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Abstract We propose an efficient solution method based on a decomposition of set-
partitioning formulation of an integrated surgery planning and scheduling problem
with chance constraints. The studied problem is characterized by a set of identical
operating rooms (ORs), a set of surgeries with uncertain durations, a set of surgeons,
and surgery dependent turnover times. The decision variables include the number of
ORs to open, assignments of surgeries and surgeons to ORs in admissible periods, and
the sequence of surgeries to be performed in a period. The objective is to minimize
the cost of opening ORs and the penalties associated with turnover times.In the pro-
posed formulation, the column generation subproblem is decomposed over ORs and
time periods. The structure of the subproblem is further exploited and transformed
to a shortest path problem. A search algorithm has been devised to efficiently solve
the resulting subproblem, subject to some optimality and feasibility conditions. The
proposed computational method outperforms the standard chance constrained model
and reduces the solution time significantly. Furthermore, extensive simulation exper-
iments have been carried out to compare the performance of three variants of the
underlying formulations and evaluate the sensitivity of the decisions to the probability
of exceeding a session length.
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1 Introduction

Studying surgery planning and scheduling problems is motivated by their significant
contributions to hospitals revenue. Surgical services account for more than 40% of
hospitals revenue and cost and this figure is expected to grow in near future [10].
Therefore, maximizing operating rooms utilizations and reducing the cost of surgery
operations has gain considerable attention in recent years.

A surgery planning problemmay be considered as a composition of two phases: (a)
an assignment phase which consists of assigning patients and surgeons to operating
rooms (ORs) in certain time periods (e.g., days or shifts), and (b) a scheduling phase
that is to find the best sequence of surgeries for each OR in the time period determined
in the assignment phase. Due to the complexity of integrating these two phases, a
majority of studies have considered them separately [5]. A common approach is to
assign surgeries based on a block surgery policy. In this policy, each OR available time
is divided into a certain number of blocks. Each block is then allocated to one surgery
type. Once the block allocations are determined, surgeries of each type are assigned to
the allotted blocks. Despite the efficiency of disaggregating the two problems, which
allows one to solve larger instances, the solutions are not guaranteed to be optimal and
may in fact lead to hospital operational inefficiency [29]. Therefore, our motivation
is to integrate both phases and solve a large scale surgery planning and scheduling
problem together.

Historically, the main focus of the literature has been on deterministic OR schedul-
ing problems [22] while assumptions on parameters with random nature such as
surgery durations have a significant impact on both availability and quality of services.
For example, when the uncertain nature of surgery duration is ignored, the patients’
and surgeons’ waiting time and OR overtime may increase. Stochastic OR scheduling
problems are commonly studied by considering two sources of uncertainty: in param-
eters related to duration (e.g., surgery duration) and in patient’s arrival time. Stochastic
optimization and robust optimization methods [16,19] have been used to deal with the
pertinent uncertainty in surgery scheduling problems. We present a brief review on
some relevant studies next. Cardoen et al. [5] and Erdogan and Denton [9] provide
extensive reviews on different aspects of OR planning and scheduling problems.

Zhang and Xie [30] studied a dynamic OR assignment problem in which surgery
durations were uncertain and surgeons were assigned to available ORs on a first-come
first-serve basis. They used a simulation-based optimization approach to solve the
problem.

Neyshabouri and Berg [19] address a surgery scheduling problem where elective
surgeries are assigned to a set of available surgery blocks. They also include down-
stream decisions (post-operation care) in their formulation. They assume that surgery
durations and lengths of stay are uncertain, and use a column generation method to
solve their proposed model. Denton et al. [8] propose a two-stage robust optimization
model for a surgery problem in which the overtime is penalized. They find bounds for
the number of ORs and the number of uncertain parameters i.e., surgery durations that
can reach their upper bounds.

Gul et al. [12] study a surgery allocation problem under uncertainty over a finite
planning horizon. Their objective function is to minimize cancellation, waiting, and
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overtime costs. Using a progressive hedging algorithm for their multi-stage stochastic
mixed-integer formulation, they can solve relatively large instances (up to 50 surgeries
and 10days) and find near optimal surgery schedules. In addition to robust optimiza-
tion based model, Denton et al. [8] consider a surgery block assignment problem with
uncertain surgery durations to minimize OR opening and overtime costs. They pro-
pose a two-stage stochastic optimization formulation as well as a robust optimization
formulation and solve the resulting problems using a cutting plane method and some
heuristics. Wang et al. [28] extend [8] by considering a sample average approximation
method to transform a two-stage stochastic model to a deterministic model for the
surgery planning problem. They solve the resulting problem using a column genera-
tion method. Batun et al. [4] also propose a two-stage mixed integer stochastic model
for a surgery assignment problem to minimize ORs opening and overtime costs. They
aim to find the optimal assignment of pairs of surgery-surgeon to ORs on a daily
basis. Shylo et al. [25] study a batch scheduling problem within a block booking pol-
icy and maximize the expected utilization of ORs while some probabilistic capacity
constraints are imposed over ORs’ availablity time.

Due to the complexity of OR scheduling problems, the majority of the literature
focuses on only one of the two phases (e.g., the block surgery policy) with rela-
tively restrictive settings such as a single-period problems or ignoring surgeons in
OR scheduling. The surgery planning and scheduling problems with random param-
eters may be formulated as stochastic integer programs (SIPs) which are among the
most challenging problems in operations research [24]. The efficiency of solution
algorithms for this class of problems highly depends on clever application of integer
programming methods to solve SIP. To this end, one could study the possibility of
taking advantage of the problem structure to develop a tailor-made algorithm which
has not been well investigated for SIP in the literature. In particular, Chance Con-
strained Programming (CCP) is still computationally challenging [14] although its
development dates back to the 1960s. There exist two main approaches to invoking
uncertainty in an integer chance constrained program: a discrete approximation of
uncertainty by scenarios [14] or a continuous approximation of the distribution func-
tions of uncertain parameters [18]. Song et al. [26] provide a thorough discussion on
the challenges and limitations of these two formulations. The former results in a huge
number of binary variables and the latter leads to a non-linear integer program that
is only tractable when random parameters follow a normal distribution. Assuming
normal distribution would resolve the nonconvexity of chance constrains and makes
the continuous approximation tractable. However, there are many situations where
surgery durations are not normally distributed. In such situations, one could resort to
discrete approximation. Here, we solve the problem using both approaches to show
the impact of such approximations on the final variables.

In the literature of SIP, branch-and-cut methods are widely used to solve SIP [1,23].
Although branch-and-price methods are among efficient and popular methods for
integer programs [2,3], very few papers have investigated solving SIP using branch-
and-price methods. Lulli and Sen [15] use a set-partitioning formulation and a branch-
and-pricemethod for a chance constrained formulation of a batch sizing problem.Their
proposed method could not outperform the branch-and-cut method in many instances
due to the complexity of solving the subproblems. Therefore, an interesting research
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question arises that whether SIPs can be efficiently solved using a branch-and-price
method.

In this paper, we address this research question by focusing on a multi-attribute
chance constrained formulation of an integrated surgery planning and schedul-
ing problem. We use a set-partitioning formulation of the problem, and extend
the branch-and-price method in [20] to efficiently solve it. The problem is char-
acterized by a set of identical operating rooms (ORs), a set of surgeries with
uncertain surgery durations, a set of surgeons, and surgery dependent turnover
times. The here-and-now decisions include the number of ORs to open, assign-
ments of surgeries and surgeons to ORs in some admissible (preferred) time periods,
and the sequence of surgeries to be performed in a period. We do not consider
emergency surgeries. The turnover time is penalized in order to increase OR uti-
lization and control/reduce surgeons waiting times. The objective function is to
minimize the cost of opening ORs and the penalties associated with turnover
times.

Four additional realistic conditions are taken into account. (1) The number of
available ORs in each period is limited. (2) Each surgeon has his/her own surgery
list. As a result, we assume that each surgeon can be assigned to only one OR
in any time period. (3) Each surgery has a set of pre-defined admissible or pre-
ferred periods and cannot be scheduled in other time periods. This is a common
practice in hospital management and is due to the availability of surgeons or prefer-
ences of the patients. (4) We consider surgery dependent turnover time that consists
of the time required for post-surgery activities (including cleaning) and setting
up the room for next surgery. We assume that induction surgical and awaken-
ing activities are included in surgery duration. However, one could model these
activities differently. The turnover time could depend on the preceding surgery or
the position of a surgery in the sequence. For example, after a patient’s surgery
with a transmissible disease, the OR must be carefully cleaned up before the next
surgery could be performed in that room. Note that our focus in this research is
on assigning surgeons and surgery sessions to ORs and time periods. Additional
resources such as anaesthetists and nurses have not been taken into considera-
tion.

The contributions of this paper is summarized as follows:

– We propose an efficient solution method for an integrated surgery planning and
scheduling problem with uncertain surgery durations. The proposed method can
also be adapted for other general SIPs. The problem is formulated as a set-
partitioning model and solved using a customized branch-and-price method.

– The column generation subproblem is decomposed over ORs and time periods.
We exploit the structure of the column generation subproblem and reformulate it
as a shortest path problem. The resulting shortest path is then solved using a search
algorithm satisfying optimality and feasibility conditions. The proposed method
leads to a significant reduction in solution time comparing with that of the standard
chance constrained model. In comparison to the largest problems reported in the
literature, we have solved relatively larger instances (up to 60 surgeries, 5 periods,
10 ORs and 13 surgeons) with the above realistic assumptions to optimality.
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– The chance constrained formulation of OR session lengths are written for two
types of uncertainties represented by: (a) a set of discrete scenarios and (b) the
probability density function of the uncertain parameters.

– We have also carried out an extensive simulation to study the impact of the prob-
ability of exceeding OR session length on the decision variables and the objective
function. This analysis helps hospitals’ management to decide on a proper service
level for ORs session lengths and provides them with useful managerial insights.

The remainder of the paper is structured as follows. We introduce the set-partitioning
model and the column generation subproblem in Sect. 2. The column generation
subproblem is reformulated in Sect. 3. We outline the steps of the proposed search
algorithm in Sect. 4. Computational results and sensitivity analysis are presented in
Sect. 5. Some concluding remarks and future research are given in Sect. 6.

2 The set-partitioning model

We propose a set-partitioning formulation for the described integrated surgery plan-
ning and scheduling problem. We use chance constrained programming to handle
uncertainty i.e., the total surgery time (including the turnover time) of an assignment
must be within the OR session length with a pre-specified probability (1 − ε).

Let I , K and R be the sets of surgeries, surgeons and identical ORs. The surgery list
of surgeon k, denoted by Ik , defines the set of surgeries to be performed by the surgeon
on the planning horizon (T ). We consider a set of admissible periods for each surgery
(Ti , i ∈ I ). Also let L be the normal session length. The uncertain duration of surgery
i and its mean are denoted by d̃i and d̄i , respectively. The uncertainty of surgery
durations is presented by either a set of scenarios (S) where ps is the probability
assigned to scenario s, or by distribution functionsD(d̄i , σ 2

i )where σ 2
i is the variance

of surgery i .
Let vi t be a binary variable that takes a value of 1 if surgery i is assigned to an OR

in period t , and zero otherwise. A sequence is defined as an ordered subset of surgeries
(Is) assigned to an OR in a period and is considered feasible if

(a) its total time satisfies the chance constraint condition,
(b) it is assigned to a time period which belongs to the intersection of the admissible

periods of all surgeries in that sequence (t ∈ {∩i∈Is Ti }),
(c) there is no gap between two consecutive surgeries in the sequence, i.e., ORs are

not left idle.

We denote sequence s by binary variable us . It takes a value of 1 if it is chosen in
the optimal solution. The cost of sequence s is denoted by cs and consists of the fixed
opening cost and the penalized turnover time for all surgeries in the sequence. Also,
St and St (i) in a time period t ∈ T are the sets of all feasible sequences, and the set
of all feasible sequences that include surgery i (St (i) = {s ∈ St |i ∈ Is}), respectively.
The set of feasible sequences at period t in which surgeon k has at least one surgery
is denoted by Skt .

The surgery duration is assumed to followaknowndistribution function (continuous
or discrete). W.L.O.G., we can assume the duration of the pre-surgery (prei ) and
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the post-surgery (posti ) activities are not included in the surgery duration and are
separately considered in themodel. As these activities are common, and the variance of
their durations (individually) are very small, we can assume prei and posti are exactly
known in advance. Furthermore in real cases, the pre-surgery and post-surgery time
may depend on the previous surgery and/or the next surgery. To simplify the notation,
we summarize them in a square matrix and denote its elements by τi j , i, j ∈ I which
is the duration of activities required for switching from surgery i to surgery j i.e.,
τi j = posti j + prei j . The entries on the diagonal of the matrix are the duration of the
pre-surgery time if surgery i is the first surgery in the sequence. The post-surgery time
of surgery i is denoted by τ̄i when it is the last surgery of the sequence which could
include a complete cleaning. It is clear that one can include the preparation activities in
the surgery duration. We also assume that surgeons are not assigned to next surgeries
during the turnover time.

The set-partitioning model for the surgery scheduling problem is then formulated
as:

P: min
∑

t∈T

∑

s∈St
csus (1a)

s.t.
∑

t∈Ti
vi t = 1,∀i ∈ I (1b)

vi t −
∑

s∈St (i)
us ≤ 0,∀t ∈ Ti ,∀i ∈ I (1c)

∑

s∈Skt
us ≤ 1, ∀k ∈ K ,∀t ∈ T (1d)

∑

s∈St
us ≤ m, ∀t ∈ T (1e)

us ∈ {0, 1}, ∀s ∈ St ,∀t ∈ T (1f)

vi t ∈ {0, 1}, ∀i ∈ I,∀t ∈ T . (1g)

The objective function computes the total cost including the fixed opening cost
and the penalty associated with the turnover time between surgeries i.e., cs = cR +∑

i, j∈Is ci jτi j + ci τ̄i where cR , ci j and c j are the fixed opening cost, the unit penalty
cost of turnover time of switching from surgery i to surgery j and surgery i to the
end of session, respectively. Constraint (1b) ensures that each surgery is assigned
to one period of its admissible periods. Constraint (1c) guarantees that at least one
schedule contains surgery i for an admissible period. Constraint (1d) makes sure that
a surgeon can be assigned to at most one OR in each period. Constraint (1e) enforces
the limitation on the number of available ORs in each period such that m = |R|.
Constraints (1f–1g) present the integrality conditions on variables.

It is impractical to include all feasible sequences in the beginning to P. We adopt
the following policy which was successfully used by [11,21]. Starting with a problem
called the Restricted Master Problem (RMP), a subset of feasible sequences is con-
sidered in the beginning. Feasible sequences which improve the current solution are
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iteratively identified and added to RMP. This policy is implemented within a branch-
and-bound algorithm which leads to a branch-and-price method. The subproblem
which identifies feasible and improving sequences is known as the column generation
subproblem or pricing subproblem. The column generation subproblem is constructed
based on the dual problem of the linear relaxation of the master problem as follows.

Let βi , αi t , γkt and λt be the dual variables associated with constraints (1b–1e) in
the linear relaxation of the master problem. The dual problem is formulated by

DP: max
∑

i∈I
βi −

∑

t∈T

∑

k∈K
γkt − m

∑

t∈T
λt (2)

s.t.
∑

i∈Is
αi t −

∑

k∈Ks

γkt − λt ≤ cs, ∀s ∈ St ,∀t ∈ T (3)

βi − αi t ≤ 0, ∀t ∈ Ti , ∀i ∈ I (4)

βi free , αi t ≥ 0, γkt ≥ 0 and λt ≥ 0, ∀i ∈ I, ∀t ∈ T, k ∈ K (5)

where Ks is the set of surgeons assigned to sequence s at time period t , respectively.
Improving sequences are those that violate constraint (3). As constraint set (3) sug-
gests, the column generation subproblem is decomposed for each period and forms a
sequence which can be assigned to an OR. In order to model the column generation
subproblem for each sequence, we define the following binary decision variables for
r ∈ R and t ∈ T :

xrtil = 1 if i ∈ I is assigned to lth position of a sequence, and zero otherwise,

yli j = 1 if i ∈ I precedes j ∈ I in lth position of a sequence, and zero otherwise,

wr t
i = 1 if i ∈ I is the last surgery of a sequence, and zero otherwise,

qrtk = 1 if surgeon k ∈ K is assigned a surgery from its surgery list, and zero otherwise,

πr t
ς = 1 if the constraint associated with scenario ς ∈ S is satisfied, and zero otherwise.

Here, we assume that the uncertainty of the surgery duration is presented by a set of
scenarios S. The column generation subproblem for t ∈ T and r ∈ R is as follows:

z = min cR +
∑

i, j,l∈I
ci jτi j y

l
i j +

∑

i∈I
ci τ̄iw

r t
i −

∑

i,l∈I
αi t x

rt
il +

∑

k∈K
γktq

rt
k + λt

s.t.:
∑

i∈I
xrtil ≥

∑

i∈I
xrti,l+1, ∀l ∈ I (6a)

xrtil ≤
∑

j∈I
xrtj,l+1 + wr t

i , ∀i, l ∈ I (6b)

wr t
i ≤

∑

l∈I
xrtil , ∀i ∈ I (6c)

xrtil + xrtj,l+1 − 1 ≤ yli j , ∀i, j, l ∈ I and i �= j (6d)
∑

i∈Ik

∑

l∈I
xrtil ≤ |I |qrtk , ∀k ∈ K (6e)
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∑

i,l∈I
dς
i x

rt
il +

∑

i, j,l∈I
τi j y

l
i j +

∑

i∈I
τ̄iw

r t
i ≤ L + M(1 − πr t

ς ), ∀ς ∈ S (6f)

∑

ς∈S
pςπr t

ς ≥ 1 − ε (6g)

xrtil , y
l
i j , w

r t
i , qrtk , πr t

ς : Binary ∀i, l, j ∈ I, ς ∈ S (6h)

where dsi is the durion of surgery i in scenario s. The objective function is the
reduced cost of a sequence consisting of the fixed opening cost, the turnover penalty
and the dual variables. Constraint (6a) forbids assigning surgeries to position l + 1
when no surgery is allocated to position l. Constraints (6b and 6c) ensure that wr t

i
takes a value of 1 if surgery i is the last surgery in the sequence. If surgery i precedes
surgery j in lth position of the sequence, yli j takes a value of 1. This is enforced by
constraint (6d). Constraint (6e) states that if a surgery of surgeon k is selected, then
qrtk = 1. Note that at most |I | surgeries can be assigned to an OR. Constraints (6f and
6g) impose the probability condition using the big M method. The former constraint
computes the duration of the sequence consisting of the surgery durations and the
surgery turnover times for each scenario. Note that M is a big positive number. The
latter ensures that the total probability of the scenario constraints satisfied, is at least
1 − ε.

The feasibility conditions are fulfilled for a sequence if it satisfies the constraints
above. The optimality condition is achieved if there exists no sequence with negative
reduced cost on the entire branch-and-bound tree of the branch-and-price algorithm.

3 Reformulating the column generation subproblem

Although solving the above integer problem in each iteration is doable, it is not com-
putationally very efficient. Since the aim is to generate a sequence of surgeries that
violates (3), we reformulate the column generation subproblem by a shortest path
problem on a graph where a sequence corresponds with a path on the graph. In order
to guarantee the optimality of the solution, the optimality and feasibility conditions
will be defined.

Let us assume that each surgery uniquely corresponds to one node ofGraphG(I, E)

where E is the set of arcs connecting nodes (surgeries). There exists an arc between
node i and node j if they have at least one admissible period in common. Following
constraint (3), we define the reduced cost of a sequence and the reduced cost of arc
(i, j) by

c̄s = cs −
∑

i∈Ist
αi t +

∑

k∈Ks

γk,t + λt , (7)

c̄i j = ci j
τi j

2
− αi t

2
− α j t

2
+ γk( j)t Iks (8)

where Ik is an indicator function with value of 1 if the surgeon k is scheduled in the
sequence for the first time by surgery j .
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Optimality conditions Finding a sequence of surgeries which violates constraint (3)
is the same as finding a path with negative length between any pair of nodes in Graph
G i.e.,

c̄s =
∑

i, j∈Is
c̄i j + λt + cR < 0.

If such a path is identified, it will be an improving sequance.
Constrained shortest path problem is a NP-complete problem [27]. Similar shortest

path problems can be found in variants of vehicle routing problems. Labelling algo-
rithms such as Bellman-Ford algorithm and Dijkstra’s algorithm can be adopted to
search the space and find improving sequences. Following the approach applied in
[20] instead of one label, we use a set of labels for each node and define dominating
rules to keep only a subset of labels.

Feasibility conditions Feasibility condition (a) states that a sequence is feasible if the
sum of the surgery duration and the turnover time is less than or equal to the OR
session length (L) with a pre-specified probability (1− ε). Mathematically speaking:

Pr

⎛

⎝
∑

i∈Is
d̃i +

∑

i, j∈Is
τi j + τ̄i∗ ≤ L

⎞

⎠ ≥ 1 − ε (9)

where i∗ is the last surgery on the sequence. The closed form of the left-hand side of
(9) can be written for distribution functions with the accumulative property such as
normal distribution functions. A distribution function has the accumulative property
if d̃i , d̃ j ∼ D, then d̃i + d̃ j ∼ D. Moreover, the above probability constraint can
be verified for the scenario-based case. In all cases, the complexity of the problem
remains tractable.

In our search algorithm, this condition can be checked for each sequence in each
step. If the feasibility condition is not met, the label associated with the sequence will
be omitted from the label set of that surgery even if it is not dominated. It is trivial
that an infeasible sequence cannot turn into a feasible sequence in latter iterations,
when new surgeries are added to the label set. This condition only prohibits infeasible
sequences and does not affect the optimality condition.

Feasibility condition (b) is satisfied when the search algorithm is restricted to
induced subgraph Gt (It , Et ) whose nodes are admissible in period t i.e., It = {i |t ∈
Ti }. The resulting induced subgraph for time period t is a complete graph (a clique).
Feasibility condition (c) is fulfilled by the search algorithm construction.

The optimality and feasibility conditions at each node of branch-and-bound tree is
achieved when no feasible path between any pair of surgeries can be found for which
total reduced cost is negative i.e., c̄s < 0.
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4 The search algorithm

Here, we describe the search algorithm designed based on Dijkstra’s shortest path
algorithm to solve the reformulated column generation subproblem. Let L(i) be a set
containing the labels of node i . The κth label of node i , denoted by Lκ(i), is associated
with a path to node i and consists of five components: the total reduced cost (c̄κ(i)),
the expected duration (dκ(i)), the period (tκ(i)), the operating room (rκ(i)), the nodes
on the path leading to node i (pκ(i)) i.e., Lκ(i) ← (c̄κ(i), dκ (i), tκ(i), rκ(i), pκ (i)).
We denote the ordered list of all the labels by Q. Set Q is arranged on an ascending
order based on the labels components respectively.

The introduction of dominating rules depends on the type and the distribution
function of uncertain durations. We use the dominating rules introduced in [20]. For
instance, when the random surgery duration follows a normal distribution, at each
node of the graph, label A dominates label B if (i) the expected duration of the total
duration of path A is less than or equal to that of path B, (ii) the variance of the total
duration of path A is less than or equal to that of path B and (iii) the reduced cost of
path A is at most equal to the reduced cost of path B. These conditions guarantee that
label A dominates label B. The dominated labels will be removed from the label set
of the node and list Q. The idea is that the dominated path is less likely to become an
improving path.

The steps of our search algorithm are outlined below and presented in a pseudo
code format in Algorithm 1. The algorithm starts with assigning a label to node i for
each feasible OR-period pair. At the beginning, each node has |Ti | labels. Then, the
first label in Q is selected and extended for each neighbour of the last node in the given
sequence. Surgery j is called a neighbour of surgery i at period t if period t belongs
to their admissible time periods, i.e.,Nt (i) = { j ∈ I |t ∈ Tj }. Once a label is selected
from Q, we delete it from Q.

We also use a s-cycle-free rule to avoid the negative cycles of size s or less. If the
feasibility condition (9) and the s-cycle free condition are held, then the dominating
rules are checked. If all conditions are satisfied, a new label associated with the new
node is created and saved in the node’s label set and set Q. When the total reduced
cost of a sequence/path is negative, we stop and add the sequence to RMP. If no
path between each pair of nodes was found, we branch on another variable on the
branch-and-bound tree.

5 Computational experiments

In this section,we investigate the efficiency of the proposedmethod and also the impact
of two key features of the underlying problem, namely, uncertain parameters and the
objective function. Moreover, using sensitivity analysis and Monte-Carlo simulation,
we study the impact of the variation of reliability level (ε) on decision variables and
objective function.

In order to demonstrate the computational efficiency of the proposed method, we
formulate and use a standard chance constrained model for the underlying problem
presented in the appendix. The latter model is in fact an integration of Problem (6) over
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Algorithm 1: Search Algorithm
begin

for i ∈ I do
κ ← 0
for t ∈ Ti do

Lκ (i) ← (
cR + cii τi i − αi t

2 + γκ(i)t , τi i + d̄i , t, r, (i)
)

Q.insertsort(Lκ (i))
L(i).insert(Lκ (i))
κ ← κ + 1

end
end
while Q �= ∅ do

tmpL ← Q.begin
remove tmpL from Q
i ← tmpL node number
t ← tmpL assigned period
for j ∈ Nt (i) do

if feasibility (9) & s-cycle free conditions then
tmpc ← c̄κ (i) + c̄i j and tmpd ← dκ (i) + τi j + d̄ j
if tmpc + λt − α j t

2 + ci j τ̄ j < 0, then
Stop

else if new label dominated then
continue

else if tmpc and tmpd dominate any Lκ ( j) then
remove the dominated labels,
κ ′ ← |L( j)| + 1
Lκ ′ ( j) ← (

c̄κ (i) + c̄i j , dκ (i) + τi j + d̄ j , t, r, pκ (i).insert( j),
)

Q.insertsort(Lκ ′ ( j))
L( j).insert(Lκ ′ ( j))

end
end

end
end

all time periods andORswith binding constraints. In the standard CCP, the uncertainty
is handled by a discrete approximation of random durations.

Due to complexity of handling some distribution functions such as log-normal dis-
tribution in chance constrained models, discrete and/or continuous approximations
of the distribution function are commonly used in the literature [6]. It is known that
surgery duration followsLog-Normal distribution [17]which is not awell-behaved dis-
tribution function. In addition to a discrete approximation of Log-Normal distribution
function, we use normal distribution as the continuous approximation of distribution
function of surgery duration, and then compare the results for both cases.

In terms of the objective function, two types of objective functions have been
considered in the literature [7]. The first type minimizes the number of ORs to be
opened while the second one takes into account some undesirable operational costs
where other performance measures can be controlled. Here we study both types.

In summary, we study three cases of problems:
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1. Discrete approximation of the random surgery duration with a cost based objective
function,

2. Continuous approximation of the random surgery durationwith a cost based objec-
tive function, and

3. Continuous approximation of the random surgery duration with an OR based
objective function.

5.1 Data set

We used the statistical data provided by Min and Yih [17] which is obtained from an
analysis of a real life data.According to ourmodelling requirements, some adjustments
had to be made to the instances as follows. In their data set, surgeons are not included.
Therefore, a set of surgeons in proportion to the number of surgeries was defined
and surgeries were randomly assigned to them. We assume that each surgery appears
only on one surgery list. Also, the set of admissible periods in which a surgery could
be performed, was randomly generated. Min and Yih did not report the pre-surgery
and post-surgery time. We used the following function to estimate the turnover time
between two surgeries: τi j = 0.05d̄i + 0.05d̄ j + a, where a = 15 if surgery i and
surgery j are performed by the same surgeon i.e., i, j ∈ Lk for k ∈ K , and a = 20
otherwise. We would add 20 minutes to the turnover time for an extra cleaning if the
preceding patient had some infectious disease. The penalty cost for every minute of
turnover time was considered to be 1, i.e., cω = 1. In our experiment, the probability
of exceeding session length was set to 0.10 i.e., 1 − ε = 0.90. We chose the rest of
parameters as in [17]: L = 480, cR = 6240, T = 480 minutes and the number of
available ORs was set to 10. Note that such parameter settings are not restrictive for
our method and can be changed in other realistic situations.

In Case 1, we consider 100 scenarios of surgery durations randomly generated
based on the Log-normal distribution of the surgery duration presented in [17]. For
Case 2, we assume that a surgery duration follows a normal distribution with the mean
and standard deviation reported in [17].

The test problems are categorized in three groups “small”, “medium” and “large”
and labelled by the number of the surgeries followed by the number of surgeons e.g.,
s15 − g7 consists of 15 surgeries and 7 surgeons. We generated 10 test instances for
each size of problems.

When the random surgery durations are modelled by a finite set of discrete approxi-
mations (i.e., scenarios) S where the probability of realizing scenario ς is pς , then the
chance constraint (9) is written by Pr(

∑
ς∈S pς IIς ) ≥ 1− ε where IIς is an indicator

function and is equal 1 if for scenario ς ,

∑

i∈Is
dς
i +

∑

i, j∈Is
τi j + τ̄i∗ ≤ L .

For cases 2 and 3, we assume that the durations follow normal distributions i.e.,
d̃i ∼ N (μi , σ

2
i ) where μi and σ 2

i are the mean and the variance of the duration of
surgery i . The corresponding chance constraint is then reformulated by
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Pr

(∑
i∈Is (d̃i − μi )∑

i∈Is σi
≤ L̄ − ∑

i∈Is μi∑
i∈Is σi

)
= Pr

(
Z ≤ L̄ − ∑

i∈Is μi∑
i∈Is σi

)
≥ 1 − ε

where L̄ = L − ∑
i, j∈Is τi j − τ̄i∗ and Z is the standard normal distribution random

variable.

5.2 Numerical results

In this section, we compare in total nine performance measures categorized into two
types: optimization and simulation related measures for our proposed branch-and-
price method denoted by proposed method, and the standard formulation of CCP
presented by (10) denoted by CPLEX. The optimization related measures investigate
the efficiency of the proposed framework and the quality of the optimal solution.
Here, we consider six measures in this category as follows: (1) solution time, (2) the
integrality gap after 7200s, (3) the number of variables (sequences) generated during
the solution procedure, (4) the number of ORs opened, (5) the objective function value
denoted (z∗) and (6) the surgeon waiting time denoted by “Srgn. wait” (minutes). The
surgeon waiting time reports the expected time a surgeon must wait between two
surgeries of his/her surgery list in a time period.

In the second category, we carry out a Monte Carlo Simulation to evaluate the
obtained optimal solution of an instance. To this end, 10,000 scenario realizations
based on the surgery duration distribution function are generated. Then for the solu-
tion obtained by solving the model and for each scenario, the following performance
measures are computed. Finally, the average values of these measures are calculated
and reported in the tables. The performance measures are (1) the average reliability of

the solution for exceeding the session length (
∑m′

r=1(
∑

s∈S ps |D̃r>L)

m′ ), denoted by “Prob.
Exceed.”, (2) the average expected time of exceeding session length for open ORs i.e.,
∑m′

r=1 E[D̃r−L]+
m′ in minutes, denoted by “Overtime”, and (3) the average of the expected

time of unused session length i.e.,
∑m′

r=1 E[L−D̃r ]+
m′ in minutes, denoted by “Unus. Cap.”

wherem′ is the total number of final sequences,1 [a]+ = max(a, 0) and D̃r is the total
duration of surgeries assigned to OR r .

We implement the set-partitioning based models in SCIP (Solving Constraint
Integer Programming) software. To demonstrate the computational efficiency of the
proposed method, we implement the standard CCP model is in ILOG IBM CPLEX
12.51 since this software is commonly used and also is known to be a very powerful
branch-and-cut solver. The models are run on a OSX with 3.1GHz Intel Core i5 and
8 GB of memory. We give another advantage to the standard CCP model by letting
ILOG IBM CPLEX to use its parallel computing feature, while SCIP can only use
one processor during solving the instances. Finally, we set 7200-s limitation of the
solution time.

1 If the optimality gap is zero, then final sequences refers to the optimal ones used to assign surgeries.
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5.2.1 Efficiency of the method

In order to demonstrate the efficiency of the proposed approach,we compare our results
firstly with those of related works in the literature, and secondly with those obtained
from solving the same instances by the standard chance constraint model using ILOG
IBM CPLEX. The latter also demonstrates the correctness of our approach.

Neyshabouri and Berg [19] use the same data set i.e., [17]. They applied robust
optimization to their problem and were able to solve up to 40 surgeries. Although they
consider downstream activities, they do not take into account surgeons and turnover
time. In another related paper, Batun et al. [4] formulated their problem by a two-stage
stochastic integer model. The largest instances that they were able to solve, consist of
11 surgeries, 3 surgeons, and 6 ORs in a surgical day. A set of 500 scenarios is used
to represent the uncertainty. Using a progressive hedging algorithm, Gul et al. [12]
found near optimal solutions for instances up to 50 surgeries for a planning period of
10days. They do not consider surgeons in their problem, but they include cancelation
cost.

We solve instances of Case 1 using the proposed method by SCIP and the standard
CCP model by ILOG IBM CPLEX 1251. ILOG IBM CPLEX solved s4 − g4 with
100 scenarios in 7.10 s, but it was unable to solve or find an integer solution for any
other instances. These cases are indicated by “NS” (Not Solved) in Table 1. This table
and Table 2 report the results of Case 1 and the standard model. As the results present,
the proposed method was able to solve all instances to optimality except the last one
for which the integrality gap was 1 percent. Table 2 provides more details of Case 1
including solution time and integrality gap. Linear programming (LP) relaxation of
the instances is solved to find a lower bound and the LP relaxation gap for the standard
model. We use the optimal solution obtained by the proposed method to compute the
LP relaxation gap. As expected, LP relaxation provides a poor lower bound for this
class of problem. The solution time for the LP relaxation of the instances reported are
considerably high such that instance s51 − g13was solved in over 5h and the model
for the last instance (s60 − g13) was not even constructed after 2h of time limit
so the lower bound for this case was not available (indicated by “NA”). In contrast
with the standard model which generated a large number of binary variables in the
beginning, the proposed method was able to solve the instances to optimality with
much fewer variables. The number of variables for the standard model presented in
the table, is the number of variables in the reduced problem provided by ILOG IBM
CPLEX pre-solution procedure which reduces the problem size prior to passing to
its optimizer. As the results suggests, our proposed method was significantly faster to
solve the instance and lead to the same solution and the same objective function value
of the standard model.

Table 2 reports the average results of solving Cases 1 and 2 for the following
performance measures: the solution time, the integrality gap (percent) after 7200s and
the number of variables added to the master problem. As the table shows, the proposed
method was very quick to solve small and medium instances. The solutions obtained
for the large instances were very close to the optimality with maximum 2% gap on
average for the test instances of s60 − g13. The solution time and the number of
sequences (variables) added to the problems were considerably higher in Case 1 in
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Table 2 The average performance measures of the proposed method for 10 test problems of each instance
size for Cases 1 and 2

Type Instance Case 1 Case 2

Sol.
time (s)

Int.
gap (%)

# added
variables

Sol.
time (s)

Int.
gap (%)

# added
variables

Small s4 − g4 0.00 0.00 5.20 0.00 0.00 5.30

s10 − g3 0.03 0.00 55.60 0.04 0.00 50.40

s15 − g7 0.12 0.00 117.38 0.14 0.00 105.40

Medium s20 − g7 0.79 0.00 303.70 0.62 0.00 248.67

s25 − g8 1.04 0.00 345.60 0.58 0.00 282.89

s31 − g8 156.81 0.00 1818.30 68.30 0.00 1161.50

Large s40 − g10 893.57 0.00 3527.00 254.10 0.00 1923.50

s51 − g13 4962.85 1.23 6502.70 467.17 0.00 3011.40

s60 − g13 6016.16 2.07 7841.90 471.15 0.00 3567.50

comparison with Case 2. The reason is that the continuous approximation is more
conservative and a sequence which is feasible under the assumption of Case 1 may
not be feasible under the assumption of Case 2. Therefore, the search space is more
limited in Case 2. In the next sections, in order to be able to compare the results of
cases, the result of only one test problem is reported for each instance.

5.2.2 Case 1 versus case 2

It is common to use the discrete scenario approximation of uncertain parameters in
stochastic programming, however, its accuracy highly depends on the size of scenario
set which usually affects the solution quality and the computational efficiency. The
larger of scenario set, the better solution quality and the poorer computational effi-
ciency. In Table 3, we investigate the quality of the solution for Case 1 and case 2.
While the number of the ORs opened and the objective function value are higher in
Case 2, the expected probability of failure obtained by Monte Carlo simulation, is
considerably lower in Case 1. Column “Prob. Exceed” and also the “Average” row
show that Case 1 does not hold the probabilistic constraint of the session length i.e., the
solutions do not meet constraint (9) requirements. As a result, the expected exceeding
time and its average are larger in Case 1. Smaller unused capacity is preferred only
when constraint (9) is held, which is not the case in Case 1. The conclusion is that
when we can incorporate the distribution function or a relatively good continuous
approximation for the chance constraints, there may be no gain in terms of the solu-
tion quality and the computational efficiency to use the discrete approximation of the
original distribution function specially since the scenario generation itself is a compli-
cated task. Furthermore as the integrality gap suggests, the continuous approximation
of the surgery duration did not increase the complexity of the resulting problem and
all instances were solved to optimality in the time limit.

123



An efficient computational method for large scale surgery… 551

Ta
bl
e
3

T
he

co
m
pa
ri
so
n
of

th
e
pe
rf
or
m
an
ce

m
ea
su
re
s
fo
r
C
as
e
1
an
d
C
as
e
2

In
st
an
ce

C
as
e
1

C
as
e
2

O
pt
im

iz
at
io
n

Si
m
ul
at
io
n

O
pt
im

iz
at
io
n

Si
m
ul
at
io
n

#O
R
s

op
en
ed

In
t.

ga
p
(%

)
Pr
ob
.

E
xc
ee
d.

O
ve
rt
im

e
(m

in
)

U
nu
s.

C
ap

(m
in
)

#O
R
s

op
en
ed

In
t.

ga
p
(%

)
Pr
ob
.

E
xc
ee
d.

O
ve
rt
im

e
(m

in
)

U
nu
s.

C
ap
.(
m
in
)

s
4

−
g
4

2
0

0.
1

3.
3

19
3.
6

2
0

0.
05

1.
8

19
1.
5

s
1
0

−
g
3

3
0

0.
3

19
.7

53
.1

4
0

0.
07

2.
6

12
9.
6

s
1
5

−
g
7

5
0

0.
2

9.
3

82
.8

6
0

0.
09

3.
6

13
3.
3

s
2
0

−
g
7

6
0

0.
3

14
.9

71
.6

7
0

0.
11

4.
2

11
2.
5

s
2
5

−
g
8

7
0

0.
5

40
.2

29
.4

10
0

0.
07

2.
5

11
2.
8

s
3
1

−
g
8

9
0

0.
4

30
.3

41
.3

11
0

0.
15

6.
2

82
.1

s
4
0

−
g
1
0

12
0

0.
3

19
.8

62
.8

15
0

0.
09

3.
2

11
8

s
5
1

−
g
1
3

15
6

0.
3

18
.7

54
18

0
0.
12

5.
1

97
.7

s
6
0

−
g
1
3

16
0

0.
5

31
.6

35
.3

20
0

0.
13

5.
5

92
.2

A
ve
ra
ge

0.
33

20
.8
8

69
.3
3

0.
09

7
3.
85

11
8.
88

123



552 M. Noorizadegan, A. Seifi

5.2.3 Case 2 versus case 3

Here, we compare two types of the objective functions. As mentioned earlier, Case 3
is similar to Case 2 except in its objective function in which only ORs’ opening cost
is minimized i.e., min

∑
t∈T

∑
s∈St csus where cs = cR . Including turnover penalty

in the objective function has two consequences. First, it is highly possible to have
multiple optimal solutions in Case 3 that results in opening the same number of ORs
with different assignments. In the presence of the turnover penalty, those solutions
with the minimum total duration is chosen. As reported in Table 4, the number of ORs
opened in all the instances for the both models are the same while the overtime and the
unused capacity of Case 2 are in all the cases smaller (except two cases) and bigger
than those of Case 3, respectively.

Secondly, a proper choice of turnover penalty could reduce the surgeons’ waiting
time or could result in a desired arrangement for surgeons. As mentioned in the data
set explanation, the turnover time between two surgeries is less if the two surgeries are
performed by the same surgeon. Therefore, by assigning higher penalty to turnover
times in the objective function, the model tends to put all the surgeries assigned to
a surgeon in a row if it is feasible to do so. As a result, the surgeon waiting time is
minimized indirectly. This is achieved without changing our model or increasing the
computational complexity. Figure 1 illustrates an example for two sequences of the
optimal solution for Instances51 − g13 based onCase 3. In this figure, the empty red
boxes present the turnover time and the numbers in and above the blue boxes indicates
the surgeries’ and the surgeons’ codes, respectively. As can be seen, there is a gap
between two surgeries of surgeon 5 and surgeon 7. Therefore, they will have to wait
to perform their next surgeries. Considering positive turnover penalty cost can avoid
the waiting time by rearranging the surgeries while the total number of in-service ORs
are kept at the same level. This issue has been mainly neglected in the literature.

Column “Srgn. waiting” in Table 4 reports the surgeon waiting time and the average
for all the instances. In Case 3 surgeons have to wait up to 180min while with the
same number of in-service ORs, the surgeon’s waiting time is zero in Case 2.

5.3 Sensitivity analysis

Choosing input parameter ε has a significant impact on the decision variables and the
objective function value. In addition to OR opening cost and turnover penalties, there
exist two other costs associated with violating session lengths and unused capacity in
ORs opened. Due to randomness of the surgery durations, the OR session length is
either violated or left unused for each value of ε. The both situations result in costs
and may not be desirable for the hospital management. The amount of overtime is in
conflict with the unused capacity in opened ORs. The hospital management would like
to choose a value for ε in which the total cost consisting of the objective function and
the costs associated with overtime and unused capacity, are minimum. This trade-off
has been mainly neglected in the literature. Including these two in the formulation
phase makes the problem more difficult to model and solve. Although in theory this
integration can be done within the two-stage chance constrained programming frame-
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Fig. 1 Schedules of instance
s51 − g13 illustrating the gaps
between surgeries of a surgeon
in the optimal solution of Case 3

17 1 43

19 11 45

OR 3, t = 1

OR 2, t = 3

srgn 5 srgn 2 srgn 5

srgn 7 srgn 12 srgn 7

work, only very small instances under a limited setting can be solved [13]. Instead,
the sensitivity analysis for ε provides us with useful information to choose the right
value of ε for which the total cost is minimized.

In this section, we study the impact of ε on the total cost defined above. We focus
on the sensitivity of four measures including the number of OR opened, the objective
function and the average of the expected values of the overtime and the unused capacity,
with respect to the variation of ε. In addition to ε = 0.10, six other values for ε i.e.,
ε ∈ {0.01, 0.05, 0.15, 0.20.0.25, 0.30} are chosen.

Due to lower semi-contnuity of the objective function with respect to ε, an increase
(or decrease) in ε does not necessarily lead to an increase (or decrease) in the objective
function and the number of the ORs opened. As reported in Table 5, the results show
that the number of ORs opened is less sensitive to the variations in ε than the objective
function value. This observation suggests that in order to achieve a more reliable
solution, we do not always need to increase the number of in-service ORs but it can
be done by improving the assignment of surgeries to the ORs.

The chance constraint (9) is directly connected to the overtime; therefore although
not continuously, the overtime increases by ε. This trend can be seen in our results,
see Column “Overtime” of Table 5. An opposite behaviour is expected for the unused
capacity. However, our results shows that the behaviour of the unused capacity cannot
be linearly predicted since it has not been explicitly considered in the problem.

We further extend our experiment for s60 − g13 and solve the instance for ε =
0.35, 0.40, 0.45 and 0.50. We compute four measures: the mean, standard deviation,
95% quantile and worst case values of the simulation experiment for the overtime
and unused capacity. The results are reported in Table 6. The objective function and
the number of ORs opened decrease as ε increases. Figure 2 illustrates the trend of
changing the distribution for the overtime and unused capacity when ε changes. The
upper bound of the interval is 95% quantile and its lower bound is x̄−(q− x̄) if it is not
negative and otherwise zero, where x̄ and q are the mean and 95% quantile of overtime
or unused capacity. Note that in the figure the cost functions are not continuous as
presented. For the sake of presentation, the segments between the points are drawn.

The results suggests that although very small values of ε result in very small over-
time, they lead to very high unused capacity and impose unnecessary costs. Given the
above information and the hospital’s strategy, hospital managers can choose a right
value for ε to male a reasonable trade-off between their operation cost.
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Table 6 The sensitivity analysis for Instance s60 − g13

Overtime/unused
Cap.

ε # ORs
opened

z∗ Int.
gap (%)

Mean
(min)

Std.
(min)

95%
quantile
(min)

Worst
(min)

Overtime 0.01 24 152,767 0.00 0.89 1.5 4.1 8.5

Unused Cap. 137.99 13.5 160.6 185.6

Overtime 0.05 21 133,738 0.00 3.16 3.1 9.2 24.9

Unused Cap. 106.3 14.6 130.6 157.5

Overtime 0.10 20 127,445 0.00 5.51 4.3 13.7 29.2

Unused Cap. 92.15 14.5 116.4 149.9

Overtime 0.15 19 121,092 0.00 8.20 5.4 18.0 34.9

Unused Cap. 80.30 14.8 104.9 140.6

Overtime 0.20 18 114,840 0.00 13.10 7.2 25.8 47.5

Unused Cap. 62.61 14.1 86.9 118.6

Overtime 0.25 18 114,780 3.73 12.46 6.9 25.3 45.1

Unused Cap. 65.91 14.3 90.1 120.7

Overtime 0.30 17 108,518 0.16 19.82 9.2 36.4 61.4

Unused Cap. 49.47 13.5 72.3 103.1

Overtime 0.35 17 108,507 3.49 20.31 9.3 37.0 67.1

Unused Cap. 50.61 13.6 74.1 121.0

Overtime 0.40 17 108,516 5.61 23.76 10.2 42.2 75.9

Unused Cap. 53.53 12.9 75.6 106.6

Overtime 0.45 16 102,215 1.33 31.01 11.9 52.4 93.9

Unused Cap. 36.19 12.1 57.3 87.4

Overtime 0.50 16 102,197 3.49 31.52 12.2 52.9 85.4

Unused Cap. 38.00 12.4 60.1 90.9

Overtime and unused Cap. times are given per open ORs per day

0 5 10 15 20 25 30 35 40 45 50

0

50

100

150

× 10−2

ti
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.)

overtime
unused capacity

Fig. 2 Sensitivity analysis for Instance s60 − g13. The intervals show the 95 quantile and illustrate the
trend of changing the distribution for the overtime and unused capacity when ε changes
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6 Conclusion

Wehave studied an integrated surgery scheduling and planning problemwith uncertain
surgery durations. The uncertainty in OR capacity constraints is treated by chance con-
strained programming. The resulting problem is challenging due to its structure which
is a combination of stochastic optimization and integer programming. We propose a
set-partitioning formulation for the underlying problem. The associated column gen-
eration subproblem is decomposed over ORs and time periods. The subproblem is then
reformulated as a shortest path problem for which a search algorithm has been devised
using the optimality and feasibility conditions. This reformulation allows incorpo-
rating distribution functions as well as scenario representation of surgery durations
into the chance constraints while keeping the complexity of the problem tractable. A
significant reduction in solution time has been achieved due to efficiently solving the
resulting shortest path problem. Computational results show that the proposed method
is able to solve larger instances of the problem than those previously reported for a
similar setting.

An extensive simulation study has been performed to assess the quality of opti-
mal solutions. Several performance measures including the surgeons’ waiting time,
expected probability of exceeding OR session length, expected overtime and unused
capacity have been evaluated. In comparison with discrete scenarios, working with
a continuous approximation of distribution functions for surgery durations lead to
reduction of the expected probability of exceeding OR session length and overtime.
However, the unused capacity would be increased. Our computational results suggest
that adding a proper turnover penalty cost to the objective function would reduce the
surgeons’ waiting time while the number of in-service ORs, overtime and unused
capacity would change slightly.

A sensitive analysis has been carried out to investigate the impact of the probability
of exceeding OR session length on the number of opened ORs, OR overtime and
unused capacity. We conclude that a high reliability level for holding OR session
length constraint is not always the best choice as it may impose unnecessary costs.

The performance of the proposed method highly depends on the search space of
the column generation subproblem and efficiency of the employed branch-and-bound
method. The size of search space increases with the number of surgeons, number of
planning horizon and number of surgeries. We used a modified dynamic programming
search algorithm to solve the reformulated subproblem. The efficiency of the proposed
method could be improved by running faster algorithms such as meta heuristics.

To extend this work, one could solve a more practical problem by taking OR down-
stream activities into account. The proposed method may also be applied to other
situations where probabilistic bin packing constraints exist.

Appendix: Standard chance constrained model for the stochastic surgery
scheduling problem

Here, we present the standard chance constrained equivalent model using the popular
scenario based chance constrained programming [14]. The notation for column gen-
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eration (6) are used to define the standard model. The additional binary variables ztr
and qr,tk indicate if OR r is used in period t , and if surgeon k is allocated to OR r in
period t .

min
∑

r∈R

∑

t∈T
cRz

t
r +

∑

i∈S

∑

j∈I

∑

l∈I
ci j τi j y

l
i j +

∑

i∈I

∑

t∈Ti

∑

r∈R

ci τ̄iw
r t
i (10a)

s.t.:
∑

l∈I

∑

r∈R

∑

t∈Ti
xr,ti,l = 1, ∀i ∈ I (10b)

∑

l∈I
xrtil ≤ ztr , ∀i ∈ l ∈ I, r ∈ R, t ∈ T (10c)

∑

i∈Ik

∑

l∈I
xrtil ≤ Mqrtk , ∀k ∈ K , r ∈ R, t ∈ T (10d)

∑

r∈R

qrtk ≤ 1, ∀k ∈ K , t ∈ T (10e)

∑

i∈I
xrtil ≥

∑

i∈I
xrti,l+1, ∀l ∈ I, r ∈ R, t ∈ T (10f)

xrtil ≤
∑

j∈I
xrtj,l+1 + wr t

i , ∀i, l ∈ I, r ∈ R, t ∈ T (10g)

wr t
i ≤

∑

l∈I
xrtil , ∀i ∈ I, r ∈ R, t ∈ T (10h)

∑

t∈T
xrtil +

∑

t∈T
xrtj,l+1 − 1 ≤ yli j ∀i, l ∈ I, r ∈ R, t ∈ T (10i)

yii ≥ xrti0 ∀i ∈ I, r ∈ R, t ∈ T (10j)
∑

i,l∈I
dς
i x

r t
il +

∑

i, j∈I
τi j y

l
i j +

∑

i∈I
τ̄i δ

r t
i ≤ L + M(1 − πr t

ς ), ∀r ∈ R, t ∈ T, ς ∈ S (10k)

∑

ς∈S
pςπr t

ς ≥ 1 − α, ∀r ∈ R, t ∈ T (10l)

min{k,|R|}∑

r=1

qr,tk ≤
min{k,|R|}∑

r=1

ztr , ∀k ∈ K , t ∈ T (10m)

xrtil , yli j , z
t
r , w

r t
i , qrtk , πr t

ς : Binary ∀i, l, j ∈ I, ς ∈ S, r ∈ R, t ∈ T . (10n)

The objective function computes the opening cost and the penalty cost. Constraint
(10b) corresponds with the first constraint of SP ensuring every surgery is assigned to
a OR at some period. Note that vi t = ∑

l∈I
∑

r∈R xr,ti,l . Constraint (10c) enforces the
limitation of the available ORs at each period i.e., ztr to take a value of 1 if at least one
surgery is assigned to OR r in period t . This constraint is associated with constraint
(1e). Constraints (10d and 10e) are related to constraint (6e) forbidding the assignment
of a surgeon to more than one OR in each period. Constraints (10f–10j) determine the
arrangement of each sequence. In SP, this is presented by variable ust through the
column generation problem. Finally, constraint (10k–10l) impose the probabilistic
condition on the OR available length via a scenario-based chance constraint. These
constraints are equivalents of the column generation feasibility condition (9). Con-
straint (10m) is a symmetry breaking constraint and implies that surgeon 1 is assigned
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to OR 1, surgeon 2 can be assigned to OR 1 and OR 2 and so on. Finally, Constraints
(10n) enforce the integrality conditions on the decision variables.
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