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Abstract We investigate Euler discretization for a class of optimal control problems
with a nonlinear cost functional of Mayer type, a nonlinear system equation with
control appearing linearly and constraints defined by lower and upper bounds for the
controls. Under the assumption that the cost functional satisfies a growth condition
we prove for the discrete solutions Hölder type error estimates w.r.t. the mesh size
of the discretization. If a stronger second-order optimality condition is satisfied the
order of convergence can be improved. Numerical experiments confirm the theoretical
findings.
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1 Introduction

Discretization methods like Euler discretization are used for the numerical solution
of optimal control problems. The accuracy of the approximate solutions obtained in
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this way are often satisfactory from a practical point of view. However, if the optimal
control has a special structure, a discretizationmethodmay help to detect this structure
and then methods based on structural assumptions can be used to determine the opti-
mal control more accurately. Especially for bang–bang controls Euler discretization
can be used to compute approximations of the switching points, and then efficient
numerical approaches, such as switching time parameterization, can be employed to
determine the switching times more accurately (see e.g. Kaya et al. [23], Maurer et
al. [29], Osmolovskii and Maurer [34] and the papers cited therein). It is well-known
that, in particular when the solution controls are of bang–bang or bang-singular type,
many difficulties are encountered in getting an approximate solution. Therefore, it
is of practical interest to have conditions implying error estimates for approximate
solutions which ensure that the approximate controls (optimal controls for the dis-
cretized problems) converge to the optimal control of the original, continuous-time
control problem. Such error estimates are closely related to estimates for solutions of
perturbed optimal control problems.

Discretization and perturbation of nonlinear optimal control problems governed by
ordinary differential equations are well studied for the case that the optimal control is
sufficiently smooth, and the results are usually based on strong second-order optimality
conditionswhich require coercivity of the second derivative of the Lagrangian function
with respect to the control variables (see e.g. Dontchev andHager [10,11], Dontchev et
al. [12],Malanowski [24–26],Malanowski et al. [27], Alt [1–3]). For control problems
with control appearing linearly such conditions are not satisfied and the optimal control
may be discontinuous. Therefore, there have been only a few papers on discretization
of such problems (see e.g. Alt and Mackenroth [5], Dhamo and Tröltzsch [9], Veliov
[41] and the papers cited therein).

New second-order optimality conditions for optimal control problems with control
appearing linearly have been developed during the last 10–15years (see e.g. Felgen-
hauer [15–18,20], Maurer et al. [29], Osmolovskii andMaurer [32–34] and the papers
cited therein). In case of bang–bang controls these conditions have been used in Alt
et al. [4], Alt and Seydenschwanz [7], and in Seydenschwanz [40] to obtain error esti-
mates for Euler discretization of linear-quadratic optimal control problems governed
by ordinary differential equations and in Deckelnick and Hinze [8] for discretizations
of elliptic control problems. For convex control problems of Mayer type with a lin-
ear system equation and bang–bang solutions Veliov [41] has shown convergence of
order 1 for Euler discretization. These results have been extended in Haunschmied et
al. [21] under more general conditions based on a result on stability of optimal control
problems under strong bi-metric regularity of Quincampoix and Veliov [36]. Pietrus et
al. [35] investigate high order discrete approximations to Mayer type problems based
on second order Volterra-Fliess approximations. Felgenhauer [19] shows convergence
of order 1 for a class of nonlinear optimal control problems, where the linear term
in the system equation does not depend on the state variables and the solution has
bang-singular-bang structure. Alt et al. [6] prove convergence of order 1 for implicit
Euler discretization of a general class of convex, linear-quadratic control problems
with bang–bang solutions.

In the present paper we investigate a class of optimal control with a nonlinear
cost functional of Mayer type, a nonlinear system equation with control appearing
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linearly and constraints defined by lower and upper bounds for the controls. Under
the assumption that the cost functional satisfies a growth condition of order κ ≥ 1
we prove for the discrete solutions Hölder type error estimates of order 1/κ w.r.t. the
mesh size of the discretization. If a stronger second-order condition for the derivative
of the Lagrangian w.r.t. the control and a weakened coercivity condition for the second
derivative of the Lagrangian are satisfied, the order of convergence can be improved
to 1.

We use the following notations: Rn is the n-dimensional Euclidean space with the
inner product denoted by 〈x, y〉 and the norm |x | = 〈x, x〉1/2. For an m × n-matrix
M we denote the spectral norm by ‖M‖ = sup|z|≤1 |Mz|. Let t0, t f ∈ R, t0 < t f .
We denote by L1(t0, t f ;Rm) the Banach space of integrable, measurable functions
u : [t0, t f ] → R

m with

‖u‖1 =
∫ t f

t0

m∑
i=1

|ui (t)| dt =
m∑
i=1

‖ui‖1 < ∞,

by L∞(t0, t f ;Rm) the Banach space of essentially bounded functions u : [t0, t f ] →
R
m with the norm

‖u‖∞ = max
1≤i≤m

ess supt∈[t0,t f ] |ui (t)|,

and C(t0, t f ;Rm) is the Banach space of continuous functions u : [t0, t f ] → R
m with

the norm

‖u‖∞ = max
1≤i≤m

max
t∈[t0,t f ]

|ui (t)|.

For p ∈ {1,∞} we denote by W 1
p(t0, t f ;Rn) the spaces of absolutely continuous

functions on [t0, t f ] with derivative in L p(t0, t f ;Rn), i.e.

W 1
p(t0, t f ;Rn) = {

x ∈ L p(t0, t f ;Rn) | ẋ ∈ L p(t0, t f ;Rn)
}

with

‖x‖1,1 = |x(t0)| + ‖ẋ‖1, ‖x‖1,∞ = max {‖x‖∞, ‖ẋ‖∞} .

Let X = X1 × X2, where X1 = W 1
1 (t0, t f ;Rn), X2 = L1(t0, t f ;Rm). We consider

the following optimal control problem:

(OC) min f (x(t f ))

s.t.

ẋ(t) = g(x(t), u(t), t) a.e. on [t0, t f ],
x(t0) = a,

u(t) ∈ U a.e. on [t0, t f ],
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where g is defined by

g(x, u, t) = g(1)(x, t) + g(2)(x, t)u. (1.1)

Here,u(t) ∈ R
m is the control, and x(t) ∈ R

n is the state of a systemat time t ∈ [t0, t f ].
Further f : Rn → R, g(1) : Rn ×[t0, t f ] → R

n , g(2) : Rn ×[t0, t f ] → R
n×m , and the

set U ⊂ R
m is defined by lower and upper bounds, i.e.,

U = {u ∈ R
m | b� ≤ u ≤ bu}

withb�, bu ∈ R
m ,b� < bu , where all inequalities are to be understood componentwise.

The organization of the paper is as follows. In Sect. 2 we state some basic results.
Section 3 introduces the Euler discretization for Problem (OC). In Sect. 4 Hölder type
error estimates are derived assuming a growth condition for the cost functional. Under
stronger second-order conditions we prove in Sect. 5 convergence of order 1. Section 6
discusses some numerical results.

2 Basic results

We denote by

U = {u ∈ X2 | u(t) ∈ U ∀′t ∈ [t0, t f ]}

the set of admissible controls, and by

F = {
(x, u) ∈ X | ẋ(t) = g(x(t), u(t), t) a.e. on [t0, t f ], x(t0) = a, u ∈ U

}

the feasible set of Problem (OC). For ε > 0 and (x∗, u∗) ∈ X

Bε(x
∗, u∗) = {

(x, u) ∈ X | ‖x − x∗‖∞ < ε, ‖u − u∗‖1 < ε
}
.

is the open ball around (x∗, u∗) with radius ε.

Definition 1 A pair (x∗, u∗) ∈ F is called a local minimizer of f on F or a local
solution of Problem (OC), if there exists ε > 0 such that f (x∗(t f )) ≤ f (x(t f )) for
all (x, u) ∈ F ∩ Bε(x∗, u∗). ♦

Note that we allow discontinuous optimal controls, especially bang–bang controls.
Therefore, we consider local solutions w.r.t. the L1-norm for control functions. We
suppose in the following:

(2.1) There exists ε̄ > 0 and (x∗, u∗) ∈ F such that f (x∗(t f )) ≤ f (x(t f )) for all
(x, u) ∈ F ∩ Bε̄(x∗, u∗), i.e., (x∗, u∗) is a local solution of (OC).

Since U is bounded, there exists a constant Ku such that for all u ∈ U

|u(t)| ≤ Ku a.e. on [t0, t f ]. (2.2)
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Let

Nε̄(x
∗) = {

x ∈ X1 | ‖x − x∗‖∞ < ε̄
}
,

and let B ⊂ R
n be a convex and open set such that

B ⊃ {
z ∈ R

n | z = x(t) for some t ∈ [t0, t f ] and some x ∈ Nε̄(x
∗)

}
.

For given numbers n1, n2 ∈ N, n1 ≤ n2, we define

Jn2n1 = {n1, n1 + 1, . . . , n2}.

We suppose that the following assumptions are satisfied:

(2.3) The functions f , g(1), and g(2) are continuously differentiable w.r.t. x on B.
(2.4) The functions f , g(1), and g(2) areLipschitz continuous, i.e., there are constants

L f , L̃ f and Lg such that

| f (x) − f (z)| ≤ L f |x − z|,
|g(1)(x, t) − g(1)(z, s)| ≤ Lg (|x − z| + |t − s|),
‖g(2)(x, t) − g(2)(z, s)‖ ≤ Lg (|x − z| + |t − s|),

for all s, t ∈ [t0, t f ] and all x, z ∈ B

(2.5) The functions fx , g
(1)
x , and g(2)

x are Lipschitz continuous, i.e., there are con-
stants L(1)

f and L(1)
g such that

| fx (x) − fx (z)| ≤ L(1)
f |x − z|,

|g(1)
j,x (x, t) − g(1)

j,x (z, s)| ≤ L(1)
g (|x − z| + |t − s|), j ∈ Jn1 ,

|g(2)
j i,x (x, t) − g(2)

j i,x (z, s)| ≤ L(1)
g (|x − z| + |t − s|), j ∈ Jn1 , i ∈ Jm1 ,

for all s, t ∈ [t0, t f ] and all x, z ∈ B.

For (x, u) ∈ X with ‖x − x∗‖ ≤ ε̄ it follows from (2.2) and (2.5) that

|g(x(t), u(t), t)| ≤ |g(x∗(t), u∗(t), t)| + |g(x(t), u(t), t) − g(x∗(t), u∗(t), t)|
≤ |g(x∗(t), u∗(t), t)| + |g(1)(x(t), t) − g(1)(x∗(t), t)|

+ ‖g(2)(x(t), t) − g(2)(x∗(t), t)‖ |u(t)|
+ ‖g(2)(x∗(t), t)‖ |u(t) − u∗(t)|

≤ |g(x∗(t), u∗(t), t)| + Lg ε̄(1 + Ku) + 2Ku‖g(2)(x∗(t), t)‖.

This implies

|g(x(t), u(t), t)| ≤ Kg (2.6)
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with some constant Kg independent of (x, u) ∈ X with ‖x − x∗‖ ≤ ε̄. Moreover, for
(x, u) ∈ F with x ∈ Nε̄(x∗) and t, s ∈ [t0, t f ] we have

|ẋ(t) − ẋ(s)| ≤|g(1)(x(t), t) − g(1)(x(s), s)| + ‖g(2)(x(t), t) − g(2)(x(s), s)‖|u(t)|
+ ‖g(2)(x(s), s)‖|u(t) − u(s)|.

By (2.2), Assumption (2.4), and (2.6) this implies

|ẋ(t) − ẋ(s)| ≤ Lg(1 + Ku)(|x(t) − x(s)| + |t − s|) + Kg |u(t) − u(s)|. (2.7)

This further implies that with some constant Lx

|ẋ(t)| ≤ Lx ∀′t ∈ [t0, t f ], (2.8)

for all (x, u) ∈ F with x ∈ Nε̄(x∗), which shows that the feasible trajectories
x ∈ Nε̄(x∗) are uniformly Lipschitz with Lipschitz modulus Lx .

The HamiltonianH : Rn ×R
m ×R

n × [t0, t f ] → R for Problem (OC) is defined
by

H (x, u, λ, t) = λTg(x, u, t) =
n∑
j=1

λ j

[
g(1)
j (x, t) +

m∑
i=1

ui g
(2)
j,i (x, t)

]
.

We denote by

g(2)
.i (x, t) =

[
g(2)
1i (x, t), . . . , g(2)

ni (x, t)
]T

, i = 1, . . . ,m,

the i-th column vector of g(2)(x, t) and by

g(2)
j (x, t) =

[
g(2)
j1 (x, t), . . . , g(2)

jm(x, t)
]
, j = 1, . . . , n,

the j-th row of g(2)(x, t). Then

Hx (x, u, λ, t) = λTgx (x, t) = λT

[
g(1)
x (x, t) +

m∑
i=1

ui g
(2)
.i,x (x, t)

]
,

Hu(x, u, λ, t) = λTg(2)(x, t) =
n∑
j=1

λ j g
(2)
j (x, t).

Optimality conditions for Problem (OC) are well-known. Let (x∗, u∗) ∈ F be a local
solution of (OC). Then there exists a functionλ∗ ∈ W 1

1 (t0, t f ;Rn) such that the adjoint
equation

− λ̇∗(t) = Hx (x
∗(t), u∗(t), λ∗(t), t)T = gx (x

∗(t), u∗(t), t)Tλ∗(t) (2.9)
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is satisfied for a.a. t ∈ [t0, t f ] with terminal condition λ∗(t f ) = fx (x∗(t f ))T, and the
local minimum principle

Hu(x
∗(t), u∗(t), λ∗(t), t)T(u − u∗(t))

= λ∗(t)Tg(2)(x∗(t), t)(u − u∗(t)) ≥ 0 (2.10)

holds for a.a. t ∈ [t0, t f ] and all u ∈ U .
We denote by σ ∗ : [t0, t f ] → R

m the switching function defined by

σ ∗(t) = Hu(x
∗(t), u∗(t), λ∗(t), t)T = g(2)(x∗(t), t)Tλ∗(t). (2.11)

For a strong local solution (x∗, u∗) ∈ F of Problem (OC) with associated adjoint
function λ∗ ∈ X1, (2.10) implies for i ∈ {1, . . . ,m}

u∗
i (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bl,i , if σ ∗
i (t) > 0,

bu,i , if σ ∗
i (t) < 0,

undetermined, if σ ∗
i (t) = 0.

(2.12)

Therefore, the optimal control u∗ is of bang–bang type or may have singular arcs.

3 Euler Approximation

Let N ∈ N, h = hN = (t f − t0)/N be the mesh size and t j = t0 + jh, j ∈ J N
0 , the

grid points of the discretization.We approximate the space X2 of controls by functions
in the subspace X2,N ⊂ X2 of piecewise constant functions uh represented by their
values uh(t j ) = uh, j at the grid points t j , j ∈ J N−1

0 . Further, we approximate state
and adjoint state variables by functions xh , resp. λh , in the subspace X1,N ⊂ X1 of
continuous, piecewise linear functions represented by their values xh(t j ) = xh, j , resp.
λh(t j ) = λh, j , at the grid points t j , j ∈ J N

0 . Then based on Euler’s method for the
discretization of the system equation we obtain the discrete optimal control problem

(OC)N min
(xh ,uh)∈X1,N×X2,N

f (xh,N )

subject to

xh, j+1 = xh, j + hN g(xh, j , uh, j , t j ), j ∈ J N−1
0 ,

xh,0 = a,

u j ∈ U , j ∈ J N−1
0 .

ByFN we denote the feasible set of (OC)N .

Definition 2 A pair (x∗
h , u

∗
h) ∈ FN is called a local minimizer of f onFN or a local

solution of Problem (OC)N , if there exists ε > 0 such that f (x∗
h,N ) ≤ f (xh,N ) for all

(xh, uh) ∈ FN ∩ Bε(x∗
h , u

∗
h). ♦
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SinceFN is nonempty and bounded, Problem (OC)N has a (global) solution. Opti-
mality conditions can be derived in the same way as in Ioffe and Tihomirov [22,
Section 6.4]. For any local solution (x∗

h , u
∗
h) ∈ FN of Problem (OC)N there exists a

multiplier λ∗
h such that the discrete adjoint equation

− λ∗
h, j+1 − λ∗

h, j

hN
= Hx (x

∗
h, j , u

∗
h, j , λ

∗
h, j+1, t j )

T = gx (x
∗
h, j , u

∗
h, j , t j )

Tλ∗
h, j+1 (3.1)

for j ∈ J N−1
0 with terminal condition λ∗

h,N = fx (x∗
h,N )T, and the discrete minimum

principle

Hu(x
∗
h, j , u

∗
h, j , λ

∗
h, j+1, t j )(u − u∗

h, j ) = (λ∗
h, j+1)

Tg(2)(x∗
h, j , t j )(u − u∗

h, j ) ≥ 0

(3.2)

for j ∈ J N−1
0 and all u ∈ U are satisfied.

By λ∗
h we denote the continuous, piecewise linear function defined by the values

λh(t j ) = λh, j , i = 0, . . . , N , and by σ ∗
h (t) we denote the continuous, piecewise

constant function defined by the values

σ ∗
h (t j ) := g(2)(x∗

h, j , t j )
Tλ∗

h, j+1, j ∈ J N−1
0 , (3.3)

the discrete analogue of the switching function (2.11). From (3.2) we obtain for i =
1, . . . ,m, j ∈ J N−1

0 ,

u∗
h,i (t j ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bl,i if σ ∗
h,i (t j ) > 0,

bu,i if σ ∗
h,i (t j ) < 0,

undetermined if σ ∗
h,i (t j ) = 0.

(3.4)

4 Error estimates for local minimizers

We first prove some auxiliary results. For a function z : [t0, t f ] → R
k of bounded

variation and s1, s2 ∈ [t0, t f ], s1 < s2, we denote by Vs2
s1 z the total variation of z

on [s1, s2].
Lemma 1 Suppose that u ∈ X2 has bounded variation, and let uh ∈ X2,N be the
piecewise constant function defined by the values uh, j = u(t j ), j ∈ J N−1

0 . Then

‖u − uh‖1 ≤ hNV
t f
t0 u. (4.1)

Proof Since for s ∈ [t j , t j+1]

|u(s) − u(t j )| ≤ |u(t j+1) − u(s)| + |u(s) − u(t j )| ≤ V
t j+1
t j u,
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we have

‖u − uh‖1 =
N−1∑
j=0

∫ t j+1

t j
|u(s) − u(t j )| ds ≤

N−1∑
j=0

∫ t j+1

t j
V
t j+1
t j u

≤ hNV
t f
t0 u,

which proves (4.1). ��

Remark 1 In many applications the optimal control u∗ is a piecewise Lipschitz con-
tinuous function. In this case u∗ has bounded variation. ♦

The following result is a special case of Sendov and Popov [39, Theorem 6.1].

Lemma 2 If Assumptions (2.3) and (2.4) are satisfied, (x, u) ∈ F ∩ Bε(x∗, u∗), ẋ
has bounded variation, and xh is the solution of the discrete system equation

xh, j+1 = xh, j + hN g(xh, j , u(t j ), t j ), j ∈ J N−1
0 , xh,0 = a, (4.2)

then

max
1≤ j≤N

|xh, j − x(t j )| ≤ c1 hNV
t f
t0 ẋ, (4.3)

where c1 = e(t f −t0)Lg(1+Ku) is a constant independent of N .

Lemma 3 Suppose that Assumptions (2.1), (2.3), and (2.4) are satisfied, and that u∗
has bounded variation. Then for (x, u) ∈ F ∩ Bε(x∗, u∗) we have

V
t f
t0 ẋ ≤ Lg(1 + Ku)(Lx + 1)(t f − t0) + c2 V

t f
t0 u (4.4)

where c2 is a constant independent of N .

Proof The variation of ẋ can be estimated by the variation of the right hand side of
the system equation. For t, s ∈ [t0, t f ] we have by (2.7)

|ẋ(t) − ẋ(s)| ≤ Lg(1 + Ku)(|x(t) − x(s)| + |t − s|) + Kg |u(t) − u(s)|.

Hence, by (2.8) we obtain

V
t f
t0 ẋ ≤ Lg(1 + Ku)(Lx + 1)(t f − t0) + Kg V

t f
t0 u,

which proves the assertion. ��
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For ρ > 0 we consider the auxiliary problem

(OC)N ,ρ min
(xh ,uh)∈X1,N×X2,N

f (xh,N )

subject to

xh, j+1 = xh, j + hN g(xh, j , uh, j , t j ), j ∈ J N−1
0 ,

xh,0 = a,

u j ∈ U , j ∈ J N−1
0 ,

‖xh − x∗‖∞ ≤ ρ, ‖uh − u∗‖ ≤ ρ

which is Problem (OC)N with the additional constraints

‖xh − x∗‖∞ ≤ ρ, ‖uh − u∗‖1 ≤ ρ. (4.5)

For ρ > 0 we denote by FN ,ρ the feasible set of Problem (OC)N ,ρ , i.e.

FN ,ρ = {
(xh, uh) ∈ FN | ‖xh − x∗‖∞ ≤ ρ, ‖uh − u∗‖1 ≤ ρ

}
.

Lemma 4 Suppose that Assumptions (2.1), (2.3), and (2.4) are satisfied, and that u∗
has bounded variation. Further let ρ > 0 be arbitrary but fixed. Then for sufficiently
large N Problem (OC)N ,ρ has a solution.

Proof Let ûh ∈ X2,N be defined by the values ûh, j = u∗(t j ), j ∈ J N−1
0 . Then

ûh ∈ U , and by Lemma 1 we have

‖u∗ − ûh‖1 ≤ hNV
t f
t0 u

∗.

Let x̂h be the solution of the discrete system Eq. (4.2) for u = u∗. By Lemmas 2 and
3 we have

max
1≤ j≤N

|x̂h, j − x∗(t j )| ≤ c1
(
Lg(1 + Ku)(Lx + 1)(t f − t0) + c2 V

t f
t0 u

∗) hN .

This shows that (x̂h, ûh) ∈ FN ,ρ , and henceFN ,ρ �= ∅ for sufficiently large N . Since
the cost functional is continuous and the feasible set is closed and bounded, a solution
exists. ��

The following result on the dependence of solutions of the system equation on
parameters is well-known.

Lemma 5 If Assumptions (2.1), (2.3), and (2.5) are satisfied, there exists ρ̄ ∈ ]0, ε̄]
such that for each u ∈ X2 with ‖u − u∗‖1 < ρ̄, and each η ∈ L1(t0, t f ;Rn) with
‖η‖1 < ρ̄ the perturbed system equation

ẋ(t) = g(x(t), u(t), t) + η(t) a.e. on [t0, t f ], x(t0) = a,
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has a unique solution x = x(u, η), and for xi = x(ui , ηi ), i = 1, 2, we have

‖x2 − x1‖1,1 ≤ cs (‖u2 − u1‖1 + ‖η2 − η1‖1) ,

where the constant cs is independent of u and η.

We further need the following auxiliary result.

Lemma 6 Suppose that Assumptions (2.1), (2.3), (2.4), and (2.5) are satisfied, and
let ρ̄ > 0 be given by Lemma 5. Then there is a number N̄ ∈ N such that for N ≥ N̄
and any (xh, uh) ∈ FN ,ρ̄ there exists a function z ∈ X1 such that (z, uh) ∈ F and

‖z − xh‖1,1 ≤ chN (4.6)

with a constant c independent of N and (xh, uh) ∈ FN ,ρ̄ .

Proof Let (xh, uh) ∈ FN ,ρ̄ and N ∈ N be given. Since ‖xh − x∗‖ ≤ ρ̄ ≤ ε̄ it follows
from (2.6) that

|g(xh(t j ), uh(t j ), t j )| ≤ Kg. (4.7)

By Lemma 5 the system equation of (OC) for u = uh , i.e.,

ż(t) = g(z(t), uh(t), t) a.e. on [t0, t f ], z(t0) = a,

has a unique solution z, i.e. (z, uh) ∈ F . We define the piecewise constant function
x̄h : [t0, t f ] → R

n by x̄h(t j ) = xh(t j ) for j ∈ J N−1
0 . Then the discrete system

Eq. (4.2) for xh can be written in the form

ẋh(t) = g(xh(t), uh(t), t) + η(t) a.e. on [t0, t f ], xh(t0) = a,

where

η(t) = g(1)(x̄h(t), t) − g(1)(xh(t), t) + (g(2)(x̄h(t), t) − g(2)(xh(t), t))uh(t).

Since xh solves the discrete system Eq. (4.2) we have by (4.7) for t ∈ [t j , t j+1[,

|x̄h(t) − xh(t)| =
∣∣∣∣(t − t j )

x(t j+1) − x(t j )

t j+1 − t j

∣∣∣∣
= |(t − t j )| |g(xh(t j ), uh(t j ), t j )| ≤ hN Kg,

and by (2.2), Assumption (2.4), and (2.8) it follows that for t ∈ [t0, t f ],

|η(t)| ≤ Lg(1 + Ku)|x̄h(t) − xh(t)| ≤ Lg(1 + Ku)KghN .

We choose N̄ ∈ N such that

(t f − t0)Lg(1 + Ku)KghN < ρ̄
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for N ≥ N̄ . Then

‖η‖1 ≤ (t f − t0)|η(t)|∞ < ρ̄

for N ≥ N̄ . By Lemma 5 this implies

‖xh − z‖1,1 ≤ cs ‖η‖1 ≤ cs Lg(1 + Ku)Kg(t f − t0)hN ,

which proves (4.6). ��
In order to obtain error estimates for local solutions we proceed similarly to Alt

[1,2] (compare also Alt et al. [6]). In addition to (2.1) we use the following growth
condition for the cost functional:

(4.8) There exist α > 0, κ ≥ 1 such that

f (x(t f )) − f (x∗(t f )) ≥ α ‖u − u∗‖κ
1

for all (x, u) ∈ F ∩ Bε̄(x∗, u∗).

Remark 2 The growth condition required here implies that (x∗, u∗) is a strict local
solution of (OC). Such conditions are closely related to second-order optimality
conditions (see e.g. Ioffe and Tihomirov [22, Chapter 7] or Maurer and Zowe [31,
Theorem 5.6]). In the following section we use the stronger second-order optimality
condition (5.7) implying (4.8) with κ = 2 (see Theorem 3).

Theorem 1 Let Assumptions (2.1), (2.3), (2.4), (2.5), and (4.8) be satisfied and sup-
pose that u∗ has bounded variation. Then for each 0 < ρ < ρ̄, where ρ̄ > 0 is given
by Lemma 5, Problem (OC)N ,ρ has a global solution for sufficiently large N. Further
for each such solution (x∗

h , u
∗
h) the estimates

‖u∗
h − u∗‖1 ≤ cuh

1
κ

N , ‖x∗
h − x∗‖1,1 ≤ cxh

1
κ

N (4.9)

hold with constants cu, cx independent of N and the solution (x∗
h , u

∗
h).

Proof We choose N ≥ N̄ sufficiently large, where N̄ is defined by Lemma 6. Then by
Lemma 4 Problem (OC)N ,ρ has a (global) solution. Let (x∗

h , u
∗
h) be any such solution.

By Lemma 6 there exists a function z∗ ∈ X1, such that (z∗, u∗
h) ∈ F and

‖z∗ − x∗
h‖1,1 ≤ c1hN (4.10)

with a constant c1 independent of N and (x∗
h , u

∗
h). Further, since (x∗

h , u
∗
h) ∈ FN ,ρ we

have‖x∗
h−x∗‖∞ ≤ ρ. Togetherwith (4.10) and the fact that‖z∗−x∗

h‖∞ ≤ ‖z∗−x∗
h‖1,1

this implies

‖z∗ − x∗‖∞ ≤ ‖z∗ − x∗
h‖∞ + ‖x∗

h − x∗‖∞ ≤ c1hN + ρ
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and therefore

‖z∗ − x∗‖∞ < ρ̄ < ε̄ (4.11)

for sufficiently large N . Since (x∗
h , u

∗
h) ∈ FN ,ρ we have (z∗, u∗

h) ∈ F ∩Bε̄(x∗, u∗).
By (4.8) we therefore have

f (z∗(t f )) − f (x∗(t f )) ≥ α ‖u∗
h − u∗‖κ

1 .

Further, by (2.4) and (4.10) we have

f (z∗(t f )) = f (x∗
h (t f )) + f (z∗(t f )) − f (x∗

h (t f )) ≤ f (x∗
h (t f )) + L f c1hN ,

and therefore

α ‖u∗
h − u∗‖κ

1 ≤ f (x∗
h (t f )) − f (x∗(t f )) + L f c1hN (4.12)

for N sufficiently large.
Let ûh ∈ X2,N be defined as in the proof of Lemma 4. Then for sufficiently

large N we have (x̂h, ûh) ∈ FN ,ρ (see proof of Lemma 4) and therefore f (x̂h(t f )) ≥
f (x∗

h (t f )). Further we have

max
1≤ j≤N

|x̂h(t j ) − x∗(t j )| ≤ c2hN (4.13)

with a constant c2 independent of N . By (4.12), (2.4) this implies

α ‖u∗
h − u∗‖κ

1 ≤ f (x̂h(t f )) − f (x∗(t f )) + L f c1hN ≤ L f (c1 + c2)hN . (4.14)

In the proof of Lemma 6 we have shown that the discrete system Eq. (4.2) for xh = x∗
h

can be written in the form

ẋh(t) = g(xh(t), uh(t), t) + η(t) a.e. on [t0, t f ], xh(t0) = a,

where |η(t)| ≤ c3hN with a constant c3 independent of N . By Lemma 5 we therefore
obtain

‖x∗
h − x∗‖1,1 ≤ c4

(‖u∗
h − u∗‖1 + ‖η‖1

) ≤ c4
(‖u∗

h − u∗‖1 + c3(t f − t0)hN
)
,

(4.15)

where the constant c4 is independent of u and N . ��
Remark 3 Note that Theorem 1 assumes that (x∗

h , u
∗
h) is a global solution of Prob-

lem (OC)N ,ρ . For such a solution we have ‖u∗
h − u∗‖1 < ρ and ‖x∗

h − x∗‖1,1 < ρ for
sufficiently large N , i.e. the additional constraints (4.5) are not active, and (x∗

h , u
∗
h)

is a local minimizer of Problem (OC)N . Similar results on the existence of approxi-
mate local minimizers for control problems obtained by Euler discretization and error
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estimates for the discrete solutions are well-known in case that the optimal control is
continuous (see e.g. Malanowski et al. [27], Dontchev and Hager [11], Dontchev et al.
[12,13]). In these papers a strong second-order sufficient optimality condition is used
which also implies local uniqueness of the discrete solutions. This can not be shown
under the weaker condition (4.8) used here. ♦

If (x∗
h , u

∗
h) is a global solution of Problem (OC)N ,ρ , then by Remark 3 (x∗

h , u
∗
h) is

a local minimizer of Problem (OC)N . Therefore a multiplier λ∗
h exists satisfying the

discrete adjoint Eq. (3.1). In order to derive an error estimate for this multiplier we
need some auxiliary results. Since the adjoint equation is a linear differential equation
one easily obtains the following result.

Lemma 7 Suppose that Assumptions (2.1), (2.3), (2.4), and (2.5) are satisfied. Let
ρ̄ > 0 be given by Lemma 5 and 0 < ρ ≤ ρ̄. Then if N is sufficiently large we have
for any solution (x∗

h , u
∗
h) of Problem (OC)N ,ρ and the associated adjoint function λ∗

h
the estimate

‖λ∗
h‖∞ ≤ Kλ (4.16)

with a constant Kλ independent of N and the solution (x∗
h , u

∗
h).

In the proof of Lemma 6 we have shown that the discrete state variables can be
viewed as the solution of a perturbation of the system equation of Problem (OC). In
the same way one can show that the discrete adjoint variables λ∗

h can be viewed as the
solution of a perturbation of the adjoint Eq. (2.9).

Lemma 8 Suppose that Assumptions (2.1), (2.3), (2.4), and (2.5) are satisfied. Let
ρ̄ > 0 be given by Lemma 5 and 0 < ρ ≤ ρ̄. Then, if N is sufficiently large, we can
write the discrete adjoint equation (3.1) in the form

− λ̇∗
h(t) = gx (x

∗
h (t), u

∗
h(t), t)

Tλ∗
h(t) + ξh(t) (4.17)

for a.a. t ∈ [t0, t f ], where the function ξh : [t0, t f ] → R
n can be estimated by

|ξh(t)| ≤ cξhN (4.18)

for a.a. t ∈ [t0, t f ] with a constant cξ independent of N and the solution (x∗
h , u

∗
h).

Now we can derive an error estimate for the discrete adjoint functions.

Theorem 2 Let the assumptions of Theorem 1 be satisfied and suppose that u∗ has
bounded variation. Then for each 0 < ρ < ρ̄, where ρ̄ > 0 is given by Lemma 5,
Problem (OC)N ,ρ has a (global) solution for sufficiently large N. Further for each
such solution (x∗

h , u
∗
h) and the associated adjoint function λ∗

h the estimate

‖λ∗
h − λ∗‖1 ≤ cλh

1
κ

N (4.19)

holds with a constant cλ independent of N and the solution (x∗
h , u

∗
h).
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Proof We define λ := λ∗
h − λ∗. By (2.9) and (4.17) we have

−λ̇(t) = − λ̇∗
h(t) + λ̇∗(t)

=
[
g(1)
x (x∗

h (t), t) +
m∑
i=1

u∗
h(t)i g

(2)
.i,x (x

∗
h (t), t)

]T

λ∗
h(t) + ξh(t)

−
[
g(1)
x (x∗(t), t) +

m∑
i=1

u∗(t)i g(2)
.i,x (x

∗(t), t)
]T

λ∗(t)

=
[
g(1)
x (x∗

h (t), t) +
m∑
i=1

u∗
h(t)i g

(2)
.i,x (x

∗
h (t), t)

−g(1)
x (x∗(t), t) −

m∑
i=1

u∗(t)i g(2)
.i,x (x

∗(t), t)
]T

λ∗
h(t) + ξh(t)

+
[
g(1)
x (x∗(t), t) +

m∑
i=1

u∗(t)i g(2)
.i,x (x

∗(t), t)
]T

λ(t)

with terminal condition λ(t f ) = fx (x∗
h,N )T − fx (x∗(t f ))T. Since this is a linear

differential equation it follows that

‖λ‖1,1 ≤ cλ,1
(‖x∗

h − x∗‖1,1 + ‖u∗
h − u∗‖1 + hN

)

with some constant c̄λ,1 independent of N and (x∗
h , u

∗
h)). Finally, together with (4.15)

we obtain

‖λ∗
h − λ∗‖1,1 ≤ cλ,2

(‖u∗
h − u∗‖1 + hN

)
(4.20)

with a constant cλ,2 independent of N and the solution (x∗
h , u

∗
h). By Theorem 1 this

implies (4.19). ��

5 Improved error estimates

We can improve the error estimates of the last section to order 1, if we replace con-
dition (4.8) by a stronger second-order sufficient optimality condition. To this end we
require in addition to Assumptions (2.1), (2.3), (2.4), and (2.5):

(5.1) The functions f , g(1), and g(2) are twice continuously differentiable w.r.t. x
on B.

(5.2) The functions fxx , g
(1)
xx , and g(2)

xx are Lipschitz continuous, i.e., there are con-
stants L(2)

f and L(1)
g such that for all s, t ∈ [t0, t f ] and all x, z ∈ B
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| fxx (x) − fxx (z)| ≤ L(2)
f |x − z|,

|g(1)
j,xx (x, t) − g(1)

j,xx (z, s)| ≤ L(2)
g (|x − z| + |t − s|), j ∈ Jn1 ,

|g(2)
j i,xx (x, t) − g(2)

j i,xx (z, s)| ≤ L(2)
g (|x − z| + |t − s|), j ∈ Jn1 , i ∈ Jm1 .

Remark 4 Assumptions (5.1), (5.2) imply Assumptions (2.3), (2.4), and (2.5). ♦

As in Alt [2, Section 6] we can formulate Problem (OC) as an abstract optimization
problem of type

min
z∈X F(z) s.t. z ∈ C, G(z) ∈ K ,

where z = (x, u) ∈ X , F : X → R is defined by

F(z) = F(x, u) = f (x(t f )),

G : X → Y := L1(t0, t f ;Rn) × R
n is defined by

G(z)(t) = G(x, u)(t) =
(
g(x(t), u(t), t) − ẋ(t)
x(t0) − a

)
,

and C = X1 × U , K = {0Y }. As shown in Alt [2] it then follows by results of
Robinson [37,38] that the set

T (x∗, u∗) = {(x, u) ∈ C | G(x∗, u∗) + G ′(x∗, u∗)
(
(x, u) − (x∗, u∗)

) ∈ K }
= {(x, u) | (x, u) ∈ X, u ∈ U , x(t0) = a,

ẋ − ẋ∗ = gx (x
∗(·), u∗(·), ·)(x − x∗) + gu(x

∗(·), u∗(·), ·)(u − u∗)}

approximates the feasible set of Problem (OC) in the sense of Maurer and Zowe [31,
Definition 4.1]. FromAlt [2, Lemma 2.1] and Lemma 5 we therefore get the following
result:

Lemma 9 Let Assumptions (2.1), (2.3), (2.4), and (2.5) be satisfied. Then for each
γ > 0 there exists ρ(γ ) > 0 such that for each (x, u) ∈ F with ‖u − u∗‖1 < ρ(γ )

there exists (x̄, ū) ∈ T (x∗, u∗) with

‖x − x̄‖1,1 + ‖u − ū‖1 ≤ γ
(‖x − x∗‖1,1 + ‖u − u∗‖1

)
.

For λ ∈ L∞(t0, t f ;Rn) we define the Lagrange function by

L (x, u, λ) = f (x(t f )) +
∫ t f

t0
λ(t)T [g(x(t), u(t), t) − ẋ(t)] dt.
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It follows from the adjoint Eq. (2.9) that

Lx (x
∗, u∗, λ∗)(x) = fx

(
x∗(t f )

)
x(t f )

+
∫ t f

t0
λ∗(t)T

[
gx (x

∗(t), u∗(t), t)x(t) − ẋ(t)
]
dt = 0 (5.3)

for all x ∈ X1 with x(t0) = 0, and by the local minimum principle (2.10) we have

Lu(x
∗, u∗, λ∗)(u − u∗) =

∫ t f

t0
λ∗(t)Tgu(x∗(t), u∗(t), t)

(
u(t) − u∗(t)

)
dt

=
∫ t f

t0
σ ∗(t)T

(
u(t) − u∗(t)

)
dt ≥ 0

(5.4)

for all u ∈ U , where σ ∗ is the switching function defined by (2.11).
ByL ′′ we denote the second derivate ofL w.r.t. (x, u). Since the control u appears

only linearly in Problem (OC), we have

Huu(x, u, λ, t) = 0 for all (x, u, λ, t) ∈ R
n × R

m × R
n × [t0, t f ], (5.5)

and therefore

L ′′(x̄, ū, λ̄) ((x1, u1), (x2, u2)) = x1(t f )
T fxx

(
x̄(t f )

)
x2(t f )

+
∫ t f

t0
x1(t)

THxx (x̄(t), ū(t), λ̄(t), t)x2(t) dt

+
∫ t f

t0
x1(t)

THxu(x̄(t), ū(t), λ̄(t), t)u2(t) dt

+
∫ t f

t0
u1(t)

THux (x̄(t), ū(t), λ̄(t), t)x2(t) dt

for all (x̄, ū, λ̄), (x, u, λ) ∈ X × X1.
If (5.1) is satisfied, then there exists a constant CL such that

|L ′′(x̄, ū, λ̄) ((x1, u1), (x2, u2)) |
≤ CL (‖x1‖∞‖x2‖∞ + ‖x1‖∞‖u2‖1 + ‖x2‖∞‖u1‖1) (5.6)

for all (x̄, ū, λ̄) ∈ X × X1 with ‖x̄ − x∗‖∞ < ρ̄, ‖λ̄ − λ∗‖∞ < ρ̄, ū ∈ U , and all
(x1, u1), (x2, u2) ∈ X .

In case of a continuous optimal control convergence of order 1 can be shown for
Euler approximation if a strong second-order optimality condition is satisfied which
especially requires that the bilinear form L ′′(x∗, u∗, λ∗) is positive definite w.r.t. to
the control function (compare e.g. Dontchev et al. [13]). By (5.5) this condition cannot
be satisfied for the class of control problems considered here.We use instead a second-
order condition for the switching function σ ∗ defined by (2.11). This condition has
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been introduced by Felgenhauer [15] (see also Maurer and Osmolovskii [30], Maurer
et al. [29]) and has been used e.g. in Alt et al. [6], Alt and Seydenschwanz [7], Seyden-
schwanz [40] to investigate Euler discretization of linear quadratic control problems:

(5.7) There exists ᾱ > 0 such that

∫ t f

t0
σ ∗(t)T

(
u(t) − u∗(t)

)
dt = Lu(x

∗, u∗, λ∗)(u − u∗) ≥ ᾱ ‖u − u∗‖21,

for all u ∈ U .

Remark 5 One should note thatAssumption (5.7) excludes singular arcs of the optimal
control, i.e., the optimal control u∗ must be of bang–bang type. As shown in Alt et
al. [6, Lemma 4] the assumption is satisfied if the optimal control is of bang–bang
type with finitely many boundary arcs and if an additional growth condition for the
switching function around its zeros holds. ♦

In Alt and Seydenschwanz [7] and Alt et al. [6] we used an additional assumption
ensuring convexity of the linear-quadratic control problems considered there. Here we
use the somewhat weaker assumption:

(5.8) There exists β > 0 such that α := ᾱ − β > 0 and

z(t f )
T fxx

(
x∗(t f )

)
z(t f ) +

∫ t f

t0
z(t)THxx

(
x∗(t), u∗(t), λ∗(t), t

)
z(t) dt

+ 2
∫ t f

t0
z(t)THxu

(
x∗(t), u∗(t), λ∗(t), t

)
v(t) dt

= L ′′(x∗, u∗, λ∗) ((z, v), (z, v)) ≥ −β ‖v‖21
for all (z, v) = (x, u) − (x∗, u∗) with (x, u) ∈ T (x∗, u∗).

Remark 6 The condition (z, v) = (x, u) − (x∗, u∗) with (x, u) ∈ T (x∗, u∗) is equiv-
alent to u ∈ U , z(t0) = 0 and

ż(t) = gx (x
∗(t), u∗(t), t)z(t) + gu(x

∗(t), u∗(t), t)v(t)

for a.a. t ∈ [t0, t f ]. Therefore, ‖z‖1,1 ≤ c ‖v‖1 with a constant c independent of v.
♦

Example 1 It can easily be seen that Assumption (6) used in Alt et al. [6] for a class
of linear quadratic control problems is equivalent to (5.8).

If the system equation is linear then the coercivity condition in (5.8) reads

z(t f )
T fxx

(
x∗(t f )

)
z(t f ) ≥ −β ‖v‖21

for all (z, v) = (x, u) − (x∗, u∗) with (x, u) ∈ T (x∗, u∗). ♦
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We now show, that Assumptions (5.7) and (5.8) imply the growth condition (4.8)
with κ = 2. The proof is based on a result of Ioffe and Tihomirov [22, Chapter 7]
concerning a general second-order sufficient optimality condition for equality con-
strained optimization problems. More general results can be found in Maurer [28],
and Maurer and Zowe [31] (see also Alt [2]). A general result on sufficient optimality
conditions for optimal control problems can be found in Felgenhauer [15]. We need
some auxiliary results which are modifications of corresponding results in Sect. 3 of
Alt [2].

Lemma 10 Let Assumptions (2.1), (5.1), (5.2), (5.7), and (5.8) be satisfied. Then there
exists 0 < δ1 ≤ ρ̄ such that

L ′′(x̄, ū, λ̄) ((z, v), (z, v)) ≥ −
(
β + α

4

)
‖v‖21

for all (z, v) = (x, u) − (x∗, u∗) with (x, u) ∈ T (x∗, u∗) and all (x̄, ū, λ̄) ∈ X × X1
with ‖x̄ − x∗‖∞ + ‖ū − u∗‖1 + ‖λ̄ − λ∗‖∞ < δ1.

Proof Let (z, v) = (x, u)− (x∗, u∗) with (x, u) ∈ T (x∗, u∗) and (x̄, ū, λ̄) ∈ X × X1
with ‖x̄ − x∗‖∞ + ‖ū − u∗‖1 + ‖λ̄ − λ∗‖∞ < ε̄. By Assumption (5.8) we have

L ′′(x̄, ū, λ̄) ((z, v), (z, v)) = L ′′(x∗, u∗, λ∗) ((z, v), (z, v))

+ L ′′(x̄, ū, λ̄) ((z, v), (z, v)) − L ′′(x∗, u∗, λ∗) ((z, v), (z, v))

≥ −β ‖v‖21 + L ′′(x̄, ū, λ̄) ((z, v), (z, v)) − L ′′(x∗, u∗, λ∗) ((z, v), (z, v)) ,

i.e.,

L ′′(x̄, ū, λ̄) ((z, v), (z, v)) + β ‖v‖21 ≥ z(t f )
T [

fxx
(
x̄(t f )

) − fxx
(
x∗(t f )

)]
z(t f )

+
∫ t f

t0
z(t)T

[
Hxx (x̄(t), ū(t), λ̄(t), t) − Hxx (x

∗(t), u∗(t), λ∗(t), t)
]
z(t) dt

+ 2
∫ t f

t0
z(t)T

[
Hxu(x̄(t), ū(t), λ̄(t), t) − Hxu(x

∗(t), u∗(t), λ∗(t), t)
]
v(t) dt.

(5.9)

By (5.2) the absolute value of the first term on the right hand side of this inequality
can be estimated by

c1‖x̄ − x∗‖∞‖z‖2∞ (5.10)
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with some constant c1 independent of z, v, x̄ , ū, and λ̄. Using

Hxx (x̄(t), ū(t), λ̄(t), t) − Hxx (x
∗(t), u∗(t), λ∗(t), t)

=
n∑
j=1

λ̄(t) j
[
g(1)
j,xx (x̄(t), t) − g(1)

j,xx (x
∗(t), t)

]

+
n∑
j=1

[
λ̄(t) j − λ∗(t) j

]
g(1)
j,xx (x

∗(t), t)

+
n∑
j=1

λ̄(t) j

m∑
i=1

ū(t)i
[
g(2)
j i,xx (x̄(t), t) − g(2)

j i,xx (x
∗(t), t)

]

+
n∑
j=1

λ̄(t) j

m∑
i=1

[
ū(t)i − u∗(t)i

]
g(2)
j i,xx (x

∗(t), t)

+
n∑
j=1

[
λ̄(t) j − λ∗(t) j

] m∑
i=1

u∗(t)i g(2)
j i,xx (x

∗(t), t).

the absolute value of the second term on the right hand side of (5.9) can be estimated
by

c2
(‖x̄ − x∗‖∞ + ‖ū − u∗‖1 + ‖λ̄ − λ∗‖∞

) ‖z‖2∞ (5.11)

with some constant c2 independent of z, v, x̄ , ū, and λ̄. In the same way it can be
shown that the absolute value of the third term on the right hand side of (5.9) can be
estimated by

c3
(‖x̄ − x∗‖∞ + ‖λ̄ − λ∗‖∞

) ‖z‖∞‖v‖1 (5.12)

with some constant c3 independent of z, v, x̄ , ū, and λ̄. Since z satisfies the linear
differential equation

ż(t) = gx (x
∗(t), u∗(t), t)z(t) + gu(x

∗(t), u∗(t), t)
(
u(t) − u∗(t)

)
a.e. on [t0, t f ]

with initial condition z(t0) = 0 we have

‖z‖∞ = ‖x − x∗‖∞ ≤ ‖x − x∗‖1,1 ≤ c4‖u − u∗‖1 (5.13)

with a constant c4 independent of x and u. Now combining (5.10)–(5.13) the absolute
value of the right hand side of (5.9) can be estimated by

c5
(‖x̄ − x∗‖∞ + ‖ū − u∗‖1 + ‖λ̄ − λ∗‖∞

) ‖v‖21.

The assertion then follows if we choose δ1 > 0 small enough. ��
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Lemma 11 Let Assumptions (2.1), (5.1), (5.2), (5.7), and (5.8) be satisfied. Then there
exists 0 < δ2 ≤ δ1 such that

L ′′(x̄, ū, λ̄)
(
(x − x∗, u − u∗), (x − x∗, u − u∗)

) ≥ −
(
β + α

2

)
‖u − u∗‖21

for all (x, u) ∈ F with ‖u−u∗‖1 < δ2 and all (x̄, ū, λ̄) ∈ X × X1 with ‖x̄ − x∗‖∞ +
‖ū − u∗‖1 + ‖λ̄ − λ∗‖∞ < δ2.

Proof We choose γ > 0 such that

(
β + α

4

)
(1 + γ (1 + cs))

2 + CL γ (1 + cs) (1 + (1 + 2γ )(1 + cs))

+ 3CL γ 2(1 + cs)
2 ≤

(
β + α

2

)
,

(5.14)

where CL is defined by (5.6) and cs is the constant defined by Lemma 5. Let ρ(γ ) be
defined by Lemma 9. We choose 0 < δ2 ≤ δ1 such that

(1 + cs)δ2 < max{ρ̄, ρ(γ )}.

Then for (x, u) ∈ F with ‖u − u∗‖1 < δ2 we have by Lemma 5

‖x − x∗‖1,1 + ‖u − u∗‖1 ≤ cs‖u − u∗‖1 + ‖u − u∗‖1 < max{ρ̄, ρ(γ )}. (5.15)

Hence by Lemma 9 there exists (z̄, v̄) ∈ T (x∗, u∗) with

‖x − z̄‖1,1 + ‖u − v̄‖1 ≤ γ
(‖x − x∗‖1,1 + ‖u − u∗‖1

)
.

Together with (5.15) this implies

‖x − z̄‖1,1 + ‖u − v̄‖1 ≤ γ (1 + cs)‖u − u∗‖1 (5.16)

and therefore

(1 − γ (1 + cs))‖u − u∗‖1 ≤ ‖v̄ − u∗‖1 ≤ (1 + γ (1 + cs))‖u − u∗‖1,
‖z̄ − x∗‖1,1 ≤ (1 + γ )(1 + cs)‖u − u∗‖1. (5.17)

Further using (x − x∗, u − u∗) = (z̄ − x∗ + x − z̄, v̄ − u∗ + u − v̄) we obtain

L ′′(x̄, ū, λ̄)
(
(x − x∗, u − u∗), (x − x∗, u − u∗)

)
= L ′′(x̄, ū, λ̄)

(
(z̄ − x∗, v̄ − u∗), (z̄ − x∗, v̄ − u∗)

)
+ 2L ′′(x̄, ū, λ̄)

(
(z̄ − x∗, v̄ − u∗), (x − z̄, u − v̄)

)
+ L ′′(x̄, ū, λ̄) ((x − z̄, u − v̄), (x − z̄, u − v̄))

(5.18)
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Next we estimate the terms on the ride hand side of (5.18). By Lemma 10 and (5.17)
we have

L ′′(x̄, ū, λ̄)
(
(z̄ − x∗, v̄ − u∗), (z̄ − x∗, v̄ − u∗)

)
≥ −

(
β + α

4

)
‖v̄ − u∗‖21 ≥ −

(
β + α

4

)
(1 + γ (1 + cs))

2 ‖u − u∗‖21.
(5.19)

By (5.6), (5.16) we obtain

|L ′′(x̄, ū, λ̄)
(
(z̄ − x∗, v̄ − u∗), (x − z̄, u − v̄)

) |
≤ CL

(‖z̄ − x∗‖∞‖x − z̄‖∞ + ‖z̄ − x∗‖∞‖u − v̄‖1 + ‖x − z̄‖∞‖v̄ − u∗‖1
)

≤ CL
(‖z̄ − x∗‖1,1‖x − z̄‖1,1 + ‖z̄ − x∗‖1,1‖u − v̄‖1 + ‖x − z̄‖1,1‖v̄ − u∗‖1

)
≤ CL γ (1 + cs)

(‖z̄ − x∗‖1,1 + ‖v̄ − u∗‖1
) ‖u − u∗‖1.

By (5.17) this implies

|L ′′(x̄, ū, λ̄)
(
(z̄ − x∗, v̄ − u∗), (x − z̄, u − v̄)

) |
≤ CL γ (1 + cs) (1 + (1 + 2γ )(1 + cs)) ‖u − u∗‖21.

(5.20)

Again by (5.6) and (5.16) we obtain

|L ′′(x̄, ū, λ̄) ((x − z̄, u − v̄), (x − z̄, u − v̄))

≤ CL
(
‖x − z̄‖2∞ + 2‖x − z̄‖∞‖u − v̄‖1

)

≤ CL
(
‖x − z̄‖21,1 + 2‖x − z̄‖1,1‖u − v̄‖1

)

≤ 3CL γ 2(1 + cs)
2‖u − u∗‖21.

(5.21)

Now inserting the estmates (5.19), (5.20), (5.21) into (5.18) the assertion follows
from (5.14). ��

Wecan now show, thatAssumptions (5.7) and (5.8) imply the growth condition (4.8)
with κ = 2.

Theorem 3 Let Assumptions (2.1), (5.1), (5.2), (5.7), and (5.8) be satisfied. Then

f (x(t f )) − f (x∗(t f )) ≥ 3

4
α ‖u − u∗‖21

for all (x, u) ∈ F with ‖u − u∗‖1 < δ2, where δ2 is defined by Lemma 11. Moreover,
condition (4.8) is satisfied with κ = 2.

Proof For arbitrary (x, u) ∈ F with ‖u − u∗‖1 < δ2 we have

f
(
x(t f )

) − f
(
x∗(t f )

) = L (x, u, λ∗) − L (x∗, u∗, λ∗).
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Using x(t0) − x∗(t0) = 0 and (5.3) we get by Taylor expansion

f
(
x(t f )

) − f
(
x∗(t f )

) = Lu(x
∗, u∗, λ∗)(u − u∗)

+ 1

2
L ′′(z, v, λ∗)

(
(x − x∗, u − u∗), (x − x∗, u − u∗)

)
,

where (z, v) = (1− τ)(x∗, u∗)+ τ(x, u) with τ ∈ ]0, 1[. By (5.7) and Lemma 11 this
implies

f
(
x(t f )

) − f
(
x∗(t f )

) ≥ ᾱ ‖u − u∗‖21 − 1

2

(
β + α

2

)
‖u − u∗‖21

=
(
3

4
ᾱ − β

4

)
‖u − u∗‖21 ≥ 3

4
α ‖u − u∗‖21,

which proves the first part of the assertion. For arbitrary (x, u) ∈ Fδ2 we have (x, u) ∈
F and ‖u − u∗‖1 < δ2 which implies that condition (4.8) is satisfied with κ = 2, α
replaced by 3

4α, and ε̄ replaced by δ2. ��
Remark 7 Note that for the proof of Theorem 3 we only need the fact, that (x∗, u∗) is
feasible and satisfies together with the unique solution λ∗ of the adjoint equation the
minimum principle and Assumptions (2.3), (2.4), (2.5), (5.1), (5.2), (5.7), and (5.8).
Theorem 3 then shows, that (x∗, u∗) is a strict local solution, i.e., Assumptions (5.8),
(5.7) can be viewed as sufficient optimality condition. In case of linear-quadratic con-
trol problems as considered in Alt et al. [6] the second derivatives of the Hamiltonian
and the Lagrange function do not depend on (x, u). This allows to use a more general
version of condition (5.7). ♦

For the derivation of error estimates of order 1 for the discrete solutions we proceed
similarly to Dontchev and Veliov [14], Haunschmied et al. [21] and use the fact that
the discrete solutions can be interpreted as solution of a perturbation of Problem (OC).
This approach has also been used in Alt et al. [6] for linear-quadratic control problems.
For the more general class of nonlinear control problems considered here we adapt
results of Alt [2, Section 3], where Lipschitz continuity of perturbed solutions of
nonlinear optimization problems has been studied.

Lemma 12 Let Assumptions (2.1), (5.1), (5.2), (5.7), and (5.8) be satisfied. Further
let 0 < ρ < ρ̄, where ρ̄ > 0 is given by Lemma 5, and let (x∗

h , u
∗
h) be a (global)

solution of Problem (OC)N ,ρ . Then there is a function ζh : [t0, t f ] → R
m satisfying

|ζh(t)| ≤ Kλ(Lg(Lx + 1) + cA)hN (5.22)

such that

∫ t f

t0

[
λ∗
h(t)

Tg(2)(x∗
h (t), t) + ζh(t)

T
] (

u∗(t) − u∗
h(t)

)
dt ≥ 0. (5.23)
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Proof By the discrete minimum principle (3.2) we have

λ∗
h(t j+1)

Tg(2)(x∗
h (t j ), t j )(u − u∗

h(t j )) ≥ 0 ∀u ∈ U, j ∈ J N−1
0 . (5.24)

We define piecewise constant functions x̄h : [t0, t f ] → R
n , Bh : [t0, t f ] → R

n×m ,
and λ̄h : [t0, t f ] → R

n by

x̄h(t) = x∗
h (t j ), Bh(t) = g(2) (

x∗
h (t j ), t j

)
, λ̄h(t) = λ∗

h(t j+1),

for t ∈ [t j , t j+1[, j ∈ J N−1
0 . Then we can write the discrete switching function σ ∗

h
defined by (3.3) in the form

σ ∗
h (t) = Bh(t)

Tλ̄h(t) = g(2)(x∗
h (t), t)

Tλ∗
h(t) + ζh(t) for a.a. t ∈ [t0, t f ],

where ζh is defined by

ζh(t) = Bh(t)
Tλ̄h(t)

T − g(2)(x∗
h (t), t)

Tλ∗
h(t).

Further we can write the discrete minimum principle (5.24) in the form

σ ∗
h (t)T(u − u∗

h(t)) =
[
g(2)(x∗

h (t), t)
Tλ∗

h(t) + ζh(t)
]T

(u − u∗
h(t))

≥ 0 ∀u ∈ U (5.25)

for a.a. t ∈ [t0, t f ], From (5.25) we further obtain (5.23). In order to estimate |ζh(t)|
we use (2.4). For t ∈ [t j , t j+1[, j ∈ J N−1

0 , we have

|ζh(t)| ≤ |λ̄h(t)| ‖Bh(t) − g(2)(x∗
h (t), t)‖ + ‖g(2)(x∗

h (t), t)‖ |λ̄h(t) − λ∗
h(t)|

≤ KλLg
(|x∗

h (t j ) − x∗
h (t)| + |t j − t |) + cg|λ∗

h(t j+1) − λ∗
h(t)|

with some constant cg independent of (x∗
h , u

∗
h) ∈ FN ,ρ . By (2.8) we have

|x∗
h (t j ) − x∗

h (t)| ≤ LxhN ,

and from the discrete adjoint equation we obtain

|λ∗
h(t j+1) − λ∗

h(t)| ≤ hN‖Ah(t j )‖|λ∗
h, j+1| ≤ cAKλhN ,

which implies (5.22). ��
Theorem 4 Let Assumptions (2.1), (5.1), (5.2), (5.7), and (5.8) be satisfied and sup-
pose that u∗ has bounded variation. Then for each 0 < ρ ≤ δ2 Problem (OC)N ,ρ has
a (global) solution for sufficiently large N. Further for each such solution (x∗

h , u
∗
h)

and the associated adjoint function λ∗
h the estimates

‖u∗
h − u∗‖1 ≤ cuhN , ‖x∗

h − x∗‖1,1 ≤ cxhN , ‖λ∗
h − λ∗‖1,1 ≤ cλhN (5.26)
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hold with constants cu, cx , and cλ independent of N and the solution (x∗
h , u

∗
h).

Proof Let 0 < ρ ≤ δ2 be given. By Theorem 3 condition (4.8) is satisfied. Therefore,
byTheorem1Problem (OC)N ,ρ has a (global) solution for sufficiently large N . Further
for each such solution (x∗

h , u
∗
h) the estimates

‖u∗
h − u∗‖1 ≤ cuh

1
2
N , ‖x∗

h − x∗‖1,1 ≤ cxh
1
2
N

hold with constants cu , cx independent of N , and by (4.19) we have

‖λ∗
h − λ∗‖1,1 ≤ cλ,2h

1
2
N

with some constant cλ,2 independent of N and x∗
h , x

∗, u∗
h , and u

∗. For suffiently large N
we therefore have

‖x∗
h − x∗‖∞ + ‖u∗

h − u∗‖1 + ‖λ∗
h − λ∗‖1,1

≤ ‖x∗
h − x∗‖1,1 + ‖u∗

h − u∗‖1 + ‖λ∗
h − λ∗‖1,1 < δ2,

and (x∗
h , u

∗
h) ∈ FN ,ρ̄ . By Lemma 6 there exists a function z∗h ∈ X1, such that

(z∗h, u∗
h) ∈ F and

‖z∗h − x∗
h‖1,1 ≤ czhN (5.27)

with a constant cz independent of N , which implies

‖z∗h − x∗‖∞ ≤ δ2 (5.28)

for sufficiently large N . As in the proof of Theorem 3, using z∗h(t0) − x∗(t0) = 0
and (5.3), we get by Taylor expansion around (x∗, u∗)

f
(
z∗h(t f )

) − f
(
x∗(t f )

) = L (z∗h , u∗
h , λ∗) − L (x∗, u∗, λ∗)

= Lu(x∗, u∗, λ∗)(u∗
h − u∗)

+ 1

2
L ′′(z, v, λ∗)

(
(z∗h − x∗, u∗

h − u∗),
(
z∗h − x∗, u∗

h − u∗))
,

where (z, v) = (1 − τ)(x∗, u∗) + τ(z∗h, u∗
h) with τ ∈ ]0, 1[. By (5.7), (5.8), and

Lemma 11 this implies

f
(
z∗h(t f )

) − f
(
x∗(t f )

) ≥ ᾱ ‖u∗
h − u∗‖21 − 1

2

(
β + α

2

)
‖u∗

h − u∗‖21
=

(
3

4
α + β

2

)
‖u∗

h − u∗‖21.
(5.29)
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Similarly we obtain by Taylor expansion around (z∗h, u∗
h)

f
(
x∗(t f )

) − f
(
z∗h(t f )

) = L (x∗, u∗, λ∗
h) − L (z∗h, u∗

h, λ
∗
h)

= Lx (z
∗
h, u

∗
h, λ

∗
h)(x

∗ − z∗h) + Lu(z
∗
h, u

∗
h, λ

∗
h)(u

∗ − u∗
h)

+ 1

2
L ′′(z, v, λ∗

h)
(
(x∗ − z∗h, u∗ − u∗

h), (x
∗ − z∗h, u∗ − u∗

h)
)
,

where (z, v) = (1−τ)(z∗h, u∗
h)+τ(x∗, u∗)with τ ∈ ]0, 1[ . By Lemma 11 this implies

f
(
x∗(t f )

) − f
(
z∗h(t f )

) ≥ Lx (z
∗
h, u

∗
h, λ

∗
h)(x

∗ − z∗h) + Lu(z
∗
h, u

∗
h, λ

∗
h)(u

∗ − u∗
h)

− 1

2

(
β + α

2

)
‖u∗

h − u∗‖21.

Combining this estimate with (5.29) we obtain

α

2
‖u∗

h − u∗‖21 ≤ −Lx (z
∗
h, u

∗
h, λ

∗
h)(x

∗ − z∗h) − Lu(z
∗
h, u

∗
h, λ

∗
h)(u

∗ − u∗
h). (5.30)

We define z = x∗ − z∗h . Using integration by parts we obtain for the first term on the
right hand side of (5.30)

−Lx (z
∗
h, u

∗
h, λ

∗
h)(z) = − fx

(
z∗h(t f )

)
z(t f ) −

∫ t f

t0
λ∗
h(t)

Tgx (z
∗
h(t), u

∗
h(t), t)z(t) dt

+
∫ t f

t0
λ∗
h(t)

T ż(t) dt

= − fx
(
z∗h(t f )

)
z(t f ) −

∫ t f

t0
λ∗
h(t)

Tgx (z
∗
h(t), u

∗
h(t), t)z(t) dt

+ λ∗
h(t f )z(t f ) −

∫ t f

t0
λ̇∗
h(t)

Tz(t) dt

By Lemma 8 we can write the discrete adjoint Eq. (3.1) in the form (4.17). Using this
and the terminal condition λ∗

h(t f ) = fx (x∗
h (t f ))

T we further obtain

−Lx (z
∗
h, u

∗
h, λ

∗
h)(z) = − fx

(
z∗h(t f )

)
z(t f ) −

∫ t f

t0
λ∗
h(t)

Tgx (z
∗
h(t), u

∗
h(t), t)z(t) dt

+ fx (x
∗
h (t f ))z(t f )

+
∫ t f

t0

[
λ∗
h(t)

Tgx (x
∗
h (t), u

∗
h(t), t) + ξh(t)

T
]
z(t) dt

By (2.4), (4.16), (4.18), and (5.27) this implies

−Lx (z
∗
h, u

∗
h, λ

∗
h)(x

∗ − z∗h) ≤ L f |z∗h(t f ) − x∗
h (t f )| |x∗(t f ) − z∗h(t f )|

+ (t f − t0)
(
KλLg‖z∗h − x∗

h‖∞ + ‖ξh‖∞
) ‖x∗ − z∗h‖∞

≤ [
L f cz + (t f − t0)

(
KλLgcz + cξ

)]
hN‖x∗ − z∗h‖∞.
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It follows from Lemma 5 that

‖z∗h − x∗‖∞ ≤ ‖z∗h − x∗‖1,1 ≤ cs‖u∗
h − u∗‖1, (5.31)

and

− Lx (z
∗
h, u

∗
h, λ

∗
h)(x

∗ − z∗h)
≤ [

L f cz + (t f − t0)
(
KλLgcz + cξ

)]
cshN‖u∗

h − u∗‖1.
(5.32)

By Lemma 12 there is a function ζh : [t0, t f ] → R
m satisfying (5.22) such that the

discrete minimum principle can be written in the form (5.23). Therefore, defining

ζ̄h(t) = λ∗
h(t)

T
[
g(2)(x∗

h (t), t) − g(2)(z∗h(t), t)
]

+ ζh(t)

we obtain for the second term on the right hand side of (5.30)

−Lu(z
∗
h, u

∗
h, λ

∗
h)(u

∗ − u∗
h) = −

∫ t f

t0
λ∗
h(t)

Tg(2)(z∗h(t), t)
(
u∗(t) − u∗

h(t)
)
dt

= −
∫ t f

t0

[
λ∗
h(t)

Tg(2)(x∗
h (t), t) + ζh(t)

T
] (

u∗(t) − u∗
h(t)

)
dt

+
∫ t f

t0
ζ̄h(t)

T (
u∗(t) − u∗

h(t)
)
dt

≤
∫ t f

t0
ζ̄h(t)

T (
u∗(t) − u∗

h(t)
)
dt.

Further by (2.4), (4.16), (5.22), and (5.27) we have

|ζ̄h(t)| ≤ KλLg|x∗
h (t) − z∗h(t)| + |ζh(t)| ≤ Kλ

(
Lg(cz + Lx + 1) + cA

)
hN ,

which implies

−Lu(z
∗
h, u

∗
h, λ

∗
h)(u

∗ − u∗
h)

≤ (t f − t0)Kλ

(
Lg(cz + Lx + 1) + cA

)
hN‖u∗

h − u∗‖1. (5.33)

Finally (5.30) and the estimates (5.32) and (5.33) show that with some constant c̃u
independent of N and the solution (x∗

h , u
∗
h),

α

2
‖u∗

h − u∗‖21 ≤ c̃uhN‖u∗
h − u∗‖1,

which immediately implies the estimate for ‖u∗
h − u∗‖1 in (5.26). The estimate for

‖x∗
h − x∗‖1,1 then follows from (5.27) and (5.31), and the estimate for ‖λ∗

h − λ∗‖1,1
follows from (4.20). ��
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Remark 8 (compare Remark 3) Theorem 4 also assumes that (x∗
h , u

∗
h) is a global solu-

tion of Problem (OC)N ,ρ and we have not shown uniqueness of the discrete solutions.
The reason is that for the class of control problems considered here condition (5.7)
does in general not hold for the discrete control problems. The linear-quadratic control
problems considered in Alt et al. [6] are convex optimization problems. Therefore, the
solutions of the discrete problems are global solutions. In this case Theorem 4 implies
Alt et al. [6, Theorem 14] for κ = 1. ♦

6 Numerical results

Example 2 We consider the following modification of the rocket car problem dis-
cussed in Alt et al. [4, Example 6.1] with a nonlinear and non convex cost functional
and a nonlinear state equation:

(OCB) min
1

2
(x1(5)

3 + x2(5)
2)

s.t.

ẋ1(t) = x2(t), ẋ2(t) = (1 + εx2(t)) u(t) a.e. on [0, 5],
x1(0) = 6, x2(0) = 1,

−1 ≤ u(t) ≤ 1 a.e. on [0, 5].

Here the function g is defined by

g(x1, x2, u) =
(

x2
(1 + εx2)u

)
,

and

gx (x1, x2, u) =
(
0 1
0 εu

)
, gu(x1, x2, u) =

(
0

1 + εx2

)
.

The Hamiltonian is defined by

H(x1, x2, u, λ1, λ2) = λ1x2 + λ2(1 + εx2)u,

and we have

Hx (x1, x2, u, λ1, λ2) = (0, λ1 + ελ2u) , Hu(x1, x2, u, λ1, λ2) = λ2(1 + εx2),

and

Hux (x1, x2, u, λ1, λ2) = (0, ελ2) , Hxx (x1, x2, u, λ1, λ2) =
(
0 0
0 0

)
.
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Table 1 Discretization error

N 100 200 500 1000 5000

‖u∗
h − u∗‖1 3.795 × 10−2 2.567 × 10−2 1.603 × 10−2 6.900 × 10−3 9.002 × 10−4

‖u∗
h−u∗‖1
h 0.759 1.027 1.603 1.380 0.9002

Therefore, the condition for the quadratic form in Assumption (5.8) is here equivalent
to

3x∗
1 (5)z1(5)

2 + z2(5)
2 + 2ε

∫ 5

0
z2(t)λ

∗
2(t)v(t) dt ≥ −β ‖v‖21

for all (z, v) = (x, u) − (x∗, u∗) with u ∈ U , z(t0) = 0 and

ż1(t) = z2(t),

ż2(t) = εu∗(t)z2(t) + (
1 + εx∗

2 (t)
)
v(t)

for a.a. t ∈ [0, 5]. From the numerical results we have x∗
1 (5) ≈ 1.5475 > 0. Therefore,

this condition is satisfied for arbitrarily small β if ε is sufficiently small.
For ε = 1

2 the optimal control is of bang–bang type with one switching point s1 ≈
4.49848. The discretization errors depicted in Table 1 indicate convergence of order 1
w.r.t. the mesh size h as expected by Theorem 4. Figure 1 shows the computed optimal
control and states, and the switching function for N = 100. ♦

7 Conclusions

In this paper we derived error estimates for Euler approximation of a class of nonlinear
optimal control problems of Mayer type with control appearing linearly. Such esti-
mates were previously known only in case of continuous controls, for linear-quadratic
problems affine w.r.t. the control, and for some special classes of control problems
with a nonlinear cost functional but a linear or semilinear state equation. The results
were obtained under the growth condition (4.8) for the cost functional or under the
stronger second-order sufficient optimality condition (5.7) excluding singular arcs of
the optimal control (see Remark 5). Felgenhauer [18] shows for scalar bang–bang
controls that a second-order optimality condition for the so-called “induced finite-
dimensional problem” of optimizing the switching times implies (4.8) with κ = 2. It
is an open question whether (4.8) can be satisfied if the optimal control has singular
arcs. But it should be noted that in this case other second-order conditions may be
useful (see e.g. Felgenhauer [19], where a second-order condition in connection with
the Goh transformation has been used).

A nonlinear control problem may have many local solutions and Example 2 shows
that the analytical verification of conditions (4.8) and (5.7) may be difficult. Therefore,
another important topic, not treated in this paper, is the numerical verification of such
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Fig. 1 Optimal solution for N = 100 (Color figure online)

conditions. For the numerical verification of (4.8) in case of bang–bang controls one
can use known results. First the control problem is solved by Euler discretization
in order to obtain a good approximation for the switching times. If this works, in a
second step the induced finite-dimensional problemmentioned above can be solved in
order to compute the switching times more accurately. Then the test for the numerical
verification of a second-order sufficient optimality condition for the induced finite-
dimensional problem discussed in Maurer et al. [29] can be applied. If the test is
successful, then the results of Felgenhauer [18] show that (4.8) holds with κ = 2.
While the results ofMaurer et al. [29] are stated for general nonlinear control problems,
the results of Felgenhauer [18] so far are restricted to scalar control problems. As an
alternative, tests based on Riccati differential equations can be used (see Felgenhauer
[18, Section 4], Osmolovskii and Maurer [34] and the papers cited therein).

Acknowledgements The authors would like to thank the anonymous referees for their careful reading of
the manuscript and their constructive and valuable suggestions and comments.

123



Euler discretization for a class of nonlinear optimal… 855

References

1. Alt, W.: On the approximation of infinite optimization problems with an application to optimal control
problems. Appl. Math. Optim. 12, 15–27 (1984)

2. Alt,W.: Local stability of solutions to differentiable optimization problems in Banach spaces. J. Optim.
Theory Appl. 70, 443–466 (1991)

3. Alt, W.: Discretization and mesh-independence of Newton’s method for generalized equations. In:
Fiacco, A.V. (ed.) Mathematical Programming with Data Perturbations V. Lecture Notes in Pure and
Applied Mathematics, vol. 195, pp. 1–30. Marcel Dekker, New York (1997)

4. Alt, W., Baier, R., Gerdts, M., Lempio, F.: Error bounds for Euler approximation of linear-quadratic
control problems with bang–bang solutions. Numer. Algebra Control Optim. 2(3), 547–570 (2012)

5. Alt, W., Mackenroth, U.: Convergence of finite element approximations to state constrained convex
parabolic boundary control problems. SIAM J. Control Optim. 27, 718–736 (1989)

6. Alt, W., Schneider, C., Seydenschwanz, M.: Regularization and implicit Euler discretization of linear-
quadratic optimal control problems with bang-bang solutions. Appl. Math. Comput. (2016). https://
doi.org/10.1016/j.amc.2016.04.028

7. Alt, W., Seydenschwanz, M.: An implicit discretization scheme for linear-quadratic control problems
with bang–bang solutions. Optim. Methods Softw. 29(3), 535–560 (2014). https://doi.org/10.1080/
10556788.2013.821612

8. Deckelnick, K., Hinze, M.: A note on the approximation of elliptic control problems with bang–bang
controls. Comput. Optim. Appl. 51(2), 931–939 (2012)

9. Dhamo, V., Tröltzsch, F.: Some aspects of reachability for parabolic boundary control problems with
control constraints. Comput. Optim. Appl. 50(1), 75–110 (2011)

10. Dontchev, A.L., Hager, W.W.: Lipschitzian stability in nonlinear control and optimization. SIAM J.
Control Optim. 31(3), 569–603 (1993)

11. Dontchev, A.L., Hager, W.W.: The Euler approximation in state constrained optimal control. Math.
Comput. 70, 173–203 (2000)

12. Dontchev, A.L., Hager, W.W., Malanowski, K.: Error bounds for Euler approximation of a state and
control constrained optimal control problem. Numer. Funct. Anal. Optim. 21, 653–682 (2000)

13. Dontchev, A.L., Hager, W.W., Veliov, V.M.: Second-order Runge–Kutta approximations in control
constrained optimal control. SIAM J. Numer. Anal. 38, 202–226 (2000)

14. Dontchev, A.L., Veliov, V.M.: Metric regularity under approximations. Control Cybern. 38(4B), 1283–
1303 (2009)

15. Felgenhauer, U.: On stability of bang–bang type controls. SIAM J. Control Optim. 41(6), 1843–1867
(2003)

16. Felgenhauer, U.: Optimality properties of controls with bang–bang components in problems with
semilinear state equation. Control Cybern. 34(3), 764–785 (2005)

17. Felgenhauer, U.: The shooting approach in analyzing bang–bang extremals with simultaneous control
switches. Control Cybern. 37(2), 307–327 (2008)

18. Felgenhauer, U.: Note on local quadratic growth estimates in bang–bang optimal control problems.
Optimization 64(3), 521–537 (2015). https://doi.org/10.1080/02331934.2013.773000

19. Felgenhauer, U.: Discretization of semilinear bang-singular-bang control problems. Comput. Optim.
Appl. 64, 295–326 (2016). https://doi.org/10.1007/s10589-015-9800-2

20. Felgenhauer, U., Poggiolini, L., Stefani, G.: Optimality and stability result for bang–bang optimal
controls with simple and double switch behaviour. Control Cybern. 38, 1305–1325 (2009)

21. Haunschmied, J.L., Pietrus, A., Veliov, V.M.: The Euler method for linear control systems revisited.
In: Large-Scale Scientific Computing—9th International Conference, LSSC 2013, Sozopol, Bulgaria,
pp. 90–97, 3–7 June 2013. Revised Selected Papers (2013)

22. Ioffe, A., Tihomirov, V.M.: Theorie der Extremalwertaufgaben. VEB Deutscher Verlag der Wis-
senschaften, Berlin (1979)

23. Kaya, C.Y., Lucas, S.K., Simakov, S.T.: Computations for bang–bang constrained optimal control
using a mathematical programming formulation. Optim. Control Appl. Methods 25, 295–308 (2004).
https://doi.org/10.1002/oca.749

24. Malanowski, K.: Stability and sensitivity of solutions to optimal control problems for systems with
control appearing linearly. Appl. Math. Optim. 16, 73–91 (1987)

25. Malanowski, K.: Stability and sensitivity of solutions to nonlinear optimal control problems. Appl.
Math. Optim. 32, 111–141 (1995)

123

https://doi.org/10.1016/j.amc.2016.04.028
https://doi.org/10.1016/j.amc.2016.04.028
https://doi.org/10.1080/10556788.2013.821612
https://doi.org/10.1080/10556788.2013.821612
https://doi.org/10.1080/02331934.2013.773000
https://doi.org/10.1007/s10589-015-9800-2
https://doi.org/10.1002/oca.749


856 W. Alt et al.

26. Malanowski, K.: Stability and sensitivity analysis for optimal control problems. A survey. Trudy Inst.
Mat. i Mekh. UrO RAN 16(5), 278–288 (2010)

27. Malanowski, K., Büskens, C.,Maurer, H.: Convergence of approximations to nonlinear optimal control
problems. In: Fiacco, A.V. (ed.) Mathematical Programming with Data Perturbations V. Lecture Notes
in Pure and Applied Mathematics, vol. 195, pp. 253–284. Marcel Dekker, New York (1997)

28. Maurer, H.: First- and second order sufficient optimality conditions in mathematimacal programming
and optimal control. Math. Program. Study 14, 163–177 (1981)

29. Maurer, H., Büskens, C., Kim, J.H.R., Kaya, C.Y.: Optimizationmethods for the verification of second-
order sufficient conditions for bang–bang controls. Optim. Control Appl. Methods 26(3), 129–156
(2005)

30. Maurer, H., Osmolovskii, N.P.: Second order sufficient conditions for time optimal bang–bang controls.
SIAM J. Control Optim. 42(6), 2239–2263 (2004)

31. Maurer, H., Zowe, J.: First- and second-order necessary and sufficient optimality conditions for infinite-
dimensional programming problems. Math. Program. 16, 98–110 (1979)

32. Osmolovskii, N.P., Maurer, H.: Equivalence of second order optimality conditions for bang–bang
control problems. Part 1: main results. Control Cybern. 34(3), 927–950 (2005)

33. Osmolovskii, N.P., Maurer, H.: Equivalence of second order optimality conditions for bang–bang
control problems. Part 2: proofs, variational derivatives and representations. Control Cybern. 36(1),
5–45 (2007)

34. Osmolovskii, N.P., Maurer, H.: Applications to Regular and Bang–Bang Control: Second-Order Nec-
essary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control. SIAM,
Philadelphia (2012)

35. Pietrus, A., Scarinci, T., Veliov, V.M.: High Order Discrete Approximations to Mayer’s Problems for
Linear Systems. Technical Report, TU Wien, ORCOS (2016)

36. Quincampoix, M., Veliov, V.M.: Metric regularity and stability of optimal control problems for linear
systems. SIAM J. Control Optim. 51(5), 4118–4137 (2013)

37. Robinson, S.M.:Regularity and stability for convexmultivalued functions.Math.Oper. Res. 1, 130–143
(1976)

38. Robinson, S.M.: Stability theory for systems of inequalities, Part II: differentiable nonlinear systems.
SIAM J. Numer. Anal. 13(4), 497–513 (1976)

39. Sendov, B., Popov, V.A.: The averaged Moduli of Smoothness. Wiley, Chichester (1988)
40. Seydenschwanz, M.: Convergence results for the discrete regularization of linear-quadratic control

problems with bang–bang solutions. Comput. Optim. Appl. 61, 731–760 (2015). https://doi.org/10.
1007/s10589-015-9730-z

41. Veliov, V.M.: Error analysis of discrete approximations to bang–bang optimal control problems: the
linear case. Control Cybern. 34(3), 967–982 (2005)

123

https://doi.org/10.1007/s10589-015-9730-z
https://doi.org/10.1007/s10589-015-9730-z

	Euler discretization for a class of nonlinear optimal control problems with control appearing linearly
	Abstract
	1 Introduction
	2 Basic results
	3 Euler Approximation
	4 Error estimates for local minimizers
	5 Improved error estimates
	6 Numerical results
	7 Conclusions
	Acknowledgements
	References




