
Comput Optim Appl (2018) 71:331–352
https://doi.org/10.1007/s10589-018-0016-0

Mesh-based Nelder–Mead algorithm for inequality
constrained optimization

Charles Audet1 · Christophe Tribes1

Received: 9 November 2017 / Published online: 12 June 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Despite the lack of theoretical and practical convergence support, the
Nelder–Mead (NM) algorithm is widely used to solve unconstrained optimization
problems. It is a derivative-free algorithm, that attempts iteratively to replace the worst
point of a simplex by a better one. The present paper proposes a way to extend theNM
algorithm to inequality constrained optimization. This is done through a search step
of the mesh adaptive direct search (Mads) algorithm, inspired by the NM algorithm.
The proposed algorithm does not suffer from theNM lack of convergence, but instead
inherits from the totality of the Mads convergence analysis. Numerical experiments
show an important improvement in the quality of the solutions produced using this
search step.

Keywords Nelder–Mead · MADS · Derivative-free optimization · Blackbox
optimization · Constrained optimization

1 Introduction

The derivative-free Nelder–Mead algorithm (NM) was introduced in 1965 for uncon-
strained optimization problems in R

n [38]. Although the algorithm is very popular, it
fails to solve some optimization problems [17,42]. In 1998, McKinnon [32] proposed

B Christophe Tribes
christophe.tribes@polymtl.ca

Charles Audet
Charles.Audet@gerad.ca

1 GERADandDépartement deMathématiques etGénie Industriel, ÉcolePolytechniquedeMontréal,
C.P. 6079, Succ. Centre-ville, Montreal, QC H3C 3A7, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-018-0016-0&domain=pdf
http://orcid.org/0000-0002-3043-5393
http://orcid.org/0000-0002-8740-6155

332 C. Audet, C. Tribes

a smooth strictly convex function inR
2 on which the sequence of trial points produced

by the NM algorithm fails to approach the unique minimizer.
Different variants using sufficient decrease in the objective function value were

proposed [26,37,45] to guarantee convergence to a critical point in the smooth case.
Price et al. [40] propose a frame-based NM method [15] requiring sufficient

decrease. Gao and Han [20] study the behavior of the NM algorithm on a convex
objective function, and propose an efficient variant for larger problems with adaptive
simplex parameters.

A stochastic version [11] is presented in the nonsmooth case. Brea [9] presents a
NM inspired algorithm for nonlinear mixed problems. Bűrmen et al. [10] adapt NM
so that the trial points are generated on an underlying mesh, i.e., a discretization of the
space of variables. The present paper pushes further in that direction, but for inequal-
ity constrained optimization without derivatives. Specifically, the NM algorithm is
inserted in the search step of the mesh adaptive direct search (Mads) algorithm [2,3].
The resulting algorithm named Mads-NM benefits from the same hierarchical con-
vergence analysis for nonsmooth constrained optimization as Mads.

The paper is structured as follows. Section 2 presents the originalNM algorithm for
unconstrained optimization. Section 3 gives a high-level description of theMads algo-
rithm, but focuses only on the elements necessary for the present work. Next, Sect. 4
proposes a way to insert a NM search step within Mads. Section 5 reports numerical
experiments. Intensive tests are conducted on a collection of 87 test problems to tune
the new algorithmic parameters. The resulting algorithm is then launched without any
additional parameters, and is applied to three constrained blackbox engineering test
problems. Our numerical experiments suggest that inserting aNM search step into the
Mads algorithm significantly improves its performance.

2 The NM unconstrained optimization algorithm

There are many ways to present the NM algorithm for unconstrained optimization

min
x∈Rn

f (x)

where f : R
n �→ R is the objective function. We present it in a way that might

seem overly complicated, but it allows to simplify the presentation of the inequality-
constrained case. The following definitions are introduced to order trial points.

Definition 2.1 A point x ∈ R
n is said to dominate y ∈ R

n , denoted x ≺ y, if
f (x) < f (y).

In the situation were two trial points share the same objective function value, (i.e.,
f (x) = f (y)), then instead of ordering them arbitrarily, we resort to the following
determinist function that returns the oldest of the points.

123

Mesh-based Nelder–Mead algorithm for inequality… 333

Definition 2.2 A point x ∈ R
n is said to be older than y ∈ R

n , if x was generated by
the algorithm before y. The function Older : R

n × R
n �→ R

n

Older(x, y) =
{
x if x was generated by the algorithm before y,
y otherwise.

returns the oldest of two points.

Togetherwith the definition of dominance, the functionOlder allows us to introduce
the following rule to compare two trial points.

Definition 2.3 The function Best : R
n × R

n �→ R
n

Best(x, y) =
⎧⎨
⎩

x if x ≺ y
y if y ≺ x

Older(x, y) if f (x) = f (y)

returns the best of two points x and y in R
n . A point x ∈ R

n is said to be better than
y ∈ R

n , if x = Best(x, y).

The functionBest is clearly transitive, commutative andBest(x, x) is well-defined
as it returns x .

TheNM algorithm can now be presented using the above definitions. Each iteration
of theNM algorithmstartswith a setY = {y0, y1, . . . , yn}ofn+1affinely independent
points in R

n which defines a simplex. The simplex points are ordered so that yi−1 is
better than yi for every i = 1, 2, . . . , n. The objective of each NM iteration is to
replace the worst simplex point yn by a better one. In order to achieve this, NM uses
some of the following points and parameters:

xc = 1
n

∑n−1
i=0 yi the centroid of the n best points;

xr = xc + (xc − yn) the reflection of the worst point with respect to the
centroid;

xe = xc + δe(xc − yn) where δe ∈]1,∞[is the expansion parameter;
xoc = xc + δoc(xc − yn) where δoc ∈]0, 1[is the outside contraction parameter;
xic = xc + δic(xc − yn) where δic ∈] − 1, 0[is the inside contraction parameter;
γ ∈]0, 1[is the shrink parameter.

At each iteration, NM either replaces the last point yn of the ordered simplex by
either xr , xe, xoc or xic, or it shrinks the simplex by replacing every vertex but the
best one y0, so that the simplex becomes

Y ← {y0, y0 + γ (y1 − y0), y0 + γ (y2 − y0), . . . , y0 + γ (yn − y0)}. (1)

The most widely used values of the parameters are

δe = 2, δic = −1

2
, δoc = 1

2
and γ = 1

2
.

123

334 C. Audet, C. Tribes

The comparisons to determine the new simplex are made relatively to the following
zones.

Definition 2.4 (Zones for unconstrained optimization) Let Y = {y0, y1, . . . , yn}
be an ordered simplex in R

n . The trial point x ∈ R
n

• Belongs to the inside contraction zone if yn ≺ x ;
• Else, it belongs to the expansion zone if x ≺ y0;
• Else, it belongs to the reflection zone if x dominates at least 2 points of Y;
• Else, it belongs to the outside contraction zone and x dominates 0 or 1 point of Y.

The NM algorithm is compactly written in Algorithm 1.

Algorithm 1: The Nelder–Mead unconstrained algorithm (NM)

Given the vertices of an initial simplex Y = {y0, y1, . . . , yn}.
1. Update the simplex:

Reorder Y.
2. Build a new simplex:

If xr belongs to the inside contraction zone
if xic belongs to the inside contraction zone, shrink Y using Equation (1),
otherwise set yn ← xic;

else if xr belongs to the expansion zone, then set yn ← Best(xr , xe);
else if xr belongs to the reflection zone, then set yn ← xr ;
else (xr belongs to the outside contraction zone), set yn ← Best(xr , xoc).

Go to 1.

Figure 1 provides a graphical interpretation of the mechanism of theNM algorithm.
The vertical axis represents the objective function f , and the six circles represent the
objective function values f (y0) < f (y1) < · · · < f (y5) = f (yn). Replacing the
vertex yn by xoc can only occur when xr belongs to the outside contraction zone
depicted in the figure, replacing yn by xic can only occur when xr belongs to the
inside contraction zone, etc.

Fig. 1 Zones relative to a
6-point simplex

.

f Legend

y0

yn

shrink/inside contraction zone
outside contraction zone
reflection zone
expansion zone

.

123

Mesh-based Nelder–Mead algorithm for inequality… 335

3 The Mads constrained optimization algorithm

We consider the Mads algorithm with the progressive barrier (PB) [3] to handle
inequality constraints and with dynamic scaling [8] to handle the varying magnitudes
of the variables. The target class of optimization problems is

min
x∈X⊂Rn

f (x)

s.t. c(x) ≤ 0,

where f : X �→ R ∪ {∞} and c : X �→ (R ∪ {∞})m are functions with c =
(c1, c2, . . . , cm)�, and X is some subset of R

n . Notice that the functions are allowed
to return the value∞, which is a convenient technique to represent evaluation failures.
The entire feasible region is denoted by the set � = {x ∈ X : c(x) ≤ 0}. The Mads
algorithm targets problems on which no assumptions on the smoothness of f or c are
made [5].

The PB uses the constraint violation function [18,19]

h(x) :=
⎧⎨
⎩

∑
j∈J

(
max{c j (x), 0}

)2 if x ∈ X,

∞ otherwise,

where J = {1, 2, . . . ,m} is the set of indices of the constraints. The constraint violation
function value h(x) is nonnegative, and equals zero if and only if the point x belongs
to �.

Mads is a search-poll direct search iterative algorithm in which each iteration is
constituted of two main steps. The search step can use various strategies (including
utilization of surrogate functions and heuristics) to explore the space of variables.
The poll step follows stricter rules and performs a local exploration in the space of
variables in a region delimited by the poll size vector �k ∈ R

n+. In practice, a well
conceived search step can allow the algorithm to escape locally optimal solutions
(e.g., [1,7]), and the poll step ensures practical and theoretical convergence [2].

Both these steps generate their candidate points on a discretization of the space of
variables called the mesh. The fineness of the discretization is controlled by the mesh
size vector δk ∈ R

n+. Formally, at iteration k, the mesh is defined as follows:

Mk = V k +
{
diag(δk)z : z ∈ Z

n
}

. (2)

where the cache V k is the set of points that were visited by the algorithm by the start
of iteration k. In other words, a point x belongs to V k if and only if both f (x) and
h(x)were evaluated by the start of iteration k. The first set V 0 is the set of one or more
initial points supplied by the user.

The mesh and poll size vectors are updated at the end of each iteration. The entries
of both vectors are reduced when the iteration fails to improve the incumbent solution,
and otherwise, they are either increased or remain at the same value. Algorithm 2

123

336 C. Audet, C. Tribes

provides a high-level description of Mads; the reader is invited to consult [8] for a
thorough description.

Algorithm 2: The mesh adaptive direct search algorithm (Mads)
Given a user-defined set of starting point: V 0 ⊂ R

n ,
and initial mesh and poll size vectors: typically δ0i = �0

i = 1 for i = 1, 2, . . . , n.
Set the iteration counter: k ← 0.
1. Search step (optional):

Launch the simulation on a finite set Sk of mesh points.
If successful, go to 3.

2. Poll step:
Launch the simulation on the set Pk of poll points.

3. Updates:
Update the cache V k+1, the incumbent xk+1

and the mesh and poll size vectors δk+1 and �k+1.
Increase the iteration counter k ← k + 1 and go to 1.

The fundamental convergence result [3] of the Mads algorithm states that if the
entire sequence of trial points belongs to a bounded set, and if the set of so-called
refining directions is sufficiently rich, then there exists an accumulation point x∗ such
that the generalized directional derivative f ◦(x∗; d) of Clarke [13] is nonnegative in
every hypertangent [24] direction d to the domain� at x∗ provided that x∗ is feasible.
A similar result (involving h rather than f) holds in situations where the iterates
never approach the feasible region: if the accumulation point x∗ is infeasible, then
the generalized directional derivative h◦(x∗; d) is nonnegative in every hypertangent
direction d to the set X at x∗.

These convergence results hold regardless of the search step of Algorithm 2, as
long as the set Sk is finite and belongs to the mesh Mk . In the present work, we make
sure that these conditions are satisfied, which allows the convergence analysis to be
unaltered.

4 The Mads-NM constrained optimization algorithm

We now present the NM-inspired Mads search step. Section 4.1 extends the defini-
tions of the dominance relation ≺ and of the function Best to the constrained case.
Section 4.2 focuses on the main Mads elements that need to be adjusted in order to
implement theNM search feature. Section 4.3 describes the algorithmic specifications
of the NM search step.

The design of this new algorithm involves a total of three parameters, whose default
values are tuned in Sect. 5. These parameters are denoted byπ = (πradius, πsvd, πeval).
They refer to a sampling radius, a threshold on singular values and a threshold on the
number of function evaluations, respectively.

123

Mesh-based Nelder–Mead algorithm for inequality… 337

4.1 Ordering trial points

The NM algorithm for unconstrained optimization hinges on the notion of ordering
vertices from best to worst, and at each iteration, the algorithm attempts to replace the
worst one. Ordering the points in a simplex is easy in the absence of constraints, as
only the objective function values need to be compared. Ordering gets more technical
in constrained optimization. In order to define a transitive relation between the trial
points, the definition of dominance as well as the function returning the best of two
points are adapted. The definitions rely on both the objective and constraint violation
functions f and h.

Definition 4.1 A point x ∈ R
n is said to dominate y ∈ R

n , denoted x ≺ y, if

• Both points are feasible and f (x) < f (y); or
• Both points are infeasible and f (x) ≤ f (y) and h(x) ≤ h(y) with at least one
strict inequality.

The above definition is coherent with the terminology used with the progressive bar-
rier [3], in which the feasible and infeasible points were treated differentely.

In the situation where two trial points share the same function values, i.e., f (x) =
f (y) and h(x) = h(y), then instead of ordering them arbitrarily, we resort once again
to the determinist functionOlder fromDefinition 2.2 returning the oldest of two points.
Together with the definition of dominance, the function Older allows us to introduce
the following rule to compare two trial points x and y.

Definition 4.2 The function Best : R
n × R

n �→ R
n

Best(x, y) =
⎧⎨
⎩

x if x ≺ y or if h(x) < h(y)
y if y ≺ x or if h(y) < h(x)

Older(x, y) if f (x) = f (y) and h(x) = h(y)

returns the best of two points x and y in R
n . A point x ∈ R

n is said to be better than
y ∈ R

n , if x = Best(x, y).

Observe that with this definition, the comparison of a feasible point x with an
infeasible one y always yields x = Best(x, y). The comparison of two infeasible
points where none dominates the other returns the most feasible one in terms of h.

Proposition 4.3 The function Best is transitive over a set of trial points.

Proof Consider the three trial points x, y and z in R
n such that x = Best(x, y) and

y = Best(y, z). We need to show that x = Best(x, z). The analysis is divided into
four cases.

• First, if x and z are both feasible, then y is also feasible and therefore x =
Best(x, z).

• Second, if x and z are both infeasible, then it follows that 0 < h(x) ≤ h(y) ≤ h(z).
Therefore, the only way that z = Best(x, z) would be that

f (x) = f (y) = f (z), h(x) = h(y) = h(z) and z = Older(x, z).

123

338 C. Audet, C. Tribes

But if this were the case, then this would contradict x = Older(x, y) and y =
Older(y, z).

• Third, if x is feasible and z is infeasible, then the observation preceeding the
statement of the proposition ensures that x = Best(x, z).

• Finally, the case where x is infeasible and z is feasible is impossible, because if
it were the case, then y would not be feasible since x = Best(x, y) and y would
not be infeasible since y = Best(y, z). ��

4.2 Construction of a simplex on a mesh

Section 4.3 defines a search step of Mads inspired by the NM algorithm. This NM
search step uses elements present in the quadratic model search step proposed in [14].
In that paper, quadratic models of the objective and of each of the constraint func-
tions are built and used to identify candidate trial points. But recall that an important
requirement of theMads algorithm is that every candidate point belongs to the mesh
Mk . The following notation is adopted. Let x be some point in R

n . By appending the
subscript ⊕, we denote x⊕ ∈ Mk as the mesh point which is the closest to x (ties
are broken by rounding up), as detailed in [6]. We will say that x⊕ is the point x
rounded to the mesh. The quadratic models of [14] are constructed by considering all
previously visited trial points within regions centred around incumbent solutions and
of size related to �k . A similar region is considered in the present work.

With the progressive barrier algorithm [3], there are up to two incumbent solutions
called the primary and secondary poll centers. One of them is the best feasible solution
found so far by the algorithm, and the other one is the infeasible solution with the
smallest value of h. For constructing the simplex, only the primary poll center is
considered. Given the incumbent solution xk , the poll size vector �k and the cache
V k , define the set

Tπradius =
{
x ∈ V k : |xi − xki | ≤ πradius�

k
i , i ∈ {1, 2, . . . , n}

}
,

where πradius ≥ 1 is a fixed parameter called the sampling radius (it is the first of
the three new algorithmic parameters). As in Algorithm 1, the points of Tπradius are
reordered so that xi−1 = Best(xi−1, xi) for i = 1, 2, . . . , p.

Algorithm 3 uses the setTπradius to attempt the iterative construction of a simplexY.
It also uses πsvd, the second of the three new algorithmic parameters. The algorithm
considers points of Tπradius in sequence, initializes Y so that it contains only x0 and
then goes through the following steps before adding a point xi to Y. First, the matrix
A formed by the columns of {y − x0 : y ∈ Y, y �= x0} together with {xi − x0}
is constructed. Second, in order to ensure that the final simplex is far from being
degenerate relative to the poll size vector, it is required that each singular value of the
matrix diag(�k)−1A exceeds a given threshold πsvd.

123

Mesh-based Nelder–Mead algorithm for inequality… 339

Algorithm 3: Construction of an ordered simplex Y

Given the parameters πradius ≥ 1, πsvd > 0 and the set Tπradius = {x0, x1, . . . , x p}.
1. Construction of the simplex :

Reorder Tπradius and set Y = {x0}.
For i = 1 to p do

let A be formed by the columns of {y − x0 : y ∈ Y, y �= x0} ∪ {xi − x0},
if all singular values of diag(�k)−1A ≥ πsvd then set Y ← Y ∪ {xi }

2. Termination:
If |Y| = n + 1 then return Y,
otherwise return ∅.

4.3 The NM-search step

We now introduce and describe the NM-search step to insert into Algorithm 2. Given
a sampling radius πradius ≥ 1 and a threshold parameter πsvd > 0, apply Algorithm 3
to attempt to build an ordered simplex Y = {y0, y1, . . . , yn} ⊂ R

n to initiate the
search. If this attempt results in Y = ∅, then abort the NM-search step.

TheMads-NM algorithm will iterate and attempt to replace yn in Y by generating
the centroid, the reflection, the outside contraction and/or the inside contraction as
in the standard NM method. However, in order to satisfy the Mads requirement that
every trial point belongs to the current mesh, the following notation rounds these new
tentative points to the mesh:

xr⊕ is the reflection xr rounded to the mesh;
xe⊕ is the expansion xe rounded to the mesh;
xoc⊕ is the outside contraction xoc rounded to the mesh;
xic⊕ is the inside contraction xic rounded to the mesh.

Notice that the centroid xc does not need to be rounded to the mesh, because the
NM algorithm never evaluates function values at the centroid.

In the unconstrainedNM algorithm, Fig. 1 illustrates the four zones used to compare
the trial points. An endpoint of each zone is delimited by either the best simplex vertex
y0 or by the worst one yn . Now, in the presence of constraints, we redefine these zones
so that they reflect the contribution of both the objective function f and the constraint
violation function h. In order to determine at which of these trial points the function
values will be evaluated, we introduce the following subsets of the simplex Y:

Y
0 = {y ∈ Y : � x ∈ Y with x ≺ y}

Y
n = {y ∈ Y : � x ∈ Y with y ≺ x}. (3)

The set Y0 contains all vertices that are not dominated by any other vertex. The set Yn

contains all vertices that do not dominate any other vertex. None of these sets can be
empty, and they are not necessarily disjoint. The same logic could have been applied
toNM for unconstrained optimization: The point y0 was undominated and yn was the
simplex point that did not dominate any other vertex.

The following is the counterpart of Definition 2.4, but for constrained optimization.
It uses the new definition of dominance (Definition 4.1).

123

340 C. Audet, C. Tribes

.
.

.
.

.

yn

f

h0

Legend

Y
0

Y
n

inside contraction zone
outside contraction zone
reflection zone
expansion zone

.

Fig. 2 Zones relative to a 16-point simplex

Definition 4.4 (Zones for constrained optimization) Let Y = {y0, y1, . . . , yn} be
an ordered simplex in R

n , and let Y
0 and Y

n be the subsets of Y from Equation (3).
The trial point x ∈ R

n

• Belongs to the inside contraction zone if yi ≺ x for some yi ∈ Y
n or if h(x) >

h(yn);
• Else, it belongs to the expansion zone if x ≺ yi for some yi ∈ Y

0;
• Else, it belongs to the reflection zone if x dominates at least 2 points of Y;
• Else, it belongs to the outside contraction zone and x dominates 0 or 1 point of Y.

Figure 2 is the counterpart of Fig. 1 in the constrained case. Instead of only depicting
the objective function on a real half-line, it takes into account the half-plane where the
abscissa represents the non-negative constraint violation function h, and the ordinate
is the objective function f . Figure 2 illustrates the sets Y

0 and Y
n on a simplex with

16 elements. The 6 points represented by the symbol � are the undominated vertices
and the 5 ones represented by the symbol are the vertices that do not dominate any
other one.

Algorithmic decisions are made wether the reflection point xr⊕ dominates a point
of Y

0 (the expansion zone in Fig. 2), xr⊕ is dominated by a point of Y
n (the inside

contraction zone), xr⊕ dominates 2 ormore points (the reflection zone), or xr⊕ dominates
0 or 1 points (the outside contraction zone). Recall that Definition 4.1 does not compare
feasible with infeasible points, and therefore the figure is separated into two parts. The
left part of the figure represents the zones for the feasible points, i.e., the points for
which h equals zero. The rest of the figure concerns infeasible points.

The NM search step is compactly written as Algorithm 4.
There is a symmetry between this NM-search step and Algorithm 1, but there are

three important differences. First, due to the operations that round to the mesh, it is
possible that, after replacing the vertex yn , Y does not form a simplex anymore. If this

123

Mesh-based Nelder–Mead algorithm for inequality… 341

Algorithm 4: The Nelder–Mead search step (NM-search)

Given the vertices of an initial ordered simplex Y = {y0, y1, . . . , yn} ⊆ V k .
1. Update the simplex:

If Y is not a simplex, then go to 4;
otherwise reorder Y and construct the sets Y

0 and Y
n .

2. Determine a new candidate vertex t :
If xr⊕ belongs to the inside contraction zone

if xic⊕ belongs to the inside contraction zone, then go to 4,
otherwise set t = xic⊕ ;

else if xr⊕ belongs to the expansion zone, then set t = Best(xr⊕, xe⊕);
else if xr⊕ belongs to the reflection zone, then set t = xr⊕;
else (xr⊕ belongs to the outside contraction zone), set t = Best(xr⊕, xoc⊕).

3. Test to replace worst point:
If t ∈ V k then go to 4,
otherwise set yn ← t and go to 1.

4. Termination:
Return the set of trial points visited during step 2.

is the case, then the NM-search terminates. Second, it is possible that the proposed
value to replace the vertex yn is a mesh point t that was previously visited (t ∈ V k). In
order to prevent cycling issues, the NM-search is terminated. Third, there is no need
for the shrink parameter γ because theNM-search step terminates instead of shrinking
the simplex. There are two reasons for not shrinking the simplex: -i- it could introduce
up to n new trial points, which would increase significantly the cost of the search step;
-ii- it would frequently generate points that are not on the current mesh.

When theNM-search step terminates, theMads algorithm proceeds to the poll step
as detailed in Algorithm 2. At the next Mads iteration, the NM-search step will be
initiated from a new simplex determined by Algorithm 3 with the additional points
generated during the poll step.

In addition to the parameters πradius and πsvd, we introduce a third algorithmic
parameter called πeval ∈ N that limits the number of function evaluations that each
NM-search step can perform. In practice, this means that step 4 of the algorithm is
invoked as soon asπeval function evaluations are performed.The counter is reset at each
newNM-search step. For readability, this parameter is not presented in Algorithm 4. In
the numerical experiments that follow in the next section, the regular NM parameters
are set to the values δe = 2, δic = − 1

2 , δoc = 1
2 , and the Mads algorithm with the

NM search step of Algorithm 4 is denoted byMads-NM.

5 Computational experiments

Computational experiments are conducted using the beta version 3.8.2 of the
NOMAD [29] software package freely available at www.gerad.ca/nomad. All tests
use the Mads strategy with n + 1 poll directions [6] with or without the the use of
quadratic models. When both the quadratic model and NM searches are enabled, the
former is performed first and the iteration opportunistically terminates in case of a
success.

123

www.gerad.ca/nomad

342 C. Audet, C. Tribes

Data profiles [36] are presented below to assess if algorithms are successful in
generating solution values close to the best objective function values. Identification
of a successful run requires a convergence test. We denote xe as the best feasible
iterate obtained after e evaluations of one of the algorithm on one of the problems.
The problem is said to be solved within the convergence tolerance τ when

f̄fea − f (xe) ≥ (1 − τ)
(
f̄fea − f ∗)

where f ∗ is the objective function value of the best feasible points obtained by all
tested algorithms on all run instances of that problem. The value of f̄fea is a common
reference for a given problemobtained by averaging the first feasible objective function
values, on all run instances of that problem for all algorithms. If no feasible iterate is
obtained, the convergence test is failed.

Different instances are obtained by replicating algorithm runswith different pseudo-
random generator seeds. In the present work, we consider that different initial points
constitute different problems.

The horizontal axis of a data profile represents the number of evaluations for prob-
lems of fixed dimension, and represents groups of n + 1 evaluations when problems
of different dimensions are involved. The vertical axis corresponds to the proportion
of problems solved within a given tolerance τ . Each algorithm has its curve to allow
comparison of algorithms capability to converge to the best objective function value.

The methodology of the numerical experiments is as follows.
Test on analytical problems are conducted in Sect. 5.1 to tune the algorithmic

parameters. Section 5.2 compares the resulting algorithm to several well known imple-
mentations of theNM algorithm on unconstrained test problems. Finally, the algorithm
is tested in Sects. 5.3, 5.4 and 5.5 on three constrained blackbox engineering test prob-
lems.

5.1 Preliminary experiments to calibrate parameters

Numerical experiments on analytical test problems are conducted to set default values
to the three algorithmic parameters: The sampling radius πradius, the singular value
threshold πsvd and the evaluation budget πeval of each NM call. In all figures below,
the three parameters are compactly written as the triplet π = (πradius, πsvd, πeval).

Mads-NM without quadratic models is tested on 87 analytical problems from the
optimization literature. The characteristics and sources of theses problems are sum-
marized in Table 1. The number of variables ranges from 2 to 20; 19 problems have
constraints other than bound constraints.

A first set of runs was performed by only varying the singular value threshold
πsvd ∈ {0.001, 0.005, 0.01, 0.05, 0.1} while fixing πeval = 20n and πradius = 4.
The parameter πsvd has an important influence on the performance of Mads-NM,
and the best performance is obtained with πsvd = 0.01. This value was fixed and the
evaluation budget parameterwas varied in a second set of runs:πeval ∈ {5n, 10n, 20n,

40n, 80n, 160n}. This parameter has a limited influence on the performance for values
greater than 20n and πeval = 80n is the best value. In a third set of runs, the singular

123

Mesh-based Nelder–Mead algorithm for inequality… 343

Ta
bl

e
1

D
es
cr
ip
tio

n
of

th
e
se
to

f
87

an
al
yt
ic
al
pr
ob
le
m
s

N
o.

N
am

e
So

ur
ce

n
m

B
nd

s
N
o.

N
am

e
So

ur
ce

n
m

B
nd

s

1
A
R
W
H
E
A
D
10

[2
1]

10
0

N
o

45
PE

N
A
LT

Y
1_
4

[2
1]

4
0

N
o

2
A
R
W
H
E
A
D
20

[2
1]

20
0

N
o

46
PE

N
A
LT

Y
1_
10

[2
1]

10
0

N
o

3
B
A
R
D

[3
5]

3
0

N
o

47
PE

N
A
LT

Y
1_
20

[2
1]

20
0

N
o

4
B
D
Q
R
T
IC
10

[2
1]

10
0

N
o

48
PE

N
A
LT

Y
2_
4

[2
1]

4
0

N
o

5
B
D
Q
R
T
IC
20

[2
1]

20
0

N
o

49
PE

N
A
LT

Y
2_
10

[2
1]

10
0

N
o

6
B
E
A
L
E

[3
5]

2
0

N
o

50
PE

N
A
LT

Y
2_
20

[2
1]

20
0

N
o

7
B
IG

G
S

[2
1]

6
0

N
o

51
PE

N
TA

G
O
N

[3
0]

6
15

N
o

8
B
O
X

[3
5]

3
0

N
o

52
PI
G
A
C
H
E

[3
9]

4
11

Y
es

9
B
R
A
N
IN

[2
2]

2
0

Y
es

53
PO

L
A
K
2

[3
0]

10
0

N
o

10
B
R
O
W
N
A
L
5

[2
1]

5
0

N
o

54
PO

W
E
L
L
_B

S
[3
5]

2
0

N
o

11
B
R
O
W
N
A
L
7

[2
1]

7
0

N
o

55
PO

W
E
L
L
SG

4
[2
1]

4
0

N
o

12
B
R
O
W
N
A
L
10

[2
1]

10
0

N
o

56
PO

W
E
L
L
SG

8
[2
1]

8
0

N
o

13
B
R
O
W
N
A
L
20

[2
1]

20
0

N
o

57
PO

W
E
L
L
SG

12
[2
1]

12
0

N
o

14
B
R
O
W
N
D
E
N
N
IS

[3
5]

4
0

N
o

58
PO

W
E
L
L
SG

20
[2
1]

20
0

N
o

15
B
R
O
W
N
_B

S
[3
5]

2
0

N
o

59
R
A
D
A
R

[3
4]

7
0

Y
es

16
C
H
E
N
W
A
N
G
_F

2
[1
2]

8
6

Y
es

60
R
A
N
A

[2
5]

2
0

Y
es

17
C
H
E
N
W
A
N
G
_F

3
[1
2]

10
8

Y
es

61
R
A
ST

R
IG

IN
[2
2]

2
0

Y
es

18
C
R
E
SC

E
N
T

[3
]

10
2

N
o

62
R
O
SE

N
B
R
O
C
K

[3
5]

2
0

Y
es

19
D
IS
K

[3
]

10
1

N
o

63
SH

O
R

[3
0]

5
0

N
o

20
E
L
A
T
TA

R
[3
0]

6
0

N
o

64
SN

A
K
E

[3
]

2
2

N
o

123

344 C. Audet, C. Tribes

Ta
bl

e
1

co
nt
in
ue
d

N
o.

N
am

e
So

ur
ce

n
m

B
nd

s
N
o.

N
am

e
So

ur
ce

n
m

B
nd

s

21
E
V
D
61

[3
0]

6
0

N
o

65
SP

R
IN

G
[4
1]

3
4

Y
es

22
FI
LT

E
R

[3
0]

9
0

N
o

66
SR

O
SE

N
B
R
6

[2
1]

6
0

N
o

23
FR

E
U
D
E
N
ST

E
IN

R
O
T
H

[3
5]

2
0

N
o

67
SR

O
SE

N
B
R
8

[2
1]

8
0

N
o

24
G
A
U
SS

IA
N

[3
5]

3
0

N
o

68
SR

O
SE

N
B
R
10

[2
1]

10
0

N
o

25
G
21

0
[4
]

10
2

Y
es

69
SR

O
SE

N
B
R
20

[2
1]

20
0

N
o

26
G
22

0
[4
]

20
2

Y
es

70
T
R
E
FE

T
H
E
N

[2
5]

2
0

Y
es

27
G
R
IE
W
A
N
K

[2
2]

10
0

Y
es

71
T
R
ID

IA
10

[2
1]

10
0

N
o

28
G
U
L
FR

D
[3
5]

3
0

N
o

72
T
R
ID

IA
20

[2
1]

20
0

N
o

29
H
E
L
IC
A
LV

A
L
L
E
Y

[3
5]

3
0

N
o

73
T
R
IG

O
N
O
M
E
T
R
IC

[3
5]

10
0

N
o

30
H
S1

9
[2
3]

2
2

Y
es

74
V
A
R
D
IM

8
[2
1]

8
0

N
o

31
H
S7

8
[3
0]

5
0

N
o

75
V
A
R
D
IM

10
[2
1]

10
0

N
o

32
H
S8

3
[2
3]

5
6

Y
es

76
V
A
R
D
IM

20
[2
1]

20
0

N
o

33
H
S1

14
[3
0]

9
6

Y
es

77
W
A
N
G
W
A
N
G
_F

3
[4
6]

2
0

Y
es

34
JE
N
N
R
IC
H
SA

M
PS

O
N

[3
5]

2
0

N
o

78
W
A
N
G
W
A
N
G
_F

5
[4
6]

2
0

Y
es

35
K
O
W
A
L
IK

O
SB

O
R
N
E

[3
5]

4
0

N
o

79
W
A
T
SO

N
9

[3
5]

9
0

N
o

36
M
A
D
6

[3
0]

5
7

N
o

80
W
A
T
SO

N
12

[3
5]

12
0

Y
es

37
M
C
K
IN

N
O
N

[3
2]

2
0

N
o

81
W
O
N
G
1

[3
0]

7
0

N
o

38
M
D
O

[4
4]

10
10

Y
es

82
W
O
N
G
2

[3
0]

10
0

N
o

39
M
E
Z
M
O
N
T
E
S

[3
3]

2
2

Y
es

83
W
O
O
D
S4

[2
1]

4
0

N
o

40
M
E
Y
E
R

[3
5]

3
0

N
o

84
W
O
O
D
S1

2
[2
1]

12
0

N
o

41
O
PT

E
N
G
_R

B
F

[2
7]

3
4

Y
es

85
W
O
O
D
S2

0
[2
1]

20
0

N
o

42
O
SB

O
R
N
E
1

[3
5]

5
0

N
o

86
TA

O
W
A
N
G
_F

2
[4
3]

7
4

Y
es

43
O
SB

O
R
N
E
2

[3
0]

11
0

N
o

87
Z
H
A
O
W
A
N
G
_F

5
[4
7]

13
9

Y
es

44
PB

C
1

[3
0]

5
0

N
o

123

Mesh-based Nelder–Mead algorithm for inequality… 345

0

10

20

30

40

50

60

70

80

90

100

Groups of n+1 evaluations

P
er
ce
nt
ag

e
of

pr
ob

le
m
s
so
lv
ed

Mads-NM π = (8, 0.01, 80n) w/o models
Mads-NM π = (2, 0.05, 20n) w/o models
Mads-NM π = (1, 0.1, 5n) w/o models
Mads w/o models

(a)

200 400 600 800 1000 1200 1400 1600200 400 600 800 1000 1200 1400 1600
0

10

20

30

40

50

60

70

80

90

100

Groups of n+1 evaluations
P
er
ce
nt
ag

e
of

pr
ob

le
m
s
so
lv
ed

Mads-NM w models
Mads-NM w/o models
Mads w models
Mads w/o models

(b)

Fig. 3 Data profiles obtained with convergence tolerance τ = 10−5 on 10 replications of 87 analytical
problems,with differentNM settings (left) andwith quadraticmodels (right). aExperimentswith parameters
π and b comparison with and without models

value threshold and evaluation budget parameters are fixed: πsvd = 0.01 and πeval =
80n, and the sampling radius is varied: πradius ∈ {1, 2, 4, 8, 16}. Performances
are similar for πradius ∈ {8, 16}. We have selected πradius = 8. Finally, varying
separately πsvd and πeval shows no improvement. These intensive computational tests
were possible because the analytical formulations of the 87 test problems are available.

Figure 3a shows a representative sample of data profiles obtained for three distinct
sets of parameters forMads-NM. Similar plots were obtained with τ = 10−3 and τ =
10−7 but are not presented for readability. These experiments allow us to conclude that

π = (πsvd, πeval, πradius) = (0.01, 80n, 8)

is a satisfactory set of parameters for the problems at hand, andwe use these parameters
for all remaining tests.

Figure 3b illustrates a second series of tests to evaluate the performance ofMads-
NMwith and without the use of quadratic models. The results demonstrate thatMads-
NM outperforms Mads. Surprisingly Mads-NM without quadratic models performs
better than Mads with quadratic models when the number of function evaluations
exceeds ∼ 350 × (n + 1). The combined use of quadratic models and the NM search
dominates all other algorithmic variants on these analytical problems.

5.2 Comparison with NM on unconstrained optimization

The Mads-NM algorithm can be launched on unconstrained optimization problems,
and may be compared to Matlab’s fminsearch, an implementation [28] of the NM
algorithm, fminsearch Adapt (same Matlab code as fminsearch but the expansion,
contraction, and shrink parameters depend upon the dimension of the problem n as

123

346 C. Audet, C. Tribes

Fig. 4 Data profiles using
Mads-NM, Mads, fminsearch,
fminsearch Adapt, and gridNM
with a convergence tolerance of
τ = 10−5 on one replication of
68 test problems without
constraints other than bounds

200 400 600 800 1000 1200 1400 1600
0

10

20

30

40

50

60

70

80

90

100

Groups of n+1 evaluations

Pe
rc

en
ta

ge
 o

f p
ro

bl
em

s s
ol

ve
d

suggested in [20]) and gridNM , an implementation [10] of the grid restrained NM
algorithm. In order tomake this comparison, we extract from the previous 87 analytical
problems, the ones without constraints other than bounds (m = 0 in Table 1). This
yields a subset of 68 test problems.

With fminsearch, a single initial point is considered from which an initial simplex
is automatically created and the algorithm does not depend on a random number
generator. The same initial simplex selection as in fminsearch is used for the gridNM
and fminsearch Adapt algorithms. For fair comparison, both the Mads and Mads-
NM algorithms are run only once for all test problems.

The data profiles in Fig. 4 illustrate that gridNM , fminsearch Adapt and both
Mads and Mads-NM without quadratic models outperform Matlab’s fminsearch.
Again Mads-NM is the dominating algorithm.

5.3 The LOCKWOOD problems

The Mads and Mads-NM algorithms with quadratic models are tested to solve the
basic version of a pump-and-treat groundwater remediation problem from Montana
Lockwood Solvent Groundwater Plume Site [31]. Each initial point defines a LOCK-
WOOD problem. Solving the problem consists in minimizing the operating costs
subject to 2 constraints on the flux of two contaminant plumes obtained from the
Bluebird simulator [16]. The problem has 6 design variables bounded in [0; 20000]6.

Figure 5 shows the optimization history when solving 20 LOCKWOOD problems
from different initial points randomly selected in the hyper-rectangle [0; 20000]6.
The graphs plot the evolution of the incumbent solution value versus the number of
function evaluations. The right-hand-side plot zooms inon lower values of the objective
function values. For 5 initial points, theMads-NM algorithm fails to reach the feasible
region andMads fails 4 times. However, the figure shows thatMads-NM finds more

123

Mesh-based Nelder–Mead algorithm for inequality… 347

0 500 1000 1500

104.4

104.5

104.6

104.7

104.8

104.9

Evaluations

f

Mads-NM w models
Mads w models

200 400 600 800 1000 1200 1400

2.2

2.4

2.6

2.8

3

3.2

3.4

Evaluations

f
/1
04

Mads-NM w models
Mads w models

(a) (b)

Fig. 5 Optimization history on 20 LOCKWOOD problems (right plot is a zoom on low objective values)

200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

90

100

Evaluations

P
er
ce
nt
ag

e
of

pr
ob

le
m
s
so
lv
ed

Mads-NM w models
Mads w models

(a)

200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

90

100

Evaluations

P
er
ce
nt
ag

e
of

pr
ob

le
m
s
so
lv
ed

Mads-NM w models
Mads w models

(b)

Fig. 6 Data profiles obtained with convergence tolerance τ on 20 LOCKWOOD problems. a τ = 10−1

and b τ = 10−2

solutions with a lower objective function value than Mads. This observation is also
clearly apparent in the data profiles of Fig. 6.

5.4 The MDO problems

The Mads and Mads-NM algorithms with quadratic models are tested to solve a
simple multidisciplinary wing design optimization problem [44]. Each initial point
defines a MDO problem. Solving the problem consists in maximizing the range of an
aircraft subject to 10 constraints. The problem has 10 scaled design variables bounded
in the hyper-rectangle [0; 100]10.

Figure 7a shows the optimization historywhen solving 20MDOproblems on differ-
ent initial points using 1500 function evaluations or less. The initial points are integers

123

348 C. Audet, C. Tribes

0 500 1000 1500
−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

Evaluations

f

Mads-NM w models
Mads w models

200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

90

100

Evaluations

P
er
ce
nt
ag
e
of

pr
ob

le
m
s
so
lv
ed

Mads-NM w models
Mads w models

Fig. 7 Mads and Mads-NM with quadratic models on 20 MDO problems. a Optimization history and b
Data profiles with τ = 10−2

randomly selected within the bounds. For 1 initial point, the Mads-NM algorithm
fails to reach the feasible region andMads fails 2 times. The plot of the optimization
history and the data profiles from Fig. 7 show that the behaviour of both theMads-NM
and Mads algorithm is similar. For large number of evaluations, Mads-NM solves
slightly more problems than Mads.

In contrast with the previous subsections, the numerical experiments on the MDO
problems do not reveal a dominant algorithm.

5.5 The STYRENE problems

The Mads and Mads-NM algorithms with quadratic models are tested to optimize
a styrene production process [1]. The simulation of the chemical process relies on a
series of interdependent calculation blocks using common numerical methods such
as Runge-Kutta, Newton, fixed point and also chemical related solvers. Once the
simulation of the process is successfully completed, the constraints and objective can
be evaluated during a post-processing. The objective is to maximize the net present
value of the styrene production processwith 9 industrial and environmental regulations
constraints. The simulation and post-processing are combined in a blackbox. If the
simulation of the chemical process cannot succeed for an iterate, a blackbox evaluation
failure is returned.

In this work, a STYRENE problem possesses eight 8 independent variables influ-
encing the styrene production process. The variables considered during optimization
are all scaled and bounded in X = [0; 100]8. As a reference, we use the initial point
x ref provided in [1]. From this reference point, 20 STYRENE problems have been
created by randomly generating integer initial point in an hyper-rectangle of radius
10 centred at x ref (the points are projected on X if necessary). For all initial points,
both theMads andMads-NM algorithms reach the feasible region from every initial
point. The history plots of the Mads and Mads-NM runs using 1500 evaluations or

123

Mesh-based Nelder–Mead algorithm for inequality… 349

Fig. 8 Optimization history on
20 STYRENE problems

200 400 600 800 1000 1200 1400
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Evaluations

f
/
10

7

Mads-NM w models
Mads w models

200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

80

90

100

Evaluations

P
er
ce
nt
ag

e
of

pr
ob

le
m
s
so
lv
ed

Mads-NM w models
Mads w models

(a)

200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

80

90

100

Evaluations

P
er
ce
nt
ag

e
of

pr
ob

le
m
s
so
lv
ed

Mads-NM w models
Mads w models

(b)

Fig. 9 Data profiles obtained with two convergence tolerances on 20 STYRENE problems. a τ = 10−2

and b τ = 10−3

less are presented in Fig. 8. Different local minimizers are reached by the algorithms,
but the figure does not clearly indicate which algorithm is preferable.

Data profiles with convergence tolerances of τ = 10−2 and 10−3 are presented in
Fig. 9. The profiles with τ = 10−3 shows a dominance of Mads-NM over the Mads
algorithm.

6 Discussion

The paper introduces a way to extend theNM direct search algorithm so that it handles
general inequality constraints. This is achieved by defining a NM search step within

123

350 C. Audet, C. Tribes

the Mads algorithm. The NM search points form simplices, ordered by a transitive
relation involving both the objective and constraint violation function values. The
simplices are reflected, expanded and contracted as in the original algorithm, except
that the trial points are rounded to the current mesh. This last operation is necessary
in order to inherit from the rich Mads hierarchical convergence analysis. Each NM
search step is interrupted as soon as the vertices fail to form a simplex, or when a
vertex is replaced by a previously visited point. The resulting algorithm is applicable
to both unconstrained and inequality constrained blackbox optimization problems.

Numerical experiments on unconstrained optimization problems show that the
resultingMads-NM algorithm outperforms theMatlab implementations ofNM (fmin-
search and fminsearch Adapt), the gridNM algorithm, as well as the previous
implementation ofMads with and without the use of quadratic models. Experiments
on three constrained engineering problems suggest that the behaviour of Mads-NM
andMads is comparable during the first few hundreds of function evaluations. But as
the number of function evaluations grows, theMads-NM algorithm typically finds bet-
ter feasible solutions thanMads. The difference in the percentage of problems solved
in the data profiles is approximately 5% for the MDO problems (with τ = 10−2),
25% for the STYRENE problems (with τ = 10−3) and more than 50% for the LOCK-
WOOD problems (with τ = 10−2).

The beta version 3.8.2 of theNOMAD blackbox optimization software uses theNM
search step as described in the present paper, and contains all test problems considered
with their reference initial point.

Acknowledgements Thiswork is supported byNSERCCRDGrant (#RDCPJ490744 - 15) in collaboration
with Hydro-Québec and Rio Tinto. The authors wish to thank Shawn Mattot, Genetha Gray, and Stefan
Wild for making the LOCKWOOD problem available.

References

1. Audet, C., Béchard, V., Le Digabel, S.: Nonsmooth optimization through mesh adaptive direct search
and variable neighborhood search. J. Global Optim. 41(2), 299–318 (2008)

2. Audet, C., Dennis Jr., J.E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM
J. Optim. 17(1), 188–217 (2006)

3. Audet, C., Dennis Jr., J.E.: A progressive barrier for derivative-free nonlinear programming. SIAM J.
Optim. 20(1), 445–472 (2009)

4. Audet, C., Dennis Jr., J.E., Le Digabel, S.: Parallel space decomposition of the mesh adaptive direct
search algorithm. SIAM J. Optim. 19(3), 1150–1170 (2008)

5. Audet, C., Hare, W.: Derivative-Free and Blackbox Optimization. Springer Series in Operations
Research and Financial Engineering. Springer, Berlin (2017)

6. Audet, C., Ianni, A., Le Digabel, S., Tribes, C.: Reducing the number of function evaluations in mesh
adaptive direct search algorithms. SIAM J. Optim. 24(2), 621–642 (2014)

7. Audet, C., Kokkolaras, M., Le Digabel, S., Talgorn, B.: Order-based error for managing ensembles of
surrogates in derivative-free optimization. J. Global Optim. 70(3), 645–675 (2018)

8. Audet, C., Le Digabel, S., Tribes, C.: Dynamic scaling in the mesh adaptive direct search algorithm
for blackbox optimization. Optim. Eng. 17(2), 333–358 (2016)

9. Brea, E.: An extension of Nelder–Mead method to nonlinear mixed-integer optimization problems.
Rev. Int. Métod. Numér. Cálc Diseño Ing. 29(3), 163–174 (2013)

10. Bűrmen,Á., Puhan, J., Tuma, T.: Grid restrainedNelder–Mead algorithm. Comput. Optim.Appl. 34(3),
359–375 (2006)

123

Mesh-based Nelder–Mead algorithm for inequality… 351

11. Chang, K.H.: Stochastic Nelder–Mead simplex method—a new globally convergent direct search
method for simulation optimization. Eur. J. Oper. Res. 220(3), 684–694 (2012)

12. Chen, X., Wang, N.: Optimization of short-time gasoline blending scheduling problem with a DNA
based hybrid genetic algorithm. Chem. Eng. Process. 49(10), 1076–1083 (2010)

13. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983). (reissued in 1990 by
SIAM Publications, Philadelphia, as Vol. 5 in the series Classics in Applied Mathematics)

14. Conn, A.R., Le Digabel, S.: Use of quadratic models with mesh-adaptive direct search for constrained
black box optimization. Optim. Methods Softw. 28(1), 139–158 (2013)

15. Coope, I.D., Price, C.J.: Frame-based methods for unconstrained optimization. J. Optim. Theory Appl.
107(2), 261–274 (2000)

16. Craig, J.: Bluebird developer manual. http://www.civil.uwaterloo.ca/jrcraig/pdf/bluebird_developers_
manual.pdf (2002). Accessed 11 June 2018

17. Dennis Jr., J.E., Woods, D.J.: Optimization on microcomputers: The Nelder–Mead simplex algorithm.
In: Wouk, A. (ed.) New Computing Environments: Microcomputers in Large-Scale Computing, pp.
116–122. Society for Industrial and Applied Mathematics, Philadelphia, PA (1987)

18. Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Program. Ser. A
91, 239–269 (2002)

19. Fletcher, R., Leyffer, S., Toint, PhL: On the global convergence of a filter-SQP algorithm. SIAM J.
Optim. 13(1), 44–59 (2002)

20. Gao, F., Han, L.: Implementing theNelder–Mead simplex algorithmwith adaptive parameters. Comput.
Optim. Appl. 51(1), 259–277 (2012)

21. Gould, N.I.M., Orban, D., Toint, PhL: CUTEr (and SifDec): a constrained and unconstrained testing
environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394 (2003)

22. Hedar, A.-R.: Global optimization test problems. http://www-optima.amp.i.kyoto-u.ac.jp/member/
student/hedar/Hedar_files/TestGO.htm (2017). Accessed 11 June 2018

23. Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes, Lecture Notes in
Economics and Mathematical Systems, vol. 187. Springer, Berlin (1981)

24. Jahn, J.: Introduction to the Theory of Nonlinear Optimization. Springer, Berlin (1994)
25. Jamil, M., Yang, X.-S.: A literature survey of benchmark functions for global optimisation problems.

Int. J. Math. Modell. Numer. Optim. 4(2), 150–194 (2013)
26. Kelley, C.T.: Detection and remediation of stagnation in the Nelder–Mead algorithm using a sufficient

decrease condition. SIAM J. Optim. 10(1), 43–55 (1999)
27. Kitayama, S., Arakawa, M., Yamazaki, K.: Sequential approximate optimization using radial basis

function network for engineering optimization. Optim. Eng. 12(4), 535–557 (2011)
28. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder–Mead

simplex method in low dimensions. SIAM J. Optim. 9, 112–147 (1998)
29. Le Digabel, S.: Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM

Trans. Math. Softw. 37(4), 44:1–44:15 (2011)
30. Lukšan, L., Vlček, J.: Test problems for nonsmooth unconstrained and linearly constrained optimiza-

tion. Technical Report V-798, ICS AS CR (2000)
31. Matott, L.S., Leung, K., Sim, J.: Application of MATLAB and Python optimizers to two case studies

involving groundwater flow and contaminant transport modeling. Comput. Geosci. 37(11), 1894–1899
(2011)

32. McKinnon, K.I.M.: Convergence of the Nelder–Mead simplex method to a nonstationary point. SIAM
J. Optim. 9(1), 148–158 (1998)

33. Mezura-Montes, E., Coello, C.A.: Useful infeasible solutions in engineering optimization with evo-
lutionary algorithms. In: Proceedings of the 4th Mexican International Conference on Advances in
Artificial Intelligence, MICAI’05, pp. 652–662, Springer, Berlin (2005)

34. Mladenović, N., Petrović, J., Kovačević-Vujčić, V., Čangalović, M.: Solving spread spectrum radar
polyphase code design problem by tabu search and variable neighbourhood search. Eur. J. Oper. Res.
151(2), 389–399 (2003)

35. Moré, J.J., Garbow, B.S., Hillstrom, Kenneth E.: Testing unconstrained optimization software. ACM
Trans. Math. Softw. 7(1), 17–41 (1981)

36. Moré, J.J., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20(1),
172–191 (2009)

37. Nazareth, L., Tseng, P.: Gilding the lily: a variant of the Nelder–Mead algorithm based on golden-
section search. Comput. Optim. Appl. 22, 133–144 (2002)

123

http://www.civil.uwaterloo.ca/jrcraig/pdf/bluebird_developers_manual.pdf
http://www.civil.uwaterloo.ca/jrcraig/pdf/bluebird_developers_manual.pdf
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm

352 C. Audet, C. Tribes

38. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)
39. Pigache, F., Messine, F., Nogarede, B.: Optimal design of piezoelectric transformers: a rational

approach based on an analytical model and a deterministic global optimization. IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 54(7), 1293–1302 (2007)

40. Price, C.J., Coope, I.D., Byatt, D.: A convergent variant of the Nelder–Mead algorithm. J. Optim.
Theory Appl. 113(1), 5–19 (2002)

41. Rodríguez, J.F., Renaud, J.E.,Watson, L.T.: Trust region augmented Lagrangianmethods for sequential
response surface approximation and optimization. J. Mech. Des. 120(1), 58–66 (1998). 03

42. Strasser, M.: Übertrangung des Optimierungsverfahrens von Nelder und Mead auf restringierte Prob-
leme. Diploma thesis, Numerical Mathematics Group, Technical University of Darmstadt, Germany
(1994)

43. Tao, J., Wang, N.: DNA double helix based hybrid GA for the gasoline blending recipe optimization
problem. Chem. Eng. Technol. 31(3), 440–451 (2008)

44. Tribes, C., Dubé, J.-F., Trépanier, J.-Y.: Decomposition of multidisciplinary optimization problems:
formulations and application to a simplified wing design. Eng. Optim. 37(8), 775–796 (2005)

45. Tseng, P.: Fortified-descent simplicial search method: a general approach. SIAM J. Optim. 10(1),
269–288 (1999)

46. Wang, K., Wang, N.: A novel RNA genetic algorithm for parameter estimation of dynamic systems.
Chem. Eng. Res. Des. 88(11), 1485–1493 (2010)

47. Zhao, J., Wang, N.: A bio-inspired algorithm based on membrane computing and its application to
gasoline blending scheduling. Comput. Chem. Eng. 35(2), 272–283 (2011)

123

	Mesh-based Nelder–Mead algorithm for inequality constrained optimization
	Abstract
	1 Introduction
	2 The NM unconstrained optimization algorithm
	3 The Mads constrained optimization algorithm
	4 The Mads-NM constrained optimization algorithm
	4.1 Ordering trial points
	4.2 Construction of a simplex on a mesh
	4.3 The NM-search step

	5 Computational experiments
	5.1 Preliminary experiments to calibrate parameters
	5.2 Comparison with NM on unconstrained optimization
	5.3 The LOCKWOOD problems
	5.4 The MDO problems
	5.5 The STYRENE problems

	6 Discussion
	Acknowledgements
	References

