
Comput Optim Appl (2018) 69:563–595
https://doi.org/10.1007/s10589-017-9958-x

A two-stage stochastic programming approach for
influence maximization in social networks

Hao-Hsiang Wu1 · Simge Küçükyavuz1

Received: 17 August 2016 / Published online: 23 October 2017
© Springer Science+Business Media, LLC 2017

Abstract We consider stochastic influence maximization problems arising in social
networks. In contrast to existing studies that involve greedy approximation algorithms
with a 63% performance guarantee, our work focuses on solving the problem opti-
mally. To this end, we introduce a new class of problems that we refer to as two-stage
stochastic submodular optimization models. We propose a delayed constraint gen-
eration algorithm to find the optimal solution to this class of problems with a finite
number of samples. The influence maximization problems of interest are special cases
of this general problem class. We show that the submodularity of the influence func-
tion can be exploited to develop strong optimality cuts that are more effective than the
standard optimality cuts available in the literature. Finally, we report our computa-
tional experiments with large-scale real-world datasets for two fundamental influence
maximization problems, independent cascade and linear threshold, and show that our
proposed algorithm outperforms the basic greedy algorithm of Kempe et al. (Proceed-
ings of the ninth ACM SIGKDD international conference on knowledge discovery
and data mining, KDD’03, New York, NY, USA, ACM, pp 137–146, 2003).

Keywords Social networks · Independent cascade · Linear threshold · Influence
maximization · Stochastic programming · Submodularity

B Simge Küçükyavuz
simge@uw.edu

Hao-Hsiang Wu
hhwu2@uw.edu

1 Industrial and Systems Engineering, University of Washington, Seattle, WA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-017-9958-x&domain=pdf
http://orcid.org/0000-0001-6548-9378

564 H.-H. Wu, S. Küçükyavuz

1 Introduction

The exploding popularity of social networking services, such as Facebook, LinkedIn,
Google+ and Twitter, has led to an increasing interest in the effective use of word-
of-mouth to market products or brands to consumers. A few individuals, seen as
influencers, are targeted with free merchandise, exclusive deals or new information
on a product or brand. Marketers hope that these key influencers promote the product
to others in their social network through status updates, blog posts or online reviews
and that this information propagates throughout the social network from peers to peers
of peers until the product “goes viral.” Therefore, a key question for marketers with
limited budgets and resources is to identify a small number of individuals whom to
target with promotions and relevant information so as to instigate a cascade of peer
influence, taking into account the network effects.

1.1 Literature review

Domingos and Richardson [15] first introduce the problem of finding which customers
to target to maximize the spread of their influence in the social network. The authors
propose a Markov random-field-model of the social network, where the probability
that a customer is influenced takes into account whether her connections are influ-
enced. After building this network, the authors propose several heuristics to identify
which k individuals to target in a viral marketing campaign, where k is a user-defined
positive integer. Kempe et al. [21] formalize the optimization problem and introduce
two fundamental models to maximize the influence spread in a social network: the
independent cascade model and the linear threshold model. The authors show that
the optimization problems are NP-hard, assuming that there is an efficient oracle to
compute the influence spread function. This seminal work spurred a flurry of research
on social networks with over 4600 citations recorded by Google Scholar in August
2017. Wang et al. [53] show that calculating the influence spread function is #P-hard
under the probabilistic assumptions of Kempe et al. [21]. Therefore, the independent
cascade problem is #P-hard, and there are two sources of difficulty. First, the calcula-
tion of the influence spread function is hard because there is an exponential number of
scenarios. This difficulty is overcome by using sampling. Second, the seed selection
is combinatorial in nature, and requires the evaluation of an exponential number of
choices. This difficulty is overcome by seeking heuristic solutions in the literature.
We describe the results of the seminal paper by Kempe et al. [21] and the subsequent
developments in Sect. 2.

Themajority of the existingwork on optimization-basedmethods for social network
analysis focus on various aspects other than influence maximization (see the review
by Xanthopoulos et al. [55]) with the exception of some recent work [18,42], which
developmathematical programming approaches to solve deterministicweighted target
set selection problems so that the total cost of influencing all nodes in a social network
is minimized. Outside the influence maximization realm, the first class of problems
studied is that of identifying the influential nodes of a networkwith respect to the nodes’
centrality and connectivity. As an example of this class of problems, Arulselvan et al.

123

A two-stage stochastic programming approach for influence… 565

[3] propose an integer programming formulation for the problemof identifying k nodes
whose removal from a deterministic social network causes maximum fragmentation
(disconnected components). The second class is that of clustering the nodes of a
deterministic social network to identify the cohesive subgroups of the network. For
example, Balasundaram et al. [4] and Ertem et al. [16] utilize optimization models to
identify clique relaxations. Third, game-theoretic approaches are used to study various
aspects of social networks, such as modeling competitive marketing strategies of two
firms to maximize their market shares (see, e.g., [7]).

In contrast to these models, we focus on the stochastic influence maximization
problems and propose a two-stage stochastic programming method. In addition, by
utilizing the submodularity of the second stage value (objective) function, we develop
effective decomposition algorithms. Two-stage stochastic programming is a versatile
modeling tool for decision-making under uncertainty. In the first stage, a set of decision
needs to be made when some parameters are random. In the second stage, after the
uncertain parameters are revealed, a second set of (recourse) decisions are made so
that the expected total cost is minimized. We refer the reader to Birge and Louveaux
[8] and Shapiro et al. [47] for an overview of stochastic (linear) programming. To the
best of our knowledge, Song and Dinh [49] provide the only study besides ours that
uses a stochastic programming approach to solve a problem in social networks. In this
paper, the authors consider the problem of protecting some arcs of a social network
(subject to a limited budget) so that the damage caused by the spread of rumors from
their sources to a set of targeted nodes is minimized.

1.2 Our contributions

Despite the ubiquity of social networks, there has been a paucity of research in finding
provably optimal solutions to the two fundamental problems of maximizing influence
in social networks (independent cascade and general threshold). The algorithms stud-
ied to date are approximation algorithms with a worst-case guarantee within 63%
optimal ([22], and references therein). The proposed heuristics are tested on real
social networks and compared to other simple heuristics. However, their practical
performance has not been tested against the optimal solution due to the hardness of
the problem and the unavailability of an algorithm that can find the optimal solution
for large-scale instances of the problem. To fill this gap, we introduce a new class of
problems that we refer to as two-stage stochastic submodular optimizationmodels.We
propose a delayed constraint generation algorithm to find the optimal solution to this
class of problems with a finite number of samples. The proposed delayed constraint
generation algorithm exploits the submodularity of the second-stage value function.
The influence maximization problems of interest are special cases of this general
problem class. Utilizing the special structure of the influence function, we give an
explicit characterization of the cut coefficients of the submodular inequalities, and
identify conditions under which they are facet-defining for the full master problem
that is solved by delayed constraint generation. This leads to a more efficient imple-
mentation of the proposed algorithm than is available from a textbook implementation
of available algorithms for this class of problems [5,35,51]. In addition, we give the

123

566 H.-H. Wu, S. Küçükyavuz

complete linear description of the master problem for k = 1, where k is the number of
nodes targeted in a social network. We illustrate our proposed algorithm on the clas-
sical independent cascade and linear threshold problems [21]. In our computational
study, we show that our algorithm outperforms a basic implementation of the greedy
heuristic in most of the large-scale real-world instances.

We note that while we demonstrate our algorithms on the independent cascade
and linear threshold models, our approach is more generally applicable to many other
variants of the influence maximization problem studied previously in the literature.
Furthermore, beyond social networks, there are other applications of identifying a few
key nodes in complex networks for which our models are applicable. For example,
Ostfeld and Salomons [40] consider the problem of locating costly sensors on the
crucial junctures of the water distribution network to ensure water quality and safety
by the early detection and prevention of outbreaks. The models could also be useful
in the development of immunization strategies in epidemic models (see, e.g. [31]),
and prevention of cascading failures in power systems (see, e.g., [19]). Furthermore,
it also applies to more general stochastic optimization problems that have submodular
second-stage value functions. For example, recently Contreras and Fernández [13]
consider a deterministic hub location problem, and prove that the routing costs in the
objective function are submodular. Using this observation, the authors employ the
delayed constraint generation algorithm of Nemhauser and Wolsey [35] to solve the
optimization problem more effectively than the existing models for this problem. Our
proposed algorithm can be used to solve a stochastic extension of the hub location
problem, where in the first stage, the hub locations are determined, and in the second
stage, after the revelation of uncertain demand of multiple commodities, the optimal
routing decisions are made. Hence, the general two-stage stochastic submodular opti-
mization model and method that we introduce in Sect. 3 has a potential broader impact
beyond social networks.

1.3 Outline

In Sect. 2, we formally introduce the influence maximization problem and review
the greedy algorithm of Kempe et al. [21]. In Sect. 3, we define a general two-stage
stochastic submodular optimization model, and describe a delayed constraint gener-
ation algorithm that exploits the submodularity of the second-stage value function.
We show that for k = 1, solving a linear program with a simple set of submodular
optimality cuts and the cardinality restriction on the seed set guarantees an integer
optimal solution. In Sect. 4, we consider the two fundamental influence maximiza-
tion problems as defined by Kempe et al. [21], namely independent cascade and linear
threshold. We show that for these special cases of the two-stage stochastic submodular
optimization problems, we can obtain an explicit form of the submodular optimality
cuts and identify conditions under which they are facet defining. In Sect. 5, we report
our computational experience with large-scale real-world datasets, which show the
efficacy of the proposed approach in finding optimal solutions as compared to the
greedy algorithm. We share our conclusions and future work in Sect. 6.

123

A two-stage stochastic programming approach for influence… 567

2 Greedy algorithm of Kempe et al. [21]

In this section, we describe the modeling assumptions of Kempe et al. [21], and
overview the greedy hill-climbing algorithm proposed by these authors. Suppose that
we are given a social network G = (V, A), where |V | = n, |A| = m. The vertices
represent the individuals, and an arc (i, j) ∈ A represents a potential influence rela-
tionship between individuals i and j . Our goal is to select a subset of seed nodes,
X ⊂ V , with |X | ≤ k < n to activate initially, so that the expected number of people
influenced by X (denoted by σ(X)) is maximized, where k is a given integer. (Note
that the original problem statement is to select exactly k nodes to activate. However,
for the relaxation that seeks |X | ≤ k seed nodes that maximize influence, there exists
a solution for which the inequality holds at equality.) The influence propagation is
assumed to be progressive, in other words, once a node is activated it remains active.

Kempe et al. [21] show that for various influence maximization problems, the
influence function σ(X) is nonnegative, monotone and submodular. Therefore, the
influence maximization problem involves the maximization of a submodular function.
The authors show that this problem is NP-hard even if there is an efficient oracle to
compute the influence spread function. However, using the results of Cornuéjols et al.
[14] and Nemhauser et al. [36] that the greedy method gives a (1− 1

e)-approximation
algorithm for maximizing a nonnegative monotone submodular function, where e is
the base of the natural logarithm, Kempe et al. [21] establish that the greedy hill-
climbing algorithm solves the influence maximization problem with a constant (0.63)
guarantee, assuming that the function σ(X) can be calculated efficiently. Recognizing
the computational difficulty of calculating σ(X) exactly, which involves taking the
expectation of the influence function with respect to a finite (but exponential) number
of scenarios, Kempe et al. [21] propose Monte-Carlo sampling, which provides a
subset of equiprobable scenarios,�, of moderate size. Letting σω denote the influence
function for scenario ω ∈ �, we get σ(X) = 1

|�|
∑

ω∈� σω(X). The basic greedy
approximation algorithm of Kempe et al. [21] is given in Algorithm 1.

Subsequently,Wang et al. [53] formally show that calculatingσ(X) is #P-hard under
the assumption of independent arc probabilities πi j , (i, j) ∈ A. Therefore, Kempe et
al. [22] propose a modification where an arbitrarily good approximation of σ(X)

is obtained in polynomial time by sampling from the true distribution. In particular,

Kempe et al. [22] show that for a sample size ofΩ
(
n2

ε2
ln(1/α)

)
, the average number of

activated nodes over the sample is a (1 ± ε)-approximation to σ(X), with probability
at least 1 − α.

Algorithm 1: Greedy Approximation Algorithm of Kempe et al. [21].
1 Start with X = ∅ and a sample set of scenarios �;
2 while |X | ≤ k do
3 For each node i ∈ V \X , use the sample � to approximate σ(X ∪ {i});
4 Add node i with the largest estimate for σ(X ∪ {i}) to X ;
5 end
6 Output the set of seed nodes, X .

123

568 H.-H. Wu, S. Küçükyavuz

Further algorithmic improvements to the greedy heuristic are given in the literature
(see [10,22], for an overview). Most notably, Borgs et al. [9] give a randomized
algorithm for finding a (1 − 1/e − ε)-approximate seed sets in O((m + n)ε−3 log n)

time for any precision parameter ε > 0. Note that this run time is independent of the
number of seeds k. The authors show that the running time is close to the lower bound
ofΩ(m+n) on the time required to obtain a constant factor randomized approximation
algorithm. The proposed randomized algorithm has a success probability of 0.6, and
failure is detectable. Therefore, the authors suggest repeated runs if failure is detected
to improve the probability of success.

3 A general two-stage stochastic submodular optimization model and
method

In this section, we define a general two-stage stochastic submodular optimization
model and outline a delayed constraint generation algorithm for its solution. Then, in
Sect. 4, we describe how this general model and method is applicable to the influence
maximization problems of interest.

Let (�,F , P) be a finite probability space, where the probability of an elementary
event ω ∈ � is pω := P(ω). Consider a general two-stage stochastic binary program

max c�x +
∑

ω∈�

pωσω(x) (1a)

s.t. x ∈ X (1b)

x ∈ {0, 1}n, (1c)

where c ∈ R
n is a given objective vector, the set X represents the constraints on the

first-stage variables x and σω(x) is the objective function of the second-stage problem
for scenario ω ∈ � solved as a function of first-stage decisions given by

σω(x) := max q�y (2a)

s.t. y ∈ Y(x, ω). (2b)

Here q is an objective vector of conformable dimension, y is the vector of second-
stage decisions, and Y(x, ω) defines the set of feasible second-stage decisions for a
given first-stage vector x , and the realization of the uncertain outcomes given by the
scenario ω ∈ �. We assume that σω(x) : {0, 1}n → R is known to be a submodular
function for each ω ∈ �, and refer to the optimization problem (1) as a two-stage
stochastic submodular optimization model. It is well-known from the property of
submodular functions that if σω(x), ω ∈ Ω is submodular, then so is the second-stage
value function σ(x) = ∑

ω∈� pωσω(x), which is a nonnegative (convex) combination
of submodular functions. Furthermore, we assume that Y(x, ω) is a non-empty set for
each x ∈ X , ω ∈ �, a property known as relatively complete recourse in stochastic
programming.

Next we overview a delayed constraint generation approach to solve the two-stage
program (1). The generic master problem at an iteration is formulated as

123

A two-stage stochastic programming approach for influence… 569

max c�x +
∑

ω∈�

pωθω (3a)

s.t. x ∈ X (3b)

(x, θ) ∈ C, (3c)

where θ is a |�|-dimensional vector of variables θω representing the second-stage
objective function approximation for scenario ω, constraints (3c) represent the so-
called optimality cuts generated until this iteration. The set of inequalities in C provides
a piecewise linear approximation of the second stage value function, which is itera-
tively refined through the addition of the optimality cuts. (We will describe different
forms of these inequalities in the following discussion.) Let (x̄, θ̄) be the optimal solu-
tion to the master problem at the current iteration. Then for all ω ∈ � we solve the
subproblems (2) to obtain σω(x̄). We add valid optimality cuts to C if θ̄ω > σω(x̄) for
any ω ∈ �, otherwise we deduce that the current solution x̄ is optimal. The generic
version of the delayed constraint generation algorithm is given in Algorithm 2. In this
algorithm, ε is a user-defined optimality tolerance. The particular implementation of
Algorithm 2 depends on the method with which subproblems are solved to obtain
σω(x̄) (in line 5 of Algorithm 2), and the form of the optimality cuts added to the
master problem (in line 7 of Algorithm 2). In this section, we explore the possibil-
ity of utilizing the submodularity of the second-stage value function in a two-stage
stochastic programming problem. We discuss a natural alternative in “Appendix A”,
which we use as a benchmark.

Algorithm 2: Delayed Constraint Generation Algorithm.
1 Start with C = {0 ≤ θω ≤ n, ω ∈ �}. Let LB= −∞ and UB= ∞;
2 while UB − LB > ε do
3 Solve the master problem (3) and obtain (x̄, θ̄). Let UB be the upper bound obtained from the

optimal objective value of the master problem;
4 for ω ∈ � do
5 Solve Subproblem (2) to obtain σω(x̄) ;
6 if θ̄ω > σω(x̄) then
7 Add an optimality cut to C;
8 end
9 end

10 Let σ(x̄) = ∑
ω∈� pωσω(x̄). if LB < σ(x̄) then

11 Let LB ← σ(x̄), and let x̂ ← x̄ be the incumbent solution
12 end
13 end
14 Output the set of seed nodes X = {i ∈ V : x̂i = 1}.

Nemhauser andWolsey [35] give submodular inequalities to describe themaximum
of a submodular set function (see also [37]). Consider the polyhedra Sω = {(θω, x) ∈
R × {0, 1}n : θω ≤ σω(S) + ∑

j∈V \S ρω
j (S)x j ,∀S ⊆ V }, and S ′

ω = {(θω, x) ∈
R×{0, 1}n : θω ≤ σω(S)−∑

j∈S ρω
j (V \{ j})(1− x j)+∑

j∈V \S ρω
j (S)x j ,∀S ⊆ V }

forω ∈ �, where ρω
j (S) = σω(S∪{ j})−σω(S) is the marginal contribution of adding

j ∈ V \S to the set S.

123

570 H.-H. Wu, S. Küçükyavuz

Theorem 3.1 (cf. [35]) For a submodular and nondecreasing set function σω : 2n →
R, X̄ , with a characteristic vector x̄ , is an optimal solution tomaxS⊆V :|S|≤k{σω(S)}, if
and only if (θω, x̄) is an optimal solution to {max θω : ∑

j∈V x j ≤ k, (θω, x) ∈ Sω}.
Similarly for a submodular and nonmonotone set function σω : 2n → R, X̄ , with a
characteristic vector x̄ , is an optimal solution to maxS⊆V :|S|≤k{σω(S)}, if and only if
(θω, x̄) is an optimal solution to {max θω : ∑

j∈V x j ≤ k, (θω, x) ∈ S ′
ω}.

Therefore, we can adapt the algorithm of Nemhauser and Wolsey [37] given for
deterministic submodular maximization problems to two-stage stochastic submodular
optimization problems. Note that because there are exponentially many submodular
inequalities, we cannot add all of them a priori to the formulation. Instead, we use a
delayed constraint generation approach that adds the violated inequalities as needed
and solves the resulting mixed-integer program by branch-and-cut (see, e.g., [6] for an
overview of the general form of a delayed constraint generation algorithm for linear
programs). The proposed method takes the form of Algorithm 2. For a given first stage
solution, x̄ , which is a characteristic vector of the set X̄ , and scenario ω ∈ �, we use
the optimality cut

θω ≤ σω(X̄) +
∑

j∈V \X̄
ρω
j (X̄)x j , (4)

if the second-stage value function σω(x) is nondecreasing and submodular. If the
second-stage value function σω(x) is nonmonotone and submodular, then we use the
optimality cut given by the inequality

θω ≤ σω(X̄) −
∑

j∈X̄
ρω
j (V \{ j})(1 − x j) +

∑

j∈V \X̄
ρω
j (X̄)x j . (5)

We refer the reader to Nemhauser and Wolsey [35] for validity of inequalities (4)-
(5). Ahmed and Atamtürk [1] and Yu and Ahmed [56] strengthen the submodular
inequalities by lifting, under the condition that the submodular utility function is
strictly concave, increasing, and differentiable. These assumptions do not apply to our
problem.

Corollary 3.1 Algorithm 2 with optimality cuts (4) and (5) converges to an opti-
mal solution in finitely many iterations for a two-stage stochastic program with
binary first-stage decisions, x ∈ {0, 1}|V | for which the second-stage value function,
σω(x), ω ∈ �, (|�| finite) is submodular nondecreasing and submodular nonmono-
tone, respectively.

Proof The result follows from the fact that the number of feasible first stage solutions
is finite, and from Theorem 3.1. ��

Note that Algorithm 2 is generally applicable to two-stage stochastic programswith
binary first-stage decisions, x ∈ {0, 1}n , where the second-stage value function, σω(x)
is submodular for all ω ∈ �. There is very limited reporting on the computational per-
formance of this algorithm even for deterministic submodular maximization problems
for which the method was originally developed (see [13,26], for computational results

123

A two-stage stochastic programming approach for influence… 571

on quadratic cost partition and hub location problems, respectively). Kawahara et al.
[20] utilize the algorithm of Nemhauser and Wolsey [35] along with convexity cuts
derived from Lovász extension of submodular functions to solve deterministic sub-
modular maximization problems. The authors derive inequalities that are not globally
valid as they cut off solutions that do not strictly improve upon the current incumbent
solution. To the best of our knowledge, our work is the first adaptation and testing of
this algorithm for two-stage stochastic optimization. While the submodular inequali-
ties (4)-(5) are implicit in that they require the calculation of ρω

j (·) terms, in Sect. 4,
we give an explicit form of the submodular optimality cuts for influence maximization
problems of interest. This allows us to characterize conditions under which the opti-
mality cuts are strong, and to improve the performance of a textbook implementation
of the algorithm of Nemhauser and Wolsey [35].

Next,we consider the special case of cardinality-constrainedfirst-stage problem (1),
i.e.,X := {x ∈ {0, 1}n : ∑

j∈V x j ≤ k}, when k = 1. It is easy to see that in this case,
the greedy algorithm is optimal. Note also that for fixed k, the problem is polynomially
solvable (with respect to the input size of number of nodes, arcs and scenarios), because
it involves evaluating O(nk) possible functions σω(X), ω ∈ �. Observe that, without
loss of generality, we can assume that pω > 0 for all ω ∈ � (otherwise, we can
ignore scenario ω), and that σω(∅) = 0 (otherwise, we can add a constant to the
influence function). Furthermore, because σω(·) is submodular ρω

j (∅) ≥ ρω
j (S) for

any S ⊆ V, S �= ∅ and j ∈ V \S. As a result, if ρω
j (∅) < 0, then x j = 0 in any optimal

solution. Therefore, without loss of generality, we can assume that ρω
j (∅) ≥ 0 for all

j ∈ V, ω ∈ �.

Proposition 3.1 For submodular functions σω(x), ω ∈ � with ρω
j (∅) > 0 for all

j ∈ V, ω ∈ �, and X := {x ∈ {0, 1}n : ∑
j∈V x j ≤ 1}, adding the submodular

optimality cut (4) with X̄ = ∅ to the linear programming (LP) relaxation of the
master problem (3) for each ω ∈ � is sufficient to give the (integer) optimal solution
x∗.

Proof First, note that for X̄ = ∅, inequalities (4) and (5) are equivalent. Under the
given assumptions, in an optimal solution x �= 0, the right-hand side of (4) is positive
for each ω ∈ �. Therefore, the decision variables θω > 0, ω ∈ �, are basic variables
at an extreme point optimal solution of the LP relaxation of the master problem (3).
This gives us |�| basic variables, and the number of constraints is |�| + 1. Hence,
only one decision variable x j for some j ∈ V can be basic, and it is equal to 1 [due to
constraint (6)], and θω = ρω

j (∅) = σω({ j}). Furthermore, this is the optimal solution
to the master problem for the case k = 1. ��

4 Application to the stochastic influence maximization problem

In this section,we specify how the general algorithmwepropose for two-stage stochas-
tic programs with submodular second-stage value functions applies to the influence
maximization problems of interest. Kempe et al. [21] observe that even though the
stochastic diffusion process of influence spread is dynamic, because the decisions of
whom to activate do not influence the probability of an individual influencing another,

123

572 H.-H. Wu, S. Küçükyavuz

we may envision the process to be static and ignore the time aspect. In other words, we
can generate sample paths (scenarios) of likely events for each arc, a priori. As a result,
the decision-making process considered by Kempe et al. [21] may be viewed as a two-
stage stochastic program. In the first stage, the nodes to be activated are determined.
The uncertainty, represented by a finite collection of scenarios, �, is revealed with
respect to how the influence spreads in the network. For each scenario ω ∈ �, with
associated probability pω, let the influence spread given the initial seed set X be given
by σω(X) := |{ j ∈ V : ∃ a path from i to j in Gω, i ∈ X}|, i.e., σω(X) is the number
of vertices reachable from X in Gω. As a result, the expected total influence spread
of the initial seed set X is given by σ(X) = ∑

ω∈� pωσω(X). Let x ∈ {0, 1}n be the
characteristic vector of X ⊂ V . Where appropriate, we use σ(x) interchangeably with
σ(X).

As observed by Kempe et al. [21], the influence function σω(X) is submodular and
monotone (nondecreasing) for various influence maximization problems. Then the
two-stage stochastic programming formulation of the classical influencemaximization
problem is given by (1) where c j = 0 for al j ∈ V and the setX defines the cardinality
constraint on the number of seed nodes given by

∑

j∈V
x j ≤ k, (6)

for a given 0 < k < |V |. Therefore, Algorithm 2 can be used to solve the influence
maximization problem. Furthermore, note that the influence functions of interest in
this paper satisfy the assumption ρω

j (∅) > 0 for all j ∈ V, ω ∈ �, because influencing
only node j contributes at least one node (itself) to the influence function. In addition,
the first-stage problem is cardinality-constrained. Hence Proposition 3.1 applies to the
influence functions considered in this paper.

To model the stochastic diffusion process and calculate the influence spread func-
tion, Kempe et al. [21] introduce a technique that generates a finite set, �, of sample
paths (scenarios) by tossing biased coins. The coin tosses reveal, a priori, which influ-
ence arcs are active (live). A live-arc (i, j) indicates that if node i is influenced during
the influence propagation process, then node j is influenced by it. For each scenario
ω ∈ �, with a probability of occurrence pω, a so-called live-arc graph Gω = (V, Aω)

is constructed, where Aω is the set of live arcs under scenario ω. Then the influence
spread under scenario ω ∈ � is calculated to obtain σω(X). Hence, the expected
influence spread function is given by σ(X) = ∑

ω∈� pωσω(X). This is referred to
as the “triggering model” or the “triggering set technique” by Kempe et al. [22]. The
authors show the equivalence of the stochastic diffusion process of two fundamental
influence maximization problems to the live-arc graph model with respect to the final
active set. In addition, Kempe et al. [21] show that the influence spread in a live-arc
graph representable problem is monotone and submodular under the given assump-
tions. As a result, our stochastic programming method applies to such problems. Next
we describe the two fundamental influence maximization problems that are live-arc
representable.

123

A two-stage stochastic programming approach for influence… 573

Independent Cascade Model In the independent cascade model of Kempe et al.
[21], it is assumed that each arc (i, j) ∈ A of the social network G = (V, A)

has an associated probability of success, πi j . In other words, with probability πi j

individual i will be successful at influencing individual j . We say that an arc (i, j)
is active or live in this case.We generate a sample path (scenario) by tossing biased
coins (with probability of πi j for each arc (i, j) ∈ A) to determine whether the arc
is active/live to construct the live-arc graph. Because each arc influence probability
is independent, and does not depend on which nodes are influenced, Kempe et al.
[21] show that the influence maximization problem is equivalent to maximizing
the expected influence function in the live-arc graph model.
Linear Threshold Model In the linear threshold model of Kempe et al. [21],
each arc (i, j) in the social network G = (V, A) has deterministic weight 0 ≤
wi j ≤ 1, such that for all nodes j ∈ V ,

∑
i :(i, j)∈A wi j ≤ 1. In addition, each

node j ∈ V selects a threshold ν j uniformly at random between 0 and 1. A node
is activated if sum of the weights of its active neighbors is above the thresholds,
i.e.,

∑
i :(i, j)∈A wi j xi ≥ ν j . Given the set of initial seed nodes, X̄ , the activated

nodes in the set U at time t influence their unactivated neighbor j at time t + 1
if

∑
u∈U wu j ≥ ν j . Kempe et al. [21] show that the linear threshold model also

has an equivalent live-arc graph representation, where every node has at most one
incoming live arc. Each node j ∈ V selects at most one incoming live arc (i, j)
with probabilitywi j , or it selects no arc with probability 1−∑

i :(i, j)∈A wi j . Given

the seed set X̄ , Kempe et al. [21] prove the following two are equivalent:
(i) The distribution of active nodes computed by executing the linear threshold

model with starting seed set X̄ , and
(ii) the distribution of nodes reachable from X̄ in the live-arc graph representation

of the linear threshold model defined above.

Next, we demonstrate how the proposed algorithm (Algorithm 2) can be applied
to influence maximization problems that have a live-arc graph representation. Subse-
quently, we give extensions where the proposed algorithm applies to models which are
not live-arc graph representable. In such models, the form of the cuts change, but as
long as the influence spread function is submodular, the proposed algorithm applies.

4.1 Exploiting the submodularity of the second-stage value function for live-arc
graph models

Utilizing Theorem 3.1, we give an explicit description of the submodular inequalities
for the influence maximization problems that have live-arc graph representations. We
say that a node j is reachable from a set of nodes S, in scenario ω ∈ �, if there exists
a node i ∈ S such that there is a directed path from i to j in the graph Gω = (V, Aω).
It is well known that reachability can be checked in linear time with respect to the
number of arcs using depth- or breadth-first search. For S ⊆ V and ω ∈ �, let R(S)

be the set of nodes reachable from the nodes in S not including the nodes in S, and let
R̄(S) be the set of nodes not reachable from the nodes in S in the graphGω = (V, Aω).

123

574 H.-H. Wu, S. Küçükyavuz

Proposition 4.1 For S ⊆ V and ω ∈ � the inequality

θω ≤ σω(S) +
∑

j∈R̄(S)

rω
j (S)x j , (7)

is a valid optimality cut for the master problem (3), where rω
j (S) is the number of

nodes reachable from j ∈ R̄(S) (including j) that are not reachable from any node in
S in Gω.

Proof From Theorem 3.1, we know that θω ≤ σω(S) + ∑
j∈V \S ρω

j (S)x j is a valid

inequality. Note that R̄(S) ⊆ V \S and for j ∈ R̄(S), we have ρω
j (S) = rω

j (S), in

other words, the marginal contribution of adding j ∈ R̄(S) to S is precisely rω
j (S).

Furthermore, for any node j ∈ R(S), the marginal contribution of adding j to S is
zero, because j is already reachable from at least one node in S. This completes the
proof. ��

We refer to the cuts in the form of (7) as submodular optimality cuts. Note that to
obtain an inequality (7) for a given Gω and S, we need to solve multiple reachability
problems on the same graph, where time complexity of a single reachability problem
by depth- or breadth-first search is O(|Aω|). We first compute σω(S) by solving a
reachability problem on Gω and mark all nodes reachable from S. Then, for each
j ∈ R̄(S)\S, we compute rω

j (S) by solving another reachability problem, where we
count the number of unmarked nodes reachable from j . Hence the overall complexity
of generating an inequality (7) is O(|Aω| × |R̄(S)\S|).

Nextwegive conditions underwhich inequalities (7) are facet defining for conv(Sω).

4.2 Strength of the submodular inequalities

For i ∈ V , let indeg(i) and outdeg(i) denote the in-degree and out-degree of node i ,
respectively. Let T := {i ∈ V : indeg(i) = 0}, we refer to the nodes in T as root
nodes. For i ∈ V \T , let Pi be the set of root nodes such that i is reachable from
the nodes in this set, i.e., Pi := { j ∈ T : i ∈ R({ j})}. Finally, let L := {i ∈ V :
indeg(i) > 0, outdeg(i) = 0} denote the set of leaf nodes that have no outgoing arcs.

First, note that the submodular inequality (7) for a set S is equivalent to that for the set
S∪R(S) =: R̂(S), becauseσω(S) = σω(R̂(S)), R̄(S) = R̄(R̂(S)), rω

j (S) = rω
j (R̂(S))

for all j ∈ R̄(S) and ρω
j (S) = 0 for j ∈ R(S). Therefore, in what follows, without

loss of generality, we assume that for all non-leaf nodes i ∈ S\L , we have R({i}) ⊆ S
(Assumption A1).

Proposition 4.2 For S ⊆ V andω ∈ � the submodular inequality (7) is facet defining
for conv(Sω) only if the following conditions hold

(i) if i ∈ S, then i /∈ T ,
(ii) there exists T ′ ⊆ T with |T ′| < k such that S ⊆ R(T ′).

These conditions are also sufficient

123

A two-stage stochastic programming approach for influence… 575

(i) if S = ∅ (for any k ≥ 1), or
(ii) if |S| = 1 for k ≥ 2.

Proof Necessity

(i) Suppose, for contradiction, that there exists i ∈ S ∩ T . Now consider the sub-
modular inequality (7) for the set S′ = S\{i} given by

θω ≤ σω(S′) +
∑

j∈R̄(S′)

rω
j (S′)x j = σω(S) − 1 + xi +

∑

j∈R̄(S)

rω
j (S)x j , (8)

which follows because the set of all descendants of i , R({i}) is contained in S by
AssumptionA1, so removing i reduces the influence function by exactly 1 (recall
that, by the contradictory assumption i ∈ T , hence its in-degree is 0 and it is not
influenced by any other node in the graph), and the set of nodes not reachable from
S′ is given by R̄(S′) = R̄(S) ∪ {i}, and hence the coefficients rω

j (S′) = rω
j (S)

for j ∈ R̄(S), and rω
i (S′) = 1. Because xi ≤ 1, inequality (8) dominates the

submodular inequality (7) for this choice of S. Hence, the submodular inequality
for a set S such that there exists i ∈ S ∩ T is not facet defining for conv(Sω).

(ii) Suppose, for contradiction, that there does not exist T ′ ⊆ T with |T ′| < k such
that S ⊆ R(T ′). In other words, the minimum cardinality of root nodes T ′ ⊆ T
such that S ⊆ R(T ′) is greater than or equal to k. In this case, consider the
set Ŝ := {i ∈ S : � j ∈ S with i ∈ R({ j})}, in other words, Ŝ is the set of
nodes in the graph induced by S that have no incoming arcs from other nodes
in S. Note that from condition (i), we know that Ŝ ∩ T = ∅. Then, by the
contradictory assumption, there exist at least k nodes, say nodes 1, . . . , k ∈ Ŝ
such that Pi ∩ Pj = ∅ for all pairs i, j ∈ {1, . . . , k}, i �= j . Now consider the
submodular inequality (7) for the set S′ = S\{1, . . . , k} given by

θω ≤ σω(S′) +
∑

j∈R̄(S′)

rω
j (S′)x j = σω(S) − k +

∑

j∈R̄(S)

rω
j (S)x j +

k∑

i=1

∑

j∈R̂(Pi)\R({i})
x j ,

(9)

which follows because the set of all descendants of i ∈ {1, . . . , k}, R({i}), is
contained in S by Assumption A1, so removing nodes i = 1, . . . , k reduces the
influence function by exactly k, and the set of nodes not reachable from S′ is
given by R̄(S′) = R̄(S)∪{1, . . . , k}. In addition, the coefficients rω

j (S′) = rω
j (S)

for j ∈ R̄(S) such that j /∈ ∪k
i=1

(
R̂(Pi)\R({i})

)
, rω

j (S′) = rω
j (S) + 1 for

j ∈ R̄(S) such that j ∈ ∪k
i=1

(
R̂(Pi)\R({i})

)
, and rω

i (S′) = 1 for i = 1, . . . , k.

Because
∑k

i=1
∑

j∈R̂(Pi)\R({i}) x j ≤ ∑
j∈V x j ≤ k, inequality (9) dominates the

submodular inequality (7) for this choice of S. Hence, there must exist T ′ ⊆ T
with |T ′| < k such that S ⊆ R(T ′) for the submodular inequality (7) to be facet
defining for conv(Sω).

123

576 H.-H. Wu, S. Küçükyavuz

2

4

 p

5

 p

6

 p

1

 p p

7

 p

8

 p

3

 p p

9

 p

Fig. 1 Network with 9 nodes and 10 arcs with equal influence probabilities p

Sufficiency First, note that for ω ∈ �, dim(Sω) = n + 1. Let ei be a unit vector of
dimension n whose i th component is 1, and other components are zero.

(i) Note that when S = ∅, the necessity conditions are trivially satisfied. Consider
the n + 1 affinely independent points: (θω, x)0 = 0, and (θω, x)i = (σω({i}), ei),
for i ∈ V . These points are on the face defined by the inequality (7) for S = ∅.
Hence inequality (7) for S = ∅ is facet-defining for conv(Sω).

(ii) Note that for |S| = 1, the necessity conditions imply that S := { j} for some
j ∈ L . Consider the n + 1 affinely independent points: (θω, x)0 = (σω({ j}), 0);
(θω, x) j = (σω({ j}), e j and (θω, x)i = (σω({i, j}), e j + ei), for i ∈ V \{ j}. The
last set of points is feasible because we have k ≥ 2 in this case. These points are
on the face defined by the inequality (7) for S = { j}. Hence inequality (7) for
S = { j} is facet-defining for conv(Sω). ��

Note that during the course of the algorithm, if a submodular inequality (7) cor-
responding to the seed set S does not satisfy the necessary conditions given in
Proposition 4.2, then a stronger inequality can be constructed using the arguments
in the proof of the proposition.

From Proposition 4.2 we see that inequalities (7) with S = ∅ are facets of conv(Sω)
for any k ≥ 1.We will also see their importance in our computational study. Similarly,
inequalities (7) with |S| = 1 are facets of conv(Sω) for any k ≥ 2. We note that more
conditions are necessary for the inequalities (7) with |S| = 2 to be facets of conv(Sω).
We illustrate this in the next example.

Example 4.1 Consider the network in Fig. 1 for a given scenario ω ∈ � and let k = 2.
From Proposition 4.2, inequalities (7) with S = ∅, and inequalities (7) with S = { j},
for j = 4, . . . , 9 are facet-defining for conv(Sω). Inequalities (7) with S = {7, 8}
or S = {5, 6} are facets of conv(Sω); each of these sets satisfies the necessary facet
conditions in Proposition 4.2, which for these choices of S also turn out to be sufficient.
However, the sets S = {7, 9} or S = {4, 5} satisfy the necessary facet conditions in
Proposition 4.2, but they do not lead to facet-defining inequalities for k = 2. Finally,
S = {4, 7} violates the necessity condition (ii) of Proposition 4.2 (the minimum
number of root nodes that can influence 4 and 7 is 2 = k) and is not a facet.

It is important to note that in the direct adaptation of the delayed constraint gener-
ation algorithm proposed by Nemhauser and Wolsey [37] to our problem, for a given
solution x̄ to the current master problem, one would use the submodular inequalities
(7), where we let S = {i ∈ V : x̄i = 1} =: X̄ . From Proposition 3.1, we have that

123

A two-stage stochastic programming approach for influence… 577

Algorithm 2 with optimality cuts (7) with S = X̄ converges to an optimal solution
in finitely many iterations for two-stage stochastic submodular maximization prob-
lems. However, note that at any iteration, the solution to the master problem, x̄ will
be such that

∑
j∈V x̄ j = k. Therefore, all submodular optimality cuts (7) added will

have |S| = k, and no facets with S = ∅ will be added for k ≥ 1. This may lead
to slow convergence of the delayed constraint generation algorithm with submodular
optimality cuts for S = X̄ , which we illustrate next.

Example 4.1 (Continued.) Consider the network in Fig. 1, and suppose that |�| = 1,
hence we consider a deterministic problem. Adding the submodular optimality cut
(7) for S = ∅: θ1 ≤ 5x1 + 4x2 + 4x3 + ∑9

j=4 x j to the cardinality constraint, and
solving the linear programming relaxation of the master problem yields the integer
optimal solution, x̄1 = 1, θ1 = 5 at the first iteration (from Proposition 3.1). In
contrast, solving the master problem without any optimality cuts (i.e., with just the
cardinality constraint) may lead to an initial solution of x̄2 = 1. Then the following
set of submodular cuts are added in that order during the course of the algorithm of
Nemhauser and Wolsey [37]:

θ1 ≤ 4 + 3x1 + 4x3 + ∑9
j=7 x j (S = X̄ = {2}), (10)

θ1 ≤ 4 + 3x1 + 4x2 + ∑6
j=4 x j (S = X̄ = {3}), (11)

θ1 ≤ 5 + 2x2 + 2x3 + x4 + x9 (S = X̄ = {1}). (12)

Furthermore, none of the inequalities (10)-(12) are facet-defining. Solving the LP
relaxation of themaster problemwith the optimality cuts (10)-(12) leads to a fractional
solution: x̄2 = x̄3 = 0.5.This small example highlights that a textbook implementation
of the algorithmbyNemhauser andWolsey [37]may lead to slow convergence because
the algorithm (1) may explore, in the worst case, O

(n
k

)
many locally optimal solutions

before finding an optimal solution, and (2) may require long solution times for each
master problem, because the optimality cuts given by S = X̄ may not be facet-defining
and hence lead to weak LP relaxations.

These observations motivate us to devise a more efficient implementation of Algo-
rithm 2, which we report in Sect. 5.

4.3 Extensions

In this section, we give various extensions of the influence maximization problems
that can be solved using our proposed methods.

4.3.1 Extensions to live-arc graph models

Observe that while we demonstrate our general algorithm on the independent cascade
and linear threshold models, our proposed model and method is applicable to many
extensions of the social network problems studied in the literature. For example, an
extension considered in the literature is to replace the cardinality constraint on the

123

578 H.-H. Wu, S. Küçükyavuz

number of nodes selected with a knapsack constraint representing a marketing budget
where each node has a different cost to market. This model also admits an adapted and
more involved 0.63-factor greedy approximation algorithm (see, [23,50]). In fact, our
model is flexible enough to allow any constraints in X so long as the master problem
can be solved with an optimization solver, while the greedy approximation algorithm
needs careful adjustment and analysis for each additional constraint. Similarly, the
time-constrained influence spread problem studied in Chen et al. [11] and Liu et al.
[30] can also be solved using our method. In this problem, there is an additional
constraint that the number of time periods it takes to influence a node should be no
more than a given parameter τ . The resulting influence spread function is monotone
and submodular, hence we can use inequalities (4) as the submodular optimality cuts.
Furthermore, we can efficiently calculate the coefficients ρω

j (X̄) by solving, with
breadth-first search, a modified reachability problem limiting the number of hops
from the seed set X̄ to any other node by τ .

4.3.2 General cascade and general threshold models

In the general cascade model, every node j ∈ V has an activation function p′
j (i, S) ∈

[0, 1] for S ⊆ {(k, j) ∈ A} =: Nin(j) and i ∈ Nin(j)\S. The activation function
represents the probability that node j is influenced by node i given that the nodes in
S failed to activate node i . The independent cascade model is a special case, where
p′
j (i, S) = πi j , independent of S.
In the general threshold model, every node j ∈ V has an threshold function f j (S)

for S ⊆ Nin(j), where f j (·) is monotone and f j (∅) = 0. As before, every node
j selects a threshold ν j uniformly at random in the range [0, 1]. Then, a node j is
activated if for a given active set S, f j (S ∩ Nin(j)) ≥ ν j . The linear threshold model
is a special case, where f j (S) = ∑

i∈S wi j .
Kempe et al. [21] show that general cascade model is equivalent to the general

threshold model with an appropriate selection of activation and threshold functions.
This is not true for the independent cascade and the linear thresholdmodels (see Exam-
ple 2.14 in [10]). Furthermore, the influence spread function is no longer submodular.
However, if f j (S) is submodular for all j ∈ V , then the influence spread is submodular
(first conjectured by Kempe et al. [21] and later proven by Mossel and Roch [33,34]).
Therefore, the greedy hill climbing algorithm is a 0.63-approximation algorithm for
this case as well. Algorithm 2 is applicable in the submodular threshold functions
case, where the optimality cuts take the more general form (4) or (5) depending on
the monotonicity of the function f .

5 Computational experiments

In this section we summarize our experience with solving the influence maximization
problem using the delayed constraint generation method (DCG) with various optimal-
ity cuts as given in Algorithm 2, and the greedy hill-climbing algorithm (Greedy) of
Kempe et al. [21] as given in Algorithm 1.

123

A two-stage stochastic programming approach for influence… 579

The algorithms are implemented in C++ with IBM ILOG CPLEX 12.6 Optimizer.
All experiments were executed on a Windows Server 2012 R2 with an Intel Xeon E5-
2630 2.40GHzCPU, 32GBDRAMandx64based processor. In our implementation of
Algorithm 2,we set the parameter ε = 0. For themaster problem of the decomposition
algorithm, the relative MIP gap tolerance of CPLEX was set to 1%, so a feasible
solution which has an optimality gap of 1% is considered optimal.

5.1 Small-scale network

First, we study the quality of the solutions produced by DCG and Greedy on a small-
scale network for which we can enumerate all possible outcomes of the random
process. In these experiments, we are able to capture the random process precisely,
and no information is lost through sampling from the true distribution. An illustrative
network is given in Fig. 1 with 9 nodes, 10 directed arcs and independent influence
probability πi j = p for all (i, j) ∈ A. Our goal is to select k = 2 seed nodes, so
that the objective value, which is the expected number of nodes influenced by the
seed nodes, is maximized. We generate all possible influence scenarios (a total of
210 = 1024 scenarios). Note that under the assumption that each influence is indepen-
dent of the others, the probability of scenario ω, which has � ≤ 10 live arcs, is given
by pω = (1 − p)10−� p�.

The solution of DCG and Greedy methods on 1024 scenarios with various values
of p = 0.1, 0.2, . . . , 1 is shown in Table 1. When p ≤ 0.5, both algorithms have the
same objective value. For 0.6 ≤ p ≤ 1, Greedy selects node 1 as the seed in the first
iteration of Algorithm 1 (line 4 of Algotihm 1) and selects either node 2 or 3 as the seed
in the second iteration. However, DCG selects nodes 2 and 3 as the seed nodes, and
provides a better objective value than Greedy (up to 12.5% improvement). So while
Greedy does better than its worst-case bound (63%), it is within 12.5% of optimality.

Next, instead of generating all 1024 scenarios,we employedMonte-Carlo sampling,
and independently sampled different number of scenarios |�| = 10, 50 and 100
according to different p values, and let pω = 1/|�|. We summarize the results of this
experiment in Table 2. For eight out of 15 cases, DCG has a higher objective value than
Greedy, and in all other cases Greedy attains the optimal objective value (mostly for
small influence probabilities p = 0.1, 0.3). We also observe that the objective value
for the instances with a larger number of scenarios is generally closer to the objective
value with all 1024 scenarios (except for p = 0.1 and |�| = 100). Note that Greedy
is a 0.63-approximation algorithm even for the sampled problem, which assumes that
the true distribution is given by the scenarios in�, whereas DCG provides the optimal
solution to the sampled problem.

5.2 Large-scale network with real-world datasets

To evaluate the efficiency of DCG and Greedy on large networks, we conduct compu-
tational experiments on four real-world datasets with different categories and scales.
These datasets are summarized below and in Table 3:

123

580 H.-H. Wu, S. Küçükyavuz

Table 1 Expected influence obtained from two algorithms for the small-scale network with 1024 scenarios

Algorithm Objective values with different p

p = 1.0 p = 0.9 p = 0.8 p = 0.7 p = 0.6 p = 0.5 p = 0.4 p = 0.3 p = 0.2 p = 0.1

DCG 8 7.4 6.8 6.2 5.6 5 4.48 3.92 3.32 2.68

Greedy 7 6.68 6.32 5.92 5.48 5 4.48 3.92 3.32 2.68

Table 2 Expected influence obtained from two algorithms for the small-scale network with |�| scenarios
|�| Algorithm Objective values for different p

p = 0.9 p = 0.6 p = 0.5 p = 0.3 p = 0.1

10 DCG 7.1 5.2 4.7 3.4 2.6

10 Greedy 6.8 5.1 4.6 3.4 2.6

50 DCG 7.4 5.84 5.18 3.98 2.68

50 Greedy 6.82 5.66 5.06 3.98 2.68

100 DCG 7.38 5.61 5.04 3.96 2.76

100 Greedy 6.69 5.52 5.04 3.96 2.76

Table 3 The summary of real world datasets

Dataset

UCI-message P2P02 Phy-HEP Email-Enron

Network category Online-message File-shearing Collaboration Communication

Nodes 1899 10,876 15,233 36,692

Edges 59,835 39,994 58,891 183,831

Format Directed Undirected Undirected Directed

UCI-message is the dataset for the online student community network at the
University of California, Irvine [39]. The 1,899 nodes represent the students, and
the 59,835 directed arcs between twonodes indicate that one student sent amessage
to the other.
P2P02 is the dataset for theGnutella peer-to-peer file sharing network fromAugust
2002 [27,43]. The 10,876 nodes represent the hosts, and the 39,994 undirected
edges denote the connections between two hosts.
Phy-HEP is the dataset for the academic collaboration network in the “high energy
physics theory” (HEPT) section of the e-print arXiv (www.arxiv.org) [12,21,22].
The 15,233 nodes represent the authors, and the 58,891 undirected edges represent
the co-authorship between each pair of authors in the “high energy physics theory”
papers from 1991 to 2003. Note that this is the original dataset considered in
Kempe et al. [21], and it is commonly used as a benchmark in comparing various
algorithms for maximizing influence in social networks.

123

www.arxiv.org

A two-stage stochastic programming approach for influence… 581

Email-Enron is the dataset for the email communication network of the Enron
Corporation [24,29]. It is posted to the public by the Federal Energy Regulatory
Commission during the investigation. The 36,692 nodes represent the different
email addresses, and the 183,831 directed arcs denote one address sent a mail to
the other.

Note that if the graph in the original datasets contain undirected edges between i and
j , then we construct a directed graph with two directed arcs from i to j and j to i . We
follow the data generation scheme of Kempe et al. [21] in constructing live-arc graphs
for these instances (i.e., the probabilities of influence on each arc for the independent
cascade model, and the arc weights and node thresholds for the linear threshold model
follow from Kempe et al. [21]).

In our experiments in this subsection, we compare three algorithms: Greedy is the
greedy hill-climbing algorithm (Algorithm 1); DCG-SubIneqs is Algorithm 2 using
submodular optimality cuts (7) for S = X̄ , where X̄ is the optimal solution given by the
master problem in the current iteration; and DCG-SubWarmup adds the submodular
inequalities (7) for S = ∅ for each scenario, before the execution of DCG-SubIneqs as
awarm-start. Proposition 3.1 shows that the submodular optimality cut (7) with S = ∅,
which is referred to as EmptySetCut, is sufficient to find the optimal solution for k = 1
(note that ρω

j (∅) ≥ 1 for all j ∈ V, ω ∈ �, hence the assumptions of the proposition
are satisfied). Since k = 1 is an easy case for DCG-SubWarmup due to Proposition 3.1,
we include DCG-SubWarmup to test if EmptySetCut is also useful for k > 1. To verify
this, we add EmptySetCuts for all scenarios to themaster problem before executing the
DCGalgorithm, and solving the initialmaster problem.Note that the total computation
time in our experiments includes the generation time of all EmptySetCuts, and the total
number of user cuts also includes the number of EmptySetCuts. We also implemented
Algorithm 2 using alternative optimality cuts (adapted and strengthened versions of
integer-L-shaped cuts of [25], referred to as Benders-LC, and described in “Appendix
A”); however, the running time of Benders-LC is extremely long. Therefore, we only
report our results with DCG-SubIneqs, DCG-SubWarmup and Greedy, and discuss
the inefficiency of Benders-LC in “Appendix A.1”.

5.2.1 Independent cascade model

For the independent cascade model, we assign uniform influence probability πi j =
p = 0.1 independently to each arc (i, j) in the network as was done in Kempe et
al. [21]. Note that Kempe et al. [21] consider the dataset Phy-HEP with influence
probabilities πi j ∈ {0.01, 0.1} for each arc (i, j) in the network. However, we observe
that for πi j = 0.01, the total number of live arcs is very small, resulting in sparse
live-arc graphs with a large number of singletons. For example, the expected number
of live arcs in our largest dataset Email-Enron is 183, 831×0.01 = 1, 838 with
p = 0.01. However, the number of nodes of Email-Enron is 36,692, resulting in over
30,000 singletons in the network. Therefore, we focus on the more interesting case of
πi j = 0.1 in our experiments in this section.

We generate |�| = 100, 200, 300 and 500 scenarios to find k = 2 to 5 seed
nodes that maximize influence. Tables 4 and 5 summarize our experiments with

123

582 H.-H. Wu, S. Küçükyavuz

Table 4 Independent cascade model for UCI-message and P2P02

Datasets k |�| DCG-SubIneqs DCG-SubWarmup Greedy

Time (s) Cuts (#) Time (s) Cuts (#) Time (s)

UCI-message 2 100 75 200 72 200 40

3 100 82 200 78 201 50

4 100 76 200 71 200 59

5 100 81 200 73 200 69

2 200 90 399 85 400 77

3 200 91 400 88 400 96

4 200 95 400 84 400 118

5 200 89 400 87 400 138

2 300 356 596 260 600 133

3 300 274 600 264 600 168

4 300 268 600 282 600 201

5 300 273 600 272 600 232

2 500 237 994 201 1000 202

3 500 221 999 207 1000 252

4 500 219 1000 203 1000 299

5 500 211 1000 200 1000 347

Average 171.1 549.3 157.9 550.1 155.1

P2P02 2 100 466 200 505 212 364

3 100 463 216 514 216 520

4 100 721 245 591 244 682

5 100 572 232 547 232 823

2 200 526 400 514 400 558

3 200 553 412 552 411 794

4 200 569 433 552 428 1014

5 200 785 451 590 451 1227

2 300 240 600 246 600 1852

3 300 246 600 251 600 2652

4 300 324 658 295 643 3452

5 300 310 678 302 658 4369

2 500 522 1000 515 1000 4796

3 500 489 1000 522 1000 6922

4 500 609 1075 721 1193 9018

5 500 608 1131 620 1129 11,043

Average 500.2 583.2 489.8 588.6 3130.4

the algorithms DCG-SubIneqs, DCG-SubWarmup and Greedy for the independent
cascade model. Column “k” denotes the number of seed nodes to be selected. Column
“Cuts(#)” reports the total number of submodular inequalities (7) added to the master
problemofDCG-SubIneqs, and column“Time(s)” reports the solution time in seconds.

123

A two-stage stochastic programming approach for influence… 583

Table 5 Independent cascade model for Phy-HEP and Email-Enron

Datasets k |�| DCG-SubIneqs DCG-SubWarmup Greedy

Time (s) Cuts (#) Time (s) Cuts (#) Time (s)

Phy-HEP 2 100 650 208 623 200 1141

3 100 777 301 771 300 1654

4 100 1064 385 1054 385 2107

5 100 375 491 366 491 2530

2 200 261 400 257 401 1593

3 200 524 599 455 598 2185

4 200 2208 770 1983 771 2770

5 200 845 989 733 988 3344

2 300 414 609 504 600 1123

3 300 648 902 567 900 1561

4 300 829 1040 863 1038 2004

5 300 911 1190 737 1190 2465

2 500 603 1000 614 1005 6250

3 500 1266 1498 1353 1500 8992

4 500 1544 1985 1434 1985 11,545

5 500 2128 2220 2315 2323 13,808

Average 940.4 911.7 914.9 917.2 4067

Email-Enron 2 100 1656 200 2004 200 7332

3 100 1618 200 1721 200 9860

4 100 1715 200 1618 200 12,465

5 100 1622 200 1628 200 15,137

2 200 4279 400 4262 400 11,623

3 200 3372 400 3420 400 15,576

4 200 3273 400 3668 400 19,414

5 200 3265 400 3529 400 23,124

2 300 5256 600 5037 600 17,675

3 300 4890 600 5003 600 24,357

4 300 4921 600 6116 726 31,387

5 300 4900 600 5000 600 38,385

2 500 9176 1000 8756 1000 25,970

3 500 9726 1000 9305 1000 34,775

4 500 9187 1000 9507 1000 43,588

5 500 11,056 1000 9390 1000 52,548

Average 4994.5 550 4997.8 557.9 23,951

We do not report the objective values in these experiments, because we are able to
prove that despite its worst-case performance guarantee of 63%, Greedy is within
the optimality tolerance for these instances. In Kempe et al. [21] Greedy is tested

123

584 H.-H. Wu, S. Küçükyavuz

empirically against other heuristics such as choosing the nodes with k highest degrees
in the graph G, because it is said that an optimal solution is not available. Therefore,
our computational experiments also provide an empirical test on the performance of
the greedy heuristic when an optimal solution is available (to the sampled problem)
due to our proposed method.

From column Cuts(#) in Tables 4 and 5, we observe that the number of cuts added
to the master problem generally increases with the number of seed nodes k. In other
words, more iterations are needed to prove optimality if we have more seed nodes
to select. Columns DCG-SubIneqs Time(s) and Cuts(#) show that the overall running
time does not necessarily increase with the number of user cuts, as more cuts may help
the master problem converge to an optimal solution faster. Recall that the running time
of DCG-SubIneqs includes the solution time of the master problem (a mixed-integer
program) and the cut generation time of submodular inequalities, which decomposes
by each scenario.

FromcolumnGreedyTime(s)we see that, for the same size of scenarios, the running
time of Greedy increases linearly as the number of seed nodes increases. Recall that
DCG solves a mixed integer master problem after the cut generation phase, which
makes its running time nonlinear as we observe from the columns DCG-SubIneqs
Time(s) and DCG-SubWarmup Time(s). The majority of the overall time for DCG is
spent on cut generation for most instances (for example, the cut generation takes, on
average, 80% of the time over all four problem instances with |�| = 300). Because we
observe that the major bottleneck is the cut generation time and most of the remaining
time is spent on the solutionof themixed-integermaster problem,wedidnot implement
other enhancements known to improve convergence of related Benders methods, such
as the trust region method or heuristics (cf. [38,44]).

Considering the average solution time, we observe that there is not much difference
between DCG-SubWarmup and DCG-SubIneq, and DCG outperforms Greedy for
large networks with more than 10,000 nodes. For example, for the instance Email-
Enron in Table 5, the average solution time of Greedy is five times that of DCG-
SubIneqs.Only for the smallest instance,UCI-message,Greedy is the fastest algorithm
(see Table 4).

5.2.2 Linear threshold model

In this section, we summarize our experiments with the linear threshold model. Recall
that in the live-arc graph representation of linear threshold models, at most one incom-
ing arc is chosen for each node in the live-arc graph construction for each scenario.
As in Kempe et al. [21] we let the deterministic weight on each arc (i, j) ∈ A be
wi j = 1/indeg(j). We generate |�| ∈ {100, 200, 300, 500} for the four real-world
datasets described earlier.

The results are shown in Tables 6 and 7. Similar to the independent cascade model,
the running time of Greedy increases linearly in k. As in the previous experiments
for the independent cascade model, DCG-SubWarmup is slower than Greedy only for
the smallest dataset with fewer than 2,000 nodes (UCI-message) (see Table 6). For
the large-scale datasets with over 10,000 nodes (P2P02, Phy-HEP, and Email-Enron)
reported in Tables 6 and 7, we observe that the warm-up strategy is highly effective.

123

A two-stage stochastic programming approach for influence… 585

Table 6 Linear threshold model for UCI-message and P2P02

Datasets k |�| DCG-SubIneqs DCG-SubWarmup Greedy

Time (s) Cuts (#) Time (s) Cuts (#) Time (s)

UCI-message 2 100 72 299 43 120 1

3 100 94 378 70 169 2

4 100 130 455 93 257 3

5 100 162 606 89 303 4

2 200 220 722 91 259 3

3 200 221 735 80 296 4

4 200 243 892 161 502 6

5 200 469 1435 289 893 7

2 300 188 590 200 513 5

3 300 192 594 159 449 8

4 300 573 1507 249 637 11

5 300 543 1554 387 1011 13

2 500 462 988 84 559 6

3 500 747 1403 181 740 9

4 500 665 1415 130 723 12

5 500 1282 2909 462 1933 15

Average 391.6 1030.1 173 585.3 6.8

P2P02 2 100 48 200 26 103 222

3 100 55 200 28 108 337

4 100 136 338 28 120 449

5 100 230 580 31 133 565

2 200 387 400 202 202 211

3 200 583 596 225 214 311

4 200 590 596 204 213 414

5 200 1260 1156 306 290 512

2 300 1564 600 584 308 1231

3 300 1853 885 684 343 1833

4 300 3529 1687 855 410 2531

5 300 9557 4000 1656 765 3118

2 500 1721 1000 576 503 1028

3 500 1224 1000 534 512 1507

4 500 4799 3308 600 552 1969

5 500 10,505 5861 1047 887 2415

Average 2377.6 1403.6 474.1 353.9 1165.8

It provides the best solution times, and fewer iterations and cuts. For example, DCG-
SubWarmup outperforms Greedy by a factor of 2.46 in P2P02 in Table 6, a factor of
4.12 in Phy-HEP in Table 7, and a factor of 27 in Email-Enron in Table 7, the largest
dataset considered.

123

586 H.-H. Wu, S. Küçükyavuz

Table 7 Linear threshold model for Phy-HEP and Email-Enron

Datasets k |�| DCG-SubIneqs DCG-SubWarmup Greedy

Time (s) Cuts (#) Time (s) Cuts (#) Time (s)

Phy-HEP 2 100 528 243 175 101 1116

3 100 1117 428 333 182 1682

4 100 1351 474 383 185 2235

5 100 786 387 63 209 2740

2 200 1141 586 477 359 1176

3 200 1841 964 540 362 1791

4 200 1448 779 602 363 2444

5 200 1190 581 722 377 3229

2 300 399 600 445 303 692

3 300 489 600 516 312 1017

4 300 943 871 1089 548 1329

5 300 6425 3413 824 619 1642

2 500 1910 1218 1229 887 4002

3 500 2440 1421 1312 891 6342

4 500 4340 2283 1635 988 8637

5 500 9291 3845 2051 1040 10,993

Average 2227.4 1168.3 774.8 482.9 3191.7

Email-Enron 2 100 206 200 97 100 3972

3 100 196 200 131 106 5814

4 100 414 379 158 137 7605

5 100 644 535 299 230 9366

2 200 1240 400 608 200 4732

3 200 419 400 223 215 7001

4 200 642 593 285 265 9192

5 200 902 760 447 378 11,330

2 300 740 600 335 300 9283

3 300 666 600 375 326 13,602

4 300 1082 886 436 365 17,833

5 300 1975 1441 982 710 22,354

2 500 1199 1000 613 500 12,113

3 500 1192 1000 675 523 17,858

4 500 2446 1929 845 669 23,443

5 500 3490 2373 1044 844 28,876

Average 1090.8 831 472.1 366.8 12,773.4

Some comments are in order for both the independent cascade and linear threshold
models. First, we make some observations on increasing k. As can be seen from
our experiments, the running time of Greedy increases linearly with k. However, the
increase in the running time of DCG is nonlinear, as can be expected. Hence, as we

123

A two-stage stochastic programming approach for influence… 587

increase k, we need to set some time limits for both DCG and Greedy (currently,
we impose no time limits). In this case, with DCG, we are still able to obtain an
incumbent solution with k seed nodes and an estimate on optimality gap provided
by the bound from the DCG master. However, with a time limit, we will have to
stop Greedy prematurely, before it identifies all k seed nodes. For example, for the
independent cascade model for the medium-sized instance P2P02, setting a time limit
of one hour, for k = 30 and |�| = 300, Greedy stops at time limit with a solution
that has k = 4 seed nodes (see Table 4). On the other hand, DCG stops with an
incumbent solution that has k = 30 seed nodes and an optimality gap of 3.7%. For the
largest instance Enron, from Table 5, we observe that Greedy cannot even find the first
seed node in over three hours. Similarly, as we increase |�|, the running time of both
algorithms increase greatly, and as in the case of increasing k we will have to impose
time limits and stop Greedy prematurely to be able to compare the performance of the
algorithms.

Note that, throughout the paper, we present a so-called multicut version of the DCG
algorithm and its variants, where we add an optimality cut for each scenario at each
iteration.Wehave also tested a single cut implementation, inwhichmultiple cuts across
all scenarios are aggregated into a single cut at each iteration. We observe a degraded
performance of the single cut version for our problem instances; therefore, we present
our results for the multicut approach. In particular, for the independent cascade model,
the total computational time of the single cut version of DCG-SubWarmup is between
20 to 100% higher than the multicut version in all four datasets with 300 scenarios for
k > 1 (See page 167 of [8], for a discussion on the problem-dependent nature of the
performance of the single vs. multicut approach).

We remark that we implemented the basic greedy algorithm as proposed by Kempe
et al. [21]. This implementation needs to perform the influence spread function eval-
uation for each node for each scenario at each iteration, resulting in a heavy running
time ofO(kn|�|m). Several improvements to this implementation using different data
structures and algorithmic enhancements have been proposed (see, e.g., [12,28]). In
particular, [12] propose the so-called Discount Greedymethod and report that it solves
the Phy-HEP instances within a second. In this paper, our main goal is not to compete
with these efficient heuristics. Instead, we focus on solving the problem on large-scale
datasets optimally in a reasonable time. Our computational experiments demonstrate
an overlooked opportunity to use optimization methods to solve stochastic influence
maximization problems to provable optimality.

6 Conclusion

In this paper, we propose a delayed constraint generation algorithm to solve influ-
ence maximization problems arising in social networks. We show that exploiting the
submodularity of the influence function leads to strong optimality cuts. Furthermore,
our computational experiments with large-scale real-world test instances indicate that
the algorithm performs favorably against a popular greedy heuristic for this problem.
In most instances, our algorithm finds a solution with provable optimality guarantees
more quickly than a basic implementation of the greedy heuristic, which can only pro-

123

588 H.-H. Wu, S. Küçükyavuz

vide a 0.63 performance guarantee. Our algorithm is applicable to many other variants
of the influencemaximization problem for which the influence function is submodular.
Furthermore, we generalize the proposed algorithm to solve any two-stage stochastic
program, where the second-stage value function is submodular.

Our results on optimization-based methods for the fundamental influence maxi-
mization problemsprovide a foundation to build algorithms formore advancedmodels,
such as the adaptive model of Seeman and Singer [45], where a subset of additional
seed nodes is selected in the second stage based on the realization of some of the
uncertain parameters and the seed nodes selected in the first stage. The decompo-
sition methods of Sen [46]; Gade et al. [17] and Zhang and Küçükyavuz [57] can
be employed in this case to convexify the second stage problems that involve binary
decisions. Another possible future research direction is to develop optimization-based
methods for the problem of marketing to nodes [21,22] to increase their probabilities
of getting activated.

Acknowledgements We thank the coordinating editor and the two referees for their valuable comments
that improved the presentation. This work is supported, in part, by the National Science Foundation Grants
#1732364 and #1733001.

Appendix A: Alternative Benders optimality cuts for live-arc graph mod-
els

In this section, we present optimality cuts that can be obtained by traditional methods.
First, we give an explicit linear programming (LP) formulation for the subproblems
(2) used to calculate σω(x) for live-arc graph models such as independent cascade or
linear threshold. Observe that the maximum number of nodes reachable from nodes X
(corresponding to the decision vector x) in graphGω can be formulated as a maximum
flow problem an amodified graphG ′

ω = (V ∪{s, t}, A′
ω), where s is the source node, t

is the sink node, and A′
ω includes the arcs Aω and arcs (s, i) and (i, t) for all i ∈ V . Let

the capacity of the arcs (i, t), i ∈ V beone, and the capacity of arcs (i, j) ∈ Aω ben (the
maximum flow possible on any arc). In addition, we would like the arcs (s, i), i ∈ V
to have a capacity of n if xi = 1 and 0 otherwise. Therefore, we let the capacity of arc
(s, i) be nxi . The reader might wonder why we create an arc (s, i) if a node i is not
activated. To see why, note that in a two-stage stochastic programming framework, we
need to build a second-stage model that is correct for any first-stage decision x . It is
easy to see that the maximum flow on this graph is equal to the maximum number of
vertices reachable from the seeded nodes X . The LP formulation of the second-stage
problem for scenario ω ∈ � is

σω(x) = max
∑

i∈V
ysi (13a)

s.t.
∑

j :(j,i)∈A′
ω

y ji −
∑

j :(i, j)∈A′
ω

yi j = 0, i ∈ V (uω
i) (13b)

ysi ≤ nxi , i ∈ V (vω
si) (13c)

yi j ≤ n, (i, j) ∈ Aω (vω
i j) (13d)

123

A two-stage stochastic programming approach for influence… 589

yit ≤ 1, i ∈ V (vω
i t) (13e)

yi j ≥ 0, (i, j) ∈ A′
ω, (13f)

where yi j represents the flow on arc (i, j) ∈ A′
ω, and the dual variables associated with

each constraint are defined in parentheses. Note that the subproblems are feasible for
any ω ∈ � and x ∈ {0, 1}n (we can always send zero flows), therefore this problem is
said to have complete recourse. The dual of the second-stage problem (13) is

σω(x) = min
∑

i∈V
(nxiv

ω
si + vω

i t) +
∑

(i, j)∈Aω

nvω
i j (14a)

s.t. uω
i + vω

si ≥ 1, i ∈ V (14b)

uω
j − uω

i + vω
i j ≥ 0, (i, j) ∈ Aω (14c)

− uω
i + vω

i t ≥ 0, i ∈ V (14d)

vω
i j ≥ 0, (i, j) ∈ A′

ω. (14e)

Note that we can write a large-scale mixed-integer program, known as the deter-
ministic equivalent program (DEP), to solve the independent cascade problem. To
do this, we create copies of the second-stage variables yω

i j for all ω ∈ �, where yω
i j

represents the flow on arc (i, j) ∈ A′
ω under scenario ω ∈ �. The DEP is formulated

as

max
∑

ω∈�

pω

∑

i∈V
yω
si (15a)

s.t.
∑

j∈V
x j ≤ k (15b)

∑

j :(j,i)∈A′
ω

y ji −
∑

j :(i, j)∈A′
ω

yi j = 0, i ∈ V (15c)

yω
si ≤ nxi , ω ∈ �, i ∈ V (15d)

yω
i j ≤ n, ω ∈ �, (i, j) ∈ Aω (15e)

yω
i t ≤ 1, ω ∈ �, i ∈ V (15f)

x ∈ {0, 1}n, yω
i j ≥ 0, ω ∈ �, (i, j) ∈ A′

ω. (15g)

It is well-established in the stochastic programming field that due to its large size, it
is not practical to solve DEP directly. Instead, as is commonly done, we consider the
use of Benders decomposition method [5,51] utilizing the structure of this large-scale
MIP.

A naive way of generating the optimality cuts is to solve the subproblem (13) for
each ω ∈ � as an LP (in line 5 of Algorithm 2) to obtain σω(x̄), and the corresponding
dual vector (ūω, v̄ω). Then the optimality cut is

θω ≤
∑

i∈V
(nxi v̄

ω
si + v̄ω

i t) +
∑

(i, j)∈Aω

nv̄ω
i j . (16)

123

590 H.-H. Wu, S. Küçükyavuz

Fig. 2 Maximum flow formulation of the influence function

We refer to the optimality cuts (16) obtained by solving the subproblems as an LP as
the LP-based optimality cuts.

Next, we discuss a more efficient way of obtaining the optimality cuts by utilizing
the fact that the subproblems are maximum flow problems, which can be solved in
polynomial time using specialized algorithms. In particular, for our problem, one only
needs to solve a reachability problem to obtain the corresponding maximum flow.
Reachability problem in a graph can be solved in linear time in the number of arcs
using breadth- or depth-first search. We describe the equivalence of the maximum
flow problem defining the evaluation of the influence spread to the graph reachability
problem next.

For a given first-stage solution x̄ and the corresponding seed set X̄ , let R̂(X̄) ⊆ V be
the set of nodes in V reachable from s, R(X̄) = R̂(X̄)\X̄ be the set of nodes reachable
from s not including the seed nodes X̄ , and R̄(X̄) = V \R̂(X̄) be the set of nodes in
V not reachable from s in G ′

ω. From maximum flow minimum cut theorem (see, e.g.,
[2])) we can show that a minimum cut is given by (R̂(X̄) ∪ {s}, R̄(X̄) ∪ {t}). (See
the maximum flow formulation of this problem for a given X̄ and scenario ω ∈ � in
Fig. 2.) Let uω

i = 1 if i ∈ R̂(X̄), and uω
i = 0, if i ∈ R̄(X̄). In addition, for (i, j) ∈ A′

ω,

let vω
i j = 1 if i ∈ R̂(X̄) ∪ {s} and j ∈ R̄(X̄) ∪ {t}, otherwise let vω

i j = 0. It is easy
to check that this choice of the dual variables is feasible. Furthermore, this choice is
optimal. To see this, note that the objective value of the dual is

∑

i∈V
(nxi v̄

ω
si + v̄ω

i t) +
∑

(i, j)∈Aω

nv̄ω
i j =

∑

i∈R̄(X̄)

nxi +
∑

i∈R̂(X̄)

1 +
∑

(i, j)∈(R̂(X̄),R̄(X̄))

n

= |R̂(X̄)|,

because xi = 0 for i ∈ R̄(X̄) and there can be no arc (i, j) ∈ Aω with i ∈ R̂(X̄),
j ∈ R̄(X̄) (otherwise j would be reachable from s and hence it will be in R̂(X̄)).

123

A two-stage stochastic programming approach for influence… 591

Because the optimal objective value of the primal subproblem is σω(x̄) = |R̂(X̄)|, this
dual solution must be optimal. With this choice of the optimal dual vector, we obtain
the Benders optimality cut

θω ≤ σω(x̄) +
∑

i∈R̄(X̄)

nxi . (17)

We refer to the optimality cuts (17) obtained by solving the subproblems as reachability
problems as combinatorial optimality cuts. Wallace [52] and Wollmer [54] use the
same type of optimality cuts for a problem of investing in arc capacities of a network to
maximize flow under stochastic demands. This problem is a relaxation of our problem
in that the first stage variables are continuous. Hence, submodular inequalities cannot
be used in their problem context.

Note that inequality (17) can also be seen as a big-M type inequality. For x = x̄ ,
with the associated seed set X̄ , we get a correct upper bound on θω as σω(x). For any
other x �= x̄ , if xi = 1 for some i ∈ R̄(X̄), then the upper bound on θω given by
inequality (17) is trivially valid, because σω(x) ≤ n for any x ∈ {0, 1}n . Finally, for
any x �= x̄ , if xi = 0 for all i ∈ R̄(X̄), then we must have x j = 0 for some j ∈ X̄ and
x� = 1 from some � ∈ R(X̄). However, because � is reachable from X̄ , replacing j
with �will not increase the number of reachable nodes, i.e., σω(x) ≤ σω(x̄). Therefore,
inequality (17) is valid.

Magnanti andWong [32] propose amethod to strengthenBenders cuts in caseswhen
the dual of the subproblems is degenerate (see also, [41,48], for other enhancements
of this method). The method chooses, among alternative dual optimal solutions to the
subproblem, one that is not dominated.While this idea is useful to strengthen the weak
Benders cut (16) (in particular, inequality (17) corresponding to one choice of optimal
dual solutions), we note that it alone cannot lead to the stronger cuts given by the
submodular inequalities (7). To see this note, first, that all extreme points of the dual
subproblem (14) are integral. So any non-integral dual feasible solution is a convex
combination of these extreme points. Then note that an optimality cut of the form (16)
obtained from the dual is non-dominated only if the corresponding dual solution is
an extreme point (otherwise the optimality cut would be a convex combination of the
optimality cuts corresponding to the extreme points). As a result, v̄ω

si ∈ Z for all i ∈ V ,
hence submodular inequalities (7) cannot be expressed as inequalities (16) obtained
from non-dominated extreme point optimal dual solutions to the subproblem (14).

Finally, note that because the first-stage problem is a pure binary optimization
problem, one can also consider the optimality cuts proposed in the integer L-shaped
method of Laporte and Louveaux [25]. The resulting inequality, forω ∈ � and a given
x̄ , with an associated seed set X̄ , is

θω ≤ σω(x̄) +
∑

i∈V \X̄
(n − σω(x̄))xi . (18)

This inequality can be strengthened by the same observation that replacing a node
j ∈ X̄ with a node � ∈ R(X̄) does not increase the number of reachable nodes.
Therefore,we can reduce the coefficient of x� in inequality (18) to obtain a strengthened

123

592 H.-H. Wu, S. Küçükyavuz

version of the integer L-shaped optimality cut (18):

θω ≤ σω(x̄) +
∑

i∈R̄(X̄)

(n − σω(x̄))xi , (19)

which is clearly valid. We refer to inequalities (19) as the strengthened integer L-
shaped optimality cuts.

Proposition A.1 The submodular optimality cuts (7) dominate the combinatorial
optimality cuts (19).

Proof This follows because rω
j (S) ≤ n − σω(x̄) for any j ∈ R̄(S). ��

A.1 Computations with Benders using strengthened L-shaped cuts

In our computational study in Sect. 5.2, we set πi j = p = 0.1, (i, j) ∈ A in the real
world network. Because the influence probability p is very small, the live-arc graphs
corresponding to each scenario are large-scale sparse networks. We were not able to
solve even the smallest instances (with k = 1 and |�| = 50) using Benders-LC after
one day. To demonstrate the inefficiency of Benders-LC, we consider a sparse network
under one scenario, depicted in Fig. 3 with 15 nodes and 4 directed arcs, and compare
the performance of DCG-SubIneqs and Benders-LC. In other words, we let p1 = 1,
which leads to a deterministic problem (i.e., a unique scenario with objective θ1). We
vary the value of k from 1 to 5.

The total number of user cuts added to the corresponding master problem is shown
in Table 8.We observe that compared to DCG-SubIneqs the number of user cuts added

1

2

 p

3

 p

4

5

 p

6

7

 p

8 9 10 11 12 13 14 15

Fig. 3 Sparse network with 15 nodes and 4 arcs with equal influence probabilities p

Table 8 Comparison of
DCG-SubIneqs and Benders-LC

Algorithm Number of user cuts with different k

k = 1 k = 2 k = 3 k = 4 k = 5

DCG-SubIneqs 2 5 11 16 51

Benders-LC 15 106 458 1365 3003

123

A two-stage stochastic programming approach for influence… 593

to the master problem of Benders-LC grows rapidly as the number of seed nodes k
increases. Indeed, the number of user cuts for Benders-LC approached

(15
k

)
, indicat-

ing that Benders-LC is effectively a pure enumeration algorithm for this problem. The
strengthened integer L-shaped optimality cuts (19) do not provide any useful informa-
tion on the objective valuewhen the solution is different from the one that generates the
cut. In contrast, submodular inequalities are highly effective for this set of problems.
To see why, consider the problem of finding k = 1 seed node. The master problem of
both DCG-SubIneqs and Benders-LC selects k = 1 node arbitrarily, because they do
not have any cut at the beginning. Because the sparse network is constituted of many
singleton nodes (with no incoming and outgoing arcs), there is a high probability that
the master problem selects one singleton at the first iteration. Suppose that the mas-
ter problem chooses node 15, which was also the choice of CPLEX. DCG-SubIneqs
generates the cut

θ1 ≤ 1 + 3x1 + 2x2 + x3 + 2x4 + x5 + 2x6 + x7 + x8 + x9 + x10 + x11 + x12
+x13 + x14,

and Benders-LC generates the cut

θ1 ≤ 1 +
14∑

i=1

14xi ,

to be added to the correspondingmaster problem.At the second iteration, due to the use
of the stronger optimality cut, DCG-SubIneqs chooses node 1 and reaches optimality,
but Benders-LC chooses one of the 14 nodes arbitrarily. Note that, in the worst case,
Benders-LC traces all 15 nodes in the network (and generates 15 optimality cuts)
before reaching the optimal solution. Therefore, in the large-scale network of Sect. 5.2,
Benders-LC fails due to the need for a large number of iterations and computational
time. In contrast, the submodular inequality guides themaster problem to choose nodes
with higher marginal influence.

References

1. Ahmed, S., Atamtürk, A.: Maximizing a class of submodular utility functions. Math. Program. 128(1),
149–169 (2011)

2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications.
Prentice-Hall Inc, Upper Saddle River (1993)

3. Arulselvan, A., Commander, C.W., Elefteriadou, L., Pardalos, P.M.: Detecting critical nodes in sparse
graphs. Comput. Oper. Res. 36(7), 2193–2200 (2009)

4. Balasundaram,B., Butenko, S., Hicks, I.V.: Clique relaxations in social network analysis: themaximum
k-plex problem. Oper. Res. 59(1), 133–142 (2011)

5. Benders, J.: Partitioning procedures for solvingmixed-variables programming problems.Numer.Math.
4(1), 238–252 (1962)

6. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization, 1st edn. Athena Scientific, Belmont,
Massachusetts (1997)

7. Bimpikis, K., Ozdaglar, A., Yildiz, E.: Competitive targeted advertising over networks. Oper. Res.
64(3), 705–720 (2016). (article in advance)

123

594 H.-H. Wu, S. Küçükyavuz

8. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (1997)
9. Borgs, C., Brautbar, M., Chayes, J., Lucier, B.: Maximizing social influence in nearly optimal time.

In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’14, pp. 946–957. SIAM (2014)

10. Chen, W., Lakshmanan, L.V., Castillo, C.: Information and influence propagation in social networks.
Synth. Lect. Data Manag. 5(4), 1–177 (2013)

11. Chen, W., Lu, W., Zhang, N.: Time-critical influence maximization in social networks with time-
delayed diffusion process. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence
(2012)

12. Chen,W.,Wang, Y., and Yang, S.: Efficient influence maximization in social networks. In: Proceedings
of the 15th ACMSIGKDD International Conference on Knowledge Discovery and DataMining, KDD
’09, New York, NY, USA, pp. 199–208. ACM (2009)

13. Contreras, I., Fernández, E.: Hub location as the minimization of a supermodular set function. Oper.
Res. 62(3), 557–570 (2014)

14. Cornuéjols, G., Fisher,M.L., Nemhauser, G.L.: Location of bank accounts to optimize float: an analytic
study of exact and approximate algorithms. Manag. Sci. 23(8), 789–810 (1977)

15. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings of the Seventh
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’01, New
York, NY, USA, pp. 57–66. ACM (2001)

16. Ertem, Z., Veremyev, A., Butenko, S.: Detecting large cohesive subgroups with high clustering coef-
ficients in social networks. Soc. Netw. 46, 1–10 (2016)

17. Gade, D., Küükyavuz, S., Sen, S.: Decomposition algorithms with parametric Gomory cuts for two-
stage stochastic integer programs. Math. Program. 144(1–2), 39–64 (2014)

18. Günne, D., Raghavan, S., Zhang, R.: Tailored incentives and least cost influence maximization on
social networks. Technical report (2016)

19. Hines, P., Balasubramaniam, K., Sanchez, E.: Cascading failures in power grids. IEEE Potentials 28(5),
24–30 (2009)

20. Kawahara, Y., Nagano, K., Tsuda, K., Bilmes, J.A.: Submodularity cuts and applications. In: Proceed-
ings of the 22nd International Conference on Neural Information Processing Systems, NIPS ’09, pp.
916–924 (2009)

21. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network.
In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’03, New York, NY, USA, pp. 137–146. ACM (2003)

22. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network.
Theory Comput. 11(4), 105–147 (2015)

23. Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. Inf. Process. Lett. 70(1),
39–45 (1999)

24. Klimt, B., Yang, Y.: Introducing the Enron corpus. In: First Conference on Email and Anti-Spam,
CEAS ’04 (2004)

25. Laporte, G., Louveaux, F.: The integer L-shapedmethod for stochastic integer programswith complete
recourse. Oper. Res. Lett. 13(3), 133–142 (1993)

26. Lee, H., Nemhauser, G.L., Wang, Y.: Maximizing a submodular function by integer programming:
polyhedral results for the quadratic case. Eur. J. Oper. Res. 94(1), 154–166 (1996)

27. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters.
ACM Trans. Knowl. Discov. Data 1(1), 2 (2007a)

28. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective out-
break detection in networks. In: Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’07, New York, NY, USA, pp. 420–429. ACM (2007b)

29. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks:
natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009)

30. Liu, B., Cong, G., Xu, D., Zeng, Y.: Time constrained influence maximization in social networks. In:
2012 IEEE 12th International Conference on Data Mining (ICDM), pp. 439–448 (2012)

31. Madar, N., Kalisky, T., Cohen, R., Ben-Avraham, D., Havlin, S.: Immunization and epidemic dynamics
in complex networks. Eur. Phys. J. B Condens. Matter Complex Syst. 38(2), 269–276 (2004)

32. Magnanti, T.L.,Wong, R.T.: Accelerating benders decomposition: algorithmic enhancement andmodel
selection criteria. Oper. Res. 29(3), 464–484 (1981)

123

A two-stage stochastic programming approach for influence… 595

33. Mossel, E., Roch, S.: On the submodularity of influence in social networks. In: Proceedings of the
Thirty-ninth Annual ACM Symposium on Theory of Computing, STOC ’07, New York, NY, USA,
pp. 128–134. ACM (2007)

34. Mossel, E., Roch, S.: Submodularity of influence in social networks: from local to global. SIAM J.
Comput. 39(6), 2176–2188 (2010)

35. Nemhauser, G., Wolsey, L.: Maximizing submodular set functions: formulations and analysis of
algorithms. In: Hansen, P. (ed.) Studies on Graphs and Discrete Programming. Annals of Discrete
Mathematics, vol. 59, pp. 279–301. North-Holland Mathematics Studies, North-Holland (1981)

36. Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of approximations for maximizing submodular set
functions-I. Math. Program. 14(1), 265–294 (1978)

37. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)
38. Oliveira, F., Grossmann, I., Hamacher, S.: Accelerating benders stochastic decomposition for the

optimization under uncertainty of the petroleum product supply chain. Comput. Oper. Res. 49, 47–58
(2014)

39. Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Soc. Netw. 31(2), 155–163 (2009)
40. Ostfeld, A., Salomons, E.: Optimal layout of early warning detection stations for water distribution

systems security. J. Water Resour. Plan. Manag. 130(5), 377–385 (2004)
41. Papadakos,N.: Practical enhancements to theMagnanti–Wongmethod.Oper. Res. Lett. 36(4), 444–449

(2008)
42. Raghavan, S., Zhang, R.: Weighted target set selection on social networks. Technical report (2015)
43. Ripeanu, M., Foster, I., Iamnitchi, A.: Mapping the gnutella network: properties of large-scale peer-

to-peer systems and implications for system design. IEEE Internet Comput. 6(1), 50–57 (2002)
44. Santoso, T., Ahmed, S., Goetschalckx,M., Shapiro, A.: A stochastic programming approach for supply

chain network design under uncertainty. Eur. J. Oper. Res. 167(1), 96–115 (2005)
45. Seeman, L., Singer, Y.: Adaptive seeding in social networks. In: 2013 IEEE 54th Annual Symposium

on Foundations of Computer Science (FOCS), pp. 459–468 (2013)
46. Sen, S.: Stochastic mixed-integer programming algorithms: beyond Benders’ decomposition. In:

Cochran, J.J., Cox, L.A., Keskinocak, P., Kharoufeh, J.P., Smith, J.C. (eds.) Wiley Encyclopedia of
Operations Research and Management Science. Wiley, New York (2010)

47. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and
Theory. Society for Industrial Mathematics, Philadelphia (2009)

48. Sherali, H.D., Lunday, B.J.: On generating maximal nondominated Benders cuts. Ann. Oper. Res.
210(1), 57–72 (2013)

49. Song, Y., Dinh, T.N.: Optimal containment of misinformation in social media: a scenario-based
approach. In: Zhang, Z., Wu, L., Xu, W., Du, D.-Z. (eds.) Combinatorial Optimization and Appli-
cations: 8th International Conference Proceedings, COCOA 2014, Wailea, Maui, HI, USA, December
19–21, 2014, pp. 547–556. Springer, Cham (2014)

50. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint.
Oper. Res. Lett. 32(1), 41–43 (2004)

51. Van Slyke, R., Wets, R.: L-shaped linear programs with applications to optimal control and stochastic
programming. SIAM J. Appl. Math. 17(4), 638–663 (1969)

52. Wallace, S.W.: Investing in arcs in a network to maximize the expected max flow. Networks 17(1),
87–103 (1987)

53. Wang, C., Chen, W., Wang, Y.: Scalable influence maximization for independent cascade model in
large-scale social networks. Data Min. Knowl. Discov. 25(3), 545–576 (2012)

54. Wollmer, R.D.: Investments in stochastic maximum flow networks. Ann. Oper. Res. 31(1), 457–467
(1991)

55. Xanthopoulos, P., Arulselvan, A., Boginski, V., Pardalos, P.: A retrospective review of social networks.
In: Social Network Analysis andMining, 2009, ASONAM ’09, International Conference on Advances
in, pp. 300–305 (2009)

56. Yu, J., Ahmed, S.:Maximizing a class of submodular utility functions with constraints. Math. Program.
162(1–2), 145–164 (2017)

57. Zhang,M., Küükyavuz, S.: Finitely convergent decomposition algorithms for two-stage stochastic pure
integer programs. SIAM J. Optim. 24(4), 1933–1951 (2014)

123

	A two-stage stochastic programming approach for influence maximization in social networks
	Abstract
	1 Introduction
	1.1 Literature review
	1.2 Our contributions
	1.3 Outline

	2 Greedy algorithm of Kempe et al. KKT03
	3 A general two-stage stochastic submodular optimization model and method
	4 Application to the stochastic influence maximization problem
	4.1 Exploiting the submodularity of the second-stage value function for live-arc graph models
	4.2 Strength of the submodular inequalities
	4.3 Extensions
	4.3.1 Extensions to live-arc graph models
	4.3.2 General cascade and general threshold models

	5 Computational experiments
	5.1 Small-scale network
	5.2 Large-scale network with real-world datasets
	5.2.1 Independent cascade model
	5.2.2 Linear threshold model

	6 Conclusion
	Acknowledgements
	Appendix A: Alternative Benders optimality cuts for live-arc graph models
	A.1 Computations with Benders using strengthened L-shaped cuts

	References

