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Abstract The robust truss topology optimization against the uncertain static external
load can be formulated asmixed-integer semidefinite programming. Although a global
optimal solution can be computed with a branch-and-bound method, it is very time-
consuming. This paper presents an alternative formulation, semidefinite programming
with complementarity constraints, and proposes an efficient heuristic. The proposed
method is based upon the concave–convex procedure for difference-of-convex pro-
gramming. It is shown that the method can often find a practically reasonable truss
design within the computational cost of solving some dozen of convex optimization
subproblems.

Keywords Robust optimization · Design-dependent load · Complementarity
constraint · Semidefinite programming · Difference-of-convex programming ·
Concave–convex procedure

1 Introduction

Many studies have been done on robust optimization of structures against uncertainty
in external loads. A possibilistic (or bounded-but-unknown) model of uncertainty,
assuming only the set of values that the input data can possibly take, might be useful
when reliable statistical property of uncertainty, which is required for a probabilistic
model of uncertainty, is unavailable or imprecise. With a possibilistic model of uncer-
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tainty, design optimization considering structural robustness against the uncertainty is
treated within the framework of robust optimization [5].

Attention of this paper is focused on robust topology optimization of truss structures
against uncertainty in the static nodal external load.1 Namely, we attempt to find a
truss design that minimizes the worst-case compliance, i.e., the maximal value of the
compliance among the specified set of external loads.2 The seminal work of Ben-Tal
and Nemirovski [7] shows that, based on the conventional ground structure method,
this optimization problem can be formulated as semidefinite programming (SDP).3

SDP is a class of convex optimization, and can be solved efficiently with a primal-dual
interior-point method [3,60]. Closely related formulations of continuum-based robust
structural optimization can be found in Cherkaev and Cherkaev [12,13], Calafiore
and Dabbene [11], de Gournay et al. [16], Takezawa et al. [57], Brittain et al. [10],
Hashimoto and Kanno [25] and Thore [58]. Furthermore, nonlinear SDP approaches
to robust structural optimization have been proposed in Guo et al. [22,24], Kanno and
Takewaki [33], and Holmberg et al. [26]. This paper discusses and deals with intrinsic
difficulty in robust truss topology optimization.

Suppose that uncertain external forces can possibly be applied at any nodes, and
that no external force is applied at an intermediate point of a truss member. If the
set of exiting nodes is specified, then the robust truss optimization problem can be
recast as SDP [7]. In this approach, all the nodes in the specified set remain in the
obtained solution. Also, the obtained solution can possibly have some nodes other than
the specified ones, but at such extra nodes no uncertain external force is considered.
Thus, it is difficult to predict in advance the set of existing nodes in the robust optimal
truss. In other words, the uncertainty model of external forces should be treated as
a design-dependent model [32]. This design dependency can be addressed by intro-
ducing 0–1 variables to represent the set of existing members in a truss design [61].
The robust truss topology optimization problem is then formulated as mixed-integer
semidefinite programming problem (MISDP), which can be solved globally with a
branch-and-bound method [61]. Unfortunately, due to large computational cost, this
MISDP approach can be applied only to small-scale problem instances [61].

Another issue that has not been considered in literature on robust truss topology
optimization [7,32,61] is the treatment of parallel consecutive members in the ground
structure method. Specifically, in robust truss topology optimization with uncertain
external load, overlapping members in the ground structure are not redundant.4 Such
non-redundancy of overlapping members has also been recognized in truss topology

1 A truss is an assemblage of straight bars (called members) connected by pin-joints (called nodes) that do
not transfer moment. See Sect. 2 for some concrete examples.
2 The compliance of a truss, formally defined by (16), is equivalent to the twice strain energy of the truss
at the equilibrium state under the prescribed boundary conditions (as far as the prescribed displacements
are zeros [35]). It can be regarded as a global measure of the displacements, and hence by minimizing the
compliance the global stiffness of the truss is maximized.
3 The ground structure method is commonly used in truss topology optimization. It prepares an initial
setting, called the ground structure, consisting of many members connected by nodes. The cross-sectional
areas of the members are treated as design variables, while the locations of the nodes are specified. See
Sect. 2 for more account.
4 With reference to concrete examples, we will thoroughly discuss this issue in Sect. 2.
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optimization considering the self-weight load [8,34] and the member buckling con-
straints [23,41]. Consider the conventional truss topology optimization. It is often that
the optimal solution has parallel consecutive members that are connected by nodes
supported only in the direction of those members. A sequence of such members is
sometimes called a chain [1]. If only the compliance is considered as the structural
performance, one can remove the intermediate nodes and replace the chain with a
single longer member. This procedure is called the hinge cancellation [1,49]. Since
the hinge cancellation does not change the compliance, overlapping of members in a
ground structure can be removed in advance by deleting the longer member when two
members overlap. In contrast, in robust truss optimization under load uncertainties, a
solution having a chain is infeasible,5 while the one stabilized by hinge cancellation
can be feasible. This means that, in general, a global optimal truss topology cannot
be captured without incorporating overlapping members in a ground structure. How-
ever, on the other hand, presence of overlapping members in a final truss design is not
allowed from a practical point of view. Therefore, a special treatment is required in a
robust optimization method to prohibit the presence of overlapping members.

This paper addresses the two difficulties in robust truss optimization explained
above: the design dependency of the uncertainty model of the external load and the
necessity of incorporating overlapping members in a ground structure. Both can be
dealt with by introducing, for each member, a 0–1 design variable indicating whether
the member vanishes or exists. Therefore, the robust truss topology optimization can
be formulated as MISDP; see Sect. 4.2. However, as mentioned before, this approach
is applicable only to problems of small size. In contrast, in this paper we attempt to
propose a heuristic that can often find a feasible solution with a reasonable objective
value. Through the numerical experiments with problem instances having up to about
700 members, it is shown that the proposed method usually converges after solving
only a few dozen of convex optimization subproblems, and that it finds a practically
reasonable solution.

This paper is partially inspired by papers of Jara-Moroni et al. [30] and Lipp and
Boyd [39]. Jara-Moroni et al. [30] present a DC (difference-of-convex) programming
approach to finding a stationary point of linear programming with complementarity
constraints; see also Le Thi and Pham Dinh [38] and Muu et al. [43] for DC pro-
gramming approaches to complementarity constraints. A function is said to be a DC
(difference-of-convex) function if it can be represented as a difference of two convex
functions. A DC programming problem is a minimization problem of a DC function
under some inequality constraints, where all the constraint functions are DC functions.
One of well-known heuristics for finding a local optimal solution of DC programming
is the concave–convex procedure6 [14,18,44,50,64]. Lipp and Boyd [39] show that
an extension of the concave–convex procedure can serve as an efficient heuristic for
diverse nonconvex optimization problems. For more account on the DC programming
and the concave–convex procedure, see Sect. 3.1 and the references therein. In this
paper, we first formulate the robust truss topology optimization as semidefinite pro-

5 A solution having a chain cannot be in equilibrium with uncertain loads applied at intermediate nodes of
the chain. Therefore, the worst-case compliance of the solution is infinitely large.
6 The concave–convex procedure is also known as the convex–concave procedure [39,62].
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gramming with complementarity constraints (SDPCC). Following an idea found in
Jara-Moroni et al. [30], we recast this problem as a DC programming problem. A
variant of the concave–convex procedure, which is similar to the one in Lipp and
Boyd [39], is then applied to this DC programming formulation. Each iteration of the
proposed method consists of solving an SDP problem.

The paper is organized as follows. In Sect. 2 we explain intrinsic difficulties in
robust truss topology optimization by using some illustrative examples. Section 3
provides an overview of the necessary background of the DC programming and the
concave–convex procedure, and presents the general framework of the algorithm used
in this paper. Section 4 briefly reviews the existingMISDP formulation for robust truss
topology optimization, and extends it to the problem setting with a ground structure
incorporating overlapping members. Section 5 presents a new formulation, as well as
a solution method, of robust truss topology optimization. Section 6 reports the results
of numerical experiments. Conclusions are drawn in Sect. 7.

In our notation, we use x� and X� to denote the transposes of vector x ∈ R
n and

matrix X ∈ R
m×n , respectively. For vectors x = (xi ) ∈ R

n and y = (yi ) ∈ R
n ,

we write x ≥ y if xi ≥ yi (i = 1, . . . , n). Particularly, x ≥ 0 means xi ≥ 0
(i = 1, . . . , n). The Euclidean norm of x is denoted by ‖x‖ = √

x�x. We use
1 = (1, 1, . . . , 1)� to denote the all-ones vector. Let Sn denote the set of n × n real
symmetric matrices. We write X � 0 if X ∈ Sn is positive semidefinite. We use
diag(x) to denote a diagonal matrix, the vector of diagonal entries of which is x. For
a finite set T , we use |T | to denote the cardinality of T , i.e., the number of elements
in T .

2 Motivation

In this section, we explain intrinsic difficulties in robust truss topology optimization,
whichmotivate us to develop themethodproposed in this paper.Details of the examples
in this section appear in Sect. 6.1.

Suppose that uncertain static external forces are possibly applied at all the nodes.
The robust truss topology optimization is to find a truss design that minimizes the
worst-case compliance, i.e., the maximum value of the compliance among possible
realizations of the external load, under the upper bound constraint on the structural
volume.

With reference to the examples in Figs. 1 and 2, we explain that incorporating
overlapping members into a ground structure is necessary for the robust truss topol-
ogy optimization. We begin with the conventional compliance minimization, without
considering uncertainties. Figure 1a shows a ground structure, which consists of 12
members and has no overlapping members. The ground structure is an initial setting
for truss topology optimization. The members consisting of a ground structure are
called the candidate members, and their cross-sectional areas are design variables to
be optimized. It is worth noting that the locations of the nodes are not treated as design
variables. If the cross-sectional area of a member becomes equal to zero as a result of
optimization, then the member is removed from the truss. Thus, the connectivity of
members, called the topology in this research area, usually changes from the ground
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(a) (b) (c)

Fig. 1 An example of the conventional compliance minimization. a The ground structure (with 12 mem-
bers); b the optimal solution; and c the final truss design after hinge cancellation

(a) (b) (c)

Fig. 2 The robust optimization corresponding to the example in Fig. 1. a The optimal solution obtained
from the ground structure in Fig. 1a; b the ground structure including overlapping members (14 members
in total); and c the global optimal solution

structure. Suppose that a vertical external load is applied at the rightmost bottom node,
as shown in Fig. 1a. The optimal solution is shown in Fig. 1b, where the width of each
member is proportional to its cross-sectional area. This solution has a chain consisting
of two members. The hinge cancellation yields the final truss design shown in Fig. 1c.
It should be clear that the objective value, i.e., the compliance, of the solution in Fig. 1c
is same as the one in Fig. 1b.We next consider the robust optimization. Since uncertain
external force is supposed to be applied also at the intermediate node of the chain,
the solution in Fig. 1b becomes infeasible. As a result, the optimal solution has one
additional member to stabilize that node, as shown in Fig. 2a. Alternatively, consider
a ground structure in Fig. 2b, which consists of 14 members. The newly added two
members, depicted as slightly curved lines, are in fact straight bars. Therefore, each
of them overlaps with two shorter members, and is called an overlapping members.
Moreover, themiddle node is exactly located on a line forming an overlappingmember.
Therefore, we say that the overlapping member lies on the middle node. The robust
optimal solution obtained from this ground structure is shown in Fig. 2c.7 Namely, at
the global optimal solution, the longer member is selected instead of the chain and the
intermediate node of the chain is removed. Thus, overlapping members do not mean
redundancy, because connection of two members via an intermediate node introduces
an extra uncertain load applied to that node. Similar non-redundancy of overlapping
members in a ground structure can be observed also in, e.g., the compliance mini-
mization of trusses under the self-weight loads [8,34].

7 It should be clear that the worst-case compliance for the solution in Fig. 2c is smaller than that for the
solution in Fig. 2a.
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(a) (b)

(c) (d) (e)

Fig. 3 Difficulties in the robust truss topology optimization. a The ground structure and the nominal
external load; b the optimal solution for the nominal load; c a solution obtained for a design-independent
uncertainty model of the external load; d the robust optimal solution for the design-dependent uncertainty
model and the ground structure without overlapping members (the objective value is 3259.115 J); and
e the robust optimal solution for the design-dependent uncertainty model and the ground structure with
overlapping members (the objective value is 2442.708 J)

A key in this robust optimization is selecting the set of nodes which the optimal
solution has. This is because the uncertainty in external loads depends on the set of
existing nodes, in a manner that uncertain external forces are supposed to be applied
to all the existing nodes. Moreover, a node lying on an existing member should be
removed. The next example illustrates that exploring an optimal set of nodes in a
heuristic manner is indeed difficult.

Consider the problem setting shown in Fig. 3a. Figure 3b shows the optimal solution
of the nominal (i.e., not robust) optimization problem. A simple heuristic to predict
a set of existing nodes in a robust optimal solution is to adopt the set of nodes that
the nominal optimal solution has. Suppose that uncertain external forces are applied
only to the five free nodes that the solution in Fig. 3b has. The optimal solution of this
robust optimization problem is shown in Fig. 3c. This solution has two extra nodes
that the solution in Fig. 3b does not have. Therefore, the solution in Fig. 3c assumes
that external forces are not applied to these two nodes (in this sense, this solution is
not truly robust). On the other hand, Fig. 3d shows the optimal solution of the robust
topology optimization with a ground structure which does not include overlapping
members. It is observed that one of the nodes in Fig. 3c is missing in the solution
in Fig. 3d. Furthermore, Fig. 3e shows the optimal solution of the robust topology
optimization with a ground structure including overlapping members. It is observed
that the three intermediate nodes in Fig. 3b are removed and the two chains are replaced
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(a) (b)

(c) (d)

Fig. 4 A node which is not on a chain can also vanish as a result of the robust topology optimization. a The
ground structure and the nominal external load; b the optimal solution for the nominal load; c the robust
solution obtained for a design-independent uncertainty model of the external load (the objective value is
13934.896 J); d the robust optimal solution for the design-dependent uncertainty model (the objective value
is 11093.750 J)

by longer members. As a result, the objective value of the solution in Fig. 3d is more
than 1.33 times larger than that of the solution in Fig. 3e. Thus, it is crucial to design
an optimization process so as to allow vanishment of intermediate nodes on chains.

It is also possible that a node which is not lying on a chain vanishes as a result of
robust optimization. Consider the problem setting in Fig. 4a. The optimal solution of
the nominal optimization problem is shown in Fig. 4b. If we suppose that uncertain
external forces are applied to the eight free nodes in Fig. 4b, then the solution in
Fig. 4c becomes optimal. Unlike the example in Fig. 3c, uncertain external forces are
supposed to be applied to all the nodes that the solution in Fig. 4c has. In this sense, the
solution in Fig. 4c is a local optimal solution of the robust topology optimization. In
contrast, the global optimal solution of the robust topology optimization is shown in
Fig. 4d.8 It is observed that three nodes in Fig. 4c are missing in Fig. 4d. The objective
value of the solution in Fig. 4c is more than 1.25 times larger than that of the solution
in Fig. 4d. Thus, it is crucial to design an optimization algorithm that can deal with
the design-dependent uncertainty model of the external load.

In Sects. 4 and 5, we propose a formulation and an algorithm for overcoming the
difficulties discussed in this section.

3 Algorithmic framework

As preliminaries, Sect. 3.1 briefly introduces the notion of DC programming and the
concave–convex procedure for solving it. In Sect. 3.2, we introduce the optimization

8 In this example, overlapping longer members are not incorporated into the ground structure, because
with overlappingmembers the global optimization method (YALMIP [40]) did not converge within realistic
computational time.
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problem thatwe consider in this paper, and present an extension of the concave–convex
procedure.

3.1 Fundamentals: DC programming and concave–convex procedure

Let fi , gi : Rn → R (i = 0, 1, . . . ,m) be convex. The optimization problem having
the following form is called a DC programming problem:

Minimize f0(x) − g0(x) (1a)

subject to fi (x) − gi (x) ≤ 0, i = 1, . . . ,m. (1b)

For simplicity, we assume that g0, g1, . . . , gm are differentiable.
The concave–convex procedure is known as a heuristic for finding a local optimal

solution of problem (1). Let x(k) ∈ R
n denote the incumbent value of x at the kth

iteration. Define ĝi ( · ; x(k)) : Rn → R (i = 0, 1, . . . ,m) by

ĝi (x; x(k)) = gi (x(k)) + ∇gi (x(k))�(x − x(k)). (2)

The concave–convex procedure updates the solution by letting x(k+1) be the optimal
solution of the following optimization problem:

Minimize f0(x) − ĝ0(x; x(k)) (3a)

subject to fi (x) − ĝi (x; x(k)) ≤ 0, i = 1, . . . ,m. (3b)

It is worth noting that this subproblem is convex.
For the sequence, {x(k)}, generated by the concave–convex procedure, it is known

that the objective value of (1), i.e., { f0(x(k)) − g0(x(k))}, converges. However, {x(k)}
does not necessarily converges to a local optimal solution; see, e.g., Lipp and Boyd
[39, Sect. 1.3]. Applications of the concave–convex procedure include transductive
support vectormachines (transductive SVMs) [14,18], feature selection in SVMs [44],
sparse learning [19], etc.

The concave–convex procedure can be considered as a version of DCA (difference
of convex algorithm) [45,47]; see Lipp and Boyd [39] and Sriperumbudur and Lanck-
riet [50] for accounts of this fact. For DCA and its applications we direct the reader to
Le Thi and PhamDinh [37] and PhamDinh and Le Thi [46]; an application of DCA in
structural engineering can be found in Stavroulakis and Polyakova [52]. As shown in
Sriperumbudur and Lanckriet [50], the concave–convex procedure can also be viewed
as a variant of MM algorithms (majorization-minimization algorithms) [28,36].9 The
MM algorithm is a generalization of the well-known EM algorithm (expectation-
maximization algorithm) [15]. The MM algorithms have been frequently employed
in machine learning and image processing as seen in, e.g, Hunter and Li [29], Hunter
and Lange [27], Figueiredo et al. [17], Sriperumbudur et al. [51], and Sun et al. [54].

9 In fact, −ĝi (· ; x(k)) is a majorization function of −gi .
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MMA (the method of moving asymptotes) [55,56,65], which is frequently used for
continuum-based topology optimization [9], also solves a sequence of convex opti-
mization approximations of the original problem. MMA approximates the objective
function and the constraint functions by convex linear fractional functions by using
the function values and gradients as well as some parameters controlling the vertical
asymptotes of the generated functions. Also, sequential parametric convex approxi-
mation methods with application to truss optimization can be found in Beck et al. [4]
and Ben-Tal et al. [6].

3.2 Heuristic for convex optimization with complementarity constraints

In this paper we attempt to solve problems having the following form:

Minimize f (ξ , y, z) (4a)

subject to (ξ , y, z) ∈ Ω, (4b)

y ≥ 0, (4c)

z ≥ 0, (4d)

y�z = 0. (4e)

Here, f : Rl × R
n × R

n → R is convex, Ω ⊆ R
l × R

n × R
n is closed and convex,

and the optimization variables are ξ ∈ R
l , y ∈ R

n , and z ∈ R
n . Problem (4) is convex

optimization with complementarity constraints.
Following the idea in Jara-Moroni et al. [30], we can reduce problem (4) to a DC

programming problemas follows.Consider a differentiable functionφ : Rn×R
n → R

satisfying

φ( y, z) = 0 ⇔ y�z = 0,

φ( y, z) ≥ 0 ⇐ y ≥ 0, z ≥ 0.

The complementarity constraints, (4e), can be replaced by a penalization term as
follows:

Minimize f (ξ , y, z) + ρφ( y, z) (5a)

subject to (ξ , y, z) ∈ Ω, (5b)

y ≥ 0, (5c)

z ≥ 0. (5d)

Here, ρ > 0 is a penalty parameter. For sufficiently large ρ, problem (5) is equivalent
to problem (4). We next assume that φ can be decomposed as

φ( y, z) = φ+( y, z) − φ−( y, z),
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where φ+ and φ− are convex. Then problem (5) is reduced to the following form:

Minimize ( f (ξ , y, z) + ρφ+( y, z)) − ρφ−( y, z) (6a)

subject to (ξ , y, z) ∈ Ω, (6b)

y ≥ 0, (6c)

z ≥ 0. (6d)

This is a DC programming problem, because f (ξ , y, z) + ρφ+( y, z) and ρφ−( y, z)
are convex. There exist several different choices for φ, φ+, and φ− [30,38]. In this
paper we adopt

φ( y, z) = ‖ y + z‖2 − ‖ y − z‖2, (7)

φ+( y, z) = ‖ y + z‖2, (8)

φ−( y, z) = ‖ y − z‖2. (9)

To solve problem (5), we apply the concave–convex procedure to problem (6) with
gradually increasing the penalty parameter, ρ. For point ( y(k), z(k)) ∈ R

n ×R
n , define

φ̂−( · ; y(k), z(k)) : Rn × R
n → R by

φ̂−( y, z; y(k), z(k)) = φ−( y(k), z(k))

+ ∇ yφ−( y(k), z(k))�( y − yk) + ∇zφ−( y(k), z(k))�(z − zk). (10)

The proposed algorithm updates the solution by letting (ξ (k+1), y(k+1), z(k+1)) be an
optimal solution of the following convex optimization problem:

Minimize f (ξ , y, z) + ρkφ+( y, z) − ρk φ̂−( y, z; y(k), z(k)) (11a)

subject to (ξ , y, z) ∈ Ω, (11b)

y ≥ 0, (11c)

z ≥ 0. (11d)

A reasonable stopping criterion is that the residual of the complementarity constraints
is small enough, i.e.,

φ( y(k+1), z(k+1)) ≤ ε1, (12)

and the update of the incumbent solution is small enough, i.e.,

‖(ξ (k+1), y(k+1), z(k+1)) − (ξ (k), y(k), z(k))‖ ≤ ε2, (13)

where ε1, ε2 > 0 are thresholds. The algorithm is formally stated in Algorithm 1.10.

10 Choice of an initial point in the numerical experiments is explained in Sect. 6
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Algorithm 1 penalty concave–convex procedure for convex optimization with com-
plementarity constraints

Require: ξ (0) ∈ R
l , y(0) ∈ R

n , z(0) ∈ R
n , ρ0 > 0, ρmax > ρ0, and μ > 1.

1: k ← 0.
2: repeat
3: Let (ξ (k+1), y(k+1), z(k+1)) be an optimal solution of problem (11).
4: ρk+1 ← min{μρk , ρmax}.
5: Set k ← k + 1.
6: until stopping criterion is satisfied.

Remark 1 Algorithm 1 is designed essentially based on the algorithm proposed by
Lipp and Boyd [39] for solving problem (1). In their algorithm, the following sub-
problem is solved to update x(k):

Minimize f0(x) − ĝ0(x; x(k)) + ρk
∑m

i=1 si
subject to fi (x) − ĝi (x; x(k)) ≤ si , i = 1, . . . ,m,

si ≥ 0, i = 1, . . . ,m.

Thus, penalization terms for all the constraints are added to the objective function by
using the �1-exact penalty function. In contrast, in Algorithm 1 only the complemen-
tarity constraints are penalized, and the other constraints of the original optimization
problem are satisfied at a solution of the subproblem. ��

4 Mixed-integer semidefinite programming formulation for robust truss
topology optimization

In Sect. 4.1, we recall the existing MISDP formulation for robust truss topology opti-
mization, without considering overlapping members in a ground structure. Section 4.2
presents treatment of overlapping members within the framework of MISDP.

4.1 Review of existing formulation

In this section we briefly review an MISDP formulation of the robust truss topology
optimization under the load uncertainty [61]; see also Ben-Tal and Nemirovski [7].

Following the ground structure method, consider a truss consisting of candidate
members connected by nodes. Let m and d denote the number of the members and
the number of degrees of freedom of the nodal displacements,11 respectively. We
use xi (i = 1, . . . ,m) to denote the member cross-sectional areas, which are design
variables to be optimized. Throughout the paper, we assume small deformation and
linear elasticity.

Let ti ∈ {0, 1} be a variable that serves as an indicator of existence of member i
such that ti = 1 means that member i exists and ti = 0 means that it vanishes. We

11 The degrees of freedom of a truss are the possible components of the nodal displacements that define
the configuration of the truss.
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use x > 0 and x ∈ [0, x] to denote the specified upper and lower bounds for the
cross-sectional area of an existing member, i.e., xi should satisfy xi ∈ {0} ∪ [x, x].
This constraint can be written by using ti as

xti ≤ xi ≤ xti . (14)

We next introduce s j ∈ {0, 1} ( j = 1, . . . , d) to represent the existence of the j th
degree of freedom of the nodal displacements. A node in a ground structure is removed
if and only if all the members connected to the nodes vanish. Let s j = 1 mean that
the node having the j th degree of freedom exists, and s j = 0 mean that it vanishes.
We use I ( j) ⊆ {1, . . . ,m} to denote the set of indices of the members connected to
the node having the j th degree of freedom. Then s j is related to t1, . . . , tm as follows:

ti ≤ s j , ∀i ∈ I ( j). (15)

Let K (x) ∈ R
d×d denote the stiffness matrix of a truss, which is a (matrix-valued)

linear function of x. For a given external load, denoted p ∈ R
d , the compliance of the

truss is defined by

π(x; p) = sup{2 p�u − u�K (x)u | u ∈ R
d}. (16)

The conventional compliance minimization problem is formulated in variable x as
follows:

Minimize π(x; p) (17a)

subject to x ≥ 0, (17b)

c�x ≤ c. (17c)

Here, ci is the undeformed length of member i , c = (c1, . . . , cm)�, and c > 0 is the
specified upper bound for the structural volume.

The uncertainty model of the external load is defined as follows: Let p̃ ∈ R
d denote

the nominal value (or the best estimate) of the external load. Define a constant matrix
Q ∈ R

d×d by

Q =
⎡

⎣ p̃ αq1 · · · αqd−1

⎤

⎦ ,

where q1, . . . , qd−1 ∈ R
d are the orthonormal basis vectors of the orthogonal com-

plement of p̃, and α > 0 is a constant representing the level (or the magnitude) of
uncertainty. Then the uncertainty set of the external load, i.e., the set of all possible
realizations of the external load, is defined by

P(s) = {diag(s)Qe | ‖e‖ ≤ 1}. (18)
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For example, suppose that p̃ has only one nonzero entry. Then, without loss of gener-
ality we can assume p̃1 �= 0, and we have

p̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

p̃1
0
0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

p̃1 0 0 · · · 0
0 α 0 · · · 0
0 0 α · · · 0
...

...
...

. . .
...

0 0 0 · · · α

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (19)

Let Jf ⊆ {1, . . . , d} denote the set of indices of nonzero entries of p̃, i.e.,

Jf = { j ∈ {1, . . . , d} | p̃ j �= 0}.

The nodes to which the nominal external load, p̃, is applied should not be removed in
the course of optimization. Therefore, we impose the following constraint:

s j = 1, ∀ j ∈ Jf . (20)

In robust optimization, we attempt to find a truss design that minimizes themaximal
compliance (i.e., the worst-case compliance) when the external load can take any
value in P(s). With reference to (14), (15), (17), (18), and (20), we can see that this
optimization problem can be formulated as follows:

Minimize sup{π(x; p) | p ∈ P(s)} (21a)

subject to s j = 1, ∀ j ∈ Jf , (21b)

ti ≤ s j , ∀i ∈ I ( j); j = 1, . . . , d, (21c)

x t ≤ x ≤ x t, (21d)

c�x ≤ c, (21e)

s ∈ {0, 1}d , (21f)

t ∈ {0, 1}m . (21g)

For x ∈ R
m (x ≥ 0), s ∈ {0, 1}d , and w ∈ R, define W (x, s, w) ∈ Sd+1 by

W (x, s, w) =
[

w I (diag(s)Q)�
diag(s)Q K (x)

]

.

It is shown in Ben-Tal and Nemirovski [7, Lemma 2.2] that w ∈ R satisfies

w ≥ sup{π(x; p) | p ∈ P(s)}

if and only if

[
w I (diag(s)Q)�

diag(s)Q K (x)

]

� 0 (22)
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Fig. 5 A ground structure
consisting of 18 members
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holds. Consequently, problem (21) is equivalently rewritten as follows:

Minimize w (23a)

subject to W (x, s, w) � 0, (23b)

s j = 1, ∀ j ∈ Jf , (23c)

ti ≤ s j , ∀i ∈ I ( j); j = 1, . . . , d, (23d)

x t ≤ x ≤ x t, (23e)

c�x ≤ c, (23f)

s ∈ {0, 1}d , (23g)

t ∈ {0, 1}m . (23h)

Problem (23) is an MISDP problem. By relaxing the 0–1 constraints into linear
inequality constraints, we obtain an SDP relaxation. Since SDP can be solved effi-
ciently with a primal-dual interior-point method, we can find a global optimal solution
of problem (23) with a branch-and-bound method [61].

4.2 Treatment of members lying on a line

As explained in Sect. 2, for the robust truss topology optimization it is necessary
to incorporate overlapping members to a ground structure. Since the existence of
overlappingmembers in a final truss design is not accepted, it is required to incorporate
the constraints prohibiting the presence of overlapping members in a truss design. To
the best of the author’s knowledge, such a consideration cannot be found in literature
on robust truss topology optimization.

Recall that, for each j = 1, . . . , d, s j = 1 means that the node having the j th
degree of freedom exists, and s j = 0 means that it vanishes. Also, ti = 1 means that
member i exists and ti = 0 means that it vanishes. Let L( j) ⊆ {1, . . . ,m} denote the
set of indices of the members lying on the node having the j th degree of freedom.
Figure 5 shows an example of ground structure with overlapping members. It has
m = 18 members and d = 12 degrees of freedom of the nodal displacements. In this
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example, we have L( j) = {16, 18} and I ( j) = {1, 4, 13, 14, 17}. If s j = 1, then all
the members in L( j) cannot exist, i.e., ti = 0 (∀i ∈ L(J )). Also, if there exists an
i ∈ L( j) such that ti = 1, then the corresponding node cannot exist, i.e., s j = 0.
These two conditions can be formulated as

s j ≤ 1 − ti , ∀i ∈ L( j). (24)

In the following, we add (24) to problem (23).
It is worth noting that a truss design involving a chain is infeasible for the presented

robust optimization problem, because it is unstable and cannot be in equilibrium with
uncertain forces applied at an intermediate node of the chain. Therefore, a solution
obtained by the proposed method does not involve a member that is longer than the
maximummember length of the ground structure. This might be considered an advan-
tage of the robust topology optimization, because in a conventional truss topology
optimization an optimal solution may possibly have a long chain and special treat-
ment, such as the local buckling constraints [23,41], is necessary for avoiding presence
of a too long member.

5 Simple heuristic for robust truss topology optimization

The MISDP approach presented in Sect. 4 is only applicable to small-scale problem
instances. Alternatively, in this section we present a heuristic having small compu-
tational cost. In Sect. 5.1, we reformulate our robust truss topology optimization as
SDPCC. A concave–convex procedure is then applied to this formulation in Sect. 5.2.

5.1 Formulation as semidefinite programming with complementarity
constraints

In this section, we reformulate problem (23) with constraint (24) as SDPCC, which is
well suited for applying the concave–convex procedure.

We begin with constraints (23d) and (23e), which describe the relation between
s j and x. Let r j ( j = 1, . . . , d) denote the sum of the cross-sectional areas of the
members that are connected to the node having the j th degree of freedom, i.e.,

r j =
∑

i∈I ( j)
xi . (25)

Observe that r j > 0 implies s j = 1, because at least one member connected to the
corresponding node exists and, hence, the node should exist. Also, s j = 0 implies that
the corresponding node vanishes, and hence r j = 0, i.e., all the members connected
to the node should vanish. These two assertions can be written as

(1 − s j )r j = 0. (26)
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Namely, constraint (23d) can be replaced with (26). For notational simplicity, in the
following we write (25) as

r = Rx

with a constant matrix R ∈ R
d×m .

We next consider constraints (23e) and (24), which describe the relation between
s j and x. Let v j ( j = 1, . . . , d) denote the sum of the cross-sectional areas of the
members that lying across the node with the j th degree of freedom, i.e.,

v j =
∑

i∈L( j)

xi . (27)

Observe that v j > 0 implies s j = 0, because at least one member lying across the
corresponding node exists and, thence, the node should vanish. Also, s j = 1 implies
that the corresponding node exists, and hence all the members lying across the node
should vanish, i.e., v j = 0. These two assertions can be written as

s jv j = 0. (28)

Namely, constraint (24) can be replaced with (28), For notational simplicity, we write
(27) as

v = V x

by using a constant matrix V ∈ R
d×m .

Finally, consider constraint (23e). For each i = 1, . . . ,m, we introduce a new
variable zi ∈ R so that x − zi corresponds to the lower bound for the cross-sectional
area of member i . If xi > 0, then member i exists and the lower bound should be
x , which means zi = 0. Also, when the lower bound becomes smaller than x (i.e.,
zi > 0), then member i should vanish (i.e., xi = 0), and hence we set zi = x . These
relations can be written as follows:

x − zi ≤ xi ≤ x, (29)

0 ≤ zi ≤ x, (30)

xi zi = 0. (31)

Consequently, constraints (23e) and (23h) can be replaced with (29), (30), and (31).
The upshot is that problem (23) incorporating constraint (24) is equivalently rewrit-

ten as follows:

Minimize w (32a)

subject to W (x, s, w) � 0, (32b)

s j = 1, ∀ j ∈ Jf , (32c)
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r = Rx, (32d)

v = V x, (32e)

0 ≤ s ≤ 1, (32f)

x1 − z ≤ x ≤ x1, (32g)

0 ≤ z ≤ x1, (32h)

c�x ≤ c, (32i)

(1 − s j )r j = 0, j = 1, . . . , d, (32j)

s jv j = 0, j = 1, . . . , d, (32k)

xi zi = 0, i = 1, . . . ,m. (32l)

Here, x, z, s, r , v, and w are variables to be optimized. Observe that any feasible
solution of problem (32) satisfies 1 − s j ≥ 0, r j ≥ 0, s j ≥ 0, v j ≥ 0, xi ≥ 0, and
zi ≥ 0. Therefore, constraints (32j), (32k), and (32l) are complementarity constraints.
Constraint (32b) is a linear matrix inequality constraint in terms of x, s, and w. Thus,
problem (32) has the form of SDPCC.

Remark 2 Since the algorithm presented in this paper consists of sequential approx-
imation, adding some linear inequalities may possibly limit the search space and
enhance the convergence. In the following, we consider linear valid inequalities, which
naturally stem from the complementarity constraints and can be handled effectively
in the numerical solution. Suppose that two variables, α, β ∈ R, are subjected to the
complementarity constraint and their upper bounds are given, i.e.,

0 ≤ α ≤ ᾱ, (33)

0 ≤ β ≤ β̄, (34)

αβ = 0, (35)

where ᾱ and β̄ are positive constants. It is known that the inequality

β̄α + ᾱβ ≤ ᾱβ̄

serves as a valid constraint for (33), (34), and (35) [42,63]. In the same manner, we
can construct valid constraints for problem (32). Concerning (32j), observe that we
obtain

1 − s j ≤ 1,

r j ≤ x |I ( j)|

from (32f) and (25), respectively. Therefore, the constraints

−x |I ( j)|s j + r j ≤ 0, j = 1, . . . , d (36)
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are valid for (32j). Similarly, inequalities

x |L( j)|s j + v j ≤ x |L( j)|, j = 1, . . . , d, (37)

xxi + xzi ≤ xx, i = 1, . . . ,m (38)

are valid constraints for (32k) and (32l), respectively. In the following, we add con-
straints (36), (37), and (38) to problem (32). ��

5.2 Penalty concave–convex procedure for robust truss topology optimization

Problem (32) has the form of problem (4) studied in Sect. 3.2. To see this, it is conve-
nient to rewrite problem (32) as follows:

Minimize w (39a)

subject to (x, z, s, r, v, w) ∈ F, (39b)

1 − s ≥ 0, r ≥ 0, (1 − s)�r = 0, (39c)

s ≥ 0, v ≥ 0, s�v = 0, (39d)

x ≥ 0, z ≥ 0, x�z = 0. (39e)

Here, F is defined by

F = {(x, z, s, r, v, w) |W (x, s, w) � 0, r = Rx, v = V x,

0 ≤ s ≤ 1, s j = 1 (∀ j ∈ Jf),

x1 − z ≤ x ≤ x1, 0 ≤ z ≤ x1, c�x ≤ c,

−x |I ( j)|s j + r j ≤ 0 ( j = 1, . . . , d),

x |L( j)|s j + v j ≤ x |L( j)| ( j = 1, . . . , d),

xx + x z ≤ xx1},

which is a convex set. The complementarity constraints in (39c), (39d), and (39e) can
be replaced with penalization terms added to the objective function as follows:

Minimize w + ρφ(1 − s, r) + ρφ(s, v) + ρφ(x, z) (40a)

subject to (x, z, s, r, v, w) ∈ F. (40b)

Here, ρ > 0 is a sufficiently large penality parameter, and φ has been defined by (7).
Problem (40) has the same form as problem (5).
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We are now in position to apply Algorithm 1 to problem (40). Algorithm 1 solves
the subproblem in (11), which is explicitly written as follows:

Minimize w + ρkφ+(1 − s, r) + ρkφ+(s, v) + ρkφ+(x, z)
−ρk φ̂−(1 − s, r; 1 − s(k), r(k)) − ρk φ̂−(s, v; s(k), v(k))

−ρk φ̂−(x, z; x(k), z(k))
(41a)

subject to (x, z, s, r, v, w) ∈ F. (41b)

Here, φ+ and φ̂− are defined by (8) and (10), respectively. Since the constant terms in
the objective function can be neglected, problem (41) can be reduced to the following
problem:

Minimize w + ρk(‖x + z‖2 + ‖1 − s + r‖2 + ‖s + v‖2)
−2ρk(x(k) − z(k))�x − 2ρk(z(k) − x(k))�z
−2ρk(2s(k) + r(k) − v(k) − 1)�s
−2ρk(s(k) + r(k) − 1)�r − 2ρk(v(k) − s(k))�v

(42a)

subject to (x, z, s, r, v, w) ∈ F. (42b)

Problem (42) is a minimization problem of a convex quadratic function under a linear
matrix inequality constraint. Hence, this problem can be recast as SDP. Thus, at each
iteration of Algorithm 1 we solve an SDP problem.

As mentioned in Sect. 3.2, a reasonable stopping criterion is that (12) and (13) are
satisfied. In practice, however, we might use a relaxed criterion, which may save some
iterations before convergence. Specifically, we terminate the algorithm when either
(12) or

‖x(k+1) − x(k)‖ ≤ ε2 (43)

is satisfied. Then, by using the obtained solution we can fix the set of existingmembers
and the set of existing nodes. Fixing these sets means that one variable in all the
complementarity constraints in problem (32) is fixed. Therefore, the problem now
becomes SDP, which is to be solved as the post process. The solutions presented in
Sect. 6 are obtained in this manner.

6 Numerical experiments

This section reports three numerical experiments.
The proposed algorithm was implemented in MATLAB ver. 9.0. At each iteration

we solved an SDP problem in (42) by using CVX, a MATLAB package for specifying
and solving convex optimization problems [20,21]. SDPT3 ver. 4.0 [59] was used
as a solver. Computation was carried out on a 2.2GHz Intel Core i5 processor with
8GB RAM. The Young modulus of the trusses in the following numerical examples
is 20GPa.
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The initial point for Algorithm 1 is chosen as follows. We first solve problem (17)
for the nominal external load p̃, i.e., the complianceminimization without considering
uncertainties,12 and let x(0) be the obtained optimal solution. The initial values for the
other variables are given by z(0) = 0, s(0) = 1/2, r(0) = Rx(0), and v(0) = V x(0).
The parameters of Algorithm 1 are ρ0 = 10−2, ρmax = 106, and μ = 1.5. We ter-
minate Algorithm 1 if either (12) or (43) is satisfied, where ε1 = 2m × 10−2 mm2

and ε2 = 10−2 mm2. Then, as explained in Sect. 5.2, we fix one variable in all the
complementarity constraints in problem (32), and solve the resulting SDP problem to
obtain the final solution. The settings of the initial point and the parameters explained
above were determined by preliminary numerical experiments. In Sect. 6.1, we con-
sider three problem instances that could be solved with a global optimization method.
Cantilever truss examples with two different loading conditions, which are frequently
solved in structural optimization, are considered in Sects. 6.2 and 6.3.

6.1 Example (I): Comparison with global optimization

In this section, we consider the small-scale instances presented in Sect. 2. For compar-
ison, the MISDP formulation, i.e., problem (23) with constraint (24), is solved with
YALMIP [40]. YALMIP finds a global optimal solution of an MISDP problem with
a branch-and-bound method, at each iteration of which an SDP problem is solved.
We used YALMIP with the default setting, where SDP subproblems are solved with
SeDuMi ver. 1.3 [48,53].

Consider the problem settings in Figs. 2, 3, and 4. Table 1 lists the number of
members (m), the number of degrees of freedom of displacements (d), and the upper
bound for the structural volume (c). In Figs. 2b and 3a, the nodes are aligned on a
1m×1m grid. In Fig. 4a, we use a 1m×0.5m grid. In Fig. 3a, the ground structure has
all possible members connecting two nodes but are no longer than 3m. The nominal
external load, p̃, is applied as shown in Figs. 2b, 3a and 4a. The uncertainty model of
the external load is defined by using (19) with p̃1 = 100 kN, α = 0.75 p̃1 for Figs. 2
and 3, and α = 0.5 p̃1 for Fig. 4. The lower and upper bounds for the member cross-
sectional areas are x = 1mm2 and x = 700mm2, respectively. In Table 1, “rob. opt.”
reports the optimal value, obtained by YALMIP, of the robust optimization problem.
The obtained solutions are shown in Figs. 2c, 3e and 4d. For reference, the optimal
solutions of the (not robust) compliance minimization with the nominal external load,
p̃, are shown in Figs. 1b, 3b and 4b.13 The optimal values are listed in “nom. opt.” of
Table 1.

It is remarkable that, for every problem instance, the solution obtained by the
proposed algorithm coincideswith the global optimal solution (obtained byYALMIP).

12 Problem (17) is convex. Various reformulations are known in literature; see, e.g., Achtziger et al. [2] and
Jarre et al. [31]. For example, replacing diag(s)Q in (22)with p̃, one can readily obtainSDP thatminimizesw

under constraint

[
w p̃�
p̃ K (x)

]

� 0, (17b), and (17c). This formulation was used in the numerical experiments.

It should be clear that a ground structure with overlapping members is used for generating the initial point,
x(0).
13 Ground structures without overlapping members are used to obtain the solutions in Figs. 1b, 3b and 4b.
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Table 1 Characteristics of the problem instances in example (I)

Problem m d c (mm3) Rob. opt. (J) Nom. opt. (J)

Figure 2 14 8 0.4 × 106 8984.375 8000.000

Figure 3 98 24 1.8 × 106 2442.708 2006.944

Figure 4 35 18 1.2 × 106 11093.750 9375.000

Table 2 Computational costs
for example (I)

Problem Proposed method YALMIP

#iter. Time (s) #iter. Time (s)

Figure 2 3 4.1 13 2.7

Figure 3 15 39.8 92 54.7

Figure 4 47 59.5 1141 300.3

Fig. 6 Example (II). The
problem setting for
(NX , NY ) = (6, 2)

NX @1m

NY @1m

p̃

Table 2 reports the computational costs of the two methods, where “#iter.” is the
number of iterations, and “time” is the required computational time. Note that the
computational cost of the proposed method does not include the ones for generation
of an initial point and for the post-processing. It is also worth noting that the problem
size of SDP solved at each iteration of the proposed method is larger than that of
YALMIP, and hence the computational time per an iteration required by the proposed
method is larger than that ofYALMIP. For every instance, the number of SDPproblems
solved by the proposed method is smaller than that of YALMIP.

In the experiments in this section, it has been observed that the proposed method
converges to a global optimal solution for a small-scale problem instance. In Sects. 6.2
and 6.3, we examine large-scale instances that cannot be solved with a global opti-
mization method within realistic computational time.

6.2 Example (II)

Consider the ground structures shown in Fig. 6. The nodes are aligned on a 1m× 1m
grid, and the number of the nodes is (NX + 1)(NY + 1). The leftmost nodes are
pin-supported. The candidate members are defined as follows. We first generate all
possible members such that any two nodes are connected by a member. Then we
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Table 3 Characteristics of the
problem instances in example
(II)

(NX , NY ) m d c (mm3)

(3, 7) 250 48 4.2 × 106

(4, 6) 292 56 4.8 × 106

(5, 5) 306 60 5.0 × 106

(6, 4) 292 60 4.8 × 106

(7, 3) 250 56 4.2 × 106

(8, 2) 180 48 3.2 × 106

remove members that are longer than 3m. It should be clear that the ground structure
retains overlapping members.

As for the nominal external load, p̃, a vertical force is applied to the bottom right-
most node as shown in Fig. 6. The uncertainty model of the external load is given as
explained in (19), where p̃1 = 100 kN and α = 0.5 p̃1. The lower and upper bounds
for the member cross-sectional areas are x = 50mm2 and x = 700mm2. The upper
bound for the structural volume is c = 2NX NY × 105 mm3.

As for problem sizes, we consider six cases, (NX , NY ) = (3, 7), (4, 6), (5, 5),
(6, 4), (7, 3), and (8, 2). Table 3 lists the number of members, the number of degrees
of freedom of the nodal displacements, and the upper bound for the structural volume.
Figure 7 collects the optimal solutions of the conventional (i.e., not robust) compliance
minimization in (17) for the nominal external load, p̃. For the robust optimization,
the solutions obtained by the proposed method are shown in Fig. 8. It is observed in
Fig. 8a that the three chains in Fig. 7a are replacedwith longer singlemembers and four
intermediate nodes are removed. The length of the bottom horizontal chain in Fig. 7c
is 5m. This chain is replaced with two members in Fig. 8c, because the maximum
member length in the ground structure is 3m. Similar observation can be made also in
Fig. 8d, e. The nominal optimal solution in Fig. 7f has many thin members as well as
many nodes. In contrast, the robust solution in Fig. 8f has simple topology, which may
be considered practically preferable. In all the solutions in Fig. 8, the longest member
is not longer than the maximum member length in the ground structure, as explained
in Sect. 4.1.

The computational results are listed in Table 4. Here, “obj.” reports the objective
value of the solution obtained by the proposed method, and w̃ is the compliance of
this solution for the nominal external load, p̃. The optimal value of problem (17) for
p̃ is listed as “nom. opt.” Therefore, w̃ is no smaller than the value of “nom. opt.” It is
observed in Table 4 that these two values are very close. Namely, in these examples,
robustness can be achieved with compensation of only very small increase of the
nominal compliance.

As explained in Sect. 2, one of difficulties of the robust truss topology optimization
is that the uncertainty model of the external load depends on the existing nodes, i.e.,
on s. For comparison, we fix s to obtain a robust solution. As a simple heuristic, we
construct an estimate of s, denoted s̄, from the existing nodes of a solution in Fig. 7.
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(a) (b) (c) (d)

(e) (f)

Fig. 7 Example (II). The optimal solutions of the compliance minimization for the nominal external load.
a (NX , NY ) = (3, 7); b (4, 6); c (5, 5); d (6, 4); e (7, 3); and f (8, 2)

(a) (b) (c) (d)

(e) (f)

Fig. 8 Example (II). The solutions obtained by the proposed method for the robust optimization under the
load uncertainty. a (NX , NY ) = (3, 7); b (4, 6); c (5, 5); d (6, 4); e (7, 3); and f (8, 2)

Then we solve the following robust optimization problem:

Minimize w

subject to sup{π(x; p) | p ∈ P(s̄)}
x ≥ 0,
c�x ≤ c.
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Table 4 Computational results of example (II)

(NX , NY ) Obj. (J) #iter. Time (s) w̃ (J) Nom. opt. (J) Fixed s (J)

(3, 7) 836.310 9 46.4 766.518 761.905 986.442

(4, 6) 1807.714 39 242.9 1360.425 1185.185 2534.505

(5, 5) 2382.377 35 249.6 2034.270 1929.012 3017.593

(6, 4) 5913.978 21 142.1 4427.633 4143.551 7032.673

(7, 3) 14912.232 40 193.9 10960.621 9918.356 17717.408

(8, 2) 43467.983 32 103.9 34515.627 34515.626 71121.097

(a) (b) (c) (d)

(e) (f)

Fig. 9 The optimal solution of problem (44), where s̄ is defined from the solutions in Fig. 7

This problem can be recast as SDP. For simplicity, the lower bound constraints on the
cross-sectional areas of the existing members are omitted. The obtained solutions are
shown in Fig. 9. The optimal value is reported in “fixed s” of Table 4. It should be
clear that, at each solution in Fig. 9, uncertain external forces are applied only to the
nodes that the corresponding solution in Fig. 7 has. Nevertheless, the objective value
of a solution in Fig. 9 is much larger than that of the corresponding solution in Fig. 8.
In other words, the solution obtained by the proposed method has quite high quality.

6.3 Example (III)

Consider the problem setting shown in Fig. 10. Ground structures are generated in
the manner explained in Sect. 6.2. The maximum length of the members in a ground
structure is 3m. The uncertainty model of the external load is defined by using (19)
with p̃1 = 100 kN and α = 0.75 p̃1. The lower and upper bounds for the member
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Fig. 10 Example (III). The
problem setting for
(NX , NY ) = (6, 2)

NX @1m

NY @1m
p̃

(a) (b) (c)

(d) (e)

Fig. 11 Example (III)-1. The optimal solutions of the compliance minimization for the nominal external
load. a (NX , NY ) = (5, 2); b (6, 2); c (7, 2); d (8, 2); and e (9, 2)

(a) (b) (c)

(d) (e)

Fig. 12 Example (III)-1. The solutions obtained by the proposed method for the robust optimization under
the load uncertainty. a (NX , NY ) = (5, 2); b (6, 2); c (7, 2); d (8, 2); and e (9, 2)

cross-sectional areas are x = 50mm2 and x = 500mm2, respectively. The upper
bound for the structural volume is c = 4NX NY × 105 mm3.

For problem instanceswith (NX , NY ) = (5, 2), (6, 2), . . . , (9, 2), Fig. 11 shows the
optimal solutions of the compliance minimization for the nominal external load. For
the robust optimization, the solutions obtained by the proposedmethod are collected in
Fig. 12. The problem sizes are listed in Table 5. The computational results are listed in
Table 6. It is observed in Fig. 12a, d that the intermediate nodes on chains in Fig. 11a, d
are removed as a result of robust optimization. Although the nominal optimal solutions
in Fig. 11b, c, e have very complicated forms, the robust solutions in Fig. 12b, c, e are
simple and practically preferable. Thus, it is often that robustness against uncertain
loads and the minimal cross-sectional area constraints for the existing members yield
simple truss topology.
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Table 5 Characteristics of the
problem instances in example
(III)

(NX , NY ) m d c (mm3)

(5, 2) 108 30 4.0 × 106

(6, 2) 132 36 4.8 × 106

(7, 2) 156 42 5.6 × 106

(8, 2) 180 48 6.4 × 106

(9, 2) 204 54 7.2 × 106

(5, 4) 240 50 8.0 × 106

(6, 4) 292 60 9.6 × 106

(7, 4) 344 70 11.2 × 106

(8, 4) 396 80 12.8 × 106

(9, 4) 448 90 14.4 × 106

(5, 6) 372 70 12.0 × 106

(6, 6) 452 84 14.4 × 106

(7, 6) 532 98 16.8 × 106

(8, 6) 612 112 19.2 × 106

(9, 6) 692 126 21.6 × 106

Table 6 Computational results of example (III)

(NX , NY ) Obj. (J) #iter. Time (s) w̃ (J) Nom. opt. (J)

(5, 2) 7221.094 18 25.0 5708.559 5512.500

(6, 2) 13698.325 43 70.4 9514.907 8760.417

(7, 2) 19198.058 42 87.7 13108.577 12223.214

(8, 2) 27245.117 23 64.5 17498.409 16531.250

(9, 2) 49880.911 28 100.7 23510.654 22562.500

(5, 4) 2514.685 16 62.1 1469.158 1304.012

(6, 4) 4063.725 19 113.9 2160.081 1814.815

(7, 4) 6563.146 40 320.6 3074.707 2484.871

(8, 4) 9111.073 37 440.0 3946.944 3260.031

(9, 4) 8988.477 24 286.4 5057.029 4255.319

(5, 6) 1420.620 26 312.8 828.309 575.268

(6, 6) 2168.363 19 208.0 1197.005 811.665

(7, 6) 2811.740 15 226.7 1420.604 1123.393

(8, 6) 4059.438 32 632.0 1890.087 1468.478

(9, 6) 4242.989 35 863.0 2122.988 1829.790

The solutions obtained for the instances with (NX , NY ) = (5, 4), (6, 4), . . . , (9, 4)
are collected in Figs. 13 and 14. The robust optimal solution obtained by the proposed
method has a form similar to the corresponding nominal optimal solution, but many
chains in the nominal optimal solution are replaced with single members.
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(a) (b) (c)

(d) (e)

Fig. 13 Example (III)-2. The optimal solutions of the compliance minimization for the nominal external
load. a (NX , NY ) = (5, 4); b (6, 4); c (7, 4); d (8, 4); and e (9, 4)

(a) (b) (c)

(d) (e)

Fig. 14 Example (III)-2. The solutions obtained by the proposed method for the robust optimization under
the load uncertainty. a (5, 4); b (6, 4); c (7, 4); d (8, 4); and e (9, 4)

The solutions obtained for the instances with (NX , NY ) = (5, 6), (6, 6), . . . , (9, 6)
are collected in Figs. 15 and 16. It is observed that the nominal optimal solutions in
Fig. 15c, e have so many thin members. In contrast, the robust solutions in Fig. 16c,
e have fewer members. The layout of thick members in Fig. 16b is different from that
in Fig. 15b. Also, the layout of thick members in Fig. 16d is different from that in
Fig. 15d.

It is observed in Table 6 that the proposed method converged mostly within 40
iterations. The computational time for the instance with about 600 members is about
10 min. Thus, the proposed method finds a reasonable feasible solution with relatively
small computational cost.
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(a) (b) (c)

(d) (e)

Fig. 15 Example (III)-3. The optimal solutions of the compliance minimization for the nominal external
load. a (5, 6); b (6, 6); c (7, 6); d (8, 6); and e (9, 6)

(a) (b) (c)

(d) (e)

Fig. 16 Example (III)-3. The solutions obtained by the proposed method for the robust optimization under
the load uncertainty. a (5, 6); b (6, 6); c (7, 6); d (8, 6); and e (9, 6)

7 Conclusions

In this paper, we have presented a new formulation and algorithm for robust truss
topology optimization considering uncertainty in the external load. Specifically, com-
binatorial aspects of the problem have been dealt with in the framework of the
complementarity constraints. As for the uncertainty model of the external load, we
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have supposed that uncertain external forces can be applied to all the nodes of a truss.
This model depends on the set of existing nodes, and hence on the set of existing
members, while the member cross-sectional areas are the design variables to be opti-
mized. Thus, the robust optimization problem involves design-dependent constraints.
Also, it has been explained that overlapping members should be incorporated to a
ground structure. In the final truss design, however, presence of overlapping members
is not allowed from a practical point of view. In this paper, the set of existing nodes,
the selection among overlapping members, and the lower bound constraints for the
cross-sectional areas of the existingmembers are treated by using the complementarity
constraints.

In the conventional truss topology optimization, it is often that an optimal solution
has a sequence of parallel consecutive members, called a chain. To stabilize a truss,
a chain is replaced with a longer single member. Special consideration, such as the
local buckling constraints, is needed to avoid presence of a too longmember converted
from a chain. In contrast, the solution obtained with the proposed method does not
have a member which is longer than the maximum member length of the ground
structure, because a truss design including a chain is infeasible for the presented
robust optimization problem.

This paper has presented an SDPCC (semidefinite programming with complemen-
tarity constraints) formulation of a structural optimization problem. Then, its DC
programming reformulation has been solved with a convex-concave procedure. This
algorithm is a version of MM algorithms and EM algorithms, which are widely used
in machine learning, image processing, etc. It has been shown through the numerical
experiments that the proposed heuristic can converge to a high-quality solution within
relatively small computational cost. The method can certainly handle complemen-
tarity constraints other than the ones presented in this paper. An example is a set of
constraints that prohibits the presence of mutually crossing members in a truss design.
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