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Abstract Block coordinate update (BCU) methods enjoy low per-update computa-
tional complexity because every time only one or a few block variables would need to
be updated among possibly a large number of blocks. They are also easily parallelized
and thus have been particularly popular for solving problems involving large-scale
dataset and/or variables. In this paper, we propose a primal–dual BCU method for
solving linearly constrained convex program with multi-block variables. The method
is an accelerated version of a primal–dual algorithm proposed by the authors, which
applies randomization in selecting block variables to update and establishes an O(1/t)
convergence rate under convexity assumption. We show that the rate can be acceler-
ated to O(1/t2) if the objective is strongly convex. In addition, if one block variable
is independent of the others in the objective, we then show that the algorithm can be
modified to achieve a linear rate of convergence. The numerical experiments show
that the accelerated method performs stably with a single set of parameters while the
original method needs to tune the parameters for different datasets in order to achieve
a comparable level of performance.
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1 Introduction

Motivated by the need to solve large-scale optimization problems and increasing capa-
bilities in parallel computing, block coordinate update (BCU) methods have become
particularly popular in recent years due to their low per-update computational com-
plexity, low memory requirements, and their potentials in a distributive computing
environment. In the context of optimization, BCU first appeared in the form of block
coordinate descent (BCD) type of algorithms which can be applied to solve uncon-
strained smooth problems or those with separable nonsmooth terms in the objective
(possibly with separable constraints). More recently, it has been developed for solv-
ing problems with nonseparable nonsmooth terms and/or constraint in a primal–dual
framework.

In this paper, we consider the following linearly constrained multi-block structured
optimization model:

min
x

f (x) +
M∑

i=1

gi (xi ), s.t.
M∑

i=1

Ai xi = b, (1)

where x is partitioned into disjoint blocks (x1, x2, . . . , xM ), f is a smooth convex
function with Lipschitz continuous gradient, and each gi is proper closed convex
and possibly non-differentiable. Note that gi can include an indicator function of a
convex set Xi , and thus (1) can implicitly include certain separable block constraints
in addition to the nonseparable linear constraint.

Many applications arising in statistical andmachine learning, image processing, and
finance can be formulated in the form of (1) including the basis pursuit [7], constrained
regression [23], support vector machine in its dual form [10], portfolio optimization
[28], just to name a few.

Towards finding a solution for (1), we will first present an accelerated proximal
Jacobian alternating direction method of multipliers (Algorithm 1), and then we gen-
eralize it to an accelerated randomized primal–dual block coordinate update method
(Algorithm 2). Assuming strong convexity on the objective function, we will establish
O(1/t2) convergence rate results of the proposed algorithms by adaptively setting the
parameters, where t is the total number of iterations. In addition, if further assuming
smoothness and the full-rankness we then obtain linear convergence of a modified
method (Algorithm 3).

1.1 Related methods

Our algorithms are closely related to randomized coordinate descent methods,
primal–dual coordinate update methods, and accelerated primal–dual methods. In
this subsection, let us briefly review the three classes of methods and discuss their
relations to our algorithms.
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Randomized coordinate descent methods

In the absence of linear constraint, Algorithm 2 specializes to randomized coordi-
nate descent (RCD), which was first proposed in [31] for smooth problems and later
generalized in [27,38] to nonsmooth problems. It was shown that RCD converges sub-
linearly with rate O(1/t), which can be accelerated to O(1/t2) for convex problems
and achieves a linear rate for strongly convex problems. By choosing multiple block
variables at each iteration, [37] proposed to parallelize the RCD method and showed
the same convergence results for parallelized RCD. This is similar to setting m > 1
in Algorithm 2, allowing parallel updates on the selected x-blocks.

Primal–dual coordinate update methods

In the presence of linear constraints, coordinate descent methods may fail to converge
to a solution of the problem because fixing all but one block, the selected block
variable may be uniquely determined by the linear constraint. To perform coordinate
update to the linearly constrained problem (1), one effective approach is to update both
primal and dual variables. Under this framework, the alternating direction method of
multipliers (ADMM) is one popular choice. Originally, ADMM [14,17] was proposed
for solving two-block structured problems with separable objective (by setting f = 0
and M = 2 in (1)), forwhich its convergence and also convergence rate have beenwell-
established (see e.g. [2,13,22,29]). However, directly extending ADMM to the multi-
block setting such as (1) may fail to converge; see [6] for a divergence example of the
ADMMeven for solving a linear systemof equations. Lots of efforts have been spent on
establishing the convergence of multi-block ADMM under stronger assumptions (see
e.g. [4,6,16,25,26]) such as strong convexity or orthogonality conditions on the linear
constraint. Without additional assumptions, modification is necessary for the ADMM
applied to multi-block problems to be convergent; see [12,19,20,39] for example.
Very recently, [15] proposed a randomized primal–dual coordinate (RPDC) update
method, whose asynchronous parallel version was then studied in [41]. Applied to (1),
RPDC is a special case of Algorithm 2 with fixed parameters. It was shown that RPDC
converges with rate O(1/t) under convexity assumption. More general than solving
an optimization problem, primal–dual coordinate (PDC) update methods have also
appeared in solving fixed-point or monotone inclusion problems [9,34–36]. However,
for these problems, the PDC methods are only shown to converge but no convergence
rate estimates are known unless additional assumptions are made such as the strong
monotonicity condition.

Accelerated primal–dual methods

It is possible to accelerate the rate of convergence from O(1/t) to O(1/t2) for gradient
type methods. The first acceleration result was shown by Nesterov [30] for solving
smooth unconstrained problems. The technique has been generalized to accelerate
gradient-type methods on possibly nonsmooth convex programs [1,32]. Primal–dual
methods on solving linearly constrained problems can also be accelerated by similar
techniques. Under convexity assumption, the augmented Lagrangian method (ALM)
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is accelerated in [21] from O(1/t) convergence rate to O(1/t2) by using a similar
technique as that in [1] to the multiplier update, and [40] accelerates the linearized
ALM using a technique similar to that in [32]. Assuming strong convexity on the
objective, [18] accelerates the ADMM method, and the assumption is weakened in
[40] to assuming the strong convexity for one component of the objective function.
On solving bilinear saddle-point problems, various primal–dual methods can be accel-
erated if either primal or dual problem is strongly convex [3,5,11]. Without strong
convexity, partial acceleration is still possible in terms of the rate depending on some
other quantities; see e.g. [8,33].

1.2 Contributions of this paper

We accelerate the proximal Jacobian ADMM [12] and also generalize it to an accel-
erated primal–dual coordinate updating method for linearly constrained multi-block
structured convex program,where in the objective there is a nonseparable smooth func-
tion. With parameters fixed during all iterations, the generalized method reduces to
that in [15] and enjoys O(1/t) convergence rate under mere convexity assumption. By
adaptively setting the parameters at different iterations, we show that the accelerated
method has O(1/t2) convergence rate if the objective is strongly convex. In addition,
if there is one block variable that is independent of all others in the objective (but cou-
pled in the linear constraint) and also the corresponding component function is smooth,
we modify the algorithm by treating that independent variable in a different way and
establish a linear convergence result. Numerically, we test the accelerated method on
quadratic programming and compare it to the (nonaccelerated) RPDCmethod in [15].
The results demonstrate that the accelerated method performs efficiently and stably
with the parameters automatically set in accordance of the analysis, while the RPDC
method needs to tune its parameters for different data in order to have a comparable
performance.

1.3 Nomenclature and basic facts

Notations For a positive integer M , we denote [M] as {1, . . . , M}. We let xS denote
the subvector of x with blocks indexed by S. Namely, if S = {i1, . . . , im}, then
xS = (xi1 , . . . , xim ). Similarly, AS denotes the submatrix of A with columns indexed
by S, and gS denotes the sum of component functions indicated by S. We use ∇i f (x)

for the partial gradient of f with respect to xi at x and ∇S f (x) with respect to
xS . For a nondifferentiable function g, ∇̃g(x) denotes a subgradient of g at x . We
reserve I for the identity matrix and use ‖ · ‖ for Euclidean norm. Given a symmetric
positive semidefinite (PSD) matrix W , for any vector v of appropriate size, we define
‖v‖2W = v�Wv, and

�W (v+, vo, v) = 1

2

[‖v+ − v‖2W − ‖vo − v‖2W + ‖v+ − vo‖2W
]
. (2)
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If W = I , we simply use �(v+, vo, v). Also, we denote

g(x) =
m∑

i=1

gi (xi ), F(x) = f (x)+g(x), �(x̂, x, λ) = F(x̂)−F(x)−〈λ, Ax̂−b〉.
(3)

Preparations A point (x∗, λ∗) is called a Karush–Kuhn–Tucker (KKT) point of (1)
if

0 ∈ ∂ F(x∗) − A�λ∗, Ax∗ − b = 0. (4)

For convex programs, the conditions in (4) are sufficient for x∗ to be an optimal
solution of (1), and they are also necessary if a certain qualification condition holds
(e.g., the Slater condition: there is x in the interior of the domain of F such that
Ax = b). Together with the convexity of F , (4) implies

�(x, x∗, λ∗) ≥ 0, ∀x . (5)

Wewill use the following lemmas as basic facts. The first lemma is straightforward
to verify from the definition of ‖ · ‖W ; the second one is similar to Lemma 3.3 in [15];
the third one is from Lemma 3.5 in [15].

Lemma 1.1 For any vectors u, v and symmetric PSD matrix W of appropriate sizes,
it holds that

u�Wv = 1

2

[
‖u‖2W − ‖u − v‖2W + ‖v‖2W

]
. (6)

Lemma 1.2 Given a function φ, for a given x and a random vector x̂ , if for any λ

(that may depend on x̂) it holds E�(x̂, x, λ) ≤ Eφ(λ), then for any γ > 0, we have

E
[
F(x̂) − F(x) + γ ‖Ax̂ − b‖] ≤ sup

‖λ‖≤γ

φ(λ).

Proof Let λ̂ = − γ (Ax̂−b)

‖Ax̂−b‖ if Ax̂ − b �= 0, and λ̂ = 0 otherwise. Then

�(x̂, x, λ̂) = F(x̂) − F(x) + γ ‖Ax̂ − b‖.

In addition, since ‖λ̂‖ ≤ γ , we have φ(λ̂) ≤ sup‖λ‖≤γ φ(λ) and thus Eφ(λ̂) ≤
sup‖λ‖≤γ φ(λ). Hence, we have the desired result from E�(x̂, x, λ̂) ≤ Eφ(λ̂). �
Lemma 1.3 Suppose E

[
F(x̂) − F(x∗) + γ ‖Ax̂ − b‖] ≤ ε. Then,

E‖Ax̂ − b‖ ≤ ε

γ − ‖λ∗‖ , and − ε‖λ∗‖
γ − ‖λ∗‖ ≤ E

[
F(x̂) − F(x∗)

] ≤ ε,

where (x∗, λ∗) satisfies the optimality conditions in (4), and we assume ‖λ∗‖ < γ .

Outline The rest of the paper is organized as follows. Sect. 2 presents the accelerated
proximal Jacobian ADMM and its convergence results. In Sect. 3, we propose an
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accelerated primal–dual block coordinate update method with convergence analysis.
Section 4 assumes more structure on the problem (1) and modifies the algorithm in
Sect. 3 to have linear convergence. Numerical results are provided in Sect. 5. Finally,
Sect. 6 concludes the paper.

2 Accelerated proximal Jacobian ADMM

In this section, we propose an accelerated proximal Jacobian ADMM for solving (1).
At each iteration, the algorithmupdates all M block variables in parallel byminimizing
a linearized proximal approximation of the augmented Lagrangian function, and then
it renews the multiplier. Specifically, it iteratively performs the following updates:

xk+1
i = argminxi

〈
∇i f (xk) − A�

i (λk − βkrk), xi

〉
+ gi (xi )

+ 1

2
‖xi − xk

i ‖Pk
i
, i = 1, . . . , M, (7a)

λk+1 =λk − ρkrk+1, (7b)

where βk and ρk are scalar parameters, Pk is an M × M block diagonal matrix with Pk
i

as its i-th diagonal block for i = 1, . . . , M , and rk = Axk − b denotes the residual.
Note that (7a) consists of M independent subproblems, and they can be solved in
parallel.

Algorithm 1 summarizes the proposed method. It reduces to the proximal Jacobian
ADMM in [12] ifβk, ρk and Pk are fixed for all k and there is no nonseparable function
f . Wewill show that adapting the parameters as the iteration progresses can accelerate
the convergence of the algorithm.

Algorithm 1: Accelerated proximal Jacobian ADMM for (1)

1 Initialization: choose x1, set λ1 = 0, and let r1 = Ax1 − b
2 for k = 1, 2, . . . do
3 Choose parameters βk , ρk and a block diagonal matrix Pk

4 Let xk+1 ← (7a) and λk+1 ← (7b) with rk+1 = Axk+1 − b.
5 if a certain stopping criterion satisfied then
6 Return (xk+1, λk+1).

2.1 Technical assumptions

Throughout the analysis in this section, we make the following assumptions.

Assumption 1 There exists (x∗, λ∗) satisfying the KKT conditions in (4).

Assumption 2 ∇ f is Lipschitz continuous with modulus L f .
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Assumption 3 The function g is strongly convex with modulus μ > 0.

The first two assumptions are standard, and the third one is for showing convergence
rate of O(1/t2), where t is the number of iterations. Note that if f is strongly convex
with modulus μ f > 0, we can let f ← f − μ f

2 ‖ ·‖2 and g ← g + μ f
2 ‖ ·‖2. This way,

we have a convex function f and a strongly convex function g. Hence, Assumption
3 is without loss of generality. With only convexity, Algorithm 1 can be shown to
converge at the rate O(1/t) with parameters fixed for all iterations, and the order 1/t
is optimal as shown in the very recent work [24].

2.2 Convergence results

In this subsection, we show the O(1/t2) convergence rate result of Algorithm 1. First,
we establish a result of running one iteration of Algorithm 1.

Lemma 2.1 (One-iteration analysis)Under Assumptions 2 and 3, let {(xk, λk)} be the
sequence generated from Algorithm 1. Then for any k and (x, λ) such that Ax = b, it
holds that

�(xk+1, x, λ)

≤ 1

2ρk

[
‖λ − λk‖2 − ‖λ − λk+1‖2 + ‖λk − λk+1‖2

]
− βk‖rk+1‖2

− 1

2

[
‖xk+1 − x‖2Pk−βk A� A+μI − ‖xk − x‖2Pk−βk A� A

+‖xk+1 − xk‖2Pk−βk A� A−L f I

]
.

(8)

Using the above lemma, we are able to prove the following theorem.

Theorem 2.2 Under Assumptions 2 and 3, let {(xk, λk)} be the sequence generated
by Algorithm 1. Suppose that the parameters are set to satisfy

0 < ρk ≤ 2βk, Pk � βk A� A + L f I, ∀k ≥ 1, (9)

and there exists a number k0 such that for all k ≥ 2,

k + k0 + 1

ρk
≤ k + k0

ρk−1
, (10)

(k + k0 + 1)(Pk − βk A� A) � (k + k0)(Pk−1 − βk−1A� A + μI ). (11)

Then, for any (x, λ) satisfying Ax = b, we have

t∑

k=1

(k + k0 + 1)�(xk+1, x, λ) +
t∑

k=1

k + k0 + 1

2
(2βk − ρk)‖rk+1‖2

+ t + k0 + 1

2
‖xt+1 − x‖2Pt −βt A� A+μI ≤ φ1(x, λ), (12)
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where

φ1(x, λ) = k0 + 2

2ρ1
‖λ − λ1‖2 + k0 + 2

2
‖x1 − x‖2P1−β1 A� A. (13)

In the next theorem, we provide a set of parameters that satisfy the conditions in
Theorem 2.2 and establish the O(1/t2) convergence rate result.

Theorem 2.3 (Convergence rate of order 1/t2) Under Assumptions 1 through 3, let
{(xk, λk)} be the sequence generated by Algorithm 1 with parameters set to:

βk = ρk = kβ, Pk = k P + L f I, ∀k ≥ 1, (14)

where P is a block diagonal matrix satisfying 0 ≺ P − β A� A � μ
2 I . Then,

max
{
β‖r t+1‖2, ‖xt+1 − x∗‖2P−β A� A

}
≤ 2

t (t + k0 + 1)
φ1(x∗, λ∗), (15)

where k0 = 2L f
μ

, and φ1 is defined in (13). In addition, letting γ = max
{
2‖λ∗‖, 1

+ ‖λ∗‖
}

and

T = t (t + 2k0 + 3)

2
, x̄ t+1 =

∑t
k=1(k + k0 + 1)xk

T
,

we have

|F(x̄ t+1) − F(x∗)| ≤ 1

T
max|‖λ‖≤γ

φ1(x∗, λ), (16a)

‖Ax̄t+1 − b‖ ≤ 1

T max{1, ‖λ∗‖} max‖λ‖≤γ
φ1(x∗, λ). (16b)

3 Accelerating randomized primal–dual block coordinate updates

In this section, we generalize Algorithm 1 to a randomized setting where the user may
choose to update a subset of blocks at each iteration. Instead of updating all M block
variables, we randomly choose a subset of them to renew at each iteration. Depending
on the number of processors (nodes, or cores), we can choose a single or multiple
block variables for each update.

3.1 The algorithm

Our algorithm is an accelerated version of the randomized primal–dual coordinate
updatemethod recently proposed in [15], forwhichwe shall useRPDCas its acronym.1

1 In fact, [15] presents a more general algorithmic framework. It assumes two groups of variables, and
each has multi-block structure. Our method in Algorithm 2 is an accelerated version of one special case of
Algorithm 1 in [15].
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At each iteration, it performs a block proximal gradient update to a subset of randomly
selected primal variables while keeping the remaining ones fixed, followed by an
update to the multipliers. Specifically, at iteration k, it selects an index set Sk ⊂
{1, . . . , M} with cardinality m and performs the following updates:

xk+1
i =

{
argmin

xi

〈∇i f (xk) − A�
i (λk − βkrk), xi 〉 + gi (xi ) + ηk

2 ‖xi − xk
i ‖2, if i ∈ Sk ,

xk
i , if i /∈ Sk

(17a)

rk+1 = rk +
∑

i∈Sk

Ai (xk+1
i − xk

i ), (17b)

λk+1 = λk − ρkrk+1, (17c)

where βk, ρk and ηk are algorithm parameters, and their values will be determined
later. Note that we use ηk

2 ‖xi − xk
i ‖2 in (17a) for simplicity. It can be replaced by a

PSD matrix weighted norm square term as in (7a), and our convergence results still
hold.

Algorithm2 summarizes the abovemethod. If the parametersβk , ρk and ηk are fixed
during all the iterations, i.e., constant parameters, the algorithm reduces to a special
case of the RPDCmethod in [15]. Adapting these parameters to the iterations, we will
show that Algorithm 2 enjoys faster convergence rate than RPDC if the problem is
strongly convex.

Algorithm 2: Accelerated randomized primal–dual block coordinate update
method for (1)

1 Initialization: choose x1, set λ1 = 0, let r1 = Ax1 − b, and choose parameter m
2 for k = 1, 2, . . . do
3 Select Sk ⊂ {1, 2, . . . , M} uniformly at random with |Sk | = m.
4 Choose parameters βk , ρk and ηk .

5 Let xk+1 ← (17a) and λk+1 ← (17c).
6 if a certain stopping criterion satisfied then
7 Return (xk+1, λk+1).

3.2 Convergence results

In this subsection, we establish convergence results of Algorithm 2 under Assumptions
1 and 3, and also the following partial gradient Lipschitz continuity assumption.

Assumption 4 For any S ⊂ {1, . . . , M} with |S| = m, ∇S f is Lipschitz continuous
with a uniform constant Lm .

Note that if ∇ f is Lipschitz continuous with constant L f , then Lm ≤ L f and
L M = L f . In addition, if x+ and x only differ on a set S ⊂ [M] with cardinality m,
then

f (x+) ≤ f (x) + 〈∇ f (x), x+ − x〉 + Lm

2
‖x+ − x‖2. (18)
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Similar to the analysis in Sect. 2, we first establish a result of running one iteration
of Algorithm 2. Throughout this section, we denote θ = m

M .

Lemma 3.1 (One iteration analysis) Under Assumptions 3 and 4, let {(xk, λk)} be the
sequence generated from Algorithm 2. Then for any x such that Ax = b, it holds

E

[
�(xk+1, x, λk+1) + (βk − ρk)‖rk+1‖2 + μ

2
‖xk+1 − x‖2

]
(19)

≤ (1 − θ)E
[
�(xk, x, λk) + βk‖rk‖2 + μ

2
‖xk − x‖2

]

− E

[
�ηk I−βk A� A(xk+1, xk, x) − Lm

2
‖xk+1 − xk‖2

]
.

Whenμ = 0 (i.e., (1) is convex), Algorithm 2 has O(1/t) convergence rate with fixed
βk, ρk, ηk . This can be shown from (19), and a similar result in slightly different form
has been established in [15, Theorem 3.6]. For completeness, we provide its proof in
the appendix.

Theorem 3.2 (Un-accelerated convergence)Under Assumptions1and4, let {(xk , λk)}
be the sequence generated from Algorithm 2 with βk = β, ρk = ρ, ηk = η for all k,
satisfying

0 < ρ ≤ θβ, η ≥ Lm + β‖A‖22,

where ‖A‖2 denotes the spectral norm of A. Then

∣∣E[F(x̄ t ) − F(x∗)]∣∣ ≤ 1

1 + θ(t − 1)
max‖λ‖≤γ

φ2(x∗, λ), (20a)

E‖Ax̄t − b‖ ≤ 1

(1 + θ(t − 1))max{1, ‖λ∗‖} max‖λ‖≤γ
φ2(x∗, λ), (20b)

where (x∗, λ∗) satisfies the KKT conditions in (4), γ = max{‖2λ∗‖, 1 + ‖λ∗‖}, and

x̄ t = xt+1 + θ
∑t

k=2 xk

1 + θ(t − 1)
,

φ2(x, λ) = (1 − θ)
(

F(x1) − F(x)
)

+ η

2
‖x1 − x‖2 + θ‖λ‖2

2ρ
.

When F is strongly convex, the above O(1/t) convergence rate can be accelerated
to O(1/t2) by adaptively changing the parameters at each iteration. The following
theorem is our main result. It shows an O(1/t2) convergence result under certain
conditions on the parameters. Based on this theorem, we will give a set of parameters
that satisfy these conditions, thus providing a specific scheme to choose the parameters.
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Theorem 3.3 Under Assumptions 3 and 4, let {(xk, λk)} be the sequence generated
from Algorithm 2 with parameters satisfying the following conditions for a certain
number k0:

θ(k + k0 + 1) ≥ 1, ∀k ≥ 2, (21a)

(βk−1 − ρk−1)(k + k0) ≥ (1 − θ)(k + k0 + 1)βk, ∀2 ≤ k ≤ t,

(21b)
θ(k + k0 + 1) − 1

ρk−1
≥ θ(k + k0 + 2) − 1

ρk
, ∀ 2 ≤ k ≤ t − 1,

(21c)
θ(t + k0 + 1) − 1

ρt−1
≥ t + k0 + 1

ρt
, (21d)

βk(k + k0 + 1) ≥ βk−1(k + k0), ∀k ≥ 2, (21e)

(k + k0 + 1)(ηk − Lm)I � βk(k + k0 + 1)A� A, ∀k ≥ 1, (21f)

(k + k0)ηk−1 + μ
(
θ(k + k0 + 1) − 1

) ≥ (k + k0 + 1)ηk, ∀k ≥ 2. (21g)

Then for any (x, λ) such that Ax = b, we have

(t + k0 + 1)E�(xt+1, x, λ) +
t∑

k=2

(
θ(k + k0 + 1) − 1

)
E�(xk, x, λ)

≤ (1 − θ)(k0 + 2)E
[
�(x1, x, λ1) + β1‖r1‖2 + μ

2
‖x1 − x‖2

]

+η1(k0 + 2)

2
E‖x1 − x‖2

+θ(k0 + 3) − 1

2ρ1
E‖λ1 − λ‖2 − t + k0 + 1

2
E‖xt+1 − x‖2

(μ+ηt )I−βt A� A.

(22)

Specifying the parameters that satisfy (21), we show O(1/t2) convergence rate of
Algorithm 2.

Proposition 3.4 The following parameters satisfy all conditions in (21):

βk = μ(θk + 2 + θ)

2ρ‖A‖22
, ∀k ≥ 1, (23a)

ρk =
{

θβk
(6−5θ)

, for 1 ≤ k ≤ t − 1,
(t+k0+1)ρt−1
θ(t+k0+1)−1 , for k = t

(23b)

ηk = ρβk‖A‖22 + Lm, ∀k ≥ 1, (23c)

where ρ ≥ 1 and

k0 = 4

θ
+ 2Lm

θμ
. (24)
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Theorem 3.5 (Accelerated convergence)Under Assumptions 1, 3 and 4, let {(xk, λk)}
be the sequence generated from Algorithm 2 with parameters taken as in (23). Then

∣∣E[F(x̄ t+1) − F(x∗)]∣∣ ≤ 1

T
max‖λ‖≤γ

φ3(x∗, λ),

E‖Ax̄t+1 − b‖ ≤ 1

T max{1, ‖λ∗‖} max‖λ‖≤γ
φ3(x∗, λ), (25)

where γ = max{2‖λ∗‖, 1 + ‖λ∗‖},

x̄ t+1 = (t + k0 + 1)xt+1 +∑t
k=2

(
θ(k + k0 + 1) − 1

)
xk

T
,

φ3(x, λ) = (1 − θ)(k0 + 2)
[

F(x1) − F(x) + β1‖r1‖2 + μ

2
‖x1 − x‖2

]

+η1(k0 + 2)

2
‖x1 − x‖2 + θ(k0 + 3) − 1

2ρ1
‖λ‖2

and

T = (t + k0 + 1) +
t∑

k=2

(
θ(k + k0 + 1) − 1

)
.

In addition,

E‖xt+1 − x∗‖2 ≤ 2φ3(x∗, λ∗)

(t + k0 + 1)
(

(ρ−1)μ
2ρ (θ t + θ + 2) + 2μ + Lm

) .

4 Linearly convergent primal–dual method

In this section, we assume some more structure on (1) and show that a linear rate of
convergence is possible. If there is no linear constraint, Algorithm 2 reduces to the
RCD method proposed in [31]. It is well-known that RCD converges linearly if the
objective is strongly convex. However, with the presence of linear constraints, mere
strong convexity of the objective of the primal problem only ensures the smoothness of
its Lagrangian dual function, but not its strong concavity. Hence, in general, we do not
expect linear convergence by only assuming strong convexity on the primal objective
function. To ensure linear convergence on both the primal and dual variables, we need
additional assumptions.

Throughout this section, we suppose that there is at least one block variable being
absent in the nonseparable part of the objective, namely f . For convenience,we rename
this block variable to be y, and the corresponding component function and constraint
coefficient matrix as h and B. Specifically, we consider the following problem
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min
x,y

f (x1, . . . , xM ) +
M∑

i=1

gi (xi ) + h(y), s.t.
M∑

i=1

Ai xi + By = b. (26)

One example of (26) is the problem that appears while computing a point on the
central path of a convex program. Suppose we are interested in solving

min
x

f (x1, . . . , xM ), s.t.
M∑

i=1

Ai xi ≤ b, xi ≥ 0, i = 1, . . . , M. (27)

Let y = b − ∑M
i=1 Ai xi and use the log-barrier function. We have the log-barrier

approximation of (27) as follows:

min
x,y

f (x1, . . . , xM ) − μ

M∑

i=1

e� log xi − μe� log y, s.t.
M∑

i=1

Ai xi + y = b, (28)

where e is the all-one vector. As μ decreases, the approximation becomes more accu-
rate.

Towards a solution to (26), we modify Algorithm 2 by updating y-variable after
the x-update. Since there is only a single y-block, to balance x and y updates, we
do not renew y in every iteration but instead update it in probability θ = m

M . Hence,
roughly speaking, x and y variables are updated in the same frequency. The method
is summarized in Algorithm 3.

4.1 Technical assumptions

In this section, we denote z = (x, y, λ). Assume h is differentiable. Similar to (4), a
point z∗ = (x∗, y∗, λ∗) is called a KKT point of (26) if

0 ∈ ∂ F(x∗) − A�λ∗, (32a)

∇h(y∗) − B�λ∗ = 0, (32b)

Ax∗ + By∗ − b = 0. (32c)

Besides Assumptions 3 and 4, we make two additional assumptions as follows.

Assumption 5 There exists z∗ = (x∗, y∗, λ∗) satisfying the KKT conditions in (32).

Assumption 6 The function h is strongly convex with modulus ν, and its gradient
∇h is Lipschitz continuous with constant Lh .

The strong convexity of F and h implies

F(xk+1) − F(x∗) − 〈∇̃F(x∗), xk+1 − x∗〉 ≥ μ

2
‖xk+1 − x∗‖2, (33a)

〈yk+1 − y∗,∇h(yk+1) − ∇h(y∗)〉 ≥ ν‖yk+1 − y∗‖2. (33b)
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Algorithm 3: Randomized primal–dual block coordinate update for (26)

1 Initialization: choose (x1, y1), set λ1 = 0, and choose parameters β, ρ, ηx , ηy , m.

2 Let r1 = Ax1 + By1 − b and θ = m
M .

3 for k = 1, 2, . . . do
4 Select index set Sk ⊂ {1, . . . , M} uniformly at random with |Sk | = m.

5 Keep xk+1
i = xk

i , ∀i /∈ Sk and update

xk+1
i = argmin

xi

〈
∇i f (xk ) − A�

i (λk − βrk ), xi

〉
+ gi (xi ) + ηx

2
‖xi − xk

i ‖2, if i ∈ Sk . (29)

Let rk+ 1
2 = rk +∑i∈Sk

Ai (xk+1
i − xk

i ).

6 In probability 1 − θ keep yk+1 = yk , and in probability θ let yk+1 = ỹk+1, where

ỹk+1 = argmin
y

h(y) −
〈

B�(λk − βrk+ 1
2 ), y

〉
+ ηy

2
‖y − yk‖2. (30)

Let rk+1 = rk+ 1
2 + B(yk+1 − yk ).

7 Update the multiplier by

λk+1 = λk − ρrk+1. (31)

if a certain stopping criterion is satisfied then
8 Return (xk+1, yk+1, λk+1).

4.2 Convergence analysis

Similar to Lemma 3.1, we first establish a result of running one iteration of Algorithm
3. It can be proven by similar arguments to those showing Lemma 3.1.

Lemma 4.1 (One iteration analysis) Under Assumptions 3, 4, and 6, let {(xk, yk, λk)}
be the sequence generated from Algorithm 3. Then for any k and (x, y, λ) such that
Ax + By = b, it holds

Eϕ(zk+1, z) + (β − ρ)E‖rk+1‖2 + 1

ρ
E�(λk+1, λk, λ)

+E

[
�P (xk+1, xk, x) − Lm

2
‖xk+1 − xk‖2

]
+ E�Q(yk+1, yk, y)

≤ (1 − θ)Eϕ(zk, z) + β(1 − θ)E‖rk‖2 + 1 − θ

ρ
E�(λk, λk−1, λ)

+βE〈A(xk+1 − x), B(yk+1 − yk)〉 + β(1 − θ)E〈B(yk − y), A(xk+1 − xk)〉.
(34)

where P = ηx I − β A� A, Q = ηy I − βB� B, and

ϕ(zk, z) = F(xk)−F(x)+μ

2
‖xk−x‖2+〈yk−y,∇h(yk)

〉−〈λ, Axk+Byk−b
〉
. (35)
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In the following, we let

�(zk, z∗) = F(xk)−F(x∗)−〈∇̃F(x∗), xk−x∗〉+〈yk−y∗,∇h(yk)−∇h(y∗)
〉
, (36)

and

ψ(zk, z∗; P, Q, β, ρ, c, τ )

= (1 − θ)E�(zk, z∗) + β(1 − θ)

2
E‖rk‖2

+1

2
E‖xk − x∗‖2P+μ(1−θ)I + 1

2
E‖yk − y∗‖2

Q+ β(1−θ)
τ

B� B

+ 1

2ρ
E

[
‖λk − λ∗‖2 − (1 − θ)‖λk−1 − λ∗‖2 + 1

θ
‖λk − λk−1‖2

]
. (37)

The following theorem is key to establishing linear convergence of Algorithm 3.

Theorem 4.2 Under Assumptions 3 through 6, let {(xk, yk, λk)} be the sequence gen-

erated from Algorithm 3 with ρ = θβ. Let 0 < α < θ and γ = max

{
8‖A‖22

αμ
,
8‖B‖22

αν

}
.

Choose δ, κ ≥ 0 such that

2

[
1 − (1 − θ)(1 + δ) (1 − θ)(1 + δ)

(1 − θ)(1 + δ) κ − (1 − θ)(1 + δ)

]
�
[

θ 1 − θ

1 − θ 1
θ

− (1 − θ)

]
, (38)

and positive numbers ηx , ηy, c, τ1, τ2, β such that

P � β(1 − θ)τ2A� A + Lm I (39a)

Q � 8cQ�Q + 4cρ2(1 − θ)

(
1 + 1

δ

)
B� B B� B + βτ1B� B. (39b)

Then it holds that

(1 − α)E�(zk+1, z∗) + 1

2
E‖xk+1 − x∗‖2

P+(
αμ
2 +μ)I− β

τ1
A� A

+1

2
E‖yk+1 − y∗‖2

Q+
(
3αν
2 −8cL2

h

)
I

+
(

β − ρ

2
+ 1

γ

)
E‖rk+1‖2

−
(

cρ2
(

κ + 2(1 − θ)

(
1 + 1

δ

))
+ 2c(β − ρ)2

)
E‖B�rk+1‖2

+
(

1

2ρ
+ c

2
σmin(B B�)

)

×E

[
‖λk+1 − λ∗‖2 − (1 − θ)‖λk − λ∗‖2 + 1

θ
‖λk+1 − λk‖2

]

≤ ψ(zk, z∗; P, Q, β, ρ, c, τ2). (40)
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Using Theorem 4.2, a linear convergence rate of Algorithm 3 follows.

Theorem 4.3 Under Assumptions 3 through 6, let {(xk, yk, λk)} be the sequence
generated from Algorithm 3 with ρ = θβ. Let 0 < α < θ and γ =
max

{
8‖A‖22

αμ
,
8‖B‖22

αν

}
. Assume that B is full row-rank and max{‖A‖2, ‖B‖2} ≤ 1.

Choose δ, κ, ηx , ηy, c, β, τ1, τ2 satisfying (38) and (39), and in addition,

α

2
μ + θμ >

β

τ1
(41a)

3αν

4
> 4cL2

h + β(1 − θ)

2τ2
(41b)

1

γ
> cρ2

(
κ + 2(1 − θ)

(
1 + 1

δ

))
+ 2c(β − ρ)2. (41c)

Then

ψ(zk+1, z∗; P, Q, β, ρ, c, τ2) ≤ 1

η
ψ(zk, z∗; P, Q, β, ρ, c, τ2), (42)

where

η = min

⎧
⎨

⎩
1 − α

1 − θ
, 1 +

α
2μ + θμ − β

τ1

ηx + μ(1 − θ)
, 1 +

3αν
4 − 4cL2

h − β(1−θ)
2τ2

ηy
2 + β(1−θ)

2τ2

,

1 +
2
γ − 2cρ2

(
κ + 2(1 − θ)(1 + 1

δ )
)

− 4c(β − ρ)2

β(1 − θ)
, 1 + cρσmin(B B�)

⎫
⎬

⎭>1.

We finish this section by making a few remarks.

Remark 4.1 We can always rescale A, B and b without essentially altering the linear
constraints. Hence, the assumptionmax{‖A‖2, ‖B‖2} ≤ 1 can bemadewithout losing
generality. From (42), it is easy to see that when P � 0 and Q � 0, (xk, yk) converges
to (x∗, y∗) R-linearly in expectation. In addition, note that

‖λk+1 − λ∗‖2 − (1 − θ)‖λk − λ∗‖2 + 1

θ
‖λk+1 − λk‖2 = θ‖λk+1 − λ∗‖2

+ 2(1 − θ)〈λk+1 − λ∗, λk+1 − λk〉 +
(
1

θ
− 1 + θ

)
‖λk+1 − λk‖2

≥
(

θ − (1 − θ)2

1
θ

− 1 + θ

)
‖λk+1 − λ∗‖2

= θ
1
θ

− 1 + θ
‖λk+1 − λ∗‖2.

Hence, (42) also implies an R-linear convergence of λk to λ∗ in expectation.
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Remark 4.2 We give examples of parameters that satisfy the conditions required in
Theorem 4.3. First consider the case of θ = 1, i.e., all blocks are updated at each
iteration. In this case, we can choose δ = 0, κ = 1

2 to satisfy (38) and ηx = β‖A‖22 +
L f to satisfy (39a) and let α = 1

2 and τ1 = β
μ
to ensure that (41a) holds. Finally,

choose ηy >
(
β + β2

μ

)‖B‖22 and c sufficiently small, and all other conditions in

Theorem 4.3 are satisfied. Next consider the case of θ < 1. We can choose δ = θ
4(1−θ)

and κ = 3
θ

+ 3θ
4 − 2 to satisfy (38), and let α = θ

2 , τ1 = β
θμ

, τ2 = 2β(1−θ)
ν

,

ηx = β(1 + (1 − θ)τ2)‖A‖22 + Lm , and ηy > β(1 + τ1)‖B‖22. With such choices, all
other conditions required in Theorem 4.3 hold when c is sufficiently small.

Remark 4.3 If there is only one x-block and there is no f function, then Algorithm
3 reduces to the so-called linearized ADMM. To show the linear convergence of the
linearized ADMM, one scenario in [13, Theorem 3.1] assumes2 the strong convexity
of g and h, the smoothness of h, and the full row-rankness of B. In Theorem 4.3, we
make the same assumptions, and so our result can be considered as a generalization.

5 Numerical experiments

The aim of this section is to test the practical performance of the proposed algorithms.
We test Algorithm 2 on quadratic programming

min
x

F(x) = 1

2
x�Qx + c�x, s.t. Ax = b, x ≥ 0, (43)

and Algorithm 3 on the log-barrier approximation of linear programming

min
x,y

c�x − e� log x − e� log y, s.t. Ax + y = b, xi ≤ ui ,∀i. (44)

Quadratic programming Two types of randomized implementations are considered:
one with fixed parameters and the newly introduced one with adaptive parameters,
which shall be called nonadaptive RPDC and adaptive RPDC respectively. Note that
the former reduces to the method proposed in [15] when applied to (43). The purpose
of the experiment is to test the effect of acceleration for the latter approach.

The data was generated randomly as follows. We let Q = H DH� ∈ R
n×n , where

H is Gaussian randomly generated orthogonal matrix and D is a diagonal matrix
with dii = 1 + (i − 1) L−1

n−1 , i = 1, . . . , n. Hence, the smallest and largest singular
values of Q are 1 and L respectively, and the objective of (43) is strongly convex with
modulus 1. The components of c follow standard Gaussian distribution, and those of
b follow uniform distribution on [0, 1]. We let A = [B, I ] ∈ R

p×n to guarantee the
existence of feasible solutions, where B was generated according to standard Gaussian
distribution. In addition, we normalized A so that it has a unit spectral norm.

2 Besides the scenario that g and h are strongly convex, h is smooth, and B is of full row-rank, [13, Theorem
3.1] also shows linear convergence of the linearized ADMM under three other different scenarios.
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In the test, we fixed n = 2000, p = 200 and varied L among {10, 100, 1000}. For
both nonadaptive and adaptive RPDC, we evenly partitioned x into 40 blocks, i.e.,
each block consists of 50 coordinates, and we set m = 40, i.e., all blocks are updated
at each iteration. For the adaptive RPDC, we set the values of its parameters according
to (23) with ρ = 1, and those for the nonadaptive RPDC were set based on Theorem
3.2 with ρ = β, η = 100 + β, ∀k where β varied among {1, 10, 100, 1000}. Figures
1, 2 and 3 plot the objective values and feasibility violations by Algorithm 2 under
these two different settings. From these results, we see that adaptive RPDC performed
well for all three datasets with a single set of parameters while the performance of the
nonadaptive one was severely affected by the penalty parameter.
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Fig. 1 Results by Algorithm 2 with adaptive parameters and nonadaptive parameters for solving (43) with
problem size n = 2000, p = 200 and condition number 10. The latter uses different penalty parameter
β. Top row: difference of objective value to the optimal value |F(xk ) − F(x∗)|; bottom row: violation of
feasibility ‖Axk − b‖
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Fig. 2 Results by Algorithm 2 with adaptive parameters and nonadaptive parameters for solving (43) with
problem size n = 2000, p = 200 and condition number 100. The latter uses different penalty parameter
β. Top row: difference of objective value to the optimal value |F(xk ) − F(x∗)|; bottom row: violation of
feasibility ‖Axk − b‖
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Fig. 3 Results by Algorithm 2 with adaptive parameters and nonadaptive parameters for solving (43) with
problem size n = 2000, p = 200 and condition number 1000. The latter uses different penalty parameter
β. Top row: difference of objective value to the optimal value |F(xk ) − F(x∗)|; bottom row: violation of
feasibility ‖Axk − b‖
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Fig. 4 Results byAlgorithm 3 on the problem (44) with A ∈ R
200×2000. Left: difference of objective value

to the optimal value |F(xk ) + h(yk ) − F(x∗) − h(y∗)|; Right: violation of feasibility ‖Axk + Byk − b‖

Linear programming In this test, we apply Algorithm 3 to the problem (44), where
we let f (x) = c�x, g(x) = −e� log x and h(y) = −e� log y. The purpose of this
experiment is to demonstrate the linear convergence of Algorithm 3.

We generated A ∈ R
200×2000 and c according to the standard Gaussian distribution

andb by the uniformdistribution on [ 12 , 3
2 ]. The upper boundwas set toui = 10,∀i .We

treated x as a single block and set the algorithm parameters to β = 0.1, ηx = β‖A‖22,
and ηy = β

(
1+ 2.001β

3μ

)
. This setting satisfies the conditions required in Theorem 4.3

if α is sufficiently close to 1. Note that g and h do not have uniform strong convexity
constants but they are both strongly convex on a bounded set. Figure 4 shows the
convergence behavior of Algorithm 3. From the figure, we can clearly see that the
algorithm linearly converges to an optimal solution.
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6 Conclusions

In this paper we propose an accelerated proximal Jacobian ADMM method and gen-
eralize it to an accelerated randomized primal–dual coordinate updating method for
solving linearly constrained multi-block structured convex programs. We show that if
the objective is strongly convex then the methods achieve O(1/t2) convergence rate
where t is the total number of iterations. In addition, if one block variable is indepen-
dent of others in the objective and its part of the objective function is smooth, we have
modified the primal–dual coordinate updating method to achieve linear convergence.
Numerical experiments on quadratic programming and log-barrier approximation of
linear programming have shown the efficacy of the newly proposed methods.

Appendix A: Technical proofs: Sect. 2

In this section, we give the detailed proofs of the lemmas and theorems in Sect. 2.
The following lemma will be used a few times. Note that when S = [M], the result is
deterministic.

Lemma 7.1 Let S be a uniformly selected subset of [M] with cardinality m and xo

be a vector independent of S. Suppose x+ is a random vector dependent on S and its
coordinates out of S are the same as xo. Let β ∈ R, λo and ro be vectors independent
of S, and W a positive semidefinite M × M block diagonal matrix. If

∇S f (xo) + ∇̃gS(x+
S ) − A�

S (λo − βro) + WS(x+
S − xo

S) = 0,

then for any x, it holds that

ES

[
F(x+) − F(x) + μ

2
‖x+ − x‖2 − 〈A(x+ − x), λo − βro〉]

≤ (1 − θ)
[

F(xo) − F(x) + μ

2
‖xo − x‖2 − 〈A(xo − x), λo − βro〉]

− 1

2
ES

[
‖x+ − x‖2W − ‖xo − x‖2W + ‖x+ − xo‖2W−Lm I

]
,

(45)

where θ = m
M , Lm is given in Assumption 4, and the expectation is taken on S.

Proof For any x , we have

〈
x+

S − xS,∇S f (xo) + ∇̃gS(x+
S ) − A�

S (λo − βro) + WS(x+
S − xo

S)
〉
= 0.

We split the left hand side of the above equation into four terms and bound each of
them as below. First, we have

ES
〈
x+

S − xS,∇S f (xo)
〉

= ES
〈
x+ − xo,∇ f (xo)

〉+ ES
〈
xo

S − xS,∇S f (xo)
〉
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≥ ES

[
f (x+) − f (xo) − Lm

2
‖x+ − xo‖2

]
+ θ [ f (xo) − f (x)]

= ES

[
f (x+) − f (x) − Lm

2
‖x+ − xo‖2

]
− (1 − θ)[ f (xo) − f (x)], (46)

where the first equality uses the fact x+
i = xo

i , ∀i /∈ S, and the inequality follows
from the uniform distribution of S, the convexity of f , and also the inequality (18).

Secondly, it follows from the strong convexity of g that

〈
x+

S − xS, ∇̃gS(x+
S )
〉
≥ gS(x+

S ) − gS(xS) +
∑

i∈S

μ

2
‖x+

i − xi‖2. (47)

Since gS(x+
S )−gS(xS) = g(x+)−g(xo)+gS(xo

S)−gS(xS) andES[gS(xo
S)−gS(xS)] =

θ [g(xo) − g(x)], we have
ES[gS(x+

S ) − gS(xS)] = ES[g(x+) − g(xo)] + θ [g(xo) − g(x)]
= ES[g(x+) − g(x)] − (1 − θ)[g(xo) − g(x)]. (48)

Similarly, it holds ES
∑

i∈S
μ
2 ‖x+

i − xi‖2 = μ
2

(
ES‖x+ − x‖2 − (1 − θ)‖xo − x‖2) .

Hence, taking expectation on both sides of (47) yields

ES

〈
x+

S − xS, ∇̃gS(x+
S )
〉

≥ ES

[
g(x+) − g(x) + μ

2
‖x+ − x‖2

]

− (1 − θ)
[
g(xo) − g(x) + μ

2
‖xo − x‖2

]
. (49)

Thirdly, by essentially the same arguments on showing (48), we have

ES

〈
x+

S − xS,−A�
S (λo − βro)

〉
= −ES

〈
A(x+ − x), λo − βro〉

+ (1 − θ)
〈
A(xo − x), λo − βro〉. (50)

Fourth, note
〈
x+

S − xS, WS(x+
S − xo

S)
〉 = 〈x+ − x, W (x+ − xo)

〉
, and thus by (6),

ES
〈
x+

S − xS, WS(x+
S − xo

S)
〉 = 1

2
ES

[
‖x+ − x‖2W − ‖xo − x‖2W + ‖x+ − xo‖2W

]
.

(51)
The desired result is obtained by adding (46), (49), (50), and (51), and recalling
F = f + g. �

Proof of Lemma 2.1

From (7a), we have the optimality condition

∇ f (xk) − A�(λk − βkrk) + ∇̃g(xk+1) + Pk(xk+1 − xk) = 0.
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Hence, for any x such that Ax = b, it follows from the definition of � in (3) and
Lemma 7.1 with S = [M], xo = xk , λo = λk , β = βk , x+ = xk+1, and W = Pk that

�(xk+1, x, λ) ≤
〈
Axk+1 − b, λk − βkrk

〉
−
〈
Axk+1 − b, λ

〉

− 1

2
ES

[
‖xk+1 − x‖2Pk+μI − ‖xk − x‖2Pk + ‖xk+1 − xk‖2Pk−L f I

]
.

(52)

Using the fact λk+1 = λk − ρk(Axk+1 − b), we have

〈
Axk+1 − b, λk − λ

〉
= 1

ρk

〈
λk − λk+1, λk − λ

〉

(6)= 1

2ρk

[
‖λ − λk‖2 − ‖λ − λk+1‖2 + ‖λk − λk+1‖2

]
.(53)

In addition, we write rk = rk − rk+1 + rk+1 = rk+1 − A(xk+1 − xk) and have

〈
Axk+1 − b,−βkrk

〉

= − βk‖rk+1‖2 + βk

〈
A(xk+1 − x), A(xk+1 − xk)

〉

(6)= − βk‖rk+1‖2 + βk

2

[
‖A(xk+1 − x)‖2 − ‖A(xk − x)‖2 + ‖A(xk+1 − xk)‖2

]

(54)

Substituting (53) and (54) into (52) gives the inequality in (8).

Proof of Theorem 2.2

First, we have

t∑

k=1

k + k0 + 1

2ρk

[
‖λ − λk‖2 − ‖λ − λk+1‖2

]

= k0 + 2

2ρ1
‖λ − λ1‖2 − t + k0 + 1

2ρt
‖λ − λt+1‖2

+
t∑

k=2

(
k + k0 + 1

2ρk
− k + k0

2ρk−1

)
‖λ − λk‖2

(10)≤ k0 + 2

2ρ1
‖λ − λ1‖2. (55)
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In addition,

−
t∑

k=1

k + k0 + 1

2

(
‖xk+1 − x‖2Pk−βk A� A+μI − ‖xk − x‖2Pk−βk A� A

)

= k0 + 2

2
‖x1 − x‖2P1−β1 A� A − t + k0 + 1

2
‖xt+1 − x‖2Pt −βt A� A+μI

+1

2

t∑

k=2

(
(k + k0 + 1)‖xk − x‖2Pk−βk A� A − (k + k0)‖xk − x‖2Pk−1−βk−1 A� A+μI

)

(11)≤ k0 + 2

2
‖x1 − x‖2P1−β1 A� A − t + k0 + 1

2
‖xt+1 − x‖2Pt −βt A� A+μI . (56)

Now multiplying k + k0 + 1 to both sides of (8) and adding it over k, we obtain
(12) by using (55) and (56), and noting ‖λk − λk+1‖2 = ρ2

k ‖rk+1‖2 and ‖xk+1 −
xk‖2

Pk−βk A� A−L f I
≥ 0.

Proof of Theorem 2.3

From the choice of k0 and the condition P − β A� A � μ
2 I , it is not difficult to verify

(k + k0 + 1)
[
k P − kβ A� A + L f I

]

� (k + k0)
[
(k − 1)P − (k − 1)β A� A + (L f + μ)I

]
, ∀k ≥ 1.

Hence, the condition in (11) holds. In addition, it is easy to see that all conditions in
(9) and (10) also hold. Therefore, we have (12), which, by taking parameters in (14)
and x = x∗, reduces to

t∑

k=1

(k + k0 + 1)�(xk+1, x∗, λ) +
t∑

k=1

k(k + k0 + 1)

2
β‖rk+1‖2

+ t + k0 + 1

2
‖xt+1 − x∗‖2t (P−β A� A)+(L f +μ)I ≤ φ1(x∗, λ), (57)

where we have used the fact λ1 = 0.
Letting λ = λ∗, we have from (5) and (57) that (by dropping nonnegative

�(xk+1, x∗, λ∗)’s):

t (t + k0 + 1)

2
β‖r t+1‖2 + t + k0 + 1

2
‖xt+1 − x∗‖2t (P−β A� A)+(L f +μ)I ≤ φ1(x∗, λ∗),

which indicates (15). In addition, from the convexity of F and (57), we have that for
any λ, it holds t (t+2k0+3)

2 �(x̄ t+1, x∗, λ) ≤ φ1(x∗, λ), which together with Lemmas
1.2 and 1.3 implies (16).
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Appendix B: Technical proofs: Sect. 3

In this section, we give the proofs of the lemmas and theorems in Sect. 3.

Proof of Lemma 3.1

From the update in (17a), we have the optimality condition:

∇Sk f (xk) − A�
Sk

(λk − βkrk) + ∇̃gSk (xk+1
Sk

) + ηk(xk+1
Sk

− xk
Sk

) = 0. (58)

It follows from the update rule of λ that

−〈Axk+1 − b, λk〉 = −〈Axk+1 − b, λk+1〉 − ρk‖rk+1‖2.

Plugging (54) and the above equation into (45) with S = Sk, λ
o = λk, β = βk, xo =

xk , x+ = xk+1, W = ηk I , and x satisfying Ax = b, we have the desired result by
taking expectation and recalling the definition of � in (2) and � in (3).

Proof of Theorem 3.2

Let βk = β, ρk = ρ and ηk = η in (19), and also note μ = 0 and η ≥ Lm + β‖A‖2.
We have

E

[
�(xk+1, x, λk+1) + (β − ρ)‖rk+1‖2

]

≤ (1 − θ)E
[
�(xk, x, λk) + β‖rk‖2

]

− 1

2
E

[
‖xk+1 − x‖2

ηI−β A� A − ‖xk − x‖2
ηI−β A� A

]
.

Summing the above inequality over k = 1 through t and noting ρ ≤ θβ give

E

[
�(xt+1, x, λt+1) + (β − ρ)‖r t+1‖2

]
+ θ

t−1∑

k=1

E�(xk+1, x, λk+1) (59)

≤ (1 − θ)E
[
�(x1, x, λ1) + β‖r1‖2

]
+ 1

2
‖x1 − x‖2

ηI−β A� A.

By the update of λ, it follows that
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θ

t−1∑

k=1

�(xk+1, x, λk+1) = θ

t−1∑

k=1

[
�(xk+1, x, λ) + 1

ρ
〈λk+1 − λ, λk+1 − λk〉

]

= θ

t−1∑

k=1

�(xk+1, x, λ) + θ

2ρ

t−1∑

k=1

[
‖λk+1 − λ‖2 − ‖λk − λ‖2 + ‖λk+1 − λk‖2

]

= θ

t−1∑

k=1

�(xk+1, x, λ) + θ

2ρ

[
‖λt − λ‖2 − λ1 − λ‖2 +

t−1∑

k=1

‖λk+1 − λk‖2
]
(60)

and

�(xt+1, x, λt+1) = �(xt+1, x, λ) − 〈λt − λ − ρr t+1, r t+1〉
= �(xt+1, x, λ) − 〈λt − λ, r t+1〉 + ρ‖r t+1‖2. (61)

Since ρ ≤ θβ, by Young’s inequality, it holds

β‖r t+1‖2 − 〈λt − λ, r t+1〉 + θ

2ρ
‖λt − λ‖2 ≥ 0.

Then plugging (60) and (61) into (59), we have

E�(xt+1, x, λ) + θ

t−1∑

k=1

E�(xk+1, x, λ)

≤ (1 − θ)E
[
�(x1, x, λ1) + β‖r1‖2

]
+ 1

2
‖x1 − x‖2

ηI−β A� A + θ

2ρ
E‖λ1 − λ‖2

≤ Eφ2(x, λ), (62)

where in the last inequality we have used λ1 = 0, θ > 0 and ‖r1‖2 = ‖x1 − x‖2
β A� A

.

Therefore, from the convexity of F , it follows that E�(x̄ t , x∗, λ) ≤ 1
1+θ(t−1)

Eφ2(x∗, λ), ∀λ, and we obtain the desired result from Lemmas 1.2 and 1.3.

Proof of Theorem 3.3

We first establish a few inequalities below.

Proposition 8.1 If (21e), (21f) and (21g) hold, then

−
t∑

k=1

(k + k0 + 1)E

[
�ηk I−βk A� A(xk+1, xk, x) − Lm

2
‖xk+1 − xk‖2

]

−μ(t + k0 + 1)

2
E‖xt+1 − x‖2 −

t∑

k=2

μ
(
θ(k + k0 + 1) − 1

)

2
E‖xk − x‖2

≤ η1(k0 + 2)

2
E‖x1 − x‖2 − (t + k0 + 1)

2
E‖xt+1 − x‖2

(μ+ηt )I−βt A� A. (63)
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Proof This inequality can be easily shown by noting that for any 1 ≤ k ≤ t , the weight
matrix of 1

2‖xk+1 − xk‖2 is βk(k + k0 + 1)A� A − (k + k0 + 1)(ηk − Lm)I , which
is negative semidefinite, and for any 2 ≤ k ≤ t , the weight matrix of 1

2‖xk − x‖2 is

[
βk−1(k + k0) − βk(k + k0 + 1)

]
A� A

+ [(k + k0 + 1)ηk − (k + k0)ηk−1 − μ
(
θ(k + k0 + 1) − 1

)]
I,

which is also negative semidefinite. �

Proposition 8.2 If (21a), (21c) and (21d) hold, then

− t + k0 + 1

ρt
E�(λt+1, λt , λ) −

t∑

k=2

θ(k + k0 + 1) − 1

ρk−1
E�(λk, λk−1, λ)

≤ θ(k0 + 3) − 1

2ρ1
E‖λ1 − λ‖2. (64)

Proof On the left hand side of (64), the coefficient of each 1
2‖λk+1−λk‖2 is negative.

For 2 ≤ k ≤ t − 1, the coefficient of 1
2‖λk − λ‖2 is θ(k+k0+2)−1

ρk
− θ(k+k0+1)−1

ρk−1
,

which is nonpositive; the coefficient of 1
2‖λt − λ‖2 is t+k0+1

ρt
− θ(t+k0+1)−1

ρt−1
, which

is nonpositive; the coefficient of 1
2‖λt+1 − λ‖2 is also nonpositive. Hence, dropping

these nonpositive terms, we have the desired result. �

Now we are ready to prove Theorem 3.3.

Proof of Theorem 3.3 Multiplying k + k0 + 1 to both sides of (19), summing it up
from k = 1 through t , and moving the terms about �(xk, x, λk) + μ

2 ‖xk − x‖2 and
‖rk‖2 to the left hand side for 2 ≤ k ≤ t give

(t + k0 + 1)E
[
�(xt+1, x, λt+1) + (βt − ρt )‖r t+1‖2 + μ

2
‖xt+1 − x‖2

]

+
t∑

k=2

(
θ(k + k0 + 1) − 1

)
E

[
�(xk, x, λk) + μ

2
‖xk − x‖2

]

+
t∑

k=2

(
(βk−1 − ρk−1)(k + k0) − (1 − θ)(k + k0 + 1)βk

)
E‖rk‖2

≤ (1 − θ)(k0 + 2)E
[
�(x1, x, λ1) + β1‖r1‖2 + μ

2
‖x1 − x‖2

]
(65)

−
t∑

k=1

(k + k0 + 1)E

[
�ηk I−βk A� A(xk+1, xk, x) − Lm

2
‖xk+1 − xk‖2

]
.
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Hence, from (21b) and (63), it follows that

(t + k0 + 1)E�(xt+1, x, λt+1) +
t∑

k=2

(
θ(k + k0 + 1) − 1

)
E�(xk, x, λk)

≤ (1 − θ)(k0 + 2)E
[
�(x1, x, λ1) + β1‖r1‖2 + μ

2
‖x1 − x‖2

]

+ η1(k0 + 2)

2
E‖x1 − x‖2 − t + k0 + 1

2
E‖xt+1 − x‖2

(μ+ηt )I−βt A� A.

(66)

In addition, from the update of λ in (17c), we have

〈λk+1 − λ, Axk+1 − b〉 = − 1

ρk
〈λk+1 − λ, λk+1 − λk〉 = − 1

ρk
�(λk+1, λk, λ), (67)

and thus

(t + k0 + 1)E〈λt+1 − λ, Axt+1 − b〉 +
t∑

k=2

(
θ(k + k0 + 1) − 1

)
E〈λk − λ, Axk − b〉

= − t + k0 + 1

ρt
E�(λt+1, λt , λ) −

t∑

k=2

θ(k + k0 + 1) − 1

ρk−1
E�(λk, λk−1, λ)

(64)≤ θ(k0 + 3) − 1

2ρ1
E‖λ1 − λ‖2.

Since �(xk, x, λ) = �(xk, x, λk) + 〈λk − λ, Axk − b〉, we obtain the desired result
by adding the above inequality to (66). �

Proof of Proposition 3.4

Note that (24) implies k0 ≥ 4
θ
, and thus (21a) must hold. Also, it is easy to see that

(21d) holds with equality from the second equation of (23b). Since I � A� A
‖A‖22

, we can

easily have (21f) by plugging in βk and ηk defined in (23a) and (23c) respectively.
To verify (21c), we plug in ρk defined in the first equation of (23b), and it is

equivalent to requiring that for any 2 ≤ k ≤ t − 1

θ(k + k0 + 1) − 1

θ(k − 1) + 2 + θ
≥ θ(k + k0 + 2) − 1

θk + 2 + θ
⇐⇒ 1 + θ(k0 + 1) − 3

θk + 2

≥ 1 + θ(k0 + 1) − 3

θk + 2 + θ
.

The inequality on the right hand side obviously holds, and thus we have (21c).
Plugging in the formula of βk , (21e) is equivalent to

(θk + 2 + θ)(k + k0 + 1) ≥ (θk + 2)(k + k0),
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which holds trivially, and thus (21e) follows.
With the given βk and ρk , (21b) becomes 6

6−5θ (θk + 2)(k + k0) ≥ (k + k0 +
1)(θk + 2 + θ), ∀2 ≤ k ≤ t, which is equivalent to 6

6−5θ ≥ (k0+3)(3θ+2)
(k0+2)(2θ+2) . Note that

k0+3
k0+2 is decreasing with respect to k0 ≥ 0 and also 6

6−5θ ≥ ( 3
θ
+3)(3θ+2)

( 3
θ
+2)(2θ+2)

. Hence, (21b)

is satisfied from the fact k0 ≥ 4
θ
.

Finally, we show (21g). Plugging in ηk , we have that (21g) becomes

(k + k0)
(μ

2
(θk + 2) + Lm

)
+ μ

(
θ(k + k0 + 1) − 1

)

≥ (k + k0 + 1)
(μ

2
(θk + 2 + θ) + Lm

)
, ∀k ≥ 2,

which is equivalent to k0 +1 ≥ 4
θ
+ 2Lm

θμ
. Hence, for k0 given in (24), (21g) must hold.

Therefore, we have verified all conditions in (21).

Proof of Theorem 3.5

From Proposition 3.4, we have the inequality in (22) that, as λ1 = 0, reduces to

(t + k0 + 1)E�(xt+1, x, λ) +
t∑

k=2

(
θ(k + k0 + 1) − 1

)
E�(xk, x, λ)

≤ φ3(x, λ) − t + k0 + 1

2
E‖xt+1 − x‖2

(μ+ηt )I−βt A� A. (68)

For ρ ≥ 1, we have

(μ + ηt )I − βt A� A �
(

(ρ − 1)μ

2ρ
(θ t + θ + 2) + μ + Lm

)
I. (69)

Letting x = x∗ and using the convexity of F , we have from (68) and the above
inequality that

E

[
F(x̄ t+1) − F(x∗) − 〈λ, Ax̄t+1 − b

〉] ≤ 1

T
Eφ3(x∗, λ), ∀λ, (70)

which together with Lemmas 1.2 and 1.3 with γ = max(2‖λ∗‖, 1 + ‖λ∗‖) indicates
(25).

In addition, note

�(xt+1, x∗, λ∗) ≥ μ

2
‖xt+1 − x∗‖2.

123



Accelerated primal–dual proximal block coordinate updating… 119

Hence, letting (x, λ) = (x∗, λ∗) in (68) and using (5), we have from (69) that

t + k0 + 1

2

(
(ρ − 1)μ

2ρ
(θ t + θ + 2) + 2μ + Lm

)
E‖xt+1 − x∗‖2 ≤ φ3(x∗, λ∗),

(71)

and the proof is completed.

Appendix C: Technical proofs: Sect. 4

In this section, we provide the proofs of the lemmas and theorems in Sect. 4.

Proof of Lemma 4.1

Note rk+1 − rk = A(xk+1 − xk) + B(yk+1 − yk). Hence by (6), we have

〈
A(xk+1 − x),−βrk

〉
= − β

〈
A(xk+1 − x), rk+1

〉
+ β

〈
A(xk+1 − x), B(yk+1 − yk)

〉

+ β

2

[
‖A(xk+1 − x)‖2 − ‖A(xk − x)‖2 + ‖A(xk+1 − xk)‖2

]
.

(72)
In addition, 〈A(xk+1 − x), λk〉 = 〈A(xk+1 − x), λk+1 + ρrk+1〉. Plugging this equa-
tion and (72) into (45) with xo = xk, λo = λk, x+ = xk+1, W = ηx I and taking
expectation yield

E

[
F(xk+1) − F(x) + μ

2
‖xk+1 − x‖2 − 〈A(xk+1 − x), λk+1〉

+(β − ρ)
〈
A(xk+1 − x), rk+1〉]

+ 1

2
E

[
‖xk+1 − x‖2P − ‖xk − x‖2P + ‖xk+1 − xk‖2P−Lm I

]

≤ (1 − θ)E
[

F(xk) − F(x) + μ

2
‖xk − x‖2 − 〈A(xk − x), λk − βrk 〉] (73)

+ βE
〈
A(xk+1 − x), B(yk+1 − yk)

〉
,

where P = ηx I − β A� A.
From (30), the optimality condition for ỹk+1 is

∇h(ỹk+1) − B�λk + βB�rk+ 1
2 + ηy(ỹk+1 − yk) = 0. (74)

Since Prob(yk+1 = ỹk+1) = θ, Prob(yk+1 = yk) = 1 − θ, we have

E

〈
yk+1 − y,∇h(yk+1) − B�λk + βB�rk+ 1

2 + ηy(yk+1 − yk)
〉

= (1 − θ)E
〈
yk − y,∇h(yk) − B�λk + βB�rk+ 1

2

〉
,
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or equivalently,

E

〈
yk+1 − y,∇h(yk+1) − B�λk+1 + (β − ρ)B�rk+1

−βB� B(yk+1 − yk) + ηy(yk+1 − yk)
〉

= (1 − θ)E
〈
yk − y,∇h(yk) − B�λk + βB�rk

〉

+β(1 − θ)E
〈
B(yk − y), A(xk+1 − xk)

〉
. (75)

Recall Q = ηy I − βB� B. We have

〈
yk+1 − y,−βB� B(yk+1 − yk) + ηy(yk+1 − yk)

〉

= 1

2

[
‖yk+1 − y‖2Q − ‖yk − y‖2Q + ‖yk+1 − yk‖2Q

]
.

Therefore adding (75) to (73), noting Ax + By = b, and plugging (67) with ρk = ρ,
we have the desired result.

Proof of Theorem 4.2

Before proving Theorem 4.2, we establish a few inequalities. First, using Young’s
inequality, we have the following results.

Lemma 9.1 For any τ1, τ2 > 0, it holds that

〈A(xk+1 − x∗), B(yk+1 − yk)〉 ≤ 1

2τ1
‖A(xk+1 − x∗)‖2 + τ1

2
‖B(yk+1 − yk)‖2,

(76)

〈B(yk − y∗), A(xk+1 − xk)〉 ≤ 1

2τ2
‖B(yk − y∗)‖2 + τ2

2
‖A(xk+1 − xk)‖2. (77)

In addition, we are able to bound the λ-term by y-term and the residual r . The proofs
are given in Appendix C.4 and C.5.

Lemma 9.2 For any δ > 0, we have

E‖B�(λk+1 − λ∗)‖2 − (1 − θ)(1 + δ)E‖B�(λk − λ∗)‖2
≤ 4E

[
L2

h‖yk+1 − y∗‖2 + ‖Q(yk+1 − yk)‖2]+ 2(β − ρ)2E‖B�rk+1‖2

+ 2ρ2(1 − θ)

(
1 + 1

δ

)
E
[‖B�rk+1‖2 + ‖B� B(yk+1 − yk)‖2]. (78)

Lemma 9.3 Assume (38). Then

σmin(B B�)

2

[‖λk+1 − λ∗‖2 − (1 − θ)‖λk − λ∗‖2 + 1

θ
‖λk+1 − λk‖2]
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≤ ‖B�(λk+1 − λ∗)‖2 − (1 − θ)(1 + δ)‖B�(λk − λ∗)‖2 + κ‖B�(λk+1 − λk)‖2,
(79)

where σmin(B B�) denotes the smallest singular value of B B�.

Lemma 9.4 Let c, δ, τ1, τ2 and κ be constants satisfying the conditions in Theorem
4.2. Then

βE
〈
A(xk+1 − x∗), B(yk+1 − yk)

〉+ β(1 − θ)E
〈
B(yk − y∗), A(xk+1 − xk)

〉

+ c

2
σmin(B B�)E

[‖λk+1 − λ∗‖2 − (1 − θ)‖λk − λ∗‖2 + 1

θ
‖λk+1 − λk‖2]

≤ 1

2
E‖xk+1 − xk‖2P−Lm I + β

2τ1
E‖A(xk+1 − x∗)‖2 (80)

+ 1

2
E‖yk+1 − yk‖2Q + β(1 − θ)

2τ2
E‖B(yk − y∗)‖2 + 4cL2

hE‖yk+1 − y∗‖2

+
[

cρ2
(

κ + 2(1 − θ)

(
1 + 1

δ

))
+ 2c(β − ρ)2

]
E‖B�rk+1‖2.

Now we are ready to show Theorem 4.2.

Proof of Theorem 4.2 Letting (x, y, λ) = (x∗, y∗, λ∗) in (34), plugging (32) into it,
and noting Ax∗ + By∗ = b, we have

E�(zk+1, z∗) + (β − ρ)E‖rk+1‖2 + E

[
�P (xk+1, xk, x∗) − Lm

2
‖xk+1 − xk‖2

]

+E�Q(yk+1, yk, y∗) + μ

2
E‖xk+1 − x∗‖2 + 1

ρ
E�(λk+1, λk, λ∗)

≤ (1 − θ)E�(zk, z∗) + β(1 − θ)E‖rk‖2 + 1 − θ

ρ
E�(λk, λk−1, λ∗)

+ μ(1 − θ)

2
E‖xk − x∗‖2 + βE

〈
A(xk+1 − x∗), B(yk+1 − yk)

〉+ β(1 − θ)

E
〈
B(yk − y∗), A(xk+1 − xk)

〉
,

(81)

where � is defined in (36). Note

1

ρ
�(λk+1, λk, λ∗)

= 1

2ρ

[‖λk+1 − λ∗‖2 − (1 − θ)‖λk − λ∗‖2 + 1

θ
‖λk+1 − λk‖2]

− ρ

2

(
1

θ
− 1

)
‖rk+1‖2 − θ

2ρ
‖λk − λ∗‖2,
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and
1 − θ

ρ
�(λk, λk−1, λ∗)

= 1

2ρ

[‖λk − λ∗‖2 − (1 − θ)‖λk−1 − λ∗‖2 + 1

θ
‖λk − λk−1‖2]

− ρ

2

(
1

θ
− (1 − θ)

)
‖rk‖2 − θ

2ρ
‖λk − λ∗‖2.

Adding (80) to (81) and plugging the above two equations yield

E�(zk+1, z∗) + (β − ρ)E‖rk+1‖2 + E

[
�P (xk+1, xk , x∗) − Lm

2
‖xk+1 − xk‖2

]

+E�Q(yk+1, yk , y∗) + μ

2
E‖xk+1 − x∗‖2 − ρ

2

(
1

θ
− 1

)
E‖rk+1‖2 − θ

2ρ
E‖λk − λ∗‖2

+
(

1

2ρ
+ c

2
σmin(B B�)

)
E
[‖λk+1 − λ∗‖2 − (1 − θ)‖λk − λ∗‖2 + 1

θ
‖λk+1 − λk‖2]

≤ (1 − θ)E�(zk , z∗) + β(1 − θ)E‖rk‖2 − ρ

2

(
1

θ
− (1 − θ)

)
E‖rk‖2 − θ

2ρ
E‖λk − λ∗‖2

+ 1

2ρ
E
[‖λk − λ∗‖2 − (1 − θ)‖λk−1 − λ∗‖2 + 1

θ
‖λk − λk−1‖2]

+μ(1 − θ)

2
E‖xk − x∗‖2 + 1

2
E‖xk+1 − xk‖2P−Lm I + β

2τ1
E‖A(xk+1 − x∗)‖2

+1

2
E‖yk+1 − yk‖2Q + β(1 − θ)

2τ2
E‖B(yk − y∗)‖2 + 4cL2

hE‖yk+1 − y∗‖2

+
[

cρ2
(

κ + 2(1 − θ)

(
1 + 1

δ

))
+ 2c(β − ρ)2

]
E‖B�rk+1‖2.

Using the definition in (2) to expand �P (xk+1, xk, x∗) and �Q(yk+1, yk, y∗) in
the above inequality, and then rearranging terms, we have

E�(zk+1, z∗) +
(

(β − ρ) − ρ

2

(
1

θ
− 1

))
E‖rk+1‖2

−
[

cρ2
(

κ + 2(1 − θ)

(
1 + 1

δ

))
+ 2c(β − ρ)2

]
E‖B�rk+1‖2

+E

[
1

2
‖xk+1 − x∗‖2P + μ

2
‖xk+1 − x∗‖2 − β

2τ1
‖A(xk+1 − x∗)‖2

]

+E

[
1

2
‖yk+1 − y∗‖2Q − 4cL2

h‖yk+1 − y∗‖2
]

+
(

1

2ρ
+ c

2
σmin(B B�)

)
E

[
‖λk+1 − λ∗‖2 − (1 − θ)‖λk − λ∗‖2 + 1

θ
‖λk+1 − λk‖2

]

≤ (1 − θ)E�(zk , z∗) + β(1 − θ)E‖rk‖2 − ρ

2

(
1

θ
− (1 − θ)

)
E‖rk‖2 + 1

2
E‖xk − x∗‖2P

+μ(1 − θ)

2
E‖xk − x∗‖2 + 1

2
E‖yk − y∗‖2Q + β(1 − θ)

2τ2
E‖B(yk − y∗)‖2

+ 1

2ρ
E

[
‖λk − λ∗‖2 − (1 − θ)‖λk−1 − λ∗‖2 + 1

θ
‖λk − λk−1‖2

]
. (82)
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Since ρ = θβ, it holds

(β − ρ) − ρ

2

(
1

θ
− 1

)
= β − ρ

2
, β(1 − θ) − ρ

2

(
1

θ
− (1 − θ)

)
≤ β(1 − θ)

2
,

and thus the inequality (82) implies

E�(zk+1, z∗) + β − ρ

2
E‖rk+1‖2

−
[

cρ2
(

κ + 2(1 − θ)

(
1 + 1

δ

))
+ 2c(β − ρ)2

]
E‖B�rk+1‖2

+E

[
1

2
‖xk+1 − x∗‖2P + μ

2
‖xk+1 − x∗‖2 − β

2τ1
‖A(xk+1 − x∗)‖2

]

+E

[
1

2
‖yk+1 − y∗‖2Q − 4cL2

h‖yk+1 − y∗‖2
]

+
(

1

2ρ
+ c

2
σmin(B B�)

)
E
[‖λk+1 − λ∗‖2 − (1 − θ)‖λk − λ∗‖2 + 1

θ
‖λk+1 − λk‖2]

≤ ψ(zk , z∗; P, Q, β, ρ, c, τ2), (83)

where ψ is defined in (37).
From (33), it follows that

(1 − α)�(zk+1, z∗) + αμ

2
‖xk+1 − x∗‖2 + αν‖yk+1 − y∗‖2 ≤ �(zk+1, z∗). (84)

In addition, note that

‖rk+1‖2 = ‖Axk+1 + Byk+1 − (Ax∗ + By∗)‖2
≤ 2‖A‖22‖xk+1 − x∗‖2 + 2‖B‖22‖yk+1 − y∗‖2
≤ γ

(αμ

4
‖xk+1 − x∗‖2 + αν

4
‖yk+1 − y∗‖2

)
,

and thus
1

γ
‖rk+1‖2 ≤ αμ

4
‖xk+1 − x∗‖2 + αν

4
‖yk+1 − y∗‖2. (85)

Adding (84) and (85) to (83) gives the desired result. �

Proof of Theorem 4.3

From 0 < α < θ , the full row-rankness of B, and the conditions in (41), it is easy to
see that η > 1. Next we find lower bounds of the terms on the left hand of (40). Since
η ≤ 1−α

1−θ
, we have

η(1 − θ)�(zk+1, z∗) ≤ (1 − α)�(zk+1, z∗). (86)
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Note ‖A‖2 ≤ 1 and

(
αμ

2
+ μ − β

τ1

)
I �

αμ
2 + θμ − β

τ1

ηx + μ(1 − θ)
(ηx I − β A� A)

+
αμ
2 + θμ − β

τ1

ηx + μ(1 − θ)
μ(1 − θ)I + μ(1 − θ)I.

Hence, from η ≤ 1 +
αμ
2 +θμ− β

τ1
ηx +μ(1−θ)

and P = ηx I − β A� A, it follows that

η‖xk+1 − x∗‖2P+μ(1−θ)I ≤ ‖xk+1 − x∗‖2
P+(

αμ
2 +μ)I− β

τ1
A� A

. (87)

Similarly, since

(
3αν

2
− 8cL2

h

)
I �

3αν
2 − 8cL2

h − β(1−θ)
τ2

ηy + β(1−θ)
τ2

(ηy I − βB� B)

+
3αν
2 − 8cL2

h − β(1−θ)
τ2

ηy + β(1−θ)
τ2

β(1 − θ)

τ2
I + β(1 − θ)

τ2
I,

Q = ηy I − βB� B, and B� B � I , we have

η‖yk+1 − y∗‖2
Q+ β(1−θ)

τ2
B� B

≤ ‖yk+1 − y∗‖2
Q+( 3αν

2 −8cL2
h)I

. (88)

For the r -term, we note from the definition of η that

η
β(1 − θ)

2
≤
(

β(1 − θ)

2
+ 1

γ

)
−
(

cρ2
(

κ + 2(1 − θ)

(
1 + 1

δ

))
+ 2c(β − ρ)2

)
.

In addition, since ‖B‖2 ≤ 1, it holds ‖B�rk+1‖ ≤ ‖rk+1‖, and thus

η
β(1 − θ)

2
‖rk+1‖2 ≤

(
β(1 − θ)

2
+ 1

γ

)
‖rk+1‖2

−
(

cρ2
(

κ + 2(1−θ)

(
1+ 1

δ

))
+ 2c(β − ρ)2

)
‖B�rk+1‖2.

(89)

Finally, it is obvious to have
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η

2ρ

[
‖λk+1 − λ∗‖2 − (1 − θ)‖λk − λ∗‖2 + 1

θ
‖λk+1 − λk‖2

]

≤
(

1

2ρ
+ c

2
σmin(B B�)

)[
‖λk+1 − λ∗‖2 − (1 − θ)‖λk − λ∗‖2 + 1

θ
‖λk+1 − λk‖2

]
.

(90)

Therefore, we obtain (42) by the definition of ψ and adding (86) through (90).

Proof of Lemma 9.2

Let λ̃k+1 = λk − ρ(Axk+1 + B ỹk+1 − b). Then from the update of y, we have

E‖B�(λk+1 − λ∗)‖2
= θE‖B�(λ̃k+1 − λ∗)‖2 + (1 − θ)E‖B�(λk − λ∗ − ρ(Axk+1 + Byk − b))‖2.

(91)
Below we bound the two terms on the right hand side of (91). First, the definition

of λ̃k+1 together with (74) implies

B�λ̃k+1 = ∇h(ỹk+1) + Q(ỹk+1 − yk) + (β − ρ)B�(Axk+1 + B ỹk+1 − b). (92)

Hence, by the Young’s inequality and the condition in (32b), we have

θE‖B�(λ̃k+1 − λ∗)‖2
≤ 2θE‖∇h(ỹk+1) − ∇h(y∗) + Q(ỹk+1 − yk)‖2

+ 2θ(β − ρ)2E‖B�(Axk+1 + B ỹk+1 − b)‖2.
(93)

Since Prob(yk+1 = ỹk+1) = θ and Prob(yk+1 = yk) = 1 − θ , it follows that

E‖∇h(yk+1) − ∇h(y∗) + Q(yk+1 − yk)‖2
= θE‖∇h(ỹk+1)−∇h(y∗) + Q(ỹk+1−yk)‖2 + (1 − θ)E‖∇h(yk) − ∇h(y∗)‖2,

and thus

θE‖∇h(ỹk+1) − ∇h(y∗) + Q(ỹk+1 − yk)‖2
≤ E‖∇h(yk+1) − ∇h(y∗) + Q(yk+1 − yk)‖2.

Similarly,

θ(β − ρ)2E‖B�(Axk+1 + B ỹk+1 − b)‖2 ≤ (β−ρ)2E‖B�(Axk+1+Byk+1 − b)‖2.
Plugging the above two equations into (93) and applying the Young’s inequality and
also the Lipschitz continuity of ∇h give

θE‖B�(λ̃k+1−λ∗)‖2 ≤ 4E
[
L2

h‖yk+1−y∗‖2+‖Q(yk+1−yk)‖2]+2(β−ρ)2E‖B�rk+1‖2.
(94)
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In addition, from the Young’s inequality, it follows for any δ > 0 that

‖B�(λk − λ∗ − ρ(Axk+1 + Byk − b))‖2

≤ (1 + δ)‖B�(λk − λ∗)‖2 + ρ2
(
1 + 1

δ

)
‖B�(Axk+1 + Byk − b)‖2.

Note ‖B�(Axk+1 + Byk − b)‖2 ≤ 2‖B�rk+1‖2 +2‖B� B(yk+1 − yk)‖2. Therefore,
plugging (94) and the above two inequalites into (91), we complete the proof.

Proof of Lemma 9.3

It is straightforward to verify

‖B�(λk+1 − λ∗)‖2 − (1 − θ)(1 + δ)‖B�(λk − λ∗)‖2 + κ‖B�(λk+1 − λk)‖2

=
[

λk+1 − λ∗
λk+1 − λk

]� [
(1 − (1 − θ)(1 + δ)) (1 − θ)(1 + δ)

(1 − θ)(1 + δ) (κ − (1 − θ)(1 + δ))

]
⊗ B B�

[
(λk+1 − λ∗)
(λk+1 − λk)

]
,

and

[
λk+1 − λ∗
λk+1 − λk

]� [
θ (1 − θ)

(1 − θ) ( 1
θ

− (1 − θ))

]
⊗ I

[
λk+1 − λ∗
λk+1 − λk

]

=
[
‖λk+1 − λ∗‖2 − (1 − θ)‖λk − λ∗‖2 + 1

θ
‖λk+1 − λk‖2

]
.

Hence, we have the desired result from (38) and the inequalityU ⊗V � σmin(V )U ⊗ I
for any PSD matrices U and V .

Proof of Lemma 9.4

From (39a) and (39b), we have

β(1 − θ)
τ2

2
‖A(xk+1 − xk)‖2 ≤ 1

2
‖xk+1 − xk‖2P−Lm I ,

and

4c‖Q(yk+1 − yk)‖2 + 2cρ2(1 − θ)

(
1 + 1

δ

)
‖B� B(yk+1 − yk)‖2

+βτ1

2
‖B(yk+1 − yk)‖2

≤ 1

2
‖yk+1 − yk‖2Q .

The desired result is then obtained by adding the above two inequalities together with
β times of (76), β(1− θ) times of (77), c times of both (78) and (79), and also noting
λk+1 − λk = −ρrk+1.
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