the pointwise supremum of affine functions, g is convex and continuous on the
interior of its domain dom(g) = [u1, ud ]. Hence, the corresponding integral functional

G : L2(�) → R, u �→
∫

�

g(u(x))dx,

is proper, convex and weakly lower semicontinuous as well; see, e.g., [2, Proposition
2.53].

We now consider the problem

min
u∈L2(�)

1

2
‖Ku − z‖2Y + αG(u) (2.1)
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with a parameter α > 0. Standard semi-continuity methods then yield existence of a
minimizer ū, which is unique if K is injective; see [7].Wewill later impose a condition
which guarantees that ū exhibits a multibang structure, i.e., ū(x) ∈ {u1, . . . , ud} for
almost every x ∈ �.

Let us further define the set

Uad := {u ∈ L2(�) : u1 ≤ u(x) ≤ ud} = co
{
u ∈ L2(�) : u(x) ∈ {u1, . . . , ud}

}
,

where co denotes the convex hull. It is clear that (2.1) is equivalent to the problem

min
u∈Uad

1

2
‖Ku − z‖2Y + αG(u). (P)

We will use this equivalent formulation to derive variational inequalities which will
be useful in the convergence analysis. Standard convex analysis techniques then yield
primal–dual optimality conditions; see, e.g.,[3,7].

Proposition 2.1 Define the sets

Q1 :=
{
q : q <

α

2
(u1 + u2)

}
,

Qi :=
{
q : α

2
(ui−1 + ui ) < q <

α

2
(ui + ui+1)

}
, 1 < i < d,

Qd :=
{
q : q >

α

2
(ud−1 + ud)

}
,

Qi,i+1 :=
{
q : q = α

2
(ui + ui+1)

}
.

Let ū ∈ Uad with associated adjoint state p̄ := K ∗(z − Kū). Then ū is a solution to
(P) if and only if

ū(x) ∈
{

{ui } if p̄(x) ∈ Qi 1 ≤ i ≤ d,

[ui , ui+1] if p̄(x) ∈ Qi,i+1 1 ≤ i < d.
(2.2)

It is clear that the optimal solution ū is uniquely determined by the adjoint state on
the sets {x ∈ � : p̄(x) ∈ Qi }. We see furthermore that ū(x) ∈ {u1, . . . , ud} almost
everywhere on � if meas{x ∈ � : p̄(x) ∈ Qi,i+1} = 0 for all 1 ≤ i < d. Hence ū has
a multibang structure in this case. In the following, we will make use of this relation
to construct a suitable regularity condition on these sets.

Remark 2.1 Although the dependence of the optimal controls on α is not the focus of
this work – see instead the earlier works [5–8], and, in particular, [3, Section 5] – let
us recall the essential features for the sake of completeness. First, note that α enters
the optimality conditions (2.2) only via the case distinction for the sets Qi and Qi,i+1.
Specifically, increasing the value of α shifts the conditions on p̄ so that desired control
values ui of smaller magnitude are preferred. Conversely, for α → 0, these conditions
coincide with the well-known optimality conditions for bang-bang control problems
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where only Q1, Qd , and Q1,d are relevant; see, e.g., [21, Lemma 2.26]. This implies
that apart from singular cases where meas{x ∈ � : p̄(x) = c} �= 0 for some c ∈ R,
the value of α does not influence the “ strength” of the multibang penalty in enforcing
the desired control values but only the specific selection among these values.

We next introduce the Moreau–Yosida approximation of (P) with a regularization
parameter γ > 0,

min
u∈Uad

1

2
‖Ku − z‖2Y + αG(u) + γ

2
‖u‖2L2(�)

. (Pγ )

As for (P), arguments from convex analysis lead to the following optimality condi-
tions; see [3,7].

Proposition 2.2 Define the sets

Qγ
1 :=

{
q : q <

α

2

((
1 + 2

γ

α

)
u1 + u2

)}
,

Qγ

i :=
{
q : α

2

(
ui−1 +

(
1 + 2

γ

α

)
ui
)

< q <
α

2

((
1 + 2

γ

α

)
ui + ui+1

)}
,

Qγ

i,i+1 :=
{
q : α

2

((
1 + 2

γ

α

)
ui + ui+1

)
≤ q ≤ α

2

(
ui +

(
1 + 2

γ

α

)
ui+1

)}
,

Qγ

d :=
{
q : α

2

(
ud−1 +

(
1 + 2

γ

α

)
ud
)

< q
}

.

Let uγ ∈ Uad with associated adjoint state pγ := K ∗(z−Kuγ ). Then uγ is a solution
to (Pγ ) if and only if

uγ (x) =
{
ui if pγ (x) ∈ Qγ

i 1 ≤ i ≤ d,
1
γ

(
pγ (x) − α

2 (ui + ui+1)
)

if pγ (x) ∈ Qi,i+1 1 ≤ i < d.
(2.3)

We remark that (2.3) is the explicit pointwise characterization of uγ ∈ (∂G∗)γ (pγ ),
where (∂G∗)γ denotes the Yosida approximation of the convex subdifferential (which
coincideswith the Fréchet derivative of theMoreau envelope) of the Fenchel conjugate
of G, which justifies the termMoreau–Yosida approximation; see, e.g., [3, §4.1].

We can also derive purely primal first-order optimality conditions for (P) and (Pγ )
in termsof variational inequalities using standard arguments as in, e.g., [21,Thm. 2.22].

Proposition 2.3 Let ū and uγ be solutions of (P) and (Pγ ) with associated adjoint
states p̄ := K ∗(z − Kū) and pγ := K ∗(z − Kuγ ), respectively. Then,

(− p̄, u − ū)L2(�) + αG ′(ū; u − ū) ≥ 0 for all u ∈ Uad,(−pγ + γ uγ , u − uγ

)
L2(�)

+ αG ′(uγ ; u − uγ ) ≥ 0 for all u ∈ Uad.

Here, G ′(ū; u − ū) denotes the directional derivative of G at ū in direction u − ū,
which will be characterized in the following lemma. Note that for ū, u ∈ Uad we have
u − ū ∈ TUad (ū) for
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TUad (u) :=
{

v ∈ L2(�) : v(x)

{
≥ 0 if u(x) = u1
≤ 0 if u(x) = ud

}}
,

i.e., the tangential cone to Uad in the point u. It thus suffices to consider directional
derivatives for directions in TUad , which helps to avoid unnecessary case distinctions
in the proof. Furthermore, since Uad ⊂ L∞(�), we only have to consider directions
in L∞(�). In the following, all pointwise expressions and calculations are understood
in an almost everywhere sense.

Lemma 2.1 Let u ∈ Uad and define the sets

Si := {x ∈ � : u(x) = ui }, i = 1, . . . , d,

Ti := {x ∈ � : ui < u(x) < ui+1}, i = 1, . . . , d − 1.

The directional derivative of G in direction v ∈ TUad (u) ∩ L∞(�) is then given as

G ′(u; v) =
d−1∑
i=1

∫

Ti

1

2
(ui + ui+1)v(x) dx

+
d∑

i=1

⎡
⎢⎣

∫

Si∩{v≥0}

1

2
(ui + ui+1)v(x)dx +

∫

Si∩{v<0}

1

2
(ui−1 + ui )v(x)dx

⎤
⎥⎦ .

Proof We use the definition of the directional derivative and of the sets Si and Ti to
obtain

G ′(u; v) := lim
ρ→0

1

ρ
(G(u + ρv) − G(u))

= lim
ρ→0

1

ρ

⎡
⎢⎣
d−1∑
i=1

∫

Ti

(g(u(x) + ρv(x)) − g(u(x)))dx

+
d∑

i=1

∫

Si

(g(u(x) + ρv(x)) − g(u(x)))dx

⎤
⎥⎦ .

We now make use of our assumption that v ∈ TUad ∩ L∞(�). For such a v, we can
find a ρ > 0 such that u+ρv ∈ Uad. Note that this is a pointwise condition, which we
are going to exploit in the following. We have to differentiate between several cases.

(i) First, assume that x ∈ Ti with 1 ≤ i ≤ d − 1. For ρ small enough we then get
u(x) + ρv(x) ∈ [ui , ui+1]. Hence we obtain

g(u(x) + ρv(x)) − g(u(x)) = 1
2 ((ui + ui+1)(u(x) + ρv(x)) − uiui+1)

− 1
2 ((ui + ui+1)u(x) − uiui+1)

= ρ
2 (ui + ui+1)v(x). (2.4)
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which yields

lim
ρ→0

∫

Ti

(g(u(x) + ρv(x)) − g(u(x)))dx =
∫

Ti

1

2
(ui + ui+1)v(x)dx .

(ii) Now assume that x ∈ Si with 1 < i < d. Then by definition, u(x) = ui . Here we
have to further differentiate between three cases.

v(x) = 0: Here we obtain u(x) + ρv(x) = u(x), leading to

g(u(x) + ρv(x)) − g(u(x)) = 0.

v(x) > 0: Here we obtain u(x) + ρv(x) ∈ [ui , ui+1] for ρ small enough,
leading to

g(u(x) + ρv(x)) − g(u(x)) = ρ

2
(ui + ui+1)v(x).

v(x) < 0: Here we obtain u(x) + ρv(x) ∈ [ui−1, ui ], leading as in (2.4) to

g(u(x) + ρv(x)) − g(u(x)) = ρ

2
(ui−1 + ui )v(x).

Combining all three cases yields

lim
ρ→0

1

ρ

∫

Si

(g(u(x) + ρv(x)) − g(u(x)))dx

=
∫

Si∩{v≥0}

1

2
(ui + ui+1)v(x)dx +

∫

Si∩{v<0}

1

2
(ui−1 + ui )v(x)dx .

(iii) We are left with the special cases x ∈ Si for i = 1 and i = d. We only consider the
case i = 1 as the case i = d is similar. Hence we assume x ∈ S1, which implies
u(x) = u1. Since v ∈ TUad (u), we have that v(x) ≥ 0. If v(x) > 0, we obtain for
ρ small enough that u(x) + ρv(x) ∈ T1 holds, leading to

g(u(x) + ρv(x)) − g(u(x)) = ρ

2
(u1 + u2)v(x)

and similar if v(x) = 0. This leads to

lim
ρ→0

1

ρ

∫

S1

(g(u(x) + ρv(x)) − g(u(x)))dx =
∫

S1

1

2
(u1 + u2)v(x)dx .

A similar argument for the remaining case i = d finishes the proof.

��
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3 Regularity assumption and error estimates

We now extend the active set condition from [24,26] to the multibang control problem.
From Proposition 2.1, we see that the optimal control ū is not uniquely determined by
the adjoint state p̄ on the singular sets Qi,i+1. We therefore need to control the way
in which p̄ “detaches” from these sets. This motivates the following assumption.
Assumption REG For the solution ū to (P) with adjoint state p̄ = K ∗(z− Kū) there
exists a constant c > 0 and κ > 0 such that

meas

(
d−1⋃
i=1

{
x ∈ � :

∣∣∣ p̄(x) − α

2
(ui + ui+1)

∣∣∣ < ε
})

≤ cεκ

holds for all ε > 0 small enough.
Note that if ū satisfies this assumption, the sets Qi,i+1 have Lebesguemeasure zero.

Hence, ū is multibang by Proposition 2.1. In addition, we have the following result,
which is a direct consequence of meas{x ∈ � : p̄(x) ∈ Qi,i+1} = 0.

Lemma 3.1 Assume ū satisfies AssumptionREG. Then p̄(x) ∈ Qi if and only if ū(x) =
ui holds almost everywhere in �.

Following [9, Lemma 1.3], we can derive a sufficient condition for Assumption
REG.

Theorem 3.1 Suppose that the adjoint state p̄ ∈ C1(�̄) and satisfies

min
x∈Ki

|∇ p(x)| > 0 for all i = 1, . . . , d − 1,

where

Ki :=
{
x ∈ �̄ : p(x) = α

2
(ui + ui+1)

}
.

Then Assumption REG holds with κ = 1.

Proof Define for t ∈ R the level sets Ft := {x ∈ �̄ : p(x) = t}. Now we use a
continuity argument to obtain constants ε0, c0,C > 0 such that for all |t − α

2 (ui +
ui+1)| ≤ ε0 and all 1 ≤ i < d there holds

|∇ p(x)| ≥ c0 > 0, Hn−1(Ft ) ≤ C,

whereHn−1 is the (n−1)-dimensionalHausdorffmeasure. In the following,we denote
by 1C the characteristic function of the set C , i.e., 1C (x) = 1 if x ∈ C and 0 else. We
now use the co-area formula

∫

�

h(x)|∇ p(x)|dx =
∞∫

−∞

⎛
⎜⎝

∫

p−1(t)

h(x)dHn−1(x)

⎞
⎟⎠ dt
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with the function

h(x) := 1Ei , Ei :=
{
x ∈ � :

∣∣∣p(x) − α

2
(ui + ui+1)

∣∣∣ ≤ ε
}

,

to obtain for all 1 ≤ i < d and 0 < ε ≤ ε0 that

c0 meas (Ei ) ≤
∫

Ei

|∇ p(x)|dx =
ε∫

−ε

Hn−1
(
Ft− α

2 (ui+ui+1)

)
dt ≤ 2Cε

holds. Since this holds for all 1 ≤ i < d, the Assumption REG now follows with
κ = 1. ��

We now establish error estimates for the approximation (Pγ ) of (P). For this pur-
pose, we first derive a stronger version of Proposition 2.3. The next result, which is
similar to ones in [18,19], is the most important tool in the convergence analysis.

Lemma 3.2 Assume that the solution ū to (P) satisfies Assumption REG. Then,

(− p̄, u − ū)L2(�) + αG ′(ū; u − ū) ≥ cA‖u − ū‖1+
1
κ

L1(�)
∀u ∈ Uad

with a constant cA := cA(κ) > 0.

Proof First, recall that Assumption REG implies that ū has a multibang structure.
Furthermore, using Lemma 3.1 we obtain with the definition of Qi and Si in Propo-
sition 2.1 and Lemma 2.1, respectively, that ū(x) ∈ Si if and only if p̄(x) ∈ Qi . Now
we use Lemma 2.1 and the fact that u − ū ∈ TUad (ū) to compute

(− p̄, u − ū)L2(�) + αG ′(ū; u − ū)

=
∫

{ p̄∈Q1}

(
− p̄(x) + α

2
(u1 + u2)

)
(u(x) − ū(x))dx

+
∫

{ p̄∈Qd }

(
− p̄(x) + α

2
(ud−1 + ud)

)
(u(x) − ū)(x)dx

+
d−1∑
i=2

∫

{ p̄∈Qi }∩{u−ū≥0}

(
− p̄(x) + α

2
(ui + ui+1)

)
(u(x) − ū(x))dx

+
d−1∑
i=2

∫

{ p̄∈Qi }∩{u−ū<0}

(
− p̄(x) + α

2
(ui−1 + ui )

)
(u(x) − ū(x))dx .

Here we have abbreviated the sets { p̄ ∈ Q1} := {x ∈ � : p̄(x) ∈ Q1} and similar for
the other sets. Recall that by definition, p̄(x) ∈ Q1 implies that− p̄(x)+ α

2 (u1+u2) >

0. Furthermore, we know that ū(x) = u1, leading to u(x) − ū(x) = u(x) − u1 ≥ 0.
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We similarly obtain on Qd that − p̄(x) + α
2 (ud−1 + ud) < 0 and u(x) − ū(x) =

u(x) − ud ≤ 0. Finally, if p̄(x) ∈ Qi for 1 < i < d, we obtain that

α

2
(ui−1 + ui ) < p̄(x) <

α

2
(ui + ui+1),

which leads to

− p̄(x) + α

2
(ui + ui+1) > 0 and − p̄(x) + α

2
(ui−1 + ui ) < 0.

This allows us to write

(− p̄, u − ū)L2(�) + αG ′(ū; u − ū)

=
∫

{ p̄∈Q1}

∣∣∣− p̄(x) + α

2
(u1 + u2)

∣∣∣ |u(x) − ū(x)|dx

+
∫

{ p̄∈Qd }

∣∣∣− p̄(x) + α

2
(ud−1 + ud)

∣∣∣ |u(x) − ū(x)|dx

+
d−1∑
i=2

∫

{ p̄∈Qi }∩{u−ū≥0}

∣∣∣− p̄(x) + α

2
(ui + ui+1)

∣∣∣ |u(x) − ū(x)|dx

+
d−1∑
i=2

∫

{ p̄∈Qi }∩{u−ū<0}

∣∣∣− p̄(x) + α

2
(ui−1 + ui )

∣∣∣ |u(x) − ū(x)|dx .

Now let ε > 0 and consider the set

Qε
1 :=

{
q : q ≤ α

2
(u1 + u2) − ε

}
⊂ Q1.

Let p̄(x) ∈ Qε
1. Together with − p̄(x) + α

2 (u1 + u2) > 0, this implies that

∣∣∣− p̄(x) + α

2
(u1 + u2)

∣∣∣ = − p̄(x) + α

2
(u1 + u2) ≥ ε,

leading to

∫

{ p̄∈Q1}

∣∣∣− p̄ + α

2
(u1 + u2)

∣∣∣ |u − ū|dx ≥
∫

{ p̄∈Qε
1}

∣∣∣− p̄ + α

2
(u1 + u2)

∣∣∣ |u − ū|dx

≥ ε

∫

{ p̄∈Qε
1}

|u − ū|dx .

We similarly define

Qε
d :=

{
q ≥ α

2
(ud−1 + ud) + ε

}
,
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leading to

∫

{ p̄∈Qd }

∣∣∣− p̄(x) + α

2
(ud−1 + ud)

∣∣∣ |u(x) − ū(x)|dx ≥ ε

∫

{ p̄∈Qε
d }

|u(x) − ū(x)|dx,

as well as for 1 < i < d

Qε
i :=

{
ε + α

2
(ui−1 + ui ) ≤ q ≤ α

2
(ui + ui+1) − ε

}
⊂ Qi .

The latter leads to

∣∣∣− p̄(x) + α

2
(ui + ui+1)

∣∣∣ = − p̄(x) + α

2
(ui + ui+1) ≥ ε,∣∣∣− p̄(x) + α

2
(ui−1 + ui )

∣∣∣ = p̄(x) − α

2
(ui−1 + ui ) ≥ ε

and therefore

∫

{ p̄∈Qi }∩{u−ū≥0}

∣∣∣− p̄(x) + α

2
(ui + ui+1)

∣∣∣ |u(x) − ū(x)|dx

+
∫

{ p̄∈Qi }∩{u−ū<0}

∣∣∣− p̄(x) + α

2
(ui−1 + ui )

∣∣∣ |u(x) − ū(x)|dx

≥ ε

∫

{ p̄∈Qε
i }∩{u−ū≥0}

|u(x) − ū(x)|dx + ε

∫

{ p̄∈Qε
i }∩{u−ū<0}

|u(x) − ū(x)|dx

= ε

∫

{ p̄∈Qε
i }

|u(x) − ū(x)|dx .

We now combine all these estimates to obtain

(− p̄, u − ū)L2(�) + αG ′(ū; u − ū)

≥ ε

d∑
i=1

∫

{ p̄∈Qε
i }

|u(x) − ū(x)|dx

= ε

d∑
i=1

⎛
⎜⎝
∫

{ p̄∈Qi }
|u(x) − ū(x)|dx −

∫

{ p̄∈Qi }\{ p̄∈Qε
i }

|u(x) − ū(x)|dx
⎞
⎟⎠

= ε‖u − ū‖L1(�) − ε

d∑
i=1

∫

{ p̄∈Qi }\{ p̄∈Qε
i }

|u(x) − ū(x)|dx
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≥ ε‖u − ū‖L1(�) − ε‖u − ū‖L∞(�)

d∑
i=1

∫

{ p̄∈Qi }\{ p̄∈Qε
i }

1dx,

where we have used the L∞-boundedness of u − ū in the last step. We now use
Assumption REG to estimate the remaining sum, yielding

d∑
i=1

∫

{ p̄∈Qi }\{ p̄∈Qε
i }

1dx = meas

(
d−1⋃
i=1

{
x ∈ � :

∣∣∣ p̄(x) − α

2
(ui + ui+1)

∣∣∣ < ε
})

≤ cεκ .

Summarizing, we have for a constant c > 1 that

(− p̄, u − ū)L2(�) + αG ′(ū; u − ū) ≥ ε‖u − ū‖L1(�) − cεκ+1,

and hence setting

ε := c− 2
κ ‖u − ū‖

1
κ

L1(�)

finishes the proof. ��
We now have everything at hand to prove approximation error estimates.

Theorem 3.2 Let ū be a solution of (P)with corresponding state ȳ := Kū and assume
that AssumptionREG is satisfied. Furthermore, let uγ be the solution of (Pγ ) for γ > 0
with corresponding state yγ := Kuγ . Then there exists a constant c > 0 such that

1

γ
‖yγ − ȳ‖2Y + 1

γ
‖uγ − ū‖1+

1
κ

L1(�)
+ ‖uγ − ū‖2L2(�)

≤ cγ κ .

Proof First note that G is a convex function and hence that

G ′(ū; uγ − ū) + G ′(uγ ; ū − uγ ) ≤ 0.

We thus obtain from Proposition 2.3 and Lemma 3.2 that

(− p̄, u − ū)L2(�) + αG ′(ū; u − ū) ≥ cA‖uγ − ū‖1+
1
κ

L1(�)
∀u ∈ Uad,

(−pγ , u − uγ )L2(�) + αG ′(uγ ; u − uγ ) + γ (uγ , u − uγ )L2(�) ≥ 0 ∀u ∈ Uad.

Inserting u = uγ and u = ū into two above inequalities, respectively, and then adding
both yields

(− p̄ + pγ , uγ − ū)L2(�) + α(G ′(ū; uγ − ū) + G ′(uγ ; ū − uγ )) + γ (uγ , ū − uγ )L2(�)

≥ cA‖uγ − ū‖1+
1
κ

L1(�)
.
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We now use the definition of p̄ = K ∗(z − Kū) and pγ = K ∗(z − Kuγ ) to deduce
that

(− p̄ + pγ , uγ − ū)L2(�) = −‖yγ − ȳ‖2Y .

Hence, by adding γ ‖ū − uγ ‖2
L2(�)

to the inequality above and rearranging terms, we
obtain that

‖yγ − ȳ‖2Y + cA‖uγ −ū‖1+
1
κ

L1(�)
+ γ ‖uγ − ū‖2L2(�)

≤α(G ′(ū; uγ − ū) + G ′(uγ ; ū − uγ ))

+ γ (ū, ū − uγ )L2(�)

≤γ (ū, ū − uγ )L2(�)

≤cγ ‖uγ − ū‖L1(�)

≤cA
2

‖uγ − ū‖1+
1
κ

L1(�)
+ cγ κ+1,

where we have used Young’s inequality in the last step. The stated inequality now
follows immediately. ��

4 Discretization error estimates

In practice, the exact operator K is not realizable, and a discretization Kh : L2(�) →
Yh with finite dimensional range Yh must be employed. Denote by uγ,h the solution
of the discrete problem

min
u∈Uad

1

2
‖Khu − z‖2Y + αG(u) + γ

2
‖u‖2L2(�)

(Pγ,h)

with corresponding state yγ,h := Khuγ,h and adjoint state pγ,h := K ∗
h (z − yγ,h). If

K is the solution operator of an elliptic partial differential equation and Kh its finite
element discretization as in the next section, (Pγ,h) can be interpreted as a variational
discretization [12,13].

We assume that for all h > 0, the estimate

‖(K − Kh)uγ,h‖Y + ‖(K ∗ − K ∗
h )(yγ,h − z)‖L2(�) ≤ δ(h), (4.1)

holds uniformly for all γ > 0 with a monotonically increasing function δ : R+
0 → R

such that δ(0) = 0. Note that this approximation condition only needs to be satisfied
for the solutions to the discretized problem (Pγ,h). However, as in [23] the condition
can also be replaced by a corresponding uniform condition for the solution to the
continuous problem (Pγ ).

Now, we follow [23, Proposition 1.8] and estimate the discretization error for the
solution to (Pγ ).

Theorem 4.1 For all γ > 0 and h ≥ 0 there holds

‖yγ − yγ,h‖2Y + γ ‖uγ − uγ,h‖2L2(�)
≤ (1 + γ −1)δ(h)2.
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Proof With uγ,h and uγ solutions to (Pγ,h) and (Pγ ), respectively, we have from
Proposition 2.3 that

(−pγ,h + γ uγ,h, uγ − uγ,h
)
L2(�)

+ αG ′(uγ,h; uγ − uγ,h) ≥ 0,(−pγ + γ uγ , uγ,h − uγ

)
L2(�)

+ αG ′(uγ ; uγ,h − uγ ) ≥ 0.

Adding these two inequalities, substituting

pγ,h = −K ∗
h (Khuγ,h − z), pγ = −K ∗(Kuγ − z),

and using the convexity of G then yields(
K ∗
h (Khuγ,h − z) + γ uγ,h, uγ − uγ,h

)+ (K ∗(Kuγ − z) + γ uγ , uγ,h − uγ

)
≥ −α

(
G ′(uγ,h; uγ − uγ,h) + G ′(uγ ; uγ,h − uγ )

) ≥ 0.

We thus obtain that

γ ‖uγ,h − uγ ‖2L2(�)
≤ (K ∗

h (yγ,h − z) − K ∗(yγ − z), uγ − uγ,h
)

≤ ((K ∗
h − K ∗)(yγ,h − z), uγ − uγ,h

)
+ (K ∗(yγ,h − yγ ), uγ − uγ,h

)
.

The rest of the proof follows similarly to the proof of [23, Proposition 1.6]. The first
term on the right-hand side is estimated by the Cauchy–Schwarz inequality and the
inequality (4.1) as

(
(K ∗

h − K ∗)(yγ,h − z), uγ − uγ,h
) ≤ γ

2
‖uγ,h − uγ ‖2L2(�)

+ 1

2γ
δ(h)2.

Rewriting the second term and using again the Cauchy–Schwarz inequality combined
with the inequality (4.1), we obtain
(
K ∗(yγ,h − yγ ), uγ − uγ,h

) = −‖yγ − yγ,h‖2Y + (yγ − yγ,h, (Kh − K )uγ,h)

≤ −1

2
‖yγ − yγ,h‖2Y + 1

2
δ(h)2.

Adding these two estimates, we finally arrive at

1

2
‖yγ − yγ,h‖2Y + γ

2
‖uγ − uγ,h‖2L2(�)

≤
(
1

2
+ 1

2γ

)
δ(h)2.

��
Combining the approximation error estimate from Theorem 3.2 and the discretiza-

tion error estimate from Theorem 4.1, we immediately obtain the following result.

Theorem 4.2 If ū satisfies Assumption REG, then

1

γ
‖yγ,h − ȳ‖2Y + ‖uγ,h − ū‖2L2(�)

≤ c
(
γ −1(1 + γ −1)δ(h)2 + γ κ

)

holds for all γ > 0 and h ≥ 0.
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5 Active set method for the regularized problem

Let us now consider the special case where y = Ku is given as the unique solution of
the partial differential equation

{
Ay = u in �,

y = 0 on ∂�.
(5.1)

with A being a linear second-order elliptic differential operator, e.g., A = −
. In this
case, the optimality conditions fromProposition 2.2 can be solved using a superlinearly
convergent semi-smooth Newton method in function space; see [3,6,7].

We recall that (2.3) can be written as uγ = Hγ (pγ ) for Hγ : Lr (�) → L2(�)

with r ≥ 2,

[Hγ (p)](x) =
{
ui if p(x) ∈ Qγ

i 1 ≤ i ≤ d,
1
γ

(
p(x) − α

2 (ui + ui+1)
)

if p(x) ∈ Qγ

i,i+11 ≤ i < d,

where pγ ∈ H1
0 (�) is the solution to the adjoint equation

{
A∗ p = z − yγ in �,

p = 0 on ∂�,
(5.2)

and yγ is the solution to (5.1) with u = uγ . From the natural H1
0 (�) regularity of

solutions to (5.2), the Sobolev embedding H1
0 (�) ↪→ Lr (�) for some r > 2, and the

general theory of semi-smooth Newton methods in function space [22], we deduce
that the superposition operator Hγ is Newton differentiable from Lr (�) to L2(�)with

[DN Hγ (p)h](x) =
{

1
γ
h(x) if p(x) ∈ Qγ

i,i+1,

0 else.

A Newton step for the solution of (Pγ ) can therefore be formulated as

⎛
⎝−Id A 0

0 Id A∗
0 A −DN Hγ (pk)

⎞
⎠
⎛
⎝uk+1 − uk

yk+1 − yk

pk+1 − pk

⎞
⎠ = −

⎛
⎝ Ayk − uk

A∗ pk + yk − z
Ayk − Hγ (pk)

⎞
⎠ (5.3)

In [3], this was reduced to a symmetric system in (y, p). Here, we instead consider
an equivalent primal active set formulation that has proven to be more robust for small
values of γ and h. In a slight abuse of notation, we introduce

Qk
i :=

{
x ∈ � : pk(x) ∈ Qγ

i

}
, 1 ≤ i ≤ d,

and similarly for Qk
i,i+1. The following algorithm is an extension of the one proposed

in [20] for G(u) = ‖u‖L1(�).
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Algorithm 1 Choose initial data u0, p0 and parameters α, γ , set k = 0 and compute
the sets Q0

i for 1 ≤ i ≤ d and Q0
i,i+1 for 1 ≤ i < d.

1. Solve for (uk+1, yk+1, pk+1, λk+1) satisfying

⎧⎪⎨
⎪⎩

Ayk+1 − uk+1 = 0,

A∗ pk+1 + yk+1 − z = 0,

−pk+1 + γ uk+1 + αλk+1 = 0,

(5.4a)

(
1 −

d∑
i=1

1Qk
i

)
λk+1 +

(
1 −

d−1∑
i=1

1Qk
i,i+1

)
uk+1

=
d∑

i=1
1Qk

i
ui + 1

2

d−1∑
i=1

1Qk
i,i+1

(ui + ui+1).

(5.4b)

2. Compute the sets Qk+1
i for 1 ≤ i ≤ d and Qk+1

i,i+1 for 1 ≤ i < d.

3. If Qk
i = Qk+1

i for 1 ≤ i ≤ d and Qk
i,i+1 = Qk+1

i,i+1 for 1 ≤ i < d, then go to step
4. Otherwise set k = k + 1 and go to step 2.

4. STOP: uk+1 is a solution of (Pγ ).

The stopping criterion yields solutions of (Pγ ).

Lemma 5.1 If

Qk
i = Qk+1

i 1 ≤ i ≤ d,

Qk
i,i+1 = Qk+1

i,i+1 1 ≤ i < d,

then the solution (uk+1, pk+1) computed from (5.4) satisfy (2.3). In particular, uk+1

is a solution to (Pγ ).

Proof Since for fixed Qk
i and Qk

i,i+1 the solution of (5.4) is unique, we have

(uk, yk, pk) = (uk+1, yk+1, pk+1). Inserting this into (5.4b) and comparing with
(2.3) yields the claim. ��

We now show that Algorithm 1 coincides with a semi-smooth Newton method,
which implies locally superlinear convergence.

Theorem 5.1 The active set step (5.4) is equivalent to the semi-smooth Newton step
(5.3).

Proof Clearly, the first two equations of (5.3) are equivalent to the first two equation
of (5.4a). It therefore remains to consider the last equation, which is given by

A(yk+1 − yk) − DN Hγ (pk)(pk+1 − pk) = −Ayk + Hγ (pk). (5.5)
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Let us define the function

λk+1(x) :=
{

− 1
α

(−pk+1(x) + γ uk+1
)

if x ∈ Qk
i ,

1
2 (ui + ui+1) if x ∈ Qk

i,i+1.

We now make a case distinction pointwise almost everywhere.

(i) If x ∈ Qk
i , (5.5) reduces to [Ayk+1](x) = ui , and from the first line of (5.3) we

obtain uk+1(x) = ui .
(ii) If x ∈ Qk

i,i+1, (5.5) shows that

γ uk+1(x) − pk+1(x) + α

2
(ui + ui+1) = γ uk+1(x) − pk+1(x) + αλk+1(x) = 0.

Hence the third row of (5.3) is equivalent to (5.4b). In both cases, we obtain from the
definition of λk+1 that

−pk+1 + γ uk+1 + αλk+1 = 0,

which finally gives (5.4a) and therefore the claimed equivalence. ��

6 Numerical results

In this section we present some numerical results and convergence rates. Let � ⊂ R
d

be a bounded Lipschitz domain and K be the operator mapping u to the weak solution
y of {

−
y = u in �,

y = 0 on ∂�.
(6.1)

The operator Kh is correspondingly defined via the Galerkin approximation of (6.1)
using linear finite elements on a triangulation of�, which is chosen in such a way that
the approximation condition (4.1) is satisfied; see [23]. For the multibang penalty, we
take (u1, . . . , u5) = (−2,−1, 0, 1, 2) and α = 2. We implemented Algorithm 1 in
Python using DOLFIN [16,17], which is part of the open-source computing platform
FEniCS [1,15]. The linear system (5.4) arising from the active set step is solved using
the sparse direct solver spsolve from SciPy. The code used to obtain the following
results can be downloaded from https://github.com/clason/multibangestimates.

Example 1: κ = 1 We first consider � = (0, 1) and define

p̄(x) := ( 272 x
)
1[0, 29 )(x)

+
(
−72 + 3123x

2 − 13122x2 + 54675x3 − 111537x4

+ 177147
2 x5

)
1[ 29 , 39 )(x)

+ (9 − 18x)1[ 39 , 69 )(x)
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(a) (b) (c)

Fig. 1 Constructed optimal adjoint states p̄ and optimal control ū. a adjoint state, Example 1. b control,
Examples 1 and 2. c adjoint state, Example 2

+
(
−20079 + 136062x − 367416x2 + 494262x3

− 662661
2 x4 + 177147

2 x5
)
1[ 69 , 79 )(x)

+ (− 27
2 + 27

2 x
)
1[ 79 ,1](x),

ū(x) :=1[ 2
27 , 29 )(x) + 21[ 29 , 39 )(x) + 1[ 39 , 49 )(x)

− 1[ 59 , 69 )
(x) − 21[ 69 , 79 )(x) − 1[ 79 , 2527 )

(x),

ȳ(x) := sin(2πx)

e� := − 
ȳ − ū,

z := − Ke� − 
 p̄ + ȳ,

see Fig. 1a and b. Note that p̄, ȳ ∈ C2(�), and that ū and p̄ satisfy the optimality
conditions in Proposition 2.1. Hence, (ū, p̄) are a solution to (P). From Theorem 3.1
we further deduce that Assumption REG is satisfied with κ = 1.

We now compute the solution of (Pγ,h) for different values of h, where� is divided
into equidistant elements with mesh size h. From Theorem 3.2 we expect that the
numerical convergence rate

κγ,h := 1

log(2)
log

(‖uγ /2,h − ū‖2
L2(�)

‖uγ,h − ū‖2
L2(�)

)

satisfies κγ,h ≥ κ = 1.We compute κγ,h for different but fixedmesh sizes h. Due to the
discretization error, we expect a certain saturation effect for small γ ; see Theorem 4.2.
Note that for d = 2, it is known that Assumption REG is not only sufficient for
convergence rates similar to Theorem 3.2 but also necessary for high convergence
rates; see [25]. Hence, we expect that κγ,h ≈ 1, which can be observed from Table 1a
and Fig. 2a. In addition, the discretization error dominates for small γ as expected.

Example 2: κ < 1 We also consider an example where Assumption REG is only
satisfied with κ < 1. The idea is to violate the assumption of the sufficient condition
presented in Theorem 3.1. We modify the adjoint state p̄ from Example 1 to
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Table 1 Computed numerical
order of convergence for
different h

κγ,h
γ \ h 10−4 10−5 10−6

(a) Example 1

2−4 1.0143 1.0142 1.0141

2−6 1.0028 1.0008 1.0007

2−8 1.0211 1.0004 0.9998

2−10 0.9295 1.0038 0.9989

2−12 0.6828 1.0049 0.9954

2−14 0.0 0.9592 0.9917

2−16 0.0 − 0.0096 0.9701

2−18 0.0 0.0 0.1308

(b) Example 2

2−4 0.4679 0.4679 0.4679

2−6 0.3993 0.3992 0.3992

2−8 0.3668 0.3665 0.3664

2−10 0.3509 0.3518 0.3513

2−12 0.3379 0.3470 0.3453

2−14 0.3293 0.3496 0.3424

2−16 0.2986 0.3649 0.3413

2−18 0.1774 0.4122 0.3274

(a) (b)

Fig. 2 Discretization and approximation error ‖uγ,h − ū‖2
L2(�)

for different γ and h. a Example 1. b

Example 2
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p̄(x) := ( 27
2 x
)
1[0, 3

27 )
(x)

+
(
266085x5 − 433593

2 x4 + 135765
2 x3 − 20437

2 x2 + 6812
9 x − 1703

81

)
1[ 3

27 ,
2
9 )

(x)

+
(
11334492x5 − 14168034x4 + 7054821x3 − 3498235

2 x2

+ 1943450
9 x − 860051

81

)
1[ 29 ,

5
18 )

(x)

+
(
−11334492x5 + 17316666x4 − 10553301x3 + 6413635

2 x2

− 1457650
3 x + 528697

18

)
1[ 5

18 ,
3
9 )

(x)

+
(
− 709317

2 x5 + 696195x4 − 1085913
2 x3 + 210182x2 − 121150

3 x + 27761
9

)
1[ 39 ,

4
9 )

(x)

+ (−18x + 9)1[ 49 ,
5
9 )

(x)

+
(
− 707859

2 x5 + 2149821
2 x4 − 2604285

2 x3 + 1573075
2 x2 − 710804

3 x + 256331
9

)
1[ 59 ,

6
9 )

(x)

+
(
−11340324x5 + 39376206x4 − 54660123x3 + 75835981

2 x2

− 39434798
3 x + 16396175

9

)
1[ 69 ,

13
18 )

(x)

+
(
11340324x5 − 42526134x4 + 63759915x3 − 95552197

2 x2

+ 161022862
9 x − 433967467

162

)
1[ 1318 ,

7
9 )

(x)

+
(
265356x5 − 2221101

2 x4 + 3712707
2 x3 − 1549124x2

+ 11616563
18 x − 17395339

162

)
1[ 79 ,

8
9 )

(x)

+ ( 272 x − 27
2

)
1[ 89 ,1](x),

see Fig. 1c, while the remaining functions remain unchanged. Note that for, e.g., x̂ :=
2
9 , we obtain p′(x̂) = 0 and p(x̂) = 3, which violates the assumption of Theorem 3.1.
Hence we expect that κ < 1 holds, resulting in a much slower convergence speed; see
Theorem 3.2. This is corroborated by our numerical results: We obtain κγ,h ≈ 0.35 <

1, which can be seen in Table 1b and Fig. 2b. Due to the slower convergence speed,
we do not observe a saturation effect for the chosen range of γ and h.

7 Conclusions

For optimal control problems with a convex penalty promoting minimizers that point-
wise almost everywhere take on values from a given discrete set, Moreau–Yosida
approximation allows the solution by a superlinearly convergent semi-smooth Newton
method. On a structural assumption on the behavior of the adjoint state near singular
sets, convergence rates as the approximation parameter γ → 0 can be derived. The
same assumption also yields discretization error estimates for fixed γ > 0. Numerical
experiments corroborate the predicted rate.
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This work can be extended in a number of directions. First, an active set condition
similar to Assumption REG was derived in [19] for the approximation of bang-bang
control of a semilinear equation and could be adapted to the multibang control setting.
Of particular interest would be the extension to problems where the control enters
into the principal part of an elliptic equation as in the case of topology optimization
problems [5,7].

On the other hand, the applicability of the multibang penaltyG to the regularization
of inverse problems was demonstrated in [3]. There, a condition related to Assump-
tion REG was used to derive strong convergence as α → 0, albeit without rates; and
a natural question is whether the more quantitative Assumption REG would allow
obtaining such rates at least in L2(�). Finally, combined regularization, approxima-
tion, and discretization estimates for the convergence (α, γ, h) → 0 would be highly
useful.
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