
Comput Optim Appl (2018) 69:501–534
https://doi.org/10.1007/s10589-017-9946-1

A study of the Bienstock–Zuckerberg algorithm:
applications in mining and resource constrained project
scheduling

Gonzalo Muñoz1 · Daniel Espinoza2 · Marcos Goycoolea3 ·
Eduardo Moreno4 · Maurice Queyranne5 · Orlando Rivera Letelier6

Received: 28 June 2016 / Published online: 3 October 2017
© Springer Science+Business Media, LLC 2017

Abstract We study a Lagrangian decomposition algorithm recently proposed by Dan
Bienstock andMarkZuckerberg for solving theLP relaxationof a class of openpitmine
project scheduling problems. In this study we show that the Bienstock–Zuckerberg
(BZ) algorithm can be used to solve LP relaxations corresponding to a much broader
class of scheduling problems, including the well-known Resource Constrained Project
Scheduling Problem (RCPSP), and multi-modal variants of the RCPSP that consider
batch processing of jobs. We present a new, intuitive proof of correctness for the BZ
algorithm that works by casting the BZ algorithm as a column generation algorithm.
This analysis allows us to draw parallels with the well-known Dantzig–Wolfe decom-
position (DW) algorithm.We discuss practical computational techniques for speeding
up the performance of the BZ and DW algorithms on project scheduling problems.
Finally, we present computational experiments independently testing the effectiveness
of the BZ and DW algorithms on different sets of publicly available test instances. Our

The authors of this article would like to acknowledge support by grants Fondecyt 1151098 (MG and
ORL), Fondecyt 1130681 (EM), Fondecyt 1150046 (DE), Conicyt PIA Anillo ACT 1407 (DE, MG, EM,
and ORL), NSERC RGPIN 5837-08 (MQ), Conicyt BCH 72130388 (GM) and
CONICYT-PFCHA/Doctorado Nacional/2017-21171357 (ORL).

B Marcos Goycoolea
marcos.goycoolea@uai.cl

1 Industrial Engineering and Operations Research, Columbia University, New York, NY, USA

2 Gurobi Optimization, Houston, TX, USA

3 School of Business, Universidad Adolfo Ibañez, Santiago, Chile

4 Faculty of Engineering, Universidad Adolfo Ibañez, Santiago, Chile

5 School of Business, University of British Columbia, Vancouver, Canada

6 School of Business and Faculty of Engineering, Universidad Adolfo Ibañez, Santiago, Chile

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-017-9946-1&domain=pdf
http://orcid.org/0000-0003-1904-7215

502 G. Muñoz et al.

computational experiments confirm that the BZ algorithm significantly outperforms
the DW algorithm for the problems considered. Our computational experiments also
show that the proposed speed-up techniques can have a significant impact on the solve
time.We provide some insights on what might be explaining this significant difference
in performance.

Keywords Column generation · Dantzig–Wolfe · Optimization · RCPSP

1 Introduction

Resource constrained project scheduling problems (RCPSPs) seek to optimally sched-
ule activities over time in such a way as to comply with precedence and resource usage
constraints. These problems can be notoriously difficult. Despite great progress in
optimization methodologies during the last fifty years, there are instances of RCPSP
involving as few as sixty activities that cannot be solved with today’s most effective
algorithms [24]. In multi-modal extensions of RCPSP, jobs can be processed in dif-
ferent ways (or modes). Changing the mode of a job affects its resource utilization,
and its processing costs. In some applications, changing the mode of a job changes
the duration of its processing time. In batch-processing extensions of RCPSP jobs
are grouped together in clusters that must be processed together. For simplicity of
notation, we will henceforth refer to multi-modal batch resource constrained project
scheduling problems, simply as General Production Scheduling Problems, or GPSPs.

To date, the most effective methods for solving GPSPs, especially modal and batch
variants, are based on integer programming methods that use the so-called time index
formulations [3,7,9,39]. These formulations define a binary variable for each job-
execution time combination. An important limitation of these formulations is that the
linear programming (LP) relaxations are very difficult to solve. This is because they
tend to be large and degenerate, even for small problem instances.

While classical decomposition techniques and column generation approaches can
be used for addressing some of these issues (specially complications related to the large
number of variables), they often suffer from slow convergence rate. In this context,
an important contribution was made by Bienstock and Zuckerberg [5,6], where the
authors presented an alternative to tackle these limitations effectively. They developed
a new algorithm that can considerably outperform classical methods in a broad class
of problems, thus providing a novel set of tools with a high practical impact and a
wide range of potential extensions.

In this paper we study the Bienstock–Zuckerberg (BZ) algorithm [5,6] in depth,
and find that it can be used to overcome the stated limitations on a wide range of
scheduling problems. We provide additional evidence to that in [5,6], advocating for
the efficacy of the algorithm in practice, and we provide new insights on it that allow
further extensions. Specifically, we study the BZ algorithm as an approach to batch,
multi-modal production scheduling problems where jobs can have arbitrary durations,
but where these durations are not affected by changes of mode. The application of the
BZ algorithm to this class of problems requires us to extend the algorithmic template as
it was originally proposed. We are specifically concerned about this class of problems

123

A study of the Bienstock–Zuckerberg algorithm… 503

because, in addition to generalizing the well-known RCPSP, it generalizes three very
important problems that arise in the context ofmine planning:UndergroundProduction
Scheduling Problems (UPSPs), Open Pit PhaseDesign Problems (OPPDPs), andOpen
Pit Production Scheduling Problems (OPPSPs).

We present a new proof of algorithm correctness by casting the BZ algorithm as a
column generation method, discuss algorithmic speed-ups, computationally test it on
a variety of problem instances, and compare the methodology to the more traditional
Dantzig–Wolfe decomposition (DW) method. As part of our analysis we prove that
the BZ algorithm is closely related to a decomposition scheme that produces a bound
somewhere in between that of the DW method, and that of the LP relaxation. This
study allows us to conclude that the BZ algorithm is an effective way of solving the
LP relaxation of large time index formulations, significantly outperforming the DW
method on all considered problem classes, and provides insights on the effectiveness
of the methodology.

This article is organized as follows. In Sect. 2 we present a literature review of
related schedulingwork inmine planning applications andmathematical programming
methodologies. In Sect. 3 we present an integer programming model that generalizes
the classes of problems we are interested in studying. In Sect. 4 we present a refor-
mulation of this model that fits the algorithmic framework we will be analyzing. In
Sect. 5 we present a general column generation framework that can be used to solve
the problem. We use this column generation approach to motivate the BZ algorithm,
and facilitate a comparison to the DW method. We also introduce important speed
ups for the BZ algorithm. Computational results analyzing the performance of BZ and
comparing this performance to that of DW are presented in Sect. 6.

2 Background

2.1 Scheduling applications in mine planning

In this article we are mainly interested in addressing scheduling problems that are of
relevance to planning applications in the mining industry.

The class of mining problems we are interested in include open pit and under-
ground mine planning problems. In these problems, deposits are discretized into
three-dimensional arrays known as block models. The problem to solve consists of
deciding which blocks should be extracted, when they should be extracted, and what
to do with the blocks once they are extracted. In this context, jobs correspond to
extraction activities, modes correspond to different processing options and batches
correspond to groups of blocks that must be extracted concurrently in order to comply
with equipment extraction requirements.Resource constraintswouldbeused to impose
extracting, milling and refining capacity constraints. In an open-pit mine, precedence
constraints would be used to impose that a mine must be extracted from the surface on
downwards. In an under-groundmine, specifically in a stopping operation, precedence
constraints would be used to impose that selected blocks branch out from a network
of tunnels descending from the surface.

123

504 G. Muñoz et al.

In all of thesemining problems the objective is tomaximize net-present-value of the
extracted minerals. This is different from traditional scheduling problems, in which
the objective is typically tominimize completion timemetrics such asmakespan, max-
imum tardiness, or total throughput time. Another difference between mine planning
problems and traditional scheduling problem is that in mining it is not a strict require-
ment to execute all jobs. In all other ways, the Underground Production Scheduling
Problems (UPSPs) is identical to the RCPSP. The Open Pit Phase Design Problems
(OPPDPs) is a multi-modal RCPSP in which all jobs take a single-time period to
complete, regardless of the selected mode. What the mode affects is the objective
function value and the resource consumption of each activity. The Open Pit Produc-
tion Scheduling Problems (OPPSPs) is just like the OPPDP, with the addition that
there are batch constraints that force groups of blocks to be extracted simultaneously.
These batch constraints are used to enforce equipment operability constraints, with
each batch corresponding to contiguous set of blocks typically called a bench-phase
or increment in the mining industry.

For an introduction to optimization in underground mining see Alford et al. [1].
For related work in underground mining see Martinez and Newman [27], Newman
and Kuchta [32] and O’Sullivan et al. [35,36]. The user manuals of Deswik Scheduler
[15] andMineMax iGantt [28] illustrate howUPSP is solved in practical mining appli-
cations. For an introduction to Open Pit Mining see Hustrulid and Kuchta [22], and
the user manuals of Dassault Whittle [13], MineMax Scheduler [30], and MineMax
Planner [29]. For a discussion on OPPSP see Goycoolea et al. [18]. For a general
survey on OR applications in mine planning see Newman et al. [33].

2.2 Mathematical programming methodologies

To our knowledge, the first mathematical programming formulations of GPSPs dates
back to Johnson [23] and Pritsker et al. [38], in the late 1960s. Each of these articles
spawned its own track of academic articles on production scheduling problems. The
first track, following the work of Johnson, mostly focused on strategic open pit mine
planning problems. The second track, following the work of Pritsker et al. took a more
general approach. Surprisingly, though many of the results found in these two tracks
coincide, there are few, if any, citations connecting the two literatures.

The academic literature on exact optimization methods for GPSPs is immensely
rich. Well-known surveys from the scheduling track include those of Graham et al.
[19], Brucker et al. [8] and Hartmann and Briskorn [20]. In a recent book by Artigues
et al. [2] a very thorough survey of GPSP is presented, including a computational
study that compares existing methodologies on benchmark instances. Surveys from
the mining track include those of Newman et al. [33], Espinoza et al. [16] and Osanloo
et al. [34].

A brief summary of advances on solving the LP relaxation of time-index formu-
lations is as follows. Since as early as the 1960s, most methods have been based on
some form of decomposition that reduces the problem to a sequence of maximum clo-
sure or minimum cut problems. Johnson [23], in the context of mining (single mode

123

A study of the Bienstock–Zuckerberg algorithm… 505

OPPDPs), was the first to attempt such an approach with a Dantzig–Wolfe decom-
position. Shortly after, and independently, Fisher [17], in the context of scheduling,
proposed a Lagrangian Relaxation decomposition approach. Since then, a number
of decomposition algorithms, primarily Lagrangian Relaxation decomposition algo-
rithms, have been proposed for the problem in both literatures. Important examples
include Dagdelen and Johnson [11] and Lambert and Newman [26] in mining (single
mode OPPDPs), and Christofides et al. [10] and Mohring et al. [31] in scheduling.

Some recent approaches are as follows. Chicoisne et al. [9] consider single-mode
OPPDPs with a single renewable resource, and propose a decomposition algorithm
that solves the continuous relaxation in polynomial time. Boland et al. [7] consider a
multi-modal variant of the same problem with two renewable resources, and propose
a decomposition algorithm for the continuous relaxation that, while not provably
polynomial, is very effective in practice. The BZ algorithm [5], developed shortly
after, can be considered a generalization of this last algorithm that extends to multi-
modal OPPMPs with an arbitrary number of renewable or non-renewable resources.
This algorithm proved to be very efficient, even for extremely large instance sizes;
it reduced the solving times drastically and it was able to tackle instances that could
not be solved before. Berthold et al. [3] developed a branch-and-bound algorithm that
combines mathematical programming and constraint programming methods to close
a large number of open benchmark instances of RCPSP. Zhu et al. [39] developed
a mathematical programming based algorithm for solving multi-modal variants of
RCPSP without batch constraints, but where mode changes affect duration times. In
his work he closes a large percentage of open benchmark instances.

3 Integer programming formulation

We now describe an integer programming formulation for a class of production
scheduling problems that generalizes the RCPSP, UPSP, OPPDP and OPPSP. As men-
tioned before, we simply refer to this class of problems as the General Production
Scheduling Problem (GPSP).

Sets

– A : activities that must be scheduled in the problem.
– C : clusters of activities that define a partition of A .
– prec(c): clusters that must be initiated no later than cluster c ∈ C .
– R = {1, . . . , R}: resources that are consumed when carrying out activities.
– T = {1, . . . , T }: time periods in which it is possible to initiate activities.
– Ma = {1, . . . , Ma}: possible modes for activity a ∈ A .

Parameters

– t−a : release date for activity a ∈ A .
– t+a : due date for activity a ∈ A .
– da,m : duration (number of time periods) of activity a ∈ A when executed in mode
m ∈ Ma .

– pa,m,t : profit obtained if activity a ∈ A is initiated in period t ∈ T using mode
m ∈ Ma .

123

506 G. Muñoz et al.

– l(c1, c2): lag (number of time periods) that must elapse before activities in cluster
c2 ∈ C can be initiated, after activities in cluster c1 ∈ prec(c2) have been initiated.

– Qr,t : amount of resource r ∈ R available in time period t ∈ T .
– qr,a,m : amount of resource r ∈ R consumed by activity a ∈ A in each time period
it is being executed, when executed in mode m ∈ Ma .

Variables

xc,t =
{
1 if the activities in cluster c all start in time period t
0 otherwise

ya,m,t =
{
1 if activity a starts in time period t using mode m
0 otherwise

Objective function

maximize
∑
a∈A

∑
m∈Ma

∑
t∈T

pa,m,t ya,m,t (1)

Note that we express the objective function only in terms of the y variables. There is
no loss of generality in this due to constraints (3), below.

Constraints
Clusters can only be initiated once over the time horizon [∀c ∈ C]:

∑
t∈T

xc,t ≤ 1. (2)

Activities in a cluster must start simultaneously, andmust be carried out using a unique
mode [∀c ∈ C , ∀a ∈ c, ∀t ∈ T]:

xc,t =
∑

m∈Ma

ya,m,t . (3)

In order to initiate the activities in a cluster, all activities in preceding clusters must
be initiated early enough so as to satisfy the lag requirement [∀c2 ∈ C , ∀c1 ∈
prec(c2), ∀t ∈ T]: ∑

s≤t

xc2,s ≤
∑

s≤t−l(c1,c2)

xc1,s . (4)

The amount of resources consumed cannot exceed the amount of resources available
each period [∀r ∈ R, t ∈ T]:

∑
a∈A

∑
m∈Ma

qr,a,m

t∑
s=max{1,t−da,m+1}

ya,m,s ≤ Qr,t . (5)

123

A study of the Bienstock–Zuckerberg algorithm… 507

Activities can only be scheduled after their release dates [∀a ∈ A]:

∑
m∈Ma

t−a −1∑
t=1

ya,m,t = 0. (6)

Activities must be terminated no later than due dates and exactly one mode must be
chosen for each executed activity [∀a ∈ A : t+a < ∞]:

∑
m∈Ma

t+a −da,m+1∑
t=1

ya,m,t = 1. (7)

Whenever t+a = ∞, there is no due date for activity a and we do not include
constraint (7). Note, however, that due to (2) and (3) we always have:

∑
m∈Ma

∑
t∈T

ya,m,t ≤ 1.

Thus, even when t+a = ∞, there is an implicit constraint enforcing the choice of one
mode and one time period at most.

It should be noted that the GPSP described by Formulation (1)–(7) generalizes
the scheduling formulations found in Bienstock and Zuckerberg [6] in that it allows
activities to have durations that span multiple time periods. This allows us to consider
instances of RCPSP and UPSP which fell outside the scope of the Bienstock and
Zuckerberg studies [5,6].

Though this formulation is intuitive, and also the most commonly used formulation
in the academic literature, it must be reformulated so as to fit the algorithmic schemes
that will be presented.

4 Reformulation

In this sectionwe present a reformulation of theGPSP formulation described in Sect. 3.
As we will see in Sect. 5, this reformulation is key for the decomposition algorithms
that we will discuss in this article.
For each c ∈ C , a ∈ A ,m ∈ Ma and t ∈ T define,

wc,t =
t∑

s=1

xc,s and za,m,t =
∑
i∈Ma

t−1∑
s=1

ya,i,s +
m∑
i=1

ya,i,t .

In this way, wc,t is a binary variable that takes value one if and only if cluster c is
initiated “by” time t (i.e., no later than t). Likewise, za,m,t is a binary variable that
takes value one if and only if activity a is initiated by time t − 1, or, if it is initiated in
time period t , and its mode i is such that i ≤ m.

123

508 G. Muñoz et al.

To see that it is possible to formulate the production scheduling problem given by
(1)–(7), using the (z, w) variables, note that we can map between the two variable
spaces by means of the following linear sets of equations:

ya,m,t = za,m,t − za,m−1,t ∀a ∈ A , m = 2, . . . , Ma, t ∈ T (8a)

ya,1,t = za,1,t − za,Ma ,t−1 ∀a ∈ A , t = 2, . . . , T (8b)

ya,1,1 = za,1,1 ∀a ∈ A (8c)

xc,t = wc,t − wc,t−1 ∀c ∈ C , ∀t = 2, . . . , T (8d)

xc,1 = wc,1 ∀c ∈ C (8e)

Using this mapping we can substitute out the variables in (1)–(7), to trivially obtain
the following equivalent formulation:

Objective function
max

∑
a∈A

∑
m∈Ma

∑
t∈T

p̃a,m,t za,m,t (9)

where,

p̃a,m,t =
⎧⎨
⎩

pa,m,t − pa,m+1,t if m < Ma

pa,m,t − pa,1,t+1 if m = Ma, t < T
pa,m,t if m = Ma, t = T

Constraints
For a ∈ A , m ∈ {1, . . . , Ma − 1}, t ∈ T ,:

za,m,t ≤ za,m+1,t . (10)

For a ∈ A , m = Ma, t ∈ {1, . . . , T − 1},:

za,m,t ≤ za,1,t+1. (11)

For c ∈ C , a ∈ c, t ∈ T ,
wc,t = za,Ma ,t . (12)

For c2 ∈ C , c1 ∈ prec(c2), t ∈ {1 + l(c1, c2), . . . , T },

wc2,t ≤ wc1,t−l(c1,c2). (13)

For r ∈ R, t ∈ T , ∑
a∈A

∑
m∈Ma

∑
s∈T

q̃r,ta,m,s za,m,s ≤ Qr,t . (14)

where

q̃r,ta,m,s =
{
qr,a,m1[t−da,m+1,t](s) − qr,a,m+11[t−da,m+1+1,t](s) if m < Ma

qr,a,Ma1[t−da,Ma+1,t](s) − qr,a,11[t−da,1,t−1](s) if m = Ma

123

A study of the Bienstock–Zuckerberg algorithm… 509

and,

1[x,y](s) =
{
1 if x ≤ s ≤ y
0 otherwise.

(The derivation of this last constraint from (5) can be found in “Appendix A”).
For a ∈ A , m ∈ Ma, t < t−a :

za,m,t = 0. (15)

For a ∈ A , m ∈ Ma, t ≥ t+a :
za,m,t = 1. (16)

After the reformulation, if we substitute out the w variables by using linear equal-
ities (12), we obtain what Bienstock and Zuckerberg [6] call a General Precedence
Constrained Problem (GPCP):

Z∗ = max c′z (17)

s.t. zi ≤ z j ∀(i, j) ∈ I, (18)

Hz ≤ h, (19)

z ∈ {0, 1}n (20)

In this problem constraints (18) correspond to constraints (10), (11), and (13), and
constraints (19) correspond to constraints (14), (15) and (16).

It is interesting that despite the fact that theGeneral Production Scheduling Problem
(GPSP) formulated inSect. 3 ismore general than the scheduling problem formulations
presented by Bienstock and Zuckerberg [5], both problems can be reformulated as an
instance of GPCP.

5 Methodology

In this section we describe a generalized version of the Bienstock–Zuckerberg (BZ)
algorithm, originally introduced in [5,6]. More specifically, we describe a decom-
position algorithm well suited for solving the LP relaxation of large mixed integer
programming problems having form,

Z I P = max c′z + d ′u
s.t. zi ≤ z j , ∀(i, j) ∈ I,

Hz + Gu ≤ h,

z ∈ {0, 1}n .
(21)

Like Bienstock and Zuckerberg [6] before us, we will call this problem the General
Precedence Constrained Problem (GPCP). It should be noted, however, that in our
definition of GPCP we consider the presence of the extra u variables. These variables
can be used for other modeling purposes. For example, they can be used to model
variable capacities, or, in the context of mining problems, they can be used to model
the use of stockpiles or other requirements.

123

510 G. Muñoz et al.

Our presentation of the BZ algorithm is different than the original presentation in
two respects: first, we cast it as a column generation method, and second, as stated
before, we consider the presence of extra variables [the u variables in (21)]. These
differences require a new proof of algorithm correctness that we present below. The
advantage of presenting the algorithm this way is that it is easier to compare to existing
decomposition algorithms, and thus, in our opinion, becomes easier to understand and
extend it. It also opens up the possibility of developing new classes of algorithms that
might be useful in other contexts.

Beforewe present theBZ algorithm,we present a generic columngeneration (GCG)
algorithm that can be used as a framework for understanding the BZ algorithm. This
column generation scheme can be used to solve a relaxation of mixed integer problems
having form:

Z I P = max c′z + d ′u
s.t. Az ≤ b,

Hz + Gu ≤ h,

z ∈ {0, 1}n .
(22)

Much likeDWalgorithm, this relaxation can yield bounds that are tighter than those
obtained by solving the LP relaxation of the same problem. Throughout this section
we will assume, without loss of generality, that Az ≤ b includes 0 ≤ z ≤ 1. Other
than this, we make no additional assumption on problem structure.

5.1 A general column generation algorithm

In this section we introduce a General Column Generation (GCG) algorithm that will
later motivate the BZ algorithm. This column generation algorithm is presented as a
decomposition scheme for computing upper bounds of (22) that are no weaker than
those provided by the LP relaxation.

Given a set S ⊆ Rn , let lin.hull(S) denote the linear space spanned by S. That
is, let lin.hull(S) represent the smallest linear space containing S. Let P = {z ∈
{0, 1}n : Az ≤ b}. Define problem,

ZL I N = max c′z + d ′u
s.t. Az ≤ b,

Hz + Gu ≤ h,

z ∈ lin.hull(P),

(23)

The GCG algorithm that we present computes a value ZUB such that Z I P ≤
ZUB ≤ ZL I N . Observe that the optimal value ZL I N of problem (23) is such that
Z I P ≤ ZL I N ≤ ZLP , where ZLP is the value of the linear relaxation of problem
(22).

The key to solving this problem is the observation that

lin.hull(P) = {z : z =
d∑

i=1

λiv
i , for someλ ∈ R

n}, (24)

123

A study of the Bienstock–Zuckerberg algorithm… 511

where {v1, . . . , vd} is a basis for lin.hull(P). If V is a matrix whose columns
{v1, . . . , vd}define abasis oflin.hull(P), it follows that problem (23) is equivalent
to solving,

Z(V) = max c′Vλ + d ′u
s.t. AVλ ≤ b (α)

HVλ + Gu ≤ h (π).

(25)

In order for the optimal solution of (25) to be optimal for (23), it is not necessary
for the columns of V to to define a basis of lin.hull(P). It suffices for the columns
of V to span a subset of lin.hull(P) containing an optimal solution of (23). This
weaker condition is what the column generation seeks to achieve. That is, starting with
a matrix V with columns spanning at least one feasible solution of (23), the algorithm
iteratively computes new columns until it computes the optimal value ZL I N . As we
will see, in some cases it is possible for the algorithm to terminate before having
computed ZL I N . In these cases the algorithm will terminate having computed a value
ZUB such that ZUB ≤ ZL I N .

Henceforth, let α, π denote the dual variables corresponding to the constraints of
problem (25). To simplify notation, wewill henceforth assume that α and π are always
row vectors. Note that α, π ≥ 0.

To solve problem (23) with column generation we begin each iteration with a set of
points {v1, . . . , vk} such that lin.hull({v1, . . . , vk}) ⊆lin.hull(P) contains
at least one feasible solution of problem (23). At each iteration we add a linearly
independent point vk+1 to this set, until we can prove that we have generated enough
points so as to generate the optimal solution of (23).

The first step of each iteration consists in solving problem (25), with a matrix V k

having columns {v1, . . . , vk}. Let ZL
k = Z(V k). Let (λk, uk) and (αk, πk) be the

corresponding optimal primal and dual solutions. Note that ZL
k = αkb + πkh.

Define zk = V kλk . It is clear that (zk, uk) is feasible for (23); hence, ZL
k ≤ ZL I N .

However, is (zk, uk) optimal for (23)? To answer this question, observe that (α, π) is
dual-feasible for problem (25) if and only if πG = d ′ and,

c̄(v, α, π) ≡ c′v − αAv − πHv = 0, ∀v ∈ V .

Let V P represent a matrix whose columns {v1, . . . , v|P|} coincide with set P . Since
V P is clearly a generator of lin.hull(P), we know that the optimal solution of
(25) (for V P) corresponds to an optimal solution of (23). Thus, if c̄(v, αk, πk) = 0
for all v ∈ V P (or equivalently, v ∈ P), we conclude that (zk, uk) is optimal for (23),
since we already know that πkG = d ′. On the other hand, if (zk, uk) is not optional
for (23), we conclude that there must exist v ∈ P such that c̄(v, αk, πk) �= 0.

This suggests how the column generation scheme for computing an optimal solution
of (23) shouldwork. Solve (25)withV k to obtain primal anddual solutions (zk, uk) and
(αk, πk). Keeping with traditional column generation schemes, we refer to problem
(25) as the restricted master problem. If c̄(v, αk, πk) = 0 for all v ∈ P , then (zk, uk)
is an optimal solution of (23). If this condition does not hold, let vk+1 ∈ P be such
that c̄(vk+1, αk, πk) �= 0. Note that vk+1 must be linearly independent of the columns

123

512 G. Muñoz et al.

in V k . In fact, every column v of V k must satisfy c̄(v, αk, πk) = 0, hence so must
any vector that can be generated with this set. We refer to the problem of computing
a vector vk+1 with c̄(vk+1, αk, πk) �= 0 as the pricing problem. Obtain a new matrix
V k+1 by adding column vk+1 to V k , and repeat the process. Given that the rank of V k

increases strictly with each iteration, the algorithm must finitely terminate.
The pricing problem can be tackled by solving:

L(π) = max c′v − π(Hv − h)

s.t. Av ≤ b,
v ∈ {0, 1}n

(26)

For this, at each iteration compute L(πk), and let v̂ be the corresponding optimal
solution. Observe that L(πk) ≥ Z I P for all k ≥ 1. In fact, since the u variables are
free in problem (25), and since (αk, πk) is dual-feasible in problem (25), we have that
d ′ − πkG = 0. This implies that problem (26), for πk , is equivalent to

max c′v + d ′u − πk(Hv + Gu − h)

s.t. Av ≤ b,
v ∈ {0, 1}n .

(27)

Given thatπk ≥ 0, problem (27) is a relaxation of problem (22), obtained bypenalizing
constraints Hz + Gu ≤ h. Hence L(πk) ≥ Z I P ∀k ≥ 1.

Define ZU
k = min{L(π i) : i = 1, . . . , k} and note that ZU

k ≥ Z I P , by the
argument above. If ZU

k ≤ ZL
k , we can define Z

UB = ZU
k , and terminate the algorithm,

as we will have that Z I P ≤ ZUB ≤ ZL I N . In fact, since ZL
k ≤ ZL I N , we have

Z I P ≤ ZUB = ZU
k ≤ ZL

k ≤ ZL I N .
On the other hand, if ZU

k > ZL
k , then the optimal solution v̂ of (26) is such that

c̄(v̂, αk, πk) �= 0, so we obtain an entering column by defining vk+1 = v̂. To see this,
note that

ZU
k − ZL

k > 0 ⇔ c′v̂ − πk(H v̂ − h) − αkb − πkh > 0

⇔ c′v̂ − πk H v̂ − αkb > 0

⇒ c′v̂ − πk H v̂ − αk Av̂ > 0 (sinceαkb ≥ αk Av̂)

⇒ c̄(v̂, αk, πk) > 0.

Observe that, to be precise, we do not need to know a starting feasible solution in
order to solve problem (23). In fact, if we do not have a feasible solution, we can add a
variable to the right-hand-side of each constraint Hz +Gu ≤ h, and heavily penalize
it to proceed as in a Phase-I simplex algorithm (see [4]). The first iteration only needs
a solution v1 such that Av1 ≤ b.

123

A study of the Bienstock–Zuckerberg algorithm… 513

5.2 Comparison to the Dantzig–Wolfe decomposition algorithm

When solving problems with form (22) a common technique is to use the Dantzig–
Wolfe decomposition [12] to compute relaxation values. The Dantzig–Wolfe decom-
position (DW) algorithm is very similar to the General Column Generation (GCG)
algorithm presented in the previous section. In fact, the DW algorithm computes the
optimal value of problem,

ZDW = max c′z + d ′u
s.t. Az ≤ b,

Hz + Gu ≤ h,

z ∈ conv.hull(P).

(28)

Given that conv.hull(P) ⊆ {z : Az ≤ b}, this problem is typically written as,

ZDW = max c′z + d ′u
s.t. z ∈ conv.hull(P),

Hz + Gu ≤ h,

(29)

or equivalently, as
ZDW = max c′Vλ + d ′u

s.t. λ · 1 = 1,
HVλ + Gu ≤ h,

λ ≥ 0.

(30)

In this formulation, the columns {v1, . . . , vk} of V correspond to the extreme points
of conv.hull(P).

Given that conv.hull(P) ⊆ lin.hull(P), it follows that Z I P ≤ ZDW ≤
ZL I N ≤ ZLP . When conv.hull(P) = {z : Az ≤ b} it is easy to see that ZDW =
ZL I N = ZLP . However, the following example shows that all of these inequalities
can also be strict: Z I P = max −x1 + 2x2 + x3

s.t. −x1 + x2 ≤ 0.5,
x1 + x2 ≤ 1.5,
x3 ≤ 0.5,
x ∈ {0, 1}3.

(31)

By decomposing such that Hz + Gu ≤ h corresponds to −x1 + x2 ≤ 0.5 we get,

{z : Az ≤ b} = {z ∈ [0, 1]3 : x1 + x2 ≤ 1.5, x3 ≤ 0.5},

and,

P = {z ∈ {0, 1}n : Az ≤ b} = {(0, 0, 0), (0, 1, 0), (1, 0, 0)},

and so,

lin.hull(P) = {(x1, x2, x3) : x3 = 0},
conv.hull(P) = {(x1, x2, x3) : 0 ≤ x1, 0 ≤ x2, x1 + x2 ≤ 1, x3 = 0}.

123

514 G. Muñoz et al.

From this it can be verified that z I P = 0.0, zDW = 1.25, zL I N = 1.5, and zLP =
2.0.

TheDWalgorithm is formally presented in Algorithm 1. The proof of correctness is
strictly analogous to the proof presented in Sect. 5.1 for the generic column generation
algorithm.

Algorithm 1: The DW Algorithm
Input: A feasible mixed integer programming problem of form

Z∗ = max c′z + d ′u
s.t. Az ≤ b

Hz + Gu ≤ h
z ∈ {0, 1}.

(32)

A matrix V whose columns are feasible 0-1 solutions of Az ≤ b.
Output: An optimal solution (z∗, u∗) to problem

ZDW = max c′z + d ′u
s.t. z ∈ conv.hull(P),

Hz + Gu ≤ h.

(33)

1 j ← 1 and ZU0 ← ∞.

2 V 1 ← V .
3 Solve the restricted DW master problem,

ZL
j = max c′V jλ + d ′u

s.t. 1 · λ = 1
HV jλ + Gu ≤ h
λ ≥ 0

(34)

Let (λ j , u j) be an optimal solution to problem (34), and let (z j , u j), be the corresponding feasible
solution of (33), where z j = V jλ j . Let π j be an optimal dual vector corresponding to constraints
HV jλ + Gu ≤ h.

4 Solve the DW pricing problem. For this, consider the problem,

L(π) = max c′v − π ′(Hv − h)

s.t. Av ≤ b,
v ∈ {0, 1}n

(35)

and let v j represent an optimal solution of L(π j). Let ZUj ← min{L(π j), ZUj−1}.
5 if ZL

j = ZUj then

6 z∗ ← z j . Stop.

7 else
8 V j+1 ← [V j , v j].
9 j ← j + 1. Go to step 3.

Observe that the DW pricing problem [see (35)] is exactly the same as the GCG
pricing problem. However, since optimizing over {v : Av ≤ b, v ∈ {0, 1}} is exactly
the same as optimizing over conv.hull(P), we will have at every iteration j ≥ 1

123

A study of the Bienstock–Zuckerberg algorithm… 515

that L(π j) ≥ ZDW . Thus, the bounds will never cross as they might in GCG, and
there will be no early termination condition.

The main difference between the algorithms is in the master problem, where both
solve very different linear models. One would expect that solving the master problem
for theDWdecompositionmethodwould bemuch faster. In fact, let r1 and r2 represent
the number of rows in the A and H matrices, respectively. The DW master problem
has r2 + 1 rows, compared to the r1 + r2 rows in the GCG master problem. However,
this is only the case because of the way in which problem (22) is presented. If the
first system of constraints, Az ≤ b, instead has form Az = b, the algorithm can be
modified to preserve this property. This equality form version of GCG, which we call
GCG-EQ, is presented in “Appendix B”.

The discussion above suggests that for the GCG algorithm to outperform the DW
algorithm, it would have to do less iterations. It is natural to expect that this would
happen. After all, given a common set of columns, the feasible region of the GCG
master problem is considerably larger than the corresponding feasible region of the
DW master problem. That is, the dual solutions obtained by solving the GCG master
problem should be “better” than those produced by the DWmaster problem, somehow
driving the pricing problem to find the right columns quickly throughout the iterative
process. This improved performance, of course, would only compensate on problems
in which the DW algorithm has a tough time converging, and could come at the cost of
a worse upper bound to the underlying integer programming problem. In fact, this slow
convergence rate is exactly what happens in General Production Scheduling Problems
(GPSPs), and is what motivates the BZ algorithm in the first place.

As column generation algorithms, the size of the master problem will be increasing
by one in each iteration, both for the GCG and DW. At some point the number of
columns could grow so large that solving the master problem could become unman-
ageable. An interesting feature of the DW algorithm is that this can be practically
managed by removing columns that are not strictly necessary in some iterations. The
key is the followingLemma,which is a direct result ofwell-known linear programming
theory (Bertsimas and Tsisiklis [4]).

Lemma 1 Let (λ∗, u∗) represent an optimal basic solution of problem

Z(V) = max c′Vλ + d ′u
s.t. 1 · λ = 1

HVλ + Gu ≤ h
λ ≥ 0.

Then, |{i : λ∗
i �= 0}| ≤ r2 + 1, where r2 is the number of rows in matrix H.

In fact, what this Lemma says is that after m iterations, no matter how large m, we
can always choose to remove all but r2+1 columns, thus making the problem smaller.
As a means of ensuring that the resulting column generation algorithm does not cycle,
a reasonable technique would be to remove columns only after the primal bound in
the DW algorithm changes. That is, only in those iterations k such that ZL

k > ZL
k−1.

It should be noted that a variant of this Lemma is also true for theGCG-EQalgorithm
(see “Appendix B”). However, there is no similar result for the GCG algorithm. That

123

516 G. Muñoz et al.

is, while unused columns can be discarded in GCG, there is no guarantee that the
columns remaining in the master problem will be few in number.

5.3 The BZ algorithm

The BZ algorithm, originally proposed by Bienstock and Zuckerberg [5,6] is a variant
of the GCG algorithm that is specialized for General Precedence Constrained Prob-
lems (GPCPs). That is, the BZ algorithm assumes that constraints Az ≤ b correspond
to precedence constraints having form zi − z j ≤ 0, for (i, j) ∈ I , and bound con-
straints, having form 0 ≤ z ≤ 1. This assumption allows the BZ to exploit certain
characteristics of the optimal master solutions in order to speed up convergence. As
we will see, the BZ algorithm is very effective when the number of rows in H and the
number of u variables is small relative to the number of z variables. It should be noted,
however, that the optimal value of the problem solved by the BZ algorithm will have
value Z BZ = ZLP . That is, the bound will be no tighter than that of the LP relaxation.
This follows directly from the fact that {z : zi ≤ z j ∀(i, j) ∈ I } defines a totally
unimodular system.

The BZ algorithm is exactly as the GCG algorithm, with the exception of two
changes:

First, the BZ algorithm uses a very specific class of generator matrices V k . These
matrices have two main properties. The first is that the linear space spanned by V k+1

will always contain zk , the optimal solution of the master problem in the previous
iteration. The second is that the columns of V k are orthogonal 0-1 vectors. That is,
for every column vq of matrix V k define I q = {

i ∈ {1, . . . , n} : v
q
i �= 0

}
(note that

I q describes the support of vq , for q = 1, . . . , k). Then, 0-1 vectors vq and vr are
orthogonal if and only if their supports are disjoint, i.e., I q ∩ I r = ∅.

An intuitive explanation for why this would be desirable is that, when V k has
orthogonal 0–1 columns, problem (25) is equivalent to

v∗ = max c′z + d ′u
s.t. Az ≤ b

Hz + Gu ≤ h
zi = z j ∀i, j ∈ I q , ∀q = 1, . . . , k.

(36)

That is, restricting the original feasible region to the linear space spanned by V k

is equivalent to equating the variables corresponding to the non-zero entries of each
column in V k . In a combinatorial optimization problem, this resembles a contraction
operation, which is desirable because it can lead to a significant reduction of rows and
variables, while yet preserving the original problem structure.

The matrix V k used in the BZ algorithm is obtained by the following recursive
procedure. Let v̂ be the 0-1 vector obtained from solving the pricing problem. Let
[V k, v̂] be thematrix obtained by appending column v̂ toV k .Wewould like to compute
a matrix V k+1 comprised of orthogonal 0–1 columns such that, first, Span(V k+1) ⊇
Span([V k, v̂]); and second, such that V k+1 does not have too many columns. This
can be achieved as follows. For two vectors x, y ∈ {0, 1}n , define x ∧ y ∈ {0, 1}n such

123

A study of the Bienstock–Zuckerberg algorithm… 517

that (x ∧ y)i = 1 if and only if xi = yi = 1. Likewise, define x \ y ∈ {0, 1}n such
that (x \ y)i = 1 if and only if xi = 1 and yi = 0. Assume that V k is comprised of
columns {v1, . . . , vr }. Let V k+1 be the matrix made of the non-zero vectors from the
collection:

{v j ∧ v̂ : 1 ≤ j ≤ r} ∪ {v j \ v̂ : 1 ≤ j ≤ r} ∪
⎧⎨
⎩v̂ \

⎛
⎝ k∑

j=1

v j

⎞
⎠

⎫⎬
⎭ .

We call this procedure of obtaining the matrix V k+1 from V k and v̂ the refining
procedure. Note that in each iteration k, the refining procedure will produce a matrix
V k+1 with at most 2r + 1 columns.

The second difference between BZ and GCG is that it introduces a mechanism
for preventing an unmanageable growth in the number of columns used in the master
problem.

Consider any nonzero vector z ∈ R
n . Let λ1, . . . , λd denote the distinct non-zero

values of the components of z, and for i = 1, . . . , d let vi ∈ R
n denote the indicator

vector of the components of z equal to λi , that is, vi has components vij = 1 if z j = λi ,

and 0 otherwise. Note that 1 ≤ d ≤ n and v1, . . . , vd are orthogonal 0-1 vectors. Thus
we can write z = ∑d

i=1 λiv
i and we say that v1, . . . , vd define the elementary basis

of z.
If at some iteration the number of columns in matrix V k is too large, the BZ

algorithmwill replace matrix V k with amatrix whose columnsmake up an elementary
basis of the incumbent master solution zk .

Again, there are two possible problemswith this. On the one-hand, it is possible that
such a coarsification procedure leads to cycling. On the other-hand, it might still be
the case that after applying coarsification procedure the number of columns remains
prohibitively large.

To alleviate the first concern, the BZ algorithm applies the coarsification procedure
in exactly those iterations in which the generation of a new column leads to a strict
improvement of the objective function. That is, when ZL

k > ZL
k−1. The second concern

is alleviated by the fact that under the BZ algorithm assumptions, the elementary basis
associated to a basic feasible solution of problem (36) will always have at most r2
elements, where r2 is the number of rows in matrix H (see Bienstock and Zuckerberg
[5] for the original proof, or “Appendix C” for the proof adapted to our notation and
extra variables).

A formal description of the column generation algorithm that results from the
previous discussion is summarized in Algorithm 2.

5.4 BZ algorithm speedups

In this section we describe a number of computational techniques for improving the
performance of the BZ algorithm. The computational techniques that we present for
speeding up the master problem are generic, and can be used more generally in the
GCG algorithm. However, the speedups that we present for the pricing problem are

123

518 G. Muñoz et al.

Algorithm 2: The BZ Algorithm
Input: A feasible linear programming problem of form

Z∗ = max c′z + d ′u
s.t. Az ≤ b

Hz + Gu ≤ h
(37)

where constraints Az ≤ b correspond to precedence constraints having form zi − z j ≤ 0, for
(i, j) ∈ I , and bound constraints, having form 0 ≤ z ≤ 1. A matrix V whose columns are
orthogonal 0-1 vectors spanning at least one feasible solution of (37).

Output: An optimal solution (z∗, u∗) to problem (37).
1 j ← 1 and ZU0 ← ∞.

2 V 1 ← V .
3 Solve the restricted BZ master problem,

ZL
j = max c′V jλ + d ′u

s.t. AV jλ ≤ b
HV jλ + Gu ≤ h

(38)

Let (λ j , u j) be an optimal solution to problem (38), and let (z j , u j), be the corresponding feasible
solution of (37), where z j = V jλ j . Let π j be an optimal dual vector corresponding to constraints
HV jλ + Gu ≤ h.

4 Solve the BZ pricing problem. For this, consider the problem,

L(π) = max c′v − π ′(Hv − h)

s.t. Av ≤ b,
(39)

and let v j represent an optimal solution of L(π j). Let ZUj ← min{L(π j), ZUj−1}.
5 if ZL

j = ZUj then

6 z∗ ← z j . Stop.

7 else
8 Obtain V j+1, a matrix of orthogonal 0-1 columns, by refining V j with v j .
9 j ← j + 1. Go to step 3.

specific for solving generalized production scheduling problems (GPSPs), and thus,
are specific for the BZ algorithm.

5.4.1 Speeding up the BZ pricing algorithm

The pricing problem consists of solving a problem of the form

max c̄′z
s.t. zi ≤ z j ∀(i, j) ∈ I

0 ≤ z ≤ 1
(40)

for some objective function c̄, and a set of arcs I . This class of problems are known as
maximum closure problems. In order to solve (40), we use the Pseudoflow algorithm
of [21]. We use the following two features to speed-up this algorithm in the present
context.

123

A study of the Bienstock–Zuckerberg algorithm… 519

Pricing hot-starts [PHS] The pricing problem is solved once per iteration of the
BZ algorithm, each time with a different objective function. An important feature of
the Pseudoflow algorithm is that it can be hot-started. More precisely, the Pseudoflow
algorithm uses an internal data structure called a normalized tree that can be used to re-
solve an instance of a maximum closure problem after changing the objective function
vector. Rather than solve each pricing problem fromscratch,we use the normalized tree
obtained from the previous iteration to hot-start the algorithm. Because the changes in
the objective function are not componentwise monotonous from iteration to iteration,
we need to re-normalize the tree each time. For more information on the detailed
working of the Pseudoflow algorithm, with indications on how to incorporate hot-
starts, see [21].

Path contractions [PC] Consider problem (40), and define an associated directed
acyclic graph G = (V, E) as follows. For each variable zi define a vertex vi . For each
precedence constraint zi ≤ z j with (i, j) ∈ I , define a directed arc (vi , v j) in E .
We say that a directed path P = (v(1), v(2), . . . , v(k)) in G is contractible if it is a
maximal path inG such that (i) k ≥ 3, and (ii) every internal vertex v(2), . . . , v(k−1)
has both in-degree and out-degree equal to one.

Observe that the variables associated to this path can only take k+1 different com-
binations of 0-1 values: either (i) zv(i) = 0 for i = 1, . . . , k and the total contribution
of the nodes in P is zero; or else, (ii) there exists an index j ∈ {1, . . . , k} such that
zv(i) = 0 for all i = 1, . . . , j − 1 and zv(i) = 1 for all i = j, . . . , k.

Since (40) is a maximization problem, in an optimal integer solution to (40) the
contribution of the path will either be 0 (this will happen when zv(k) = 0), or the
contribution will be max1≤ j≤k

∑k
i= j c̄v(i) (which will happen when zv(k) = 1).

This suggests the following arc-contracting procedure.
Let j (P, c̄) = argmax1≤ j≤k

∑k
i= j c̄v(i) and define a new graph Ĝ = (V̂, Ê) from

G by eliminating the vertices v(2), . . . , v(k−1) from V and the arcs incident to them,
and then adding an arc that connects v(1) and v(k). Define ĉ with ĉv = c̄v for all
vertices v /∈ {v1, . . . , vk}, ĉv(k) = ∑k

i= j (P,c̄) c̄v(i) and ĉv(1) = ∑
i< j (P,c̄) c̄v(i).

Solving the pricing problem in this smaller graph Ĝ with the objective ĉ gives an
optimal solution to the original problem on graph G with objective c̄, with the same
optimal objective value.

This procedure can be used to contract all contractible paths in G in order to
obtain, in some cases, a significantly smaller graph. In fact, problem instances with
multiple destinations and batch constraints induce many contractible paths in the
pricing problem graph. This is illustrated with an example in Fig. 1.

It should be noted that identifying and contracting paths only needs to be done in
the first iteration. In all subsequent runs of the pricing problem, it is possible to use the
same contracted graph, after updating the indices j (P, c̄) and the objective function ĉ.

5.4.2 Speeding up the BZ master algorithm

The following ideas can be used to speed up solving the master problem (38) in the
BZ algorithm:

123

520 G. Muñoz et al.

Starting columns [STCOL] As input, the BZ algorithm requires an initial set of
columns inducing a (possibly infeasible) solution of the problem. Such columns can
be obtained by computing an elementary basis associated to a solution obtained with
heuristics.

If, when starting the algorithm, we do not have an initial set of columns describing
a feasible the problem, we can proceed as in the Phase-I simplex algorithm. For this,
start with some arbitrary set of columns, and add “artificial variables” for each row.

Master hot-starts [MHS]Because of the refiningprocedure, the restrictedBZmaster
problem (38) in an iteration may be quite different from that in the previous iteration.
To reduce its solve time, we can feed any simplex-based solver the solution from the
previous iteration so that it can be used to attempt and identify a good feasible starting
basis.

k-Step columnmanagement [k-Step] In the original BZ algorithm, the coarsification
procedure is applied in every iteration where there is a strict increase in the primal
objective function value. Sometimes, however, it is better to keep the existing columns
so as to improve the convergence rate. To avoid having too many columns in each
iteration, we use what we refer to as a k-step column management rule. This rule,

...
...

...

...

. . .

. . .

wc,t

wc,t−1

za1,M−1,t

za1,1,t

za1,2,t zan,2,t

zan,1,t

zan,M−1,t

(a)

wc,t

wc,t−1

(b)

Fig. 1 Example illustrating the possible effect of the path contraction speed-up. This example assumes
a cluster c comprised of activities {a1, . . . , an}. Each activity is assumed to have M possible modes. The
graph includes an arc between all pairs of variables for which there is a precedence relationship. a Before
path contraction, b After path contraction.

123

A study of the Bienstock–Zuckerberg algorithm… 521

which requires as input an integer parameter k, works as follows: assume that we
are at the m-th iteration of the BZ algorithm, where m > k. Further assume that
in the previous iteration (iteration m − 1) there was a strict increase in the primal
objective function value. The column matrix Vm used in the m-th iteration is built
from scratch, by first obtaining an elementary basis associated to solution zm−k , and
then successively refining this basis with the vectors vm−k+1, vm−k+2, . . . , vm−1 (see
Sect. 5.3).

6 Computational results

Our computational tests consider solving the linear relaxation of three different classes
of problems. Specifically, we consider instances of OPPSP, OPPDP and RCPSP. The
OPPSP and OPPDP instances are based on both real and hypothetical mine-planning
instances obtained from industry partners, and from theMineLibwebsite [16]. In order
to protect the confidentiality of the data sets obtained from our industry partners, we
have renamed all of the instances using the names of Chilean volcanoes. In Table 1 we
present some characteristics of these instances. Note that for each instance we have
a specification regarding the maximum number of time periods to consider. For each
of the OPPSP problems we count with two versions: one with with less, and one with
more clusters. We refer to these as the fine and course versions of each problem. These
clusters correspond to what mining engineers refer to as a bench-phase, or increment
(see [22] for formal definitions). We do not have cluster definition data for all of the
problem instances, thus, the set of instances considered for OPPSP is a subset of the

Table 1 Description of the different instances of the test set used in our computational study

Instance Blocks (UPIT) Modes Periods Resources Clusters

Course Fine

Antuco 3,525,317 2 45 2 – –

calbuco 198,248 3 21 1 324 548

chaiten 287,473 2 20 2 273 475

dospuntas 897,609 2 40 4 – –

guallatari 57,958 3 21 3 272 460

kd 12,154 2 12 1 53 93

lomasblancas 1,492,024 3 45 3 – –

marvin 8,516 2 20 2 56 98

mclaughlin_limit 110,768 2 15 1 166 290

palomo 97,183 2 40 2 44 93

ranokau 304,977 2 81 2 186 296

sm2 18,388 2 30 2 – –

zuck_large 96,821 2 30 2 – –

zuck_medium 27,387 2 15 2 – –

zuck_small 9,399 2 20 2 – –

123

522 G. Muñoz et al.

instances considered for OPPDP. The RCPSP instances that we consider are obtained
from PSPlib [25] (datasets j30, j60, j90 and j120) and from [14] (dataset RG300).
It should be noted that these problems have a different objective function than the
OPPDP and OPPSP problems. That is, these problems seek to minimize Makespan,
rather than maximize net present value (NPV).

We evaluate the performance of the BZ algorithm, comparing it to the DW algo-
rithm, and to a version of DW that incorporates the dual-stabilization techniques
(DW-S) proposed by Pessoa et al. [37]. For each of the algorithms we attempt to com-
pute the linear relaxation solution of the test problems, stopping early if the relative
difference between the master problem bound and the pricing problem bound is less
than 10−6 (the default reduced cost tolerance used by the CPLEX simplex algorithm).
We do not report the bounds obtained by each algorithm since they will all coincide
with the value of the LP relaxation for each problem.

We also evaluate the performance of the speed-up techniques described in this
paper. Specifically, we analyze the performance of Pricing hot-starts (PHS), Path
contractions (PC), Starting columns (STCOL), Master hot-starts (MHS), and k-step
column management (k-Step), with k = 10. All of these speed-up techniques, with
the exception of k-step (which is not applicable) are also implemented for the DW
and DW-S algorithms. In fact, our code uses the exact same implementations of these
speed-up techniques for the BZ, DW and DW-S algorithms.

To assess the value of our proposed speed-up techniques we defined a default set of
speed-up-techniques to activate for each class of problems considered. For the OPPDP
and OPPSP we defined the default speed-up-techniques to be PHS, MHS and PC. We
found these to be the features that improved performance of the algorithm, without
requiring a heuristic to generate a solution. For the RCPSP class of problems we
use a different set of default speed-up options. Since we have to compute a feasible
solution to each problem in order to define the number of time periods, we change
the default settings so as to use this as a starting solution (STSOL). In addition, we
observe that these problem instances have signficantly more time periods per activities
when compared to the OPPSP and OPPDP instances. This resulted in a very different
algorithmbehavior that prompted us to include k-Step columnmanagement as a default
option, as it improved problem performance.

In order to assess the contribution of each individual speed-up technique in the
algorithm, we turned each of these off (or on) to measure the impact from the change
relative to that of the default settings.

All algorithms were implemented using C programming language, using CPLEX®

12.6 as optimization solver. The machines were running Linux 2.6.32 under x86_64
architecture, with four eight-core Intel® Xeon® E5-2670 processors and with 128
Gb of RAM. For all results, we present normalized geometric means comparing the
performance versus BZ algorithm under default configuration.

6.1 Results for OPPDP

Table 2 shows the time required to solve each problem using the different proposed
algorithms. The table also shows the number of iterations required by each algorithm,

123

A study of the Bienstock–Zuckerberg algorithm… 523

Ta
bl
e
2

C
om

pa
ri
so
n
be
tw
ee
n
th
e
di
ff
er
en
ta
lg
or
ith

m
s
fo
r
O
PP

D
P
in
st
an
ce
s

In
st
an
ce

T
im

e
(s
ec
)

It
er
at
io
ns

B
Z
co
ls

B
Z

D
W

D
W

+
S

C
PL

E
X

B
Z

D
W

D
W

+
S

an
tu
co

20
8,
00

0
1,
54

2,
71

2
35

3,
31

3
–

97
25

39
55

9
31

,6
40

ca
lb
uc
o

14
80

67
15

36
02

–
34

24
3

13
2

18
76

ch
ai
te
n

26
20

35
,3
39

96
25

–
34

88
4

25
9

58
00

do
sp
un

ta
s

36
,1
00

45
1,
51

5
10

8,
10

5
–

52
15

42
38

5
11

2,
94

3

gu
al
la
ta
ri

14
3

16
68

49
4

–
30

44
4

15
8

2,
42

1

kd
7

22
16

15
,5
60

23
11

5
90

36
5

lo
m
as
bl
an
ca
s

86
,6
00

52
1,
27

9
20

8,
25

6
–

75
77

3
36

0
56

35

m
ar
vi
n

9
28

17
34

,6
01

27
15

4
99

20
6

m
cl
au
gh

lin
_l
im

it
16

7
10

96
53

9
–

27
20

8
10

2
12

73

pa
lo
m
o

12
90

95
50

36
37

–
45

58
7

26
4

20
89

ra
no

ka
u

19
2,
00

0
1,
52

6,
27

4
21

0,
50

6
–

10
8

72
61

10
25

12
4,
40

6

sm
2

44
25

6
10

9
25

4
52

87
4

28
1

35
94

zu
ck
_l
ar
ge

63
4

35
64

17
61

–
46

41
6

19
4

31
95

zu
ck
_m

ed
iu
m

40
11

2
93

95
4,
40

5
28

10
7

82
22

9

zu
ck
_s
m
al
l

11
37

24
56

,1
65

29
15

0
11

3
29

4

N
or
m
.G

.M
ea
n

1
5.
98

2.
42

–
1

11
.8

4.
9

123

524 G. Muñoz et al.

Table 3 Normalized time required for different optimality gaps for OPPDP instances

Instance 10−6 10−4 10−2

BZ DW DW+S BZ DW DW+S BZ DW DW+S

antuco 1 7.42 1.70 0.96 6.28 1.49 0.93 4.63 1.20

calbuco 1 4.54 2.43 0.92 3.49 1.94 0.74 1.55 1.08

chaiten 1 13.49 3.67 0.95 10.53 2.92 0.79 4.30 1.57

dospuntas 1 12.51 2.99 0.83 7.77 2.16 0.67 2.40 1.15

guallatari 1 11.66 3.45 0.86 7.35 2.44 0.70 2.60 1.37

kd 1 3.05 2.25 0.90 2.40 1.78 0.76 1.13 1.18

lomasblancas 1 6.02 2.40 0.95 5.04 2.05 0.87 3.26 1.38

marvin 1 3.19 1.99 0.91 2.26 1.47 0.81 0.94 0.81

mclaughlin_limit 1 6.56 3.23 0.86 4.75 2.47 0.68 1.89 1.47

palomo 1 7.40 2.82 0.98 6.10 2.33 0.88 2.69 1.50

ranokau 1 7.95 1.10 0.82 4.79 0.86 0.63 1.87 0.50

sm2 1 5.88 2.50 0.95 3.77 1.89 0.88 2.03 1.35

zuck_large 1 5.62 2.78 0.96 4.42 2.28 0.84 2.21 1.45

zuck_medium 1 2.80 2.31 0.87 2.15 1.78 0.66 1.23 0.97

zuck_small 1 3.22 2.13 0.86 2.20 1.52 0.77 1.24 0.85

Norm. G. Mean 1 5.98 2.42 0.90 4.36 1.89 0.77 2.04 1.14

as well as the final number of columns generated by BZ. We do not report the bound
generated by each relaxation, since they all generate the same bound for each instance.

As can be seen, DW is nearly six times slower than BZ. Using stabilization tech-
niques, the DW−S is able to signficantly reduced the time required to reach the
optimality condition. In fact, stabilization techniques reduce the time of DW in a
60%, but it is still 2.42 times slower than BZ. This can be explained by the number
of iterations required to converge by each algorithm. Even though a BZ iteration is,
in average, 2.1 times slower than a DW iteration, DW and DW+S require 11.8 and
4.9 times the number of iterations of BZ to converge. This is possible because the BZ
algorithm can produce a large number of useful columns in few iterations. In fact,
the number of columns generated by BZ is considerably larger than the number of
columns produced by DW and DW−S (the number of columns for these algorithms
is equal to the number of iterations). Finally, note that CPLEX is only able to solve
the five smallest instances.

In Table 3 we show what happens when we change the tolerance used to define
optimality in all of the algorithms. It can be seen that BZ algorithm still outperforms
the DW and DW−S algorithms after reducing the target optimality gap to 10−4 and
10−2. However, the performance difference narrows as the target gap becomes smaller.
The resulting times, normalized to the time of BZ under default setting, are presented
in Table 3.

Finally, we study the impact of the different speed-up techniques on BZ. From the
default settings, we disable the speed-ups PHS, MHS and PC, one-by-one, and also,

123

A study of the Bienstock–Zuckerberg algorithm… 525

Table 4 Normalized time required for BZ algorithm with/without features for OPPDP instances

Instance Default No PHS No PC No MHS No
PHS/PC
MHS

Default +
STCOL

Default +
k-Step

antuco 1 1.57 1.60 0.98 2.50 0.57 2.56

calbuco 1 1.48 1.77 1.10 2.78 0.85 1.09

chaiten 1 1.38 1.49 1.01 1.83 0.62 1.20

dospuntas 1 1.36 1.57 1.03 1.75 0.73 1.52

guallatari 1 1.47 2.18 1.21 2.88 1.00 0.99

kd 1 1.30 1.63 1.00 2.22 0.69 1.51

lomasblancas 1 1.84 1.68 1.01 2.94 0.25 1.98

marvin 1 1.32 1.27 0.97 2.47 0.91 1.49

mclaughlin_limit 1 1.27 1.78 0.94 2.06 0.77 1.20

palomo 1 1.60 1.47 0.98 2.21 0.94 1.53

ranokau 1 0.93 1.04 0.97 1.15 0.22 0.57

sm2 1 1.33 1.93 1.16 2.35 1.11 2.06

zuck_large 1 1.15 1.60 1.00 2.08 0.62 1.31

zuck_medium 1 1.75 1.59 1.20 2.74 0.84 1.13

zuck_small 1 1.32 1.72 0.95 2.41 0.92 1.27

Norm. G. Mean. 1 1.39 1.60 1.03 2.24 0.68 1.35

we disable all three of them together. We also run BZ under our default setting after
adding a starting column (STCOL) generated using the Critical Multiplier algorithm
(See [9]), and after enabling the k-Step feature. The resulting times, normalized to the
time of BZ under default setting, are presented in Table 4.

We can see that all speeding features provide, in average, an improvement on the
time required by BZ to converge. However, the individual performance of each feature
differs instance by instance. Themost important speed-up technique is path contraction
(PC), as disabling this feature increases the time required to converge by 60%. Since
the reduction in number of variables of this speed-up in OPPDP is proportional to
the number of modes of the problem, this feature is particularly important for the
Guallatari instance, which has 3 different modes. Disabling these three features, the
total time required to converge more than doubles. On the other hand, if we start with
a preliminary set of starting columns, the time required is decreased by 32%. Finally,
we see that k-Step does not improve the convergence time, making the algorithm run
35% slower. In fact, it makes every problem converge slower, with the exception of
the ranokau instance.

6.2 Results for OPPSP

For these instances we use the same default settings as those used for OPPDP. We
note that these problems are considerably smaller than the OPPSP problems. This is

123

526 G. Muñoz et al.

Table 5 Comparison between the different algorithms for OPPSP instances

Instance Time (s) Iterations BZ cols

BZ DW DW+S CPLEX BZ DW DW+S

calbuco 88 90 122 56,102 32 96 95 167

chaiten 86 174 184 4595 34 189 149 392

guallatari 29 39 50 11,757 30 117 102 188

kd 1 1 1 5 18 44 40 70

marvin 2 2 2 17 27 70 73 82

mclaughlin_limit 14 19 22 2310 25 78 73 100

palomo 49 59 95 429 44 138 137 160

ranokau 2034 5102 4084 – 186 1461 781 2108

Norm. G. Mean 1 1.38 1.63 54.57 1 3.64 3.17

Table 6 Normalized time required for BZ algorithm with/without features for OPPSP instances

Instance Default No PHS No PC No MHS Default + STCOL Default + k-Step

calbuco 1 0.92 9.96 1.03 0.82 2.10

chaiten 1 0.95 14.63 1.04 0.81 2.06

guallatari 1 1.01 4.91 1.05 0.73 1.77

kd 1 1.04 5.63 1.05 0.65 1.59

marvin 1 0.90 3.51 0.92 0.68 1.26

mclaughlin_limit 1 0.99 14.65 0.93 0.98 1.91

palomo 1 0.87 13.33 0.97 0.77 1.83

ranokau 1 1.03 19.48 1.03 0.78 2.37

Norm. G. Mean 1 0.96 9.25 1.00 0.77 1.83

both in the number of variables and precedence constraints. All algorithms are able
to solve these problems in a few hours, with the exception of the ranokau instance,
which CPLEX fails to due to the memory limit (128Gb). We present the results in
Table 5.

We can see that in this class of problems the performance of DW and DW−S is
more similar to that of BZ. This is probably explained by the fact that the number of
iterations required by DW and DW−S is much smaller. Note also that stabilization
techniques for DW only marginally reduce the number of iterations required by DW
to converge, resulting in that DW−S is 18% slower than DW.

Comparing the impact of the different features on BZ (see Table 6), we see that
the most important feature is, again, path contraction (PC). Disabling this feauture
makes the algorithm run almost 10 times slower. Similarly to the OPPDP problems,
providing starting columns to BZ reduces the time by 23%, and introducing k-Step
column management makes the problem run slower (83%).

123

A study of the Bienstock–Zuckerberg algorithm… 527

Table 7 Comparison between the different algorithms for RCPSP instances

Dataset† Time (s) Iterations

BZ DW DW+S CPLEX BZ DW DW+S

j30 (51 inst.) 1.23 4.71 1.91 1.61 141.4 650.4 312.9

j60 (152 inst.) 0.98 8.19 2.55 3.77 68.5 477.0 232.1

j90 (293 inst.) 0.54 2.27 1.07 5.33 23.3 115.4 73.4

j120 (599 inst.) 3.95 33.13 11.94 31.78 58.2 440.5 230.5

RG300(480 inst.) 22.86 43.76 24.87 240.51* 91.1 393.9 260.5

Norm. G. Mean 1 4.76 2.00 7.25 1 5.8 3.3

†We only consider instances which took CPLEX more than a second to solve.
*We only consider the 438 instances which were solved within 48 h

6.3 Results for RCPSP instances

In order to formulate the RCPSP instances we need a maximum number of time
periods to consider. Since the objective of these problems is to minimize Makespan,
the number of time periods should be an upper bound on the number of periods
required to schedule all of the activities. Such a bound can be computed by running
any heuristic to compute any feasible integer solution. For this purpose, we use a
greedy TOPOSORT heuristic [9], which takes fractions of a second to solve for all of
our instances.

Table 7 describes the performance of the different algorithms on our RCPSP test
instances. Note that we only consider instances that are solved by CPLEX in more
than 1 s, obtaining a total of 1575 instances. The running times presented in the table
are geometric means over instances in the same dataset.

Table 7 shows that BZ is again faster than the other algorithmswhen solvingRCPSP
instances. In fact, it is 2 times faster than DW+S and 4.7 faster than DW. Note that
this difference is particularly large for the j120 instances from PSPLIB repository,
where DW and DW+S run 8.4 and 3 times slower, respectively. It would seem that
the performance of these algorithms is greatly dependent on problem structure. This
can be seen when considering the RG300 instances, which are generated in a different
way. In these instances, DW with stabilization is only marginally slower than BZ.

Table 8 shows how much the performance of the BZ algorithm is affected by
turning off each of the default speed up features. It is interesting to note that on
RCPSP instances the k-Step column management rule is very important. Turning it
off makes the problem run, in average, 2.51 times slower. This is in stark contrast
to what happens with the OPPSP and OPPDP instances, where activating the k-Step
feature actually makes the problem run slower. We speculate that this is due to the
fact that the RCPSP problems have a significantly greater number of time periods
per activity than the OPPSP and OPPDP instances. This results in a problem with
significantly more resource consumption constraints per variable. It is also interesting
to note that disabling the PC and MHS features actually makes BZ run faster in the
RCPSP instances. We speculate that the MHS feature does not improve performance

123

528 G. Muñoz et al.

Table 8 Normalized time required for BZ algorithm with/without features for RCPSP instances

Dataset† Default No PHS No PC No MHS No k-Step No STCOL

j30 (51 inst.) 1 1.30 0.78 0.80 0.74 1.44

j60 (152 inst.) 1 1.53 0.99 1.03 1.44 1.91

j90 (293 inst.) 1 1.15 0.86 0.91 1.51 1.80

j120 (599 inst.) 1 1.40 0.92 0.95 2.39 1.23

RG300(453 inst.) 1 1.22 0.87 0.89 5.78 1.04

Norm. G. Mean 1 1.30 0.90 0.93 2.51 1.33

†We only consider instances for which the BZ algorithm finished in 48 h in all settings

because, having enabled the k-Step feature as well, succesive master problem for-
mulations significantly differ from each other. We speculate that the PC feature does
not improve performance because in RCPSP instances there are not as many paths to
contract due to the structure of the precedence graphs. This is due to the fact that there
are no clusters and that there is just a single mode per activity.

6.4 The way forward

As a final remark, we present some computational experiments illustrating the rele-
vance of efficient methodologies for tackling the LP relaxation of the GPSP. In Table 9
we present bounds on the integrality gaps for a subset of our mine planning instances.
These gaps are defined as ub

lb − 1.0, where lb represents the value of the best known
integer feasible solution of the problem, and ub the value of the LP relaxation, as com-
puted with the techniques described in this paper. The value lb is computed using the
TopoSort rounding heuristic, starting from the solutions obtained by the BZ algorithm,
as described by [9]. As can be seen, the LP values provide tight bounds for most of
the problem instances, with values averaging 2% or less, and all values being below
6%. Even though the solutions obtained by the BZ algorithm are fractional for every
single one of our instances, a very simple rounding algorithm managed to provide
integer-feasible solutions with values surprisingly close to that of the LP relaxation,
illustrating the value of quickly computing LP relaxations for the problem. Nonethe-
less, a few of the instances (namely, ranokau, palomo, and chaiten), present more
modest gaps in the OPPSP variants of the problem, suggesting the need for further
research. This is a natural motivation for developing a branch-and-cut algorithm, for
which the BZ algorithm could play a key role. This is the subject of ongoing work.

6.5 Concluding remarks

We summarize with three important conclusions. First, the BZ algorithm significantly
outperforms DW and DW+S on all GPCP problem classes. Second, the speed-up
features proposed in this article significantly improve the performance of the BZ
algorithm. Third, the algorithm and speed-up performances greatly depend on the

123

A study of the Bienstock–Zuckerberg algorithm… 529

Table 9 Integrality gap bound
for a subset of mine planning
instances

Instance OPPDP (%) OPPSP (%)

calbuco 2.02 0.71

chaiten 0.35 4.42

guallatari 1.29 0.09

kd 0.87 0.03

marvin 2.76 2.00

mclaughlin 0.21 1.19

mclaughlin_limit 0.16 0.52

palomo 1.24 3.32

ranokau 2.18 5.68

Geo. Mean 1.23 2.02

problem classes that are being considered. These conclusions suggest that the BZ
algorithmwith the proposed speed-ups is a technique that can be used to effectively be
used to compute the LP relaxation solution of different classes of scheduling problems.
Such an algorithm might be useful as a means to provide upper bounds for scheduling
problems, or as a part of themany rounding heuristics that have recently been proposed,
or eventually, as part of a branch-and-bound solver. In addition, they suggest that the
BZ algorithm’s potential use for other classes of problems should also be further
studied.

Appendix A: Resource resource constraints in GPSP reformulation

In this section we provide a detailed proof on how to derive (14) from (5). This is
needed in order to reformulate an instance of aGeneral ProductionSchedulingProblem
(GPSP), described in Sect. 3, as an instance of a General Precedence Constrained
Problem (GPCP), presented in Sect. 4. For the benefit of the reader, we recall (14) and
(5).

Proposition 1 Consider inequality (5)

∑
a∈A

∑
m∈Ma

qr,a,m

t∑
s=max{1,t−da,m+1}

ya,m,s ≤ Qr,t ,

as defined in Sect. 3. If we apply the variable substitution scheme introduced in Sect. 4:

ya,m,t = za,m,t − za,m−1,t ∀a ∈ A , m = 2, . . . , Ma, t ∈ T ,

ya,1,t = za,1,t − za,Ma ,t−1 ∀a ∈ A , t = 2, . . . , T,

ya,1,1 = za,1,1 ∀a ∈ A ,

123

530 G. Muñoz et al.

we obtain inequality (14):

∑
a∈A

∑
m∈Ma

∑
s∈T

q̃r,ta,m,s za,m,s ≤ Qr,t ,

where

q̃r,ta,m,s =
{
qr,a,m1[t−da,m+1,t](s) − qr,a,m+11[t−da,m+1+1,t](s) if m < Ma

qr,a,Ma1[t−da,Ma+1,t](s) − qr,a,11[t−da,1,t−1](s) if m = Ma

Proof

Qr,t ≥
∑
a∈A

∑
m∈M a

qr,a,m

t∑
s=max{1,t−da,1+1}

ya,m,s

=
∑
a∈A

⎛
⎝ Ma∑

m=2

t∑
s=max{1,t−da,m+1}

qr,a,m ya,m,s +
t∑

s=max{1,t−da,1+1}
qr,a,1ya,1,s

⎞
⎠

=
∑
a∈A

⎛
⎝ Ma∑

m=2

t∑
s=max{1,t−da,m+1}

qr,a,m(za,m,s − za,m−1,s)

+
t∑

s=max{1,t−da,1+1}
qr,a,1za,1,s −

t∑
s=max{2,t−da,1+1}

qr,a,1za,Ma ,s−1

⎞
⎠

=
∑
a∈A

⎛
⎝ Ma∑

m=2

t∑
s=max{1,t−da,m+1}

qr,a,mza,m,s −
Ma−1∑
m=1

t∑
s=max{1,t−da,m+1+1}

qr,a,m+1za,m,s

+
t∑

s=max{1,t−da,1+1}
qr,a,1za,1,s −

t−1∑
s=max{1,t−da,1}

qr,a,1za,Ma ,s

⎞
⎠

=
∑
a∈A

⎛
⎝ Ma∑

m=1

t∑
s=max{1,t−da,m+1}

qr,a,mza,m,s −
Ma−1∑
m=1

t∑
s=max{1,t−da,m+1+1}

qr,a,m+1za,m,s

−
t−1∑

s=max{1,t−da,1}
qr,a,1za,Ma ,s

⎞
⎠ .

Appendix B: Equality form version of the GCG algorithm

In this section we present the GCG algorithm when, instad of the form (22), the mixed
integer problem to be solved has form,

Z I P = max c′z + d ′u
s.t. Az = b,

Hz + Gu ≤ h,

z ∈ {0, 1}n .
(41)

123

A study of the Bienstock–Zuckerberg algorithm… 531

That is, when the first set of inequalities have been replaced with equalities. As before,
define

P = {z : Az = b, z ∈ {0, 1}}.

We present a column generation algorithm for computing the optimal solution of

ZL I N = max c′z + d ′u
s.t. Az = b,

Hz + Gu ≤ h,

z ∈ lin.hull(P).

(42)

Let vo be such that Avo = b. For each k ≥ 1 let V k be a matrix comprised of
linearly independent points {v1, . . . , vk} such that Avi = 0 for i = 1, . . . , k. Define,

Z(V) = max c′vo + c′Vλ + d ′u
s.t. HVλ + Gu ≤ h − Hvo (π)

(43)

Begin each iteration by solving problem (43) with V = V k . Define ZL
k = Z(V k)

and let (λk, uk) and πk be the corresponding optimal primal and dual solutions respec-
tively. Define zk = vo + V kλk and let,

L(π) = max c′v − π(Hv − h)

s.t. Av = b,
v ∈ {0, 1}n .

(44)

Observe that since πkG = d ′, we have:

L(πk) = max c′v + d ′u − πk(Hv + Gu − h)

s.t. Av = b,
v ∈ {0, 1}n .

(45)

Thus, L(πk) is a relaxation of (41) obtained by penalizing constraints Hz+Gu ≤ h
with πk ≥ 0. This implies L(πk) ≥ Z I P for all iterations k.

Solve problem (44) with π = πk and let v̂ be the corresponding optimal solution.
Define ZU

k = min{L(π i) : i = 1, . . . , k}. As before, we will have that ZU
k ≥ Z I P

and ZL
k ≤ ZL I N .

If, at any iteration, we have that ZL
k ≥ ZU

k we can halt the algorithm. By defining
ZUB = ZU

k we will have that Z I P ≤ ZUB ≤ ZL I N .
On the other hand whenever ZL

k < ZU
k we will have that column v̂ − vo has

positive reduced cost in the master problem. Thus, letting vk+1 = v̂ − vo and V k+1 =
[V k, vk+1] we can continue iterating the algorithm.

123

532 G. Muñoz et al.

Appendix C: Distinct fractional values lemma

In this section we show that the BZ master problem will have bounded number of
distinct fractional values. This fact is important in Sect. 5.3, in order to argue why the
use of the elementary basis can reduce the number of columns in the BZ algorithm.

Consider the setting for the BZ algorithm, i.e, a problem of the form

Z BZ = max c′z + d ′u
s.t. Az ≤ b

Hz + Gu ≤ h
(46)

where {z : Az ≤ b} = {z : zi ≤ z j ∀ (i, j) ∈ I, 0 ≤ z ≤ 1}. It is well known
that A defines a totally unimodular matrix in such case, thus all extreme points of
{z : Az ≤ b} are 0-1 vectors.

Recall that z is an n-dimensional vector, and let m be the dimension of u. In this
section we prove the following result:

Lemma 2 Let (z̄, ū) be an extreme point of (46), and let q be the number of rows of
H (and G). Then the number of distinct fractional values of z̄ is at most q − m.

Note that by assuming an extreme point (z̄, ū) of (46) exists, we are implicitly
assuming q ≥ m. In fact, if (z̄, ū) is an extreme point of (46), then ū must be an
extreme point of {u : Gu ≤ h − Hz̄}. This, however, requires that G have at least m
rows, thus implying that q − m ≥ 0 holds.

An almost identical result is originally proved in [5]. We present such proof here,
adapted to our notation and including the u variables, which modifies the final result.
Note that this theorem also applies to every restricted BZ master problem (38), since
the latter is obtained by simply equating sets of variables of (37), thus maintaining the
same structure.

To prove Lemma 2wewill make use of the elementary basis introduced in Sect. 5.3,
that is, we write

z̄ =
k∑

i=1

λi v̄
i

where {λ1, . . . , λk} are the distinct non-zero values of z̄, and each v̄i is the corre-
sponding indicator vector for z̄ = λi . Without loss of generality we assume λ1 = 1,
so the fractional values of z̄ are given by {λ2, . . . , λk}.
Lemma 3 Let (z̄, ū) be an extreme point of (46), and decompose z̄ as above. Addi-
tionally, denote Ā the sub-matrix of A corresponding to binding constraints at (z̄, ū).
Then v̄i ∈ null(Ā) for all 2 ≤ i ≤ k, and they are linearly independent.

Proof The v̄i vectors are clearly linearly independent since they have disjoint support.
As for the first claim, consider a precedence constraint zi ≤ z j (i, j) ∈ I . If such
constraint is binding in (z̄, ū) then z̄i = z̄ j , which implies

v̄li = 1 ⇐⇒ v̄lj = 1, l = 1, . . . , k

123

A study of the Bienstock–Zuckerberg algorithm… 533

thus, v̄li = v̄lj ∀l. On the other hand, if a constraint zi ≤ 1 or zi ≥ 0 is binding at (z̄, ū)

then clearly v̄lj = 0 for l ≥ 2. This proves Āv̄l = 0 for 2 ≤ l ≤ k.

Lemma 4 Let (z̄, ū) and q be as in Lemma 2. Additionally, let Ā be the sub-matrix of
A corresponding to binding constraints at (z̄, ū). Then dim

(
null(Ā)

) ≤ q − m.

Proof Let H̄ , Ḡ be the set of rows of H and G corresponding to active constraints in
(z̄, ū). Since this is an extreme point, the matrix

[
Ā 0
H̄ Ḡ

]

must contain at least n +m linearly independent rows. Suppose [H̄ Ḡ] has q̄ linearly
independent rows. This implies Ā must have n + m − q̄ linearly independent rows,
and in virtue of the rank-nullity theorem,

dim
(
null(Ā)

) = n − rank(Ā) = q̄ − m ≤ q − m

Lemma 2 is then obtained as a direct corollary of Lemmas 3 and 4, since these two
prove k − 1 ≤ q − m, and k − 1 is exactly the number of fractional values of z̄.

References

1. Alford, C., Brazil, M., Lee, D.: Optimisation in underground mining. In: Weintraub, A., Romero, C.,
Bjorndal, T., Epstein, R. (eds.) Handbook of Operations Research in Natural Resources, pp. 561–577.
Springer, New York (2007)

2. Artigues, C., Demassey, S., Neron, E.: Resource-Constrained Project Scheduling:Models, Algorithms,
Extensions and Applications, vol. 37. Wiley, Hoboken (2010)

3. Berthold, T., Heinz, S., Lübbecke, M., Möhring, R., Schulz, J.: A constraint integer programming
approach for resource-constrained project scheduling. In: Lodi, A., Milano, M., Toth, P. (eds.) Integra-
tion of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems,
pp. 313–317. Springer, Berlin (2010)

4. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization, vol. 6. Athena Scientific, Belmont
(1997)

5. Bienstock, D., Zuckerberg,M.: A newLP algorithm for precedence constrained production scheduling.
Optim. Online. http://www.optimization-online.org/DB_HTML/2009/08/2380.html (2009)

6. Bienstock, D., Zuckerberg,M.: Solving LP relaxations of large-scale precedence constrained problems.
In: Proceedings from the 14th Conference on Integer Programming and Combinatorial Optimization
(IPCO). Lecture Notes in Computer Science, vol. 6080 pp. 1–14 (2010)

7. Boland, N., Dumitrescu, I., Froyland, G., Gleixner, A.: LP-based disaggregation approaches to solving
the open pit mining production scheduling problem with block processing selectivity. Comput. Oper.
Res. 36, 1064–1089 (2009)

8. Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained project scheduling:
notation, classification, models, and methods. Eur. J. Oper. Res. 112(1), 3–41 (1999)

9. Chicoisne, R., Espinoza, D., Goycoolea, M., Moreno, E., Rubio, E.: A new algorithm for the open-pit
mine production scheduling problem. Oper. Res. 60(3), 517–528 (2012)

10. Christofides, N., Alvarez-Valdés, R., Tamarit, J.: Project scheduling with resource constraints: a branch
and bound approach. Eur. J. Oper. Res. 29(3), 262–273 (1987)

11. Dagdelen, K., Johnson, T.: Optimum open pit mine production scheduling by Lagrangian parameter-
ization. In: Proceedings of the 19th International Symposium on the Application of Computers and
Operations Research in the Mineral Industry (APCOM) (1986)

123

http://www.optimization-online.org/DB_HTML/2009/08/2380.html

534 G. Muñoz et al.

12. Dantzig, G., Wolfe, P.: Decomposition principle for linear programs. Oper. Res. 8(1), 101–111 (1960)
13. Dassault Systèmes: GEOVIA Whittle (2015). http://www.gemcomsoftware.com/products/whittle
14. Debels, D., Vanhoucke, M.: A decomposition-based genetic algorithm for the resource-constrained

project-scheduling problem. Oper. Res. 55(3), 457–469 (2007)
15. Deswik: Deswik.sched (2015). https://www.deswik.com/product-detail/deswik-scheduler/
16. Espinoza,D.,Goycoolea,M.,Moreno, E.,Newman,A.:Minelib:A library of open pitmining problems.

Ann. Oper. Res. 206, 93–114 (2013)
17. Fisher, M.: Optimal solution of scheduling problems using Lagrange multipliers: part I. Oper. Res.

21(5), 1114–1127 (1973)
18. Goycoolea, M., Espinoza, D., Moreno, E., Rivera, O.: Comparing new and traditional methodologies

for production scheduling in open pit mining. In: Proceedings of the 37th International Symposium
on the Application of Computers and Operations Research in the Mineral Industry (APCOM), pp.
352–359 (2015)

19. Graham, R., Lawler, E., Lenstra, J., Kan, A.: Optimization and approximation in deterministic sequenc-
ing and scheduling: a survey. Ann. Discret. Math. 5, 287–326 (1979)

20. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-constrained project
scheduling problem. Eur. J. Oper. Res. 207(1), 1–14 (2010)

21. Hochbaum, D.: The pseudoflow algorithm: a new algorithm for the maximum-flow problem. Oper.
Res. 56, 992–1009 (2008)

22. Hustrulid, W., Kuchta, K. (eds.): Open Pit Mine Planning and Design. Taylor and Francis, London
(2006)

23. Johnson, T.: Optimum open pit mine production scheduling. Ph.D. thesis, Operations Research Depart-
ment, University of California, Berkeley (1968)

24. Kolisch, R., Sprecher, A.: PSP-Library. Online at http://www.om-db.wi.tum.de/psplib/datamm.html
(1997). [Online; accessed March-2015]

25. Kolisch, R., Sprecher, A.: PSPLIB—a project scheduling problem library. Eur. J. Oper. Res. 96(1),
205–216 (1997)

26. Lambert, W.B., Newman, A.M.: Tailored Lagrangian relaxation for the open pit block sequencing
problem. Ann. Oper. Res. 222(1), 419–438 (2014)

27. Martinez, M., Newman, A.: A solution approach for optimizing long-and short-term production
scheduling at LKAB’s Kiruna mine. Eur. J. Oper. Res. 211(1), 184–197 (2011)

28. MineMax: iGantt. https://www.minemax.com/solutions/products/igantt (2015)
29. MineMax: Planner. http://www.minemax.com/solutions/requirements/strategic-planning (2015)
30. MineMax: Scheduler (2015). http://www.minemax.com/solutions/requirements/strategic-planning
31. Möhring, R., Schulz, A., Stork, F., Uetz, M.: Solving project scheduling problems by minimum cut

computations. Manag. Sci. 49(3), 330–350 (2003)
32. Newman, A., Kuchta, M.: Using aggregation to optimize long-term production planning at an under-

ground mine. Eur. J. Oper. Res. 176(2), 1205–1218 (2007)
33. Newman, A., Rubio, E., Caro, R., Weintraub, A., Eurek, K.: A review of operations research in mine

planning. Interfaces 40, 222–245 (2010)
34. Osanloo, M., Gholamnejad, J., Karimi, B.: Long-term open pit mine production planning: a review of

models and algorithms. Int. J. Min. Reclam. Environ. 22(1), 3–35 (2008)
35. O’Sullivan, D., Newman, A.: Extraction and backfill scheduling in a complex underground mine.

Interfaces 44(2), 204–221 (2014)
36. O’Sullivan, D., Newman, A., Brickey, A.: Is open pit production scheduling ’easier’ than its under-

ground counterpart? Min. Eng. 67(4), 68–73 (2015)
37. Pessoa, A., Sadyvok, R., Uchoa, E., Vanderbeck, F.: In-out separation and column generation stabiliza-

tion by dual price smoothing. In: 12th International Symposium on Experimental Algorithms(SEA),
Rome, Lecture Notes in Computer Science, vol. 7933, pp. 354–365 (2013)

38. Pritsker, A., Waiters, L., Wolfe, P.: Multiproject scheduling with limited resources: a zero-one pro-
gramming approach. Manag. Sci. 16(1), 93–108 (1969)

39. Zhu, G., Bard, J., Yu, G.: A branch-and-cut procedure for the multimode resource-constrained project-
scheduling problem. INFORMS J. Comput. 18(3), 377–390 (2006)

123

http://www.gemcomsoftware.com/products/whittle
https://www.deswik.com/product-detail/deswik-scheduler/
http://www.om-db.wi.tum.de/psplib/datamm.html
https://www.minemax.com/solutions/products/igantt
http://www.minemax.com/solutions/requirements/strategic-planning
http://www.minemax.com/solutions/requirements/strategic-planning

	A study of the Bienstock–Zuckerberg algorithm: applications in mining and resource constrained project scheduling
	Abstract
	1 Introduction
	2 Background
	2.1 Scheduling applications in mine planning
	2.2 Mathematical programming methodologies

	3 Integer programming formulation
	4 Reformulation
	5 Methodology
	5.1 A general column generation algorithm
	5.2 Comparison to the Dantzig–Wolfe decomposition algorithm
	5.3 The BZ algorithm
	5.4 BZ algorithm speedups
	5.4.1 Speeding up the BZ pricing algorithm
	5.4.2 Speeding up the BZ master algorithm

	6 Computational results
	6.1 Results for OPPDP
	6.2 Results for OPPSP
	6.3 Results for RCPSP instances
	6.4 The way forward
	6.5 Concluding remarks

	Appendix A: Resource resource constraints in GPSP reformulation
	Appendix B: Equality form version of the GCG algorithm
	Appendix C: Distinct fractional values lemma
	References

