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Abstract The LP-Newton method for constrained equations, introduced some years
ago, has powerful properties of local superlinear convergence, covering both possibly
nonisolated solutions and possibly nonsmooth equation mappings. A related globally
convergent algorithm, based on the LP-Newton subproblems and linesearch for the
equation’s infinity norm residual, has recently been developed. In the case of smooth
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equations, global convergence of this algorithm to B-stationary points of the residual
over the constraint set has been shown, which is a natural result: nothing better should
generally be expected in variational settings. However, for the piecewise smooth case
only a property weaker than B-stationarity could be guaranteed. In this paper, we
develop a procedure for piecewise smooth equations that avoids undesirable accumu-
lation points, thus achieving the intended property of B-stationarity.

Keywords Constrained equation · Piecewise smooth equation · LP-Newton method ·
Global convergence · Quadratic convergence

Mathematics Subject Classification 90C33 · 91A10 · 49M05 · 49M15

1 Introduction

The LP-Newton method (to be described shortly) was proposed in [7] for solving
constrained equations of the form

F(z) = 0, z ∈ �, (1.1)

where F : Rn → R
m is a given mapping, and � ⊂ R

n is a given nonempty poly-
hedral set. The LP-Newton method has very strong local convergence properties: the
assumptions for its local quadratic convergence to a solution of (1.1) neither imply
differentiability of F nor require the solutions to be isolated. We refer to [6,7,10] for
detailed discussions, and also for comparisons with convergence assumptions of other
Newton-type methods.

In this work we assume that F is a piecewise continuously differentiable (PC1-)
mapping. This means that F is everywhere continuous, and there exist continuously
differentiable mappings F1, . . . , Fq : Rn → R

m such that

F(z) ∈ {F1(z), . . . , Fq(z)}

holds for all z ∈ R
n . The mappings F1, . . . , Fq are called selection mappings.

This setting covers various important problem classes. For example, consider the
complementarity system

a(z) = 0, b(z) ≥ 0, c(z) ≥ 0, d(z) ≥ 0, c(z)�d(z) = 0, (1.2)

where the mappings a : Rn → R
l , b : Rn → R

s , c : Rn → R
r , and d : Rn → R

r

are smooth. If we set m := l + r and define

F(z) := (a(z), min{c(z), d(z)}), (1.3)

� := {z ∈ R
n | b(z) ≥ 0, c(z) ≥ 0, d(z) ≥ 0}, (1.4)

then the system (1.2) is equivalent to the constrained equation (1.1), and F is piece-
wise smooth. The importance of the specific choice (1.4) for � is discussed in [7,10]
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(there are other possible reformulations of (1.2), but (1.3) together with (1.4) ensures
the strong local convergence properties mentioned above). Note also that introducing
slack variables for inequalities and redefining F accordingly, one can always convert
a given problem in such a form that in (1.1) the set� is polyhedral. Thus, our standing
assumption that � is polyhedral is not restrictive. Complementarity systems include
Karush–Kuhn–Tucker (KKT) systems arising from optimization, variational inequal-
ities, and generalized Nash equilibrium problems (GNEPs), see [9, Chapter 1] and
[15, Chapter 1].

To explain the goals of this paper, we first briefly describe the LP-Newton method
[7], and its recent globalization in [11]. For this purpose, let the index set of selection
mappings active at z ∈ R

n be defined as

A(z) := {
p ∈ {1, . . . , q} | F(z) = F p(z)

}
.

Furthermore, let G : Rn → R
m×n be any matrix-valued mapping such that

G(z) ∈ {(F p)′(z) | p ∈ A(z)}

holds for all z ∈ R
n . The basic LP-Newton method generates a sequence {zk} ⊂ �

as follows. For a current iterate zk ∈ �, the next iterate is zk+1 := zk + ζ k , where
(ζ k, γk) is a solution of the following subproblem in the variables (ζ, γ ) ∈ R

n × R:

minimize γ

subject to ‖F(zk) + G(zk)ζ‖ ≤ γ ‖F(zk)‖2,
‖ζ‖ ≤ γ ‖F(zk)‖,
zk + ζ ∈ �.

(1.5)

Here and throughout the paper, ‖ · ‖ stands for the infinity norm. Then, (1.5) is a
linear program (LP), justifying the name of the method. As any Newtonian method,
the one described by (1.5) ensures local convergence only, under suitable assumptions
(as already commented, the particular appeal of (1.5) is that those assumptions are
the best/weakest currently known for any Newton-type method). To obtain global
convergence, at iteration k the algorithm in [11] performs backtracking linesearch for
the natural merit function f : Rn → R given by

f (z) := ‖F(z)‖,

from the current iterate zk in the direction ζ k obtained by solving the LP-Newton
subproblem (1.5); see Algorithm 2.1 below for precise details. Note that the func-
tion f is everywhere locally Lipschitz-continuous and directionally differentiable in
every direction, see [9, Lemma 4.6.1]. The algorithm in [11] retains local quadratic
convergence properties of the original LP-Newton method. Moreover, in the case of
a smooth F , it also has desirable global convergence guarantees. Specifically, every
accumulation point z̄ of any generated sequence is B-stationary for the optimization
problem

minimize f (z) subject to z ∈ �, (1.6)
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which means that
f ′(z̄; ζ ) ≥ 0 for all ζ ∈ T�(z̄), (1.7)

where f ′(z; ζ ) is the usual directional derivative of f at z in a direction ζ , and
T�(z) denotes the usual tangent cone to � at z (which for a polyhedral � is the
set of feasible directions). We emphasize that property (1.7) is the natural first-order
necessary optimality condition for problem (1.6). Note that, in general, nothing better
than first-order stationarity for a merit function can be expected when globalizing
some Newton method in the variational (not optimization) setting, like our problem
(1.1); see the related results in [9] and [15]. Observe also that due to Clarke regularity
of this f when F is smooth, in the latter case B-stationarity of f on � is equivalent
to the (generally weaker) C-stationarity property

0 ∈ ∂ f (z̄) + N�(z̄), (1.8)

where ∂ f (z) is the Clarke generalized gradient of f at z (see [2]), and N�(z) denotes
the normal cone to � at z.

However, if F is nonsmooth (as in the PC1 case under consideration), B-stationarity
(1.7) can be strictly stronger than C-stationarity (1.8). The following example exhibits
that this can be so even if we restrict ourselves specifically to the reformulation (1.1)
of a complementarity system (1.2), employing (1.3) and (1.4).

Example 1.1 Consider F : R → R with

F(z) := min{1 + z, 1 − z} and � := [−1, 1],

which corresponds to the complementarity system (1.2) with n := 1, l := 0, s := 0,
r := 1, c(z) := 1 + z, d(z) := 1 − z.

For this F there are q = 2 smooth selectionmappings: F1(z) := 1+z and F2(z) :=
1−z, both active at z̄ = 0which belongs to the interior of�, but which is not a solution
of (1.1). Taking into account f (z) = F(z) for all z ∈ [−1, 1], i.e., f (z) = 1 + z for
z ∈ [−1, 0] and f (z) = 1 − z for z ∈ [0, 1], we have 0 ∈ ∂ f (z̄) = [−1, 1] yielding
C-stationarity for problem (1.6). However, B-stationarity is evidently violated.

We next discuss global convergence results in [11] for the case when F is a PC1-
mapping. The analysis therein employs the additional assumption

f (z) ≤ f p(z) for all p ∈ {1, . . . , q} and all z ∈ �, (1.9)

where f p : Rn → R+ is given by

f p(z) := ‖F p(z)‖.

It can be verified directly that (1.9) holds automatically for the reformulation (1.1) of
a complementarity system (1.2) given by (1.3), (1.4). So this assumption is not too
restrictive, or at least holds for a good number of important applications. Under (1.9),
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every accumulation point z̄ of any sequence generated by the algorithm from [11]
satisfies

0 ∈ ∂ f p(z̄) + N�(z̄) (1.10)

for at least one p ∈ A(z̄) [11, Theorem 4.1]. In other words, z̄ is C-stationary for the
problem of minimizing the norm of F p over � for at least one selection mapping F p

active at z̄. This is clearly weaker than the B-stationarity result obtained in [11] for
the case of smooth F .

In fact, property (1.10) for some p ∈ A(z̄) does not necessarily imply even the
C-stationarity property (1.8) for the problem of minimizing the norm of F on � [(and
therefore, due to our discussion above, certainly does not imply the B-stationarity
property (1.7)], even if (1.9) is satisfied. This is demonstrated by the following modi-
fication of Example 1.1.

Example 1.2 Consider F : R → R
2 with

F(z) :=
(

1 − z
min{1 + z, 1 − z}

)
and � := [−1, 1],

which corresponds to the complementarity system (1.2) with n := 1, l := 1, s := 0,
r := 1, a(z) := 1 − z, c(z) := 1 + z, d(z) := 1 − z. For this F , there are q = 2
smooth selection mappings:

F1(z) :=
(
1 − z
1 + z

)
and F2(z) :=

(
1 − z
1 − z

)
,

both active at z̄ = 0 which belongs to the interior of �. It can be easily seen that
f1(z) = max{1−z, 1+z}, f2(z) = 1−z, and f (z) = 1−z = f2(z) ≤ f1(z) hold for
all z ∈ [−1, 1]. Therefore, (1.9) is satisfied.Moreover, we have 0 ∈ ∂ f1(z̄) = [−1, 1],
i.e., (1.10) is valid for p = 1. But z̄ does not satisfy (1.10) for p = 2 and, moreover,
is not C-stationary for problem (1.6) because 0 /∈ ∂ f (z̄) = ∂ f2(z̄) = {−1}.

The discussion above gives rise to the question of what one can do if a sequence
{zk} generated by the algorithm from [11] gets stuck at or near some z̄ satisfying
(1.10) for some p ∈ A(z̄), but violating this condition for some other active selection.
Is it possible to escape such situations and guarantee B-stationarity of the full merit
function f at accumulation points of the algorithm?

In this paper, we give an affirmative answer to this question. Specifically, we present
a modification of the algorithm from [11] and show that, under suitable conditions,
every accumulation point z̄ of any generated sequence satisfies (1.10) for all p ∈ A(z̄).
Moreover, we establish that the latter implies the desired B-stationarity property (1.7).

Getting back for a moment to complementarity system (1.2), it should be noted that
there certainly exist smooth constrained reformulations for it as well, e.g., employing
the Hadamard product. For such reformulations, the difficulty with the lack of B-
stationarity of accumulation points discussed above, does not arise. However, the
numerical results for KKT-type systems of GNEPs, presented in [11], demonstrate
that the globalized LP-Newton method applied to the nonsmooth reformulation can
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be more efficient. It is interesting to note that, as simple examples show, B-stationarity
properties for the merit functions associated to nonsmooth and smooth reformulations
of complementarity systems (and even considering optimization KKT systems only)
are incomparable: none implies the other, in general.

We next comment on some previous work on globally convergent Newton-type
methods for general nonsmooth equations (i.e., those without any special structure
such as given by reformulations of complementarity systems, etc.). The two relatively
recent ones, [1] and [13], deal with unconstrained equations F(z) = 0 for F being
at least locally Lipschitz-continuous and mapping from R

n to R
n . The semismooth

Newton method in [13] is globalized in a hybrid way. By this we mean that in some
situations, instead of the Newton direction, certain safeguarding directions which are
of descent for the residual are employed. It is further shown how such directions can
be constructed for some applications (not for a generic equation). The local super-
linear convergence of the semismooth Newton method relies on semismoothness and
BD-regularity at some solution and on locally accepting semismooth Newton steps by
the test on linear decrease of the residual. In [1], some kind of a path-search globaliza-
tion is proposed for Kummer’s inexact local Newton scheme (see [16]). For general
nonlinear equations, both approaches mentioned above might be considered as frame-
works rather than readily implementable algorithms (implementable algorithms can
be developed on their basis afterwards, working out the necessary details for more
specific applications). The algorithms considered in our paper are less general, as
they are for piecewise smooth equations only, but on the other hand, they are fully
implementable for this problem setting, as stated. Also, unlike the LP-Newtonmethod,
the methods in [1] and [13] are not intended for cases of nonisolated solutions: the
assumptions needed for their local superlinear convergence imply that a solution is
locally unique. Observe further that the globalization of the LP-Newton method con-
sidered here and in [11] is “pure” (not hybrid), as it always employs the ζ -part of the
solution of the LP-Newton subproblem (1.5) as a direction for linesearch, at every
iteration.

The rest of the paper is organized as follows. In Sect. 2, we recall the globalized
LP-Newton algorithm from [11] and formally state its global convergence and rate
of convergence properties. We also elaborate on Example 1.2, demonstrating that
the deficiencies of the global convergence theory of this algorithm, specified above,
can indeed be observed in practice. The proposed modification of the algorithm is
presented and analyzed in Sect. 4. It relies on an error bound result developed in
Sect. 3, measuring the distance to a C-stationary point for a given selection, when the
point is not a solution of (1.1).

2 The globalized LP-Newton algorithm and its convergence

In this sectionwebriefly review the algorithm from [11] and its convergence properties.
By means of an example, we then show that, in the nonsmooth case, this algorithm
may indeed get stuck at a point which is not even C-stationary for the merit function
f . Finally, we explain our idea on how to escape from the vicinity of such “bad”
points.
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Consider the LP-Newton subproblem (1.5) with zk replaced by z ∈ �, the point z
playing the role of a parameter:

minimize γ

subject to ‖F(z) + G(z)ζ‖ ≤ γ ‖F(z)‖2,
‖ζ‖ ≤ γ ‖F(z)‖,
z + ζ ∈ �.

(2.1)

Let γ (z) stand for the optimal value of this problem. It is obvious that (2.1) is always
feasible, and if z is not a solution of the original problem (1.1), then (2.1) has a
solution and it holds that γ (z) > 0. If F(z) = 0, then the objective function of
problem (2.1) is unbounded below on its feasible set, and thus γ (z) = −∞. Let
Z := {z ∈ � | F(z) = 0} denote the solution set of (1.1). Define the function
� : � \ Z → R by

�(z) := − f (z)(1 − γ (z) f (z)). (2.2)

The function� gives a measure of directional descent for f from some point z ∈ � in
the LP-Newton direction ζ . The following algorithm and its convergence results are
those from [11].

Algorithm 2.1 Choose σ ∈ (0, 1) and θ ∈ (0, 1). Choose z0 ∈ � and set k := 0.

1. If F(zk) = 0, stop.
2. Compute (ζ k, γk) as a solution of subproblem (1.5). If �(zk) = 0, stop.
3. Set α := 1. If the inequality

f (zk + αζ k) ≤ f (zk) + σα�(zk) (2.3)

is satisfied, set αk := α. Otherwise, replace α by θα, check the inequality (2.3)
again, etc., until (2.3) becomes valid.

4. Set zk+1 := zk + αkζ
k , increase k by 1 and go to step 1.

Wenext summarize the global and local convergence results from [11, Theorems 4.1
and 4.2, Corollary 4.1], in the PC1 case.

Theorem 2.1 Assume that (1.9) is satisfied. Then, the following assertions are valid:

(a) Algorithm 2.1 is well-defined and, for any starting point z0 ∈ �, it either termi-
nates with some iterate zk ∈ � satisfying

0 ∈ ∂ f p(z
k) + N�(zk) (2.4)

for at least one p ∈ A(zk), or it generates an infinite sequence {zk} such that every
accumulation point z̄ of this sequence satisfies (1.10) for at least one p ∈ A(z̄).

(b) Let {zk} ⊂ � be any sequence such that { f (zk)} is nonincreasing, and such that
for every accumulation point z̄ of {zk} there is a subsequence {zk j } converging
to z̄ with zk j+1 generated by an iteration of Algorithm 2.1 for all j . Then, each
of these accumulation points satisfies (1.10) and �(zk j ) → 0 as j → ∞ holds
for each of the corresponding subsequences.
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We note that assertion (b) of the theorem above slightly extends the corresponding
part of [11, Theorem 4.1]. This extension easily follows observing the proof of [11,
Theorem 4.1].

Let dist(z, U ) := inf{‖z−u‖ | u∈U } denote the distance from a point z to a setU .

Theorem 2.2 Assume that the selection mappings F p, p ∈ A(z̄), have Lipschitz-
continuous derivatives near z̄ ∈ Z. Assume further that Assumptions 2–3 in [7] are
satisfied at z̄, and that (1.9) holds.

If Algorithm 2.1 generates an iterate which is close enough to z̄, then the algorithm
either terminates at some zk ∈ Z or it generates an infinite sequence {zk} converging
to some ẑ ∈ Z, and the rate of convergence is Q-quadratic.

In particular, this assertion is valid if (1.9) is satisfied and if there exists ω > 0
such that

dist(z, Z p) ≤ ω‖F p(z)‖

holds for all z ∈ � close enough to z̄, and for all p ∈ A(z̄), where Z p := {z ∈ � |
F p(z) = 0}.

As already discussed in Sect. 1, Theorem 2.1 does not rule out the possibility that a
sequence generated by Algorithm 2.1 might have an accumulation point z̄ satisfying
(1.10) for some p ∈ A(z̄) but violating this condition for another active selection, or
that the algorithm even terminates at such a point (in the sense of finite convergence,
i.e., hitting this point exactly). We next show that this situation may occur indeed.

Example 2.1 Let us consider again F and � defined in Example 1.2, i.e.,

F(z) :=
(

1 − z
min{1 + z, 1 − z}

)
and � := [−1, 1].

The corresponding two smooth selection mappings F1 and F2 are also as defined in
Example 1.2.

Then, the index set of active selection mappings and the corresponding mapping
G : R → R

2 are given by

A(z) =
⎧
⎨

⎩

{1} for z < 0,
{1, 2} for z = 0,
{2} for z > 0,

G(z) =
{

(F1)′(z) = (−1, 1) for z ≤ 0,
(F2)′(z) = (−1, −1) for z > 0,

where for z = 0 also G(0) = (−1, −1) could have been chosen.
Now assume that Algorithm 2.1 is used for solving (1.1), and suppose that zk ∈ �

is some iterate with F(zk) �= 0. Then, the algorithm computes a solution (ζ k, γk) of
the LP-Newton subproblem (1.5) and the value �(zk). If �(zk) is negative, a stepsize
αk satisfying (2.3) is determined next, and it is easy to see that αk = 1. Indeed, taking
into account that f (z) = 1 − z for all z ∈ �, (2.3) provides

1 − zk − αζ k = f (zk + αζ k) ≤ f (zk) + σα�(zk) = 1 − zk + σα�(zk),
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Table 1 Behavior of Algorithm 2.1 on Example 1.2 for different current iterates zk ∈ [−1, 1)

zk ζ k γk �(zk ) Behavior of iteration

−1 ≤ zk < 1 − √
5

2
1 − zk

2 − zk
1

2 − zk
< 0 1 − √

5
2 < zk+1 < 0 zk+2 = 0

1 − √
5

2 ≤ zk < 0 −zk 1
(1 − zk )2

< 0 zk+1 = 0

zk = 0 0 1 = 0 Algorithm 2.1 stops at zk

0 < zk < 1 1 − zk

2 − zk
1

2 − zk
< 0 zk+1 = 1 − (1 − zk )2

2 − zk︸ ︷︷ ︸

quadratic convergence to ẑ = 1

which is equivalent to −αζ k ≤ σα�(zk). Since we know that, assuming �(zk) < 0,
this inequality is satisfied with some α > 0, it is also valid for α = 1. Thus, the new
iterate is zk+1 := zk + ζ k . Now, elementary calculations show that subproblem (1.5)
always has a unique solution. More precisely, the behavior of the iteration is shown
in Table 1. In particular, we obtain that the sequence {zk} generated by Algorithm 2.1
converges quadratically to the only solution ẑ = 1 of (1.1) if the starting point z0

belongs to (0, 1). However, if z0 ∈ [−1, 0], then the algorithm terminates at z̄ = 0
after at most two steps. As already shown in Example 1.2, z̄ in fact satisfies (1.10) for
p = 1 ∈ A(z̄), but violates (1.10) for p = 2 ∈ A(z̄).

The observations in Example 2.1 lead to the following idea: if �(zk) = 0 holds at
some iterate zk ∈ � with F(zk) �= 0, then we can try to switch to another selection
mapping active at zk (if there is one), i.e., to solve the LP-Newton subproblem (1.5)
again but with G(zk) replaced by the Jacobian of another active selection mapping.
The motivation is that the new direction generated this way might allow to escape
from the iterate zk , which is not possible in Algorithm 2.1.

Furthermore, in practical computations one would not expect the algorithm to ter-
minate with some iterate zk satisfying �(zk) = 0 exactly. The much more plausible
situation is generating a sequence with an accumulation point z̄ satisfying �(z̄) = 0.
Therefore, trying to switch to another selection mapping might already make sense
if it happens that �(zk) becomes close to zero while ‖F(zk)‖ is still relatively large.
The new selection mapping should be such that we expect it to be active at a potential
accumulation point z̄. By modifying the algorithm along those lines, we would like
to avoid (escape from) an accumulation point if it is not B-stationary for the merit
function f .

The subsequent sections implement the idea described above. In Sect. 3, we prove
the error bound result which can be used to estimate the set of smooth selection
mappings active at a potential accumulation point of a sequence generated by Algo-
rithm 2.1. In Sect. 4 this error bound is used to construct and analyze our modification
of Algorithm 2.1.
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3 Error bound results

We start with the following proposition, which extends the error bound result of [15,
Proposition 1.64] from unconstrained to constrained equations. The notation is differ-
ent from (1.1) because in the sequel Proposition 3.1 will actually be applied not to F
but to � defined in (2.2).

Proposition 3.1 Let S ⊂ R
n be locally closed and conical at z̄ ∈ S, i.e., there exists

a neighborhood O of z̄ such that

S ∩ O = TS(z̄) ∩ O (3.1)

(this is automatic if S is polyhedral). Let z̄ be a solution of the equation

�(z) = 0

for some � : S → R
r which is directionally differentiable at z̄ in every direction

ζ ∈ TS(z̄).
Then, the condition

{ζ ∈ TS(z̄) | �′(z̄; ζ ) = 0} = {0} (3.2)

is necessary for the constrained error bound

z − z̄ = O(‖�(z)‖) as z ∈ S tends to z̄. (3.3)

If � is Lipschitz-continuous near z̄, then (3.2) is also sufficient for (3.3).

Proof In order to prove the necessity, consider any ζ ∈ TS(z̄) such that �′(z̄; ζ ) = 0.
From (3.1) and (3.3) it follows that

t‖ζ‖ = ‖z̄ + tζ − z̄‖
= O(‖�(z̄ + tζ )‖)
= O(‖�(z̄ + tζ ) − �(z̄)‖)
= O(t‖�′(z̄; ζ )‖) + o(t)

= o(t)

as t → 0+, which is possible only when ζ = 0.
To prove the sufficiency, suppose that there exists a sequence {zk} ⊂ S convergent

to z̄, with zk �= z̄ for all k, and such that

‖�(zk)‖
‖zk − z̄‖ → 0 as k → ∞. (3.4)

For each k set ζ k := (zk − z̄)/‖zk − z̄‖, tk := ‖zk − z̄‖. Passing to a subsequence,
if necessary, we can assume that the sequence {ζ k} converges to some ζ ∈ R

n with
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‖ζ‖ = 1. Further, by the definition of the tangent cone, ζ ∈ TS(z̄). Therefore, taking
into account (3.1), (3.4), and Lipschitz-continuity of � near z̄, and observing that
z̄ + tkζ k = zk ∈ S, it holds that

‖�(z̄ + tkζ ) − �(z̄)‖
tk

≤ ‖�(z̄ + tkζ k)‖
tk

+ ‖�(z̄ + tkζ ) − �(z̄ + tkζ k)‖
tk

= ‖�(zk)‖
‖zk − z̄‖ + O(‖ζ k − ζ‖) → 0 as k → ∞,

implying the equality �′(z̄; ζ ) = 0, which contradicts (3.2). ��

All the subsequent considerations in this section are concerned with a fixed smooth
selection mapping F p; that is why we drop the index p, and write F instead of F p. In
particular, the values of�(·) are computed using the Jacobian of this specific selection
mapping F p. It is assumed that F p has a locally Lipschitz-continuous derivative.

The polyhedral nonempty set � that appears in (1.1) can be written as

� = {z ∈ R
n | Cz ≤ b},

with some C ∈ R
s×n and b ∈ R

s . In this representation of � we assume, without loss
of generality, that C has no zero rows. If it were not the case, as such constraints are
redundant, they can simply be removed. Then, note that the assumption int� �= ∅ that
will be employed in the sequel, is equivalent to saying that the constraints defining
� satisfy the Slater condition (there exists z such that Cz < b). We note, in passing,
that the Slater condition is automatic in our context, at least for some applications.
For example it holds when� is formed by nonnegativity conditions on slack variables
used to reformulate nonlinear inequalities as equalities.

With the above representation of �, the constraints of (2.1) can be written in the
form

B(z)u ≤ β(z), (3.5)

with u ∈ R
n × R, B(z) ∈ R

M×(n+1), β(z) ∈ R
M given by

u :=
(

ζ

γ

)
, B(z) :=

⎛

⎜⎜⎜⎜
⎝

F ′(z) − f 2(z)em

−F ′(z) − f 2(z)em

I − f (z)en

−I − f (z)en

C 0

⎞

⎟⎟⎟⎟
⎠

, β(z) :=

⎛

⎜⎜⎜⎜
⎝

−F(z)
F(z)
0
0

b − Cz

⎞

⎟⎟⎟⎟
⎠

, (3.6)

where M :=2m+2n+s and e j stands for the column vector of ones in the space R j .

Remark 3.1 According to [11, Lemmas 3.1, 3.2], if F(z̄) �= 0 for some z̄ ∈ �, then
�(·) is continuous at z̄, and (1.8) holds if and only if �(z̄) = 0. By (2.2), �(z̄) = 0
holds if and only if (ζ, γ ) = (0, 1/ f (z̄)) is a solution of (2.1) for z := z̄.
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We now consider z̄ ∈ R
n such that

z̄ ∈ �, F(z̄) �= 0, and �(z̄) = 0. (3.7)

Then, z̄ ∈ � is such that the estimate �(z̄) of the directional derivative employed in
the algorithm is zero, but the point z̄ is not a solution of our problem (1.1). Hence, by
Remark 3.1, (1.8) holds and the solution set of the LP problem (2.1) with z := z̄ has
the form

U (z̄) = Z(z̄) × {1/ f (z̄)}, (3.8)

where the set Z(z̄) ⊂ R
n consists of ζ ∈ R

n satisfying

‖F(z̄) + F ′(z̄)ζ‖ ≤ f (z̄), ‖ζ‖ ≤ 1, Cζ ≤ b − Cz̄. (3.9)

With our notation above, problem (2.1) with z := z̄ can be written as

minimize γ subject to B̄u ≤ β̄, (3.10)

where B̄ := B(z̄) and β̄ := β(z̄). To consider the LP that is dual to (3.10),
let w1+ ∈ R

m , w1− ∈ R
m , w2+ ∈ R

n , w2− ∈ R
n , and w3 ∈ R

s denote
dual variables corresponding to the five blocks of constraints in (3.5). Then, with
w := (w1+, w1−, w2+, w2−, w3) ∈ R

M , the dual of (3.10) can be written as

maximize F(z̄)�(w1− − w1+) + (b − Cz̄)�w3

subject to F ′(z̄)�(w1+ − w1−) + (w2+ − w2−) + C�w3 = 0,
f 2(z̄)(em)�(w1+ + w1−) + f (z̄)(en)�(w2+ + w2−) = 1,
w ≥ 0.

(3.11)

To describe the solution setW (z̄) of this program let us recall that (3.7) andRemark 3.1
imply that (ζ̄ , γ̄ ) := (0, 1/ f (z̄)) belongs to the solution set U (z̄) of the primal pro-
gram (3.10). Therefore, the second constraint in (3.9) and the corresponding constraints
−en ≤ ζ ≤ en in the primal program are not active at ζ̄ = 0. Thus, by complemen-
tary slackness, the dual variables w2+ and w2− associated to these constraints are
zero for any solution in W (z̄). This implies f 2(z̄)(em)�(w1+ + w1−) = 1. Applying
complementary slackness again, we obtain that W (z̄) consists of all vectors w ∈ R

M

satisfying
(F ′(z̄))�(w1+ − w1−) + C�w3 = 0,

(em)�(w1+ + w1−) = 1/ f 2(z̄),
w1+

I+(z̄) ≥ 0, w1+
{1, ...,m}\I+(z̄) = 0,

w1−
I−(z̄) ≥ 0, w1−

{1, ...,m}\I−(z̄) = 0,
w2+ = w2− = 0,

w3
J (z̄) ≥ 0, w3

{1, ..., s}\J (z̄) = 0,

(3.12)
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where

I+(z̄) := {i ∈ {1, . . . , m} | Fi (z̄) = f (z̄)},
I−(z̄) := {i ∈ {1, . . . , m} | −Fi (z̄) = f (z̄)},
J (z̄) := { j ∈ {1, . . . , s} | (Cz̄) j = b j }.

Lemma 3.1 Let z̄ satisfy (3.7). Then, the solution set U (z̄) of the primal LP (3.10)
is bounded. If int� �= ∅, then the solution set W (z̄) of the dual LP (3.11) is also
bounded.

Proof Because of (3.8) and the second relation in (3.9), we have that the primal LP
solution set U (z̄) is bounded.

By the standard LP duality theory, the solution set W (z̄) of the dual LP (3.11) is
the Lagrange multipliers set of the primal LP (3.10). Next, by standard optimization
theory, the multipliers set associated to any primal problem (not necessarily an LP)
is bounded if and only if the Mangasarian–Fromovitz constraint qualification holds.
In the convex case and when all constraints are inequalities, like in the primal LP
(3.10), this constraint qualification is the same as the Slater condition (existence of a
feasible point for which all the inequalities are strict). As we consider (without loss of
generality) that C has no zero rows, our assumption int� �= ∅ means that there exists
a (Slater) point ẑ with Cẑ < b. To show that the constraints of the primal LP (3.10)
satisfy the Slater condition, first recall that B̄u ≤ β̄ is the same as B(z̄)u ≤ β(z̄).
Taking into account (3.6) and f (z̄) > 0, we easily get a Slater point for the constraints
of (3.10) by just fixing ζ to ẑ− z̄ and by taking γ sufficiently large. Thus, the Lagrange
multipliers set of (3.10) is bounded. Since this set and the solution set of W (z̄) of the
dual LP (3.11) coincide, W (z̄) is bounded as well. ��

We next analyze the behavior of the optimal value function (B, β) �→ v(B, β) of
the parametric linear program

minimize γ subject to Bu ≤ β (3.13)

with (B, β) ∈ R
M×(n+1) × R

M in a neighborhood of (B̄, β̄).

Lemma 3.2 Let z̄ satisfy (3.7) and suppose that int� �= ∅. Then, the optimal value
function v of problem (3.13) is Lipschitz-continuous near (B̄, β̄) and directionally
differentiable at (B̄, β̄) in any direction (D, δ) ∈ R

M×(n+1)×R
M. For this directional

derivative, it holds that

v′(B̄, β̄; (D, δ)) = min
u∈U (z̄)

max
w∈W (z̄)

w�(Du − δ) = max
w∈W (z̄)

min
u∈U (z̄)

w�(Du − δ).

Proof We first show the local Lipschitz-continuity of the optimal value function v of
the parametric problem (3.13) by applying Theorem 5.1 from [12]. To this end, let us
first consider a modification of problem (3.13), namely

minimize γ subject to Bu ≤ β, γ ≤ 2/ f (z̄). (3.14)
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Let F(B, β) and S(B, β) denote the feasible set of this problem and its solution set,
respectively. Obviously, any u = (ζ, γ ) ∈ F(B̄, β̄) satisfies

−γ en ≤ ζ ≤ γ en and γ ≤ 2/ f (z̄).

Therefore, if ‖B − B̄‖ and ‖β − β̄‖ are sufficiently small, we have that

‖u‖ = ‖(ζ, γ )‖ ≤ 4/ f (z̄)

holds for all u ∈ F(B, β). Thus, the point-to-set mapping (B, β) → F(B, β) is
uniformly compact near (B̄, β̄) in the sense of [12, Definition 3.3].

It was shown in the proof of Lemma 3.1 that B̄u ≤ β̄ satisfies the Slater condition.
Thus, for ‖B − B̄‖ and ‖β − β̄‖ sufficiently small, F(B, β) �= ∅ holds.

Finally, to apply [12, Theorem 5.1] the Mangasarian–Fromovitz constraint quali-
fication (MFCQ) is needed at any u ∈ S(B̄, β̄). To verify this, we first note that the
dual (3.11) of (3.10) has a bounded solution set W (z̄) according to Lemma 3.1. By
(3.8), the additional constraint γ ≤ 2/ f (z̄) in (3.14) cannot be active at a solution in
S(B̄, β̄), so that the corresponding dual variable is 0 in the solution set of the dual
problem associated to (3.14) for (B, β) := (B̄, β̄). Hence, this dual problem has
a bounded solution set, which means that MFCQ holds at any u in the solution set
S(B̄, β̄) of the primal problem.

Now, Theorem 5.1 in [12] yields the local Lipschitz-continuity of the optimal value
function of problem (3.14) near (B̄, β̄). As a consequence, the constraint γ ≤ 2/ f (z̄)
cannot become active for any (B, β) in a sufficiently small neighborhood of (B̄, β̄).
Therefore, the optimal value function v associated to problem (3.13) is the same as
the optimal value function of problem (3.14) and, hence, Lipschitz-continuous near
(B̄, β̄).

Recall again that the solution sets of the primal problem (3.10) and of its dual
(3.11) are bounded according to Lemma 3.1. Thus, Theorems I and II in [17] give the
remaining assertions regarding directional differentiability. ��

Based on the previous lemmawewill nowprove a result on the directional derivative
of the optimal value function of the LP-Newton subproblem (1.5).

Lemma 3.3 Let z̄ satisfy (3.7) and assume that int� �= ∅. Moreover, suppose that F ′
is locally Lipschitz-continuous and that F is twice differentiable at z̄. Then, the optimal
value function z �→ γ (z) associated to the LP-Newton subproblem (2.1) is Lipschitz-
continuous near z̄ and directionally differentiable at z̄ in all directions d ∈ T�(z̄),
and

γ ′(z̄; d) = max
w∈W (z̄)

min
ζ∈Z(z̄)

(w1+ − w1−)�F ′′(z̄)[d, ζ ] − 2

f 2(z̄)
f ′(z̄; d).

Proof Let us note first that the mapping z �→ B(z) is Lipschitz-continuous near z̄
and directionally differentiable at z̄ in every direction d ∈ R

n , while the mapping
z �→ β(z) is continuously differentiable near z̄, and
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B′(z̄; d) =

⎛

⎜⎜⎜⎜
⎝

F ′′(z̄)[d] −2 f (z̄) f ′(z̄; d)em

−F ′′(z̄)[d] −2 f (z̄) f ′(z̄; d)em

0 − f ′(z̄; d)en

0 − f ′(z̄; d)en

0 0

⎞

⎟⎟⎟⎟
⎠

, β ′(z̄) =

⎛

⎜⎜⎜⎜
⎝

−F ′(z̄)
F ′(z̄)
0
0

−C

⎞

⎟⎟⎟⎟
⎠

.

Combining this with the Lipschitz-continuity of the optimal value function v of (3.13)
near (B̄, β̄) and the directional differentiability of v (both according to Lemma 3.2),
and observing that by the polyhedrality of� for any d ∈ T�(z̄) it holds that z̄+td ∈ �

for t > 0 sufficiently small, we derive that γ is Lipschitz-continuous near z̄ and that

γ ′(z̄; d) = lim
t→0+

γ (z̄ + td) − γ (z̄)

t

= lim
t→0+

v(B(z̄ + td), β(z̄ + td)) − v(B(z̄), β(z̄))

t

= lim
t→0+

v(B(z̄) + tB′(z̄; d) + o(t), β(z̄) + tβ ′(z̄)d + o(t)) − v(B(z̄), β(z̄))

t

= lim
t→0+

v(B(z̄) + tB′(z̄; d), β(z̄) + tβ ′(z̄)d) − v(B(z̄), β(z̄))

t

= v′(B(z̄), β(z̄); (B′(z̄; d), β ′(z̄)d)).

Thus, γ ′(z̄; d) exists for all d ∈ T�(z̄). Using the formula for the directional derivative
in Lemma 3.2 and γ (z̄) = 1/ f (z̄), we further obtain that

γ ′(z̄; d) = max
w∈W (z̄)

min
u∈U (z̄)

w� (B′(z̄; d)u − β ′(z̄)d
)

= max
w∈W (z̄)

min
ζ∈Z(z̄)

{
(w1+)�

(
F ′′(z̄)[d, ζ ] − 2 f ′(z̄; d)em + F ′(z̄)d

)

+(w1−)�
(−(F ′′(z̄)[d, ζ ] − 2 f ′(z̄; d)em − F ′(z̄)d

)

− f ′(z̄; d)
f (z̄) (w2+)�en − f ′(z̄; d)

f (z̄) (w2−)�en + (w3)�Cd

}

= max
w∈W (z̄)

min
ζ∈Z(z̄)

{
(w1+ − w1−)�F ′′(z̄)[d, ζ ]

+d�((F ′(z̄))�(w1+ − w1−) + C�w3)

−2 f ′(z̄; d)(w1+ + w1−)�em − f ′(z̄; d)
f (z̄) (w2+ + w2−)�en

}
.

Finally, exploiting that (3.12) is valid for anyw ∈ W (z̄), we get the desired expression
for γ ′(z̄; d). ��

We are now ready to establish our main error bound result, which will be the key to
identifying all active selections at undesirable accumulation points, thus opening the
possibility to switch to another path.

Theorem 3.1 Let z̄ satisfy (3.7) and assume that int� �= ∅. Moreover, suppose that
F ′ is locally Lipschitz-continuous and that F is twice differentiable at z̄.
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Assume further that

for all d ∈ Z0(z̄) \ {0} and all w ∈ W (z̄)
there exists ζ ∈ Z0(z̄) such that (w1+ − w1−)�F ′′(z̄)[d, ζ ] < 0,

(3.15)

where

Z0(z̄) :=
{
ζ ∈ T�(z̄)

∣∣∣ F ′
I+(z̄)(z̄)ζ ≤ 0, F ′

I−(z̄)(z̄)ζ ≥ 0
}

.

Then

z − z̄ = O(|�(z)|)

as z ∈ � tends to z̄.

Proof To apply Proposition 3.1, let therein S stand for the polyhedral set �, and �

be given by �. Then, �(z̄) = 0 follows by (3.7). Thus, it remains to show that (3.2)
holds in our setting. To this end, we first note that�(z) = f 2(z)(γ (z)−1/ f (z)) holds
for all z ∈ � close enough to z̄. Therefore, by Lemma 3.3, � is Lipschitz-continuous
near z̄ and directionally differentiable at z̄ in every direction d ∈ T�(z̄). Taking into
account the equality γ (z̄) = 1/ f (z̄) and Lemma 3.3, we obtain that

�′(z̄; d) = f 2(z̄)

(
γ ′(z̄; d) + f ′(z̄; d)

f 2(z̄)

)

= f 2(z̄) max
w∈W (z̄)

min
ζ∈Z(z̄)

(w1+ − w1−)�F ′′(z̄)[d, ζ ] − f ′(z̄; d), (3.16)

where the first term in parentheses on the right-hand side cannot be positive since
0 ∈ Z(z̄) [(see (3.9)]. Therefore, �′(z̄; d) = 0 implies f ′(z̄; d) ≤ 0. By (3.7),
Remark 3.1 shows that (1.8) is valid. Since F = F p is smooth, (1.8) implies that z̄ is
B-stationary, so that f ′(z̄; d) cannot be negative. Hence, only the case of f ′(z̄; d) = 0
needs to be considered. In this case, we have that d ∈ Z0(z̄). Furthermore, for every
ζ ∈ Z0(z̄), from (3.9) we see that tζ ∈ Z(z̄) for all t > 0 small enough. Therefore,
from (3.15) and (3.16) we obtain that �′(z̄; d) < 0 for every d ∈ T�(z̄) \ {0}. Thus,
the equality �′(z̄; d) = 0 for some d ∈ T�(z̄) implies d = 0. Hence, Proposition 3.1
yields the desired result. ��

Going back to Example 1.2, it holds there that f ′
1(z̄; d) > 0 for all d ∈ R \ {0},

implying that Z0(z̄) = {0}, and hence, (3.15) trivially holds (for p = 1).
As another example, consider the case when z̄ ∈ int� and the equality |Fi (z̄)| =

f (z̄) is attained for a single index i ∈ {1, . . . , m}. To be specific, let I+(z̄) = {i},
I−(z̄) = ∅. Then (3.12) implies that

w1+
i = 1

( f (z̄))2
, F ′

i (z̄) = 0,

while all other components of w are equal to zero. Therefore, Z0(z̄) = R
n , and

condition (3.15) takes the form
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for all d ∈ R
n \ {0} there exists ζ ∈ R

n such that 〈F ′′
i (z̄)d, ζ 〉 < 0.

This always holds if F ′′
i (z̄) is a nonsingularmatrix (for example, if it is positive-definite,

i.e., z̄ satisfies the second-order sufficient optimality condition for minimizers of f ,
which coincides with Fi near z̄).

4 Globally convergent LP-Newton method with an escape procedure
from nonstationary points

We shall use the error bound established in Theorem 3.1 for identifying smooth selec-
tion mappings active at a potential “bad” accumulation point of a sequence generated
byAlgorithm 2.1. This idea is related to the technique for identifying active constraints
proposed in [8], later used also in [3,14], for example. Once such selection mappings
different from the one currently used are identified, Algorithm 4.1 below implements
the possibility of switching to another selection.

Proposition 4.1 Let the assumptions of Theorem 3.1 hold with F replaced by Fπ for
some π ∈ A(z̄). Let ρ : R+ → R+ be any function satisfying t = o(ρ(t)) as t → 0+.
For every z ∈ �, define the index set

Aρ(z) := {
p ∈ {1, . . . , q} | ‖F p(z) − F(z)‖ ≤ ρ(|�(z)|)} ,

where �(z) is computed using G(z) = (Fπ )′(z). Then, for all z ∈ � close enough to
z̄, it holds that

Aρ(z) = A(z̄).

Proof Suppose first that p ∈ A(z̄). Then, by Theorem 3.1, for all z ∈ � close enough
to z̄ it holds that

‖F p(z) − F(z)‖ = ‖(F p(z) − F(z)) − (F p(z̄) − F(z̄))‖
= O(‖z − z̄‖)
= O(|�(z)|)
≤ ρ(|�(z)|).

Hence, p ∈ Aρ(z) follows.
Suppose now that p /∈ A(z̄), which means that ‖F p(z̄)− F(z̄)‖ > 0. According to

Remark 3.1, �(z) → 0 as z → z̄, and hence, p /∈ Aρ(z) for all z ∈ � close enough
to z̄. ��

Now we are in the position to describe our modification of Algorithm 2.1. In order
to estimate whether some iterate zk might be close to a point z̄ which is not a solution
of problem (1.1) but which satisfies (1.10) for some p ∈ A(z̄), we choose some δ0 > 0
and verify, after computing �(zk), whether the ratio �(zk)/ f (zk) is greater than or
equal to −δ0. If it so, the algorithm tries to switch to another selection mapping.
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Algorithm 4.1 Choose δ0 > 0, δ1 > 0, σ ∈ (0, 1), and θ ∈ (0, 1). Fix a function
ρ : R+ → R+ satisfying t = o(ρ(t)) as t → 0+. Choose z0 ∈ � and set k := 0.

1. If F(zk) = 0, stop.
2. Let π ∈ A(zk) be such that G(zk) = (Fπ )′(zk).

Compute (ζ k, π , γk, π ) as a solution of the LP-Newton subproblem (1.5).
If �(zk)/ f (zk) ≥ −δ0 and Aρ(zk) \ {π} �= ∅, go to step 3.
Otherwise, if �(zk) < 0, set (ζ k, γk) := (ζ k, π , γk, π ) and go to step 5.
Otherwise, stop.

3. (a) Choose any p ∈ Aρ(zk) \ {π}.
If F p(zk) = 0, set (ζ k, p, γk, p) := (0, 0) and �p(zk) := 0.
Otherwise, compute (ζ k, p, γk, p) as a solution of the LP-Newton subproblem

minimize γ

subject to ‖F p(zk) + (F p)′(zk)ζ‖ ≤ γ ‖F p(zk)‖2,
‖ζ‖ ≤ γ ‖F p(zk)‖,
zk + ζ ∈ �,

(4.1)

and set �p(zk) := − f p(zk)(1 − γk, p f p(zk)).
If �p(zk) > −δ1, repeat the procedure for the next p ∈ Aρ(zk) \ {π}, etc.,
until some p will be found for which �p(zk) ≤ −δ1 holds, or until the set
Aρ(zk) \ {π} is exhausted. In the latter case, take p ∈ Aρ(zk) \ {π} with the
smallest associated �p(zk).

(b) If �p(zk) < �(zk), go to step 4.
Otherwise, if �(zk) < 0, set (ζ k, γk) := (ζ k, π , γk, π ) and go to step 5.
Otherwise, stop.

4. (a) Set α := 1.
If the inequality

f p(z
k + αζ k, p) ≤ f p(z

k) + σα�p(z
k) (4.2)

is satisfied, set αk, p := α.
Otherwise, replace α by θα, check inequality (4.2) again, etc., until (4.2)
becomes valid.

(b) If
f (zk + αk, pζ

k, p) < f (zk), (4.3)

set (ζ k, γk) := (ζ k, p, γk, p), αk := αk, p, and go to step 6.
Otherwise, set (ζ k, γk) := (ζ k, π , γk, π ) and go to step 5.

5. Set α := 1.
If inequality (2.3) is satisfied, set αk := α.
Otherwise, replace α by θα, check inequality (2.3) again, etc., until (2.3) becomes
valid.

6. Set zk+1 := zk + αkζ
k , increase k by 1 and go to step 1.

Some comments concerning various possibilities in Algorithm 4.1 are in order.
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Remark 4.1 (i) If Algorithm4.1 terminateswith some iterate zk after a finite number
of iterations, then zk is either a solution of (1.1), or �p(zk) = 0 holds for all
p ∈ A(zk). The latter is equivalent to saying that zk satisfies (2.4) for all p ∈ A(zk).

(ii) In step 3(a) of Algorithm 4.1, we explicitly check if the current iterate zk is a zero
of the selection mapping F p which is next to be considered. If it is a zero, then zk

is a minimizer of f p, and so using this particular selection mapping would not lead
to any progress. This is the reason why �p(zk) is set equal to zero in that case.
Note, however, that F p(zk) = 0 but F(zk) �= 0 is not possible if the condition
(1.9) is satisfied. In particular, this situation cannot occur if (1.1) arises from a
complementarity system (1.2) employing (1.3), (1.4).

(iii) When the number q of selection mappings is large, the set Aρ(zk) can also be
quite large at some iterates zk . Then some rule for choosing p ∈ Aρ(zk) in step 3
should be adopted. An obvious idea would be to first consider a selection mapping
for which ‖F p(zk) − F(zk)‖ is the smallest. If there is more than one selection
mapping for which ‖F p(zk) − F(zk)‖ is (nearly) the smallest, it makes sense
to choose the one which differs from the currently used selection mapping by a
component where the infinity norm of F(zk) is attained. This is motivated by the
observations in Example 4.2 and Proposition 4.2 below.

(iv) The parameters δ0 and δ1 are assumed to be positive and fixed. The value of δ0
should be within the interval (0, 1) in order to guarantee that high convergence
rate is retained; see Theorem 4.3 below. Apart from that, one could also think
of some dynamic rules for δ0 and δ1. The global convergence properties stated in
Theorem 4.1 below and the quadratic convergence rate established in Theorem 4.3,
remain valid as long as these quantities are not allowed to go below some fixed
positive thresholds.

Global convergence properties of Algorithm 4.1 are characterized by the following
theorem.

Theorem 4.1 Assume that (1.9) holds, and that int� �= ∅. Then, Algorithm 4.1 is
well-defined and, for any starting point z0 ∈ �, it either terminates with some iterate
zk ∈ � satisfying (2.4) for all p ∈ A(zk), or generates an infinite sequence {zk}.
In the latter case, if z̄ is an accumulation point of this sequence, and the selection
mappings F p, p ∈ A(z̄), have Lipschitz-continuous derivatives near z̄ and are twice
differentiable at z̄, then either z̄ violates (3.15) with F replaced by F p for some
p ∈ A(z̄), or satisfies

0 ∈ ∂ f p(z̄) + N�(z̄) for all p ∈ A(z̄). (4.4)

Proof Similarly to the proof of Theorem 2.1 above, provided in [11], we come to
the following conclusions. As explained in Remark 4.1(i), Algorithm 4.1 terminates
for some iteration index k if either zk is a solution of (1.1), or �p(zk) = 0 for all
p ∈ A(zk) ⊂ Aρ(zk). Further, by Remark 3.1, in both cases (2.4) must hold for all
p ∈ A(zk).

If the algorithm does not terminate, it generates an infinite sequence {zk}. Let z̄ be
an accumulation point of {zk}, and suppose that there exists p ∈ A(z̄) such that (1.10)
does not hold. The latter implies that f (z̄) �= 0.
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If {zk j } denotes a subsequence of {zk} convergent to z̄ such that for all j

�(zk j )

f (zk j )
< −δ0, (4.5)

then the iterate zk j+1 is generated by Algorithm 2.1 (without any modifications), and
hence, by Theorem 2.1, �(zk j ) → 0 as j → ∞, giving a contradiction with (4.5).
Therefore, for any subsequence {zk j } convergent to z̄, themodification of the algorithm
is initiated at iteration k j (i.e., �(zk j )/ f (zk j ) ≥ −δ0) for all j large enough.

Suppose now that the stated smoothness requirements are satisfied for z̄, and
that (3.15) holds with F replaced by F p, for all p ∈ A(z̄). Since, by continu-
ity, A(zk j ) ⊂ A(z̄) for all j large enough, from Proposition 4.1 we have that
Aρ(zk j ) = A(z̄) for all j large enough. From [11, Lemma 3.2] and from the existence
of p ∈ A(z̄) violating (1.10), it then follows by construction of the algorithm that,
perhaps after passing to a further subsequence, there exist δ̂ ∈ (0, δ1] and p̂ ∈ A(z̄)
such that, for all j , Algorithm 4.1 computes (ζ k j , γk j ) and the corresponding αk j

using G(zk j ) = (F p̂)′(zk j ), with � p̂(z
k j ) ≤ −δ̂. If zk j+1 = zk j + αk j ζ

k j is accepted
by the algorithm for infinitely many indices j , then passing to a further subsequence,
and employing (1.9), and (2.3) or (4.2), we obtain that

f (zk j+1) ≤ f p̂(z
k j ) − σαk j δ̂ (4.6)

holds for all j . Since by the construction of the algorithm the sequence { f (zk)} is non-
increasing and bounded below, it converges. Then, for any accumulation point z̄ of
{zk}, the sequence { f (zk)} (and hence, its subsequence { f (zk j+1)}) converges to f (z̄),
by continuity of f . But since {zk j } is convergent to z̄, it follows by continuity of f p̂
that { f p̂(zk j )} converges to f p̂(z̄) = f (z̄) (the last equality holds because p̂ ∈ A(z̄)).
Therefore, (4.6) implies that αk j → 0 as j → ∞, and the rest of the proof repeats
the corresponding part of the proof of [11, Theorem 3.1], but for f replaced by f p̂,
eventually giving a contradiction.

It remains to consider the case when the modified step is not accepted by test (4.3)
for k = k j and all j large enough. Employing again (1.9) and (4.2), we then obtain

f p̂(z
k j ) − σαk j δ̂ ≥ f p̂(z

k j + αk j ζ
k j ) ≥ f (zk j + αk j ζ

k j ) ≥ f (zk j ).

By convergence of {zk j } to z̄, and by continuity of f and f p̂, this again implies that
αk j → 0 as j → ∞, leading to a contradiction as above. ��

Our next result completes the job, proving that (4.4) implies B-stationarity of z̄
for the optimization problem (1.6), i.e., that of minimizing the residual. Thus, unlike
Algorithm 2.1, its modification Algorithm 4.1 either terminates at some point being
B-stationary for (1.6) after a finite number of steps, or generates an infinite sequence
with its accumulation points being B-stationary for (1.6).

Theorem 4.2 If (4.4) holds at some z̄ ∈ �, then z̄ is a B-stationary point of problem
(1.6), i.e., (1.7) is satisfied.
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Conversely, if (1.9) holds, but (1.10) is violated for some p ∈ A(z̄), then z̄ is not a
B-stationary point of problem (1.6).

Proof To prove the first assertion, assume that there exists some ζ ∈ T�(z̄) such that
f ′(z̄; ζ ) < 0. Evidently, there exist p ∈ A(z̄) and a sequence of reals {tk} → 0+,
such that f (z̄ + tkζ ) = f p(z̄ + tkζ ) for all k. Then

0 > f ′(z̄; ζ ) = lim
k→∞

f (z̄ + tkζ ) − f (z̄)

tk
= lim

k→∞
f p(z̄ + tkζ ) − f p(z̄)

tk
= f ′

p(z̄; ζ ).

By [11, Proposition 3.2] applied to f p, this contradicts (4.4).
The second assertion readily follows from [11, Lemma 3.2] applied to f p, and from

(1.9). ��
Note that B-stationarity cannot be replaced by C-stationarity in the second assertion

of Theorem 4.2; this is demonstrated by Example 1.1.
Finally, we prove that the convergence rate properties of Algorithm 2.1 stated in

Theorem 2.2 remain valid for Algorithm 4.1 if δ0 ∈ (0, 1).

Theorem 4.3 The assertion of Theorem 2.2 remains valid with Algorithm 2.1
replaced by Algorithm 4.1, assuming that in the latter δ0 ∈ (0, 1).

Proof Assumption 3 in [7] consists of saying that γ (·) is bounded from above on �

near z̄ ∈ Z . Therefore, by the definition of the function � in (2.2) it holds that

�(zk) = −‖F(zk)‖ + O(‖F(zk)‖2)

as zk → z̄. Since δ0 < 1, this implies that

�(zk)

‖F(zk)‖ < −δ0,

if F(zk) �= 0 and zk is close enough to z̄. Therefore, zk+1 is computed by an iteration
of Algorithm 2.1 (without any modifications).

The assertion is then that of Theorem 2.2. ��
We complete this section by illustrating Algorithm 4.1 on some examples. We shall

also give some further insight into step 3(a) of the algorithm.
Example 1.2 demonstrates the advantages of Algorithm 4.1 as compared to Algo-

rithm 2.1, in the nonsmooth setting.

Example 4.1 Consider again problem (1.1) with F and � defined in Example 1.2,
i.e.,

F(z) :=
(

1 − z
min{1 + z, 1 − z}

)
and � := [−1, 1].

The smooth selection mappings F1 and F2 are as defined in Example 1.2, while the
index set A(z) of selection mappings active at z and G(z) are given in Example 2.1.
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Let Algorithm 4.1 be applied to (1.1), where we take ρ(t) := √
t . Obviously, this

function satisfies t = o(ρ(t)) as t → 0+. Before analyzing in detail how Algo-
rithm 4.1 works and how its behavior differs from that of Algorithm 2.1, we start with
determining the index set Aρ(z) for z ∈ �. By some elementary calculations, it can
be shown that

Aρ(z) =
⎧
⎨

⎩

{1} = A(z) for z ∈ [−1, −1/4),
{2} = A(z) for z ∈ (z̃, 1],
{1, 2} for z ∈ [−1/4, z̃],

where z̃ denotes the smallest positive zero of the polynomial 4z3 − 8z2 − z + 1, i.e.,
z̃ ≈ 0.3183.

Now suppose that zk ∈ � is some iterate with F(zk) �= 0. Let π ∈ A(zk) be
the index such that G(zk) = (Fπ )′(zk). Then, Algorithm 4.1 computes a solution
(ζ k, π , γk, π ) of the LP subproblem (1.5), the value �(zk), and the ratio �(zk)/ f (zk).
As observed above, Aρ(zk) is a singleton if zk is less than −1/4 or greater than z̃.
Therefore, for such zk , other selectionmappings are not considered, and the next iterate
generated byAlgorithm 4.1 coincideswith the iterate obtained byAlgorithm 2.1.More
precisely, using our analysis in Example 2.1, we have

zk+1 ∈ ((1 − √
5)/2, 0) for zk ∈ [−1, (1 − √

5)/2),
zk+1 = 0 for zk ∈ [(1 − √

5)/2, −1/4),
zk+1 = 1 − (1 − zk)2/(2 − zk) for zk ∈ (z̃, 1).

For zk ∈ [−1/4, z̃], Algorithms 2.1 and 4.1 might generate different next iterates.
To analyze this, suppose first that zk ∈ [−1/4, 0]. Then we have π = 1, i.e., the selec-
tion mapping F1 and its Jacobian are used to compute (ζ k, π , γk, π ). From the analysis
in Example 2.1 it follows that �(zk)/ f (zk) = zk/(1 − zk). Therefore, depending on
the value of δ0 and the precise value of zk , the inequality �(zk)/ f (zk) ≥ −δ0 might
be valid (for zk = 0 it is valid for any δ0 > 0). Suppose that this inequality holds.
Then, since 2 ∈ Aρ(zk), a solution (ζ k, 2, γk, 2) of the LP problem (4.1) with p = 2
is computed. It is not difficult to see that

(ζ k, 2, γk, 2) :=
(
1 − zk

2 − zk
,

1

2 − zk

)

is the unique solution of that problem, so that

�2(z
k) = −1 − zk

2 − zk
< �(zk) = zk ≤ 0.

Therefore, regardless whether the condition �2(zk) > −δ1 is satisfied or not, a step
size αk, 2 is computed according to the rule in step 4 of Algorithm 4.1 for p = 2.
Taking into account that f2(z) = 1 − z for all z ∈ �, and that �2(zk) < 0, it can be
easily shown that αk, 2 = 1 holds; see the corresponding discussion in Example 2.1.
Moreover, the inequality (4.3) is satisfied for p = 2. Thus, ζ k := ζ k, 2 is taken as the
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new direction, and the new iterate is zk+1 := zk + ζ k . By elementary calculations it
can be seen that zk+1 > 0 holds.

Suppose now that zk ∈ (0, z̃]. Then we have π = 2, i.e., the selection mapping F2

and its Jacobian are used to compute (ζ k, π , γk, π ). From the analysis in Example 2.1
it follows that �(zk)/ f (zk) = −1/(2 − zk) holds. Depending on the value of δ0, the
inequality�(zk)/ f (zk) ≥ −δ0 might be valid, and if this is the case, since 1 ∈ Aρ(zk),
a solution (ζ k, 1, γk, 1) of the LP subproblem (4.1) for p = 1 is computed. It is not
difficult to see that

(ζ k, 1, γk, 1) :=
(

−zk,
1

(1 + zk)2

)

is the unique solution of that problem, so that �1(zk) = −zk holds. However, it can
be shown that

−zk = �1(z
k) > �(zk) = −1 − zk

2 − zk
for any zk ∈ (0, z̃].

Therefore, regardless whether the condition�1(zk) > −δ1 is satisfied or not, the line-
search is performed in the direction ζ k := ζ k, π according to step 5 of Algorithm 4.1.
Therefore, the new iterate coincides with the iterate generated by Algorithm 2.1, i.e.,
zk+1 = 1 − (1 − zk)2/(2 − zk).

Let us summarize themain conclusions for this example. Similarly toAlgorithm2.1,
the modified Algorithm 4.1 generates a sequence which converges quadratically to
the unique solution z = 1 of (1.1) for any starting point z0 ∈ (0, 1). But, unlike
Algorithm 2.1, the modified algorithm also converges quadratically to z = 1 if the
starting point is chosen within [−1, 0]. In particular, if Algorithm 4.1 exactly hits
z = 0 at some iteration, it escapes this point.

It might happen that Algorithm 4.1 hits some point z̄ where (1.10) is satisfied for at
least one p ∈ A(z̄), and more than two selection mappings are active at z̄. Then, there
is the question which active selection mapping should be considered first in step 3
of the algorithm. A related question is whether it is a priori clear that using some
p ∈ A(z̄) cannot lead to any progress because (1.10) is satisfied for those indices as
well. We discuss these issues next, starting with the following example.

Example 4.2 Consider the problem (1.1) with

F(z) :=
⎛

⎝
1 − z

min{1 + z, 1 + z + z2, 1 − z}
min{z, z(z − 1)}

⎞

⎠ and � := [−1, 1].

There are q = 6 smooth selection mappings:

F1(z) := (1 − z, 1 + z, z), F2(z) := (1 − z, 1 + z, z(z − 1)),
F3(z) := (1 − z, 1 + z + z2, z), F4(z) := (1 − z, 1 + z + z2, z(z − 1)),
F5(z) := (1 − z, 1 − z, z), F6(z) := (1 − z, 1 − z, z(z − 1)),
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all active at z̄ := 0. It is not difficult to see thatA(z) = {1} for z ∈ [−1, 0), andA(z) =
{6} for z ∈ (0, 1]. Consequently, we have that G(z) = (F1)′(z) for z ∈ [−1, 0), and
G(z) = (F6)′(z) for z ∈ (0, 1]. At the origin we set G(0) := (F1)′(0) = (−1, 1, 1).

As in Example 1.2, z̄ satisfies (1.10) for p = 1 so that, due to our definition of
G(0), Algorithm 2.1 terminates if it hits z̄. It can be observed that this actually happens
after (at most) two iterations of Algorithm 2.1, if the starting point is chosen within
[−1, 0); see the related discussion for Example 1.2 in Sect. 2.

Consider now the case when z̄ is the exact iteration produced by Algorithm 4.1.
Then, since �(z̄) = �1(z̄) = 0, another selection mapping active at z̄ must be
tried. So the LP subproblem (4.1) for some other p is solved, and the related value
�p(z̄) is computed. It turns out that �2(z̄) = �3(z̄) = �4(z̄) = 0 holds, whereas
�5(z̄) = �6(z̄) = −1/2. This means that only switching to the selection mappings
F5 or F6 may lead to progress. Elementary calculations show that in both cases
(ζ, γ ) = (1/2, 1/2) is the unique solution of the corresponding LP subproblem.
Moreover, z = 1/2 is accepted by the test in step 4(b) of the algorithm, and it can
be seen that from this point on, two more iterations are needed to exactly hit the only
solution z̄ = 1 of problem (1.1).

It is not surprising that�3(z̄) is equal to zero becausewe already know that�1(z̄) =
0 holds and,moreover, not only the values but also the Jacobians of F1 and F3 coincide
at z̄ = 0. Obviously, switching to another active selection mapping with the same
Jacobian cannot give any progress, as the LP subproblem would be the same.

At the same time, it is not obvious that using F2 or F4 instead of F1 cannot lead to
progress. Note, however, that F2 differs from F1 by the third component only. This
is a component whose absolute value at z̄ = 0 is less than the infinity norm of F1(z̄)
(and of F2(z̄)). The next proposition demonstrates that switching to an active selection
mapping with this property cannot lead to any progress.

Proposition 4.2 Let z̄ ∈ � be such that F(z̄) �= 0, and assume that p1, p2 ∈ A(z̄) are
such that (F p1

i )′(z̄) = (F p2
i )′(z̄) for all i ∈ {1, . . . , m} satisfying |Fi (z̄)| = ‖F(z̄)‖.

Then (1.10) holds for p = p1 if and only if it holds for p = p2.

Proof According to [11, Remark 3.1], for every p ∈ A(z̄), the Clarke generalized
gradient of f p at z̄ is defined only by the gradients (F p

i )′(z̄) for i ∈ {1, . . . , m}
such that |F p

i (z̄)| = ‖F(z̄)‖. Therefore, under the assumptions of this proposition,
∂ f p1(z̄) = ∂ f p2(z̄) holds, implying the needed assertion. ��

This proposition suggests that when trying to switch to another active selection, one
should only consider selections with a different gradient for at least one component
on which the infinity norm is attained.

To conclude, we comment on our numerical experience with Algorithms 2.1 and
4.1 on the library of GNEPs from [5] and [4], and on why we do not report it here.
Algorithm 2.1 had already been tested in [11], with detailed results reported there.
During the preparation of the current paper, we have also tested Algorithm 4.1, using
the same testing environment with the same settings. The results obtained turned
out to be quite similar to those for Algorithm 2.1, and that is why we do not report
the details. The explanation for the observed numerical behavior is that in all the
cases of convergence of Algorithm 2.1 to points which were not solutions of the
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constrained equation, these points were nevertheless local minimizers of the merit
function over the feasible set, and hence, B-stationary. Therefore, there was simply no
room for Algorithm 4.1 to improve on Algorithm 2.1 on this test collection. It might
be interesting to figure out whether this behavior is related to some special features
of GNEPs and/or their reformulations. At the same time, we emphasize that the use
of the escape procedure did not harm in any way, which is the best result one might
expect from Algorithm 4.1 in the situations when improvements are not possible. We
stress that the developed escape procedure provides a theoretical guarantee of better
global convergence properties, while not harming computational performance. That
it might be necessary and might improve convergence indeed is demonstrated by the
examples presented above, while the experiments with GNEPs show that it does not
degrade the performance in other cases.
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