
Comput Optim Appl (2018) 69:189–223
https://doi.org/10.1007/s10589-017-9945-2

A multilevel bilinear programming algorithm
for the vertex separator problem

William W. Hager1 · James T. Hungerford2 ·
Ilya Safro3

Received: 1 September 2017 / Published online: 4 October 2017
© Springer Science+Business Media, LLC 2017

Abstract The Vertex Separator Problem for a graph is to find the smallest collection
of vertices whose removal breaks the graph into two disconnected subsets that sat-
isfy specified size constraints. The Vertex Separator Problem was formulated in the
paper 10.1016/j.ejor.2014.05.042 as a continuous (non-concave/non-convex) bilinear
quadratic program. In this paper, we develop a more general continuous bilinear pro-
gram which incorporates vertex weights, and which applies to the coarse graphs that
are generated in amultilevel compression of the originalVertex Separator Problem.We
develop amethod for improving upon a given vertex separator by applying aMountain
Climbing Algorithm to the bilinear program using an incidence vector for the separa-
tor as a starting guess. Sufficient conditions are developed under which the algorithm

September 1st, 2017. The research was supported by the Office of Naval Research under Grants
N00014-11-1-0068 and N00014-15-1-2048 and by the National Science Foundation under Grants
1522629 and 1522751. Part of the research was performed while the second author was a Givens
Associate at Argonne National Laboratory.

B James T. Hungerford
jamesthungerford@gmail.com

William W. Hager
hager@ufl.edu
http://people.clas.ufl.edu/hager/

Ilya Safro
isafro@clemson.edu
http://www.cs.clemson.edu/∼isafro

1 Department of Mathematics, University of Florida, PO Box 118105, Gainesville,
FL 32611-8105, USA

2 RaceTrac Store Support Center, 200 Galleria Pkwy SE, Atlanta, GA 30339, USA

3 School of Computing, Clemson University, 228 McAdams Hall, Clemson, SC 29634, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-017-9945-2&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2014.05.042

190 W. W. Hager et al.

can improve upon the starting guess after at most two iterations. The refinement algo-
rithm is augmented with a perturbation technique to enable escapes from local optima
and is embedded in a multilevel framework for solving large scale instances of the
problem. The multilevel algorithm is shown through computational experiments to
perform particularly well on communication and collaboration networks.

Keywords Vertex separator · Continuous formulation · Graph partitioning ·
Multilevel · Weighted edge contractions · Multilevel algorithm

Mathematics Subject Classification 90C35 · 90C27 · 90C20 · 90C06

1 Introduction

LetG = (V, E) be a graph on vertex setV = {1, 2, . . . , n} and edge set E ⊆ V×V .We
assume G is simple and undirected; that is for any vertices i and j we have (i, i) /∈ E
and (i, j) ∈ E if and only if (j, i) ∈ E (note that this implies that |E |, the number of
elements in E , is twice the total number of edges in G). For each i ∈ V , let ci ∈ R

denote the cost and wi > 0 denote the weight of vertex i . If Z ⊆ V , then

C(Z) =
∑

i∈Z
ci and W(Z) =

∑

i∈Z
wi

denote the total cost and weight of the vertices in Z , respectively.
If the vertices V are partitioned into three disjoint sets A, B, and S, then S sep-

arates A and B if there is no edge (i, j) ∈ E with i ∈ A and j ∈ B. The Vertex
Separator Problem (VSP) is to minimize the cost of S while requiring that A and B
have approximately the same weight. We formally state the VSP as follows:

min
A,S,B⊆V

C(S)

subject to S = V \ (A ∪ B), A ∩ B = ∅, (A × B) ∩ E = ∅,

�a ≤ W(A) ≤ ua, and �b ≤ W(B) ≤ ub, (1)

where �a , �b, ua , and ub are given nonnegative real numbers less than or equal to
W(V). The constraints S = V \ (A ∪ B) and A ∩ B = ∅ ensure that V is partitioned
into disjoint sets A, B, and S, while the constraint (A × B) ∩ E = ∅ ensures that
there are no edges between the setsA and B. Throughout the paper, we assume (1) is
feasible. In particular, if �a, �b ≥ 1, then there exist at least two distinct vertices i and
j such that (i, j) /∈ E ; that is, G is not a complete graph.
Vertex separators have applications inVLSI design [26,30,39], finite elementmeth-

ods [32], parallel processing [12], sparse matrix factorizations ([9, Sect. 7.6], [16,
Chapter 8], and [34]), hypergraph partitioning [25], and network security [7,27,31].
The VSP is NP-hard [5,15]. However, due to its practical significance, many heuristics
have been developed for obtaining approximate solutions, including node-swapping

123

A multilevel bilinear programming algorithm for the VSP 191

heuristics [29], spectral methods [34], semidefinite programming methods [13], and
recently a breakout local search algorithm [3].

Early methods [17,34], for computing vertex separators were based on computing
edge separators (bipartitions of V with low cost edge-cuts). In these algorithms, vertex
separators are obtained from edge separators by selecting vertices incident to the edges
in the cut. More recently, [1] gave a method for computing vertex separators in a graph
by finding low cost net-cuts in an associated hypergraph. Some of the most widely
used heuristics for computing edge separators are the node swapping heuristics of
Fiduccia–Mattheyses [14] and Kernighan–Lin [26], in which vertices are exchanged
between sets until the current partition is considered to be locally optimal.

It has been demonstrated repeatedly that for problems on large-scale graphs, such as
finding minimum k-partitionings [6,20,24] or minimum linear arrangements [36,38],
optimization algorithms can be much more effective when carried out in a multilevel
framework. In a multilevel framework, a hierarchy of increasingly smaller graphs
is generated which approximate the original graph, but with fewer degrees of free-
dom. The problem is solved for the coarsest graph in the hierarchy, and the solution
is gradually uncoarsened and refined to obtain a solution for the original graph.
During the uncoarsening phase, optimization algorithms are commonly employed
locally to make fast improvements to the solution at each level in the algorithm.
Although multilevel algorithms are inexact for most NP-hard problems on graphs,
they typically produce very high quality solutions and are very fast (often linear
in the number of vertices plus the number of edges with no hidden coefficients).
Many multilevel edge separator algorithms have been developed and incorporated
into graph partitioning packages (see survey in [6]). In [2], a Fiduccia–Mattheyses
type heuristic is used to find vertex separators directly. Variants of this algorithm have
been incorporated into the multilevel graph partitioners METIS [23,24] and BEND
[21].

In [19], the authors make a departure from traditional discrete-based heuristics for
solving the VSP, and present the first formulation of the problem as a continuous
optimization problem. In particular, when the vertex weights are identically one, con-
ditions are given under which the VSP is equivalent to solving a continuous bilinear
quadratic program.

The preliminary numerical results of [19] indicate that the bilinear programming
formulation can serve as an effective tool for making local improvements to a solution
in a multilevel context. The current work makes the following contributions:

1. The bilinear programming model of [19] is extended to the case where vertex
weights are possibly greater than one. This generalization is important since each
vertex in a multilevel compression corresponds to a collection of vertices in the
original graph. The bilinear formulation of the compressed graph is not exactly
equivalent to the VSP for the compressed graph, but it very closely approximates
the VSP as we show.

2. We develop an approach to improve upon a given vertex separator by applying a
Mountain Climbing Algorithm to the bilinear program using the incidence vector
for the separator as a starting guess. Sufficient conditions are developed under
which the algorithm can improve upon the separator after at most two iterations.

123

192 W. W. Hager et al.

3. We investigate a technique for escaping local optima encountered by the Moun-
tain Climbing Algorithm based on relaxing the constraint that there are no edges
between the sets in the partition. Since this constraint is enforced by a penalty in the
objective, we determine the smallest possible relaxation of the penalty for which
a gradient descent step moves the iterate to a new location where the separator
could be smaller.

4. A multilevel algorithm is developed which incorporates the weighted bilinear pro-
gram in the refinement phase alongwith the perturbation technique. Computational
results are given to compare the quality of the solutions obtained with the bilin-
ear programming approach to a multilevel vertex separator routine in the METIS
package. The algorithm is shown to be especially effective on communication and
collaboration networks.

The outline of the paper is as follows. Section 3 reviews the bilinear programming
formulation of theVSP in [19] and develops theweighted formulationwhich is suitable
for the coarser levels in the algorithm. In Sect. 4 we develop the Mountain Climbing
Algorithm and examine some sufficient conditions under which a separator can be
improved by the algorithm. The conditions are derived in the appendix. In addition,
a perturbation technique is developed for escaping local optima. Section 5 summa-
rizes the multilevel framework, while Sect. 6 gives numerical results comparing our
algorithm to METIS. Conclusions are drawn in Sect. 7.

2 Notation

Vectors or matrices whose entries are all 0 or all 1 are denoted by 0 or 1 respectively,
where the dimension will be clear from the context. The set of integers is Z, while Z+
is the set of strictly positive integers. If x ∈ R

n and f : Rn → R, then ∇ f (x) denotes
the gradient of f at x, a row vector, and ∇2 f (x) is the Hessian. If f : Rn ×R

n → R,
then∇x f (x, y) is the row vector corresponding to the first n entries of∇ f (x, y), while
∇y f (x, y) is the row vector corresponding to the last n entries. If A is a matrix, then
Ai denotes the i-th row of A. If x ∈ R

n , then x ≥ 0 means xi ≥ 0 for all i , and xT

denotes the transpose, a row vector. Let I ∈ R
n×n denote the n × n identity matrix,

let ei denote the i-th column of I, and let |A| denote the number of elements in the set
A. If Z ⊆ V , then

N (Z) = { j ∈ V\Z : ∃ i ∈ Z s.t. (i, j) ∈ E}

is the set of neighbors ofZ andN (Z) = N (Z)∪Z . Let B = {0, 1} denote the binary
numbers. If x ∈ B

n , then the support of x is defined by

supp(x) = {i ∈ V : xi = 1},

and if A ⊆ V , then supp−1(A) is the vector x ∈ B
n whose support is A. Hence,

supp−1(supp(x)) = x.

123

A multilevel bilinear programming algorithm for the VSP 193

3 Bilinear programming formulation

Since minimizing C(S) in (1) is equivalent to maximizing C(A ∪ B), we may view
the VSP as the following maximization problem:

max
A,B⊆V

C(A ∪ B)

subject to A ∩ B = ∅, (A × B) ∩ E = ∅,

�a ≤ W(A) ≤ ua, and �b ≤ W(B) ≤ ub. (2)

Let A be the n × n adjacency matrix for the graph G defined by ai j = 1 if (i, j) ∈ E
and ai j = 0 otherwise, and let I be the n × n identity matrix. For any pair of subsets
A,B ⊆ V , let x = supp−1(A) and y = supp−1(B) be the associated binary support
vectors. Observe that

xT(A + I)y =
n∑

i=1

n∑

j=1

xiai j y j +
n∑

i=1

xi yi =
∑

xi=1

∑

y j=1

ai j +
∑

xi=yi=1

1.

By definition, xi = 1 or y j = 1 if and only if i ∈ A or j ∈ B respectively, and ai j = 1
if and only (i, j) ∈ E . Consequently, we have

xT(A + I)y =
∑

i∈A

∑

j∈B
ai j +

∑

i∈A∩B
1 = |(A × B) ∩ E | + |A ∩ B|.

So, the constraints A ∩ B = ∅ and (A × B) ∩ E = ∅ in (2) hold if and only if

xT(A + I)y = 0, where x = supp(A) and y = supp(B). (3)

Moreover, for these support vectors, we have C(A∪B) = cT(x+y) andW(A) = wTx,
where c and w are the n-dimensional vectors which store the costs ci and weights wi

of vertices, respectively. Hence, a binary formulation of (2) is

max
x,y∈Bn

cT(x + y)

subject to xT(A + I)y = 0,

�a ≤ wTx ≤ ua, and �b ≤ wTy ≤ ub. (4)

Now, consider the following problem in which the quadratic constraint of (4) has
been relaxed:

max
x,y∈Bn

f (x, y) := cT(x + y) − γ xT(A + I)y

subject to �a ≤ wTx ≤ ua and �b ≤ wTy ≤ ub. (5)

Here, γ ∈ R. Notice that γ xT(A + I)y acts as a penalty term in (5) when γ ≥ 0, since
xT(A + I)y ≥ 0 for every x, y ∈ B

n . Moreover, (5) gives a relaxation of (4), since the

123

194 W. W. Hager et al.

constraint (3) is not enforced. Problem (5) is feasible since the VSP (2) is feasible by
assumption. The following proposition gives conditions under which (5) is essentially
equivalent to (4) and (2).

Proposition 1 If w ≥ 1 and γ > 0 with γ ≥ max{ci : i ∈ V}, then for any feasible
point (x, y) in (5) satisfying

f (x, y) ≥ γ (�a + �b), (6)

there is a feasible point (x, y) in (5) such that

f (x, y) ≥ f (x, y) and xT(A + I)y = 0. (7)

Hence, if the optimal objective value in (5) is at least γ (�a + �b), then there exists an
optimal solution (x∗, y∗) to (5) such that an optimal solution to (2) is given by

A = supp(x∗), B = supp(y∗), and S = V \ A ∪ B. (8)

Proof Let (x, y) be a feasible point in (5) satisfying (6). Since x, y, and (A + I) are
nonnegative, we have xT(A + I)y ≥ 0. If xT(A + I)y = 0, then we simply take x = x
and y = y, and (7) is satisfied. Now suppose instead that

xT(A + I)y > 0. (9)

Then,

γ (�a + �b) ≤ f (x, y) = cT(x + y) − γ xT(A + I)y (10)

< cT(x + y) (11)

≤ γ 1T(x + y). (12)

Here, (10) is due to (6), (11) is due to (9) and the assumption that γ > 0, and (12)
holds by the assumption that γ ≥ max{ci : i ∈ V}. It follows that either 1Tx > �a or
1Ty > �b.

Assume without loss of generality that 1Tx > �a . Since x is binary and �a is an
integer, we have

1Tx ≥ �a + 1.

Since the entries in x, y, and (A + I) are all non-negative integers, (9) implies that
there exists an index i such that (A + I)iy ≥ 1 and xi = 1 (recall that subscripts on
a matrix correspond to the rows). If x̂ = x − ei , then (x̂, y) is feasible in problem (5)
since ua ≥ wTx > wTx̂ and

wTx̂ ≥ 1Tx̂ = 1Tx − 1 ≥ �a .

123

A multilevel bilinear programming algorithm for the VSP 195

Input: A binary feasible point (x, y) for (5) satisfying (6)
while (xT(A + I)y > 0)

if (1Tx > �a)
Choose i such that xi = 1 and (A + I)iy ≥ 1.
Set xi = 0.

else if (1Ty > �b)
Choose i such that yi = 1 and (A + I)ix ≥ 1.
Set yi = 0.

end if
end while

Algorithm 1 Convert a binary feasible point for (5) into a vertex separator without decreasing the objective
function value.

Here the first inequality is due to the assumption that w ≥ 1. Furthermore,

f (x̂, y) = f (x, y) − ci + γ (A + I)iy ≥ f (x, y) − ci + γ ≥ f (x, y), (13)

since (A + I)iy ≥ 1, γ ≥ 0, and γ ≥ ci . We can continue to set components of x
and y to 0 until reaching a binary feasible point (x, y) for which xT(A + I)y = 0 and
f (x, y) ≥ f (x, y). This completes the proof of the first claim in the proposition.
Now, if the optimal objective value in (5) is at least γ (�a + �b), then by the first

part of the proposition, we may find an optimal solution (x∗, y∗) satisfying (3); hence,
(x∗, y∗) is feasible in (4). Since (5) is a relaxation of (4), (x∗, y∗) is optimal in (4).
Hence, the partition (A,S,B) defined by (8) is optimal in (2). This completes the
proof. ��
Algorithm 1 represents the procedure used in the proof of Proposition 1 to move from
a feasible point in (5) to a feasible point (x, y) satisfying (7).

Remark 1 There is typically an abundance of feasible points in (5) satisfying (6). For
example, in the common case where γ = ci = wi = 1 for each i , (6) is satisfied
whenever x = supp−1(A) and y = supp−1(B) for a pair of feasible sets A and B in
(2), since in this case

f (x, y) = cT(x + y) = wTx + wTy = W(A) + W(B) ≥ �a + �b = γ (�a + �b).

The algorithms developed in the next section find and improve upon vertex sep-
arators by generating approximate solutions to the binary program (5). A key step
towards generating these solutions is in solving the following continuous relaxation,
which provides an upper bound on the optimal objective value of (5):

max
x,y∈Rn

f (x, y) := cT(x + y) − γ xT(A + I)y

subject to 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, �a ≤ wTx ≤ ua, and �b ≤ wTy ≤ ub.

(14)

123

196 W. W. Hager et al.

The upper bound provided by (14) is typically very tight in practice. In fact, in [19]
the authors showed that (14) is in a sense equivalent to (5) in the case where c ≥ 0,
w = 1, and the upper and lower bounds on A and B are integers. In particular, the
following result was proved:

Theorem 1 (see [19, Theorem 2.1, Part 1]) Suppose that ua, �a, ub, �b ∈ Z, w = 1,
c ≥ 0, and γ ≥ max{ci : i ∈ V} > 0. If (2) is feasible and the optimal objective value
in (2) is at least γ (�a + �b), then (14) has a binary optimal solution (x, y) ∈ B

2n

satisfying (3).

In the proof of Theorem 1, a step-by-step procedure is given for moving from any
feasible point (x, y) in (14) to a binary point (x, y) satisfying f (x, y) ≥ f (x, y). Thus,
when the assumptions of Theorem 1 are satisfied the VSP may be solved with a 4-step
procedure:

1. Obtain an optimal solution to the continuous bilinear program (14).
2. Move to a binary optimal solution using the algorithm of [19, Theorem 2.1, Part

1].
3. Convert the binary solution of (14) to a separator using Algorithm 1.
4. Construct an optimal partition via (8).

When G has a small number of vertices, the dimension of the bilinear program (14)
is small, and the above approachmay be effective, dependingmainly on the continuous
optimization algorithm one chooses for Step 1. However, since the objective function
in (14) is non-concave, the number of local maximizers in (14) grows quickly as |V|
becomes large and solving the bilinear program becomes increasingly difficult.

In order to find good approximate solutions to (14) when G is large, we will incor-
porate the 4-step procedure (with some modifications) into a multilevel framework
(see Sect. 5). The basic idea is to coarsen the graph into a smaller graph having a
similar structure to the original graph; the VSP is then solved for the coarse graph via
a procedure similar to the one above, and the solution is uncoarsened to give a solution
for the original graph.

At the coarser levels of our algorithm, each vertex represents an aggregate of vertices
from the original graph. Hence, in order to keep track of the sizes of the aggregates,
weightsmust be assigned to the vertices in the coarse graphs, whichmeans the assump-
tion of Theorem 1 that w = 1 does not hold at the coarser levels. However, in the
general case where w > 0 and c ∈ R

n , the following weaker result is obtained:

Definition 1 A point (x, y) ∈ R
2n is calledmostly binary if x and y each have at most

one non-binary component.

Proposition 2 If the VSP (2) is feasible and γ ∈ R, then (14) has a mostly binary
optimal solution.

Proof We show that the following stronger property holds:

(P) For any (x, y) feasible in (14), there exists a piecewise linear path to a feasible
point (x, y) ∈ R

2n which is mostly binary and satisfies f (x, y) ≥ f (x, y).

123

A multilevel bilinear programming algorithm for the VSP 197

Let (x, y) be any feasible point of (14). If x and y each have at most one non-binary
component, then we are done. Otherwise, assumewithout loss of generality there exist
indices k �= l such that

0 < xk ≤ xl < 1.

Since w > 0, we can define

x(t) := x + t

(
1

wk
ek − 1

wl
el

)

for t ∈ R. Substituting x = x(t) in the objective function yields

f (x(t), y) = f (x, y) + td, where d = ∇x f (x, y)
(

1

wk
ek − 1

wl
el

)
.

If d ≥ 0, then we may increase t from zero until either xk(t) = 1 or xl(t) = 0. In
the case where d < 0, we may decrease t until either xk(t) = 0 or xl(t) = 1. In
either case, the number of non-binary components in x is reduced by at least one,
while the objective value does not decrease by the choice of the sign of t . Feasibility is
maintained since wTx(t) = wTx. We may continue moving components to bounds in
this manner until x has at most one non-binary component. The same procedure may
be applied to y. In this way, we will arrive at a feasible point (x, y) such that x and y
each have at most one non-binary component and f (x, y) ≥ f (x, y). This proves (P),
which completes the proof. ��

The proof of Proposition 2 was constructive. A nonconstructive proof goes as
follows: Since the quadratic program (14) is bilinear, there exists an optimal solution
lying at an extreme point [28]. At an extreme point of the feasible set of (14), exactly
2n linearly independent constraints are active. Since there can be at most n linearly
independent constraints which are active at x, and similarly for y, there must exist
exactly n linearly independent constraints which are active at x; in particular, at least
n − 1 components of x must lie at a bound, and similarly for y. Therefore, (x, y) is
mostly binary. In the case wherew �= 1, there may exist extreme points of the feasible
set which are not binary; for example, consider n = 3, �a = �b = 1, ua = ub = 2,
w = (1, 1, 2), x = (1, 0, 0.5), and y = (0, 1, 0.5).

Often, the conclusion of Proposition 2 can be further strengthened to assert the
existence of a solution (x, y) of (14) for which either x or y is completely binary,
while the other variable has at most one nonbinary component. The rationale is the
following: Suppose that (x, y) is a mostly binary optimal solution and without loss
of generality xi is a nonbinary component of x. Substituting x(t) = x + tei in the
objective function we obtain

f (x(t), y) = f (x, y) + td, d = ∇x f (x, y)ei .

123

198 W. W. Hager et al.

Input: A feasible point (x, y) for the continuous bilinear program (14).
while (x has at least 2 nonbinary components)

Choose i, j ∈ V such that xi , x j ∈ (0, 1).
Update x ← x + t (1

wi
ei − 1

w j
e j), choosing t to ensure that:

(a) f (x, y) does not decrease,
(b) either xi ∈ B or x j ∈ B,
(c) x feasible in (14).

end while
while (y has at least 2 nonbinary components)

Choose i, j ∈ V such that yi , y j ∈ (0, 1).
Update y ← y + t (1

wi
ei − 1

w j
e j), choosing t to ensure that:

(a) f (x, y) does not decrease,
(b) either yi ∈ B or y j ∈ B,
(c) y feasible in (14).

end while

Algorithm 2 Convert a feasible point for (14) into a mostly binary feasible point without decreasing the
objective value.

If d ≥ 0, we increase t , while if d < 0, we decrease t ; in either case, the objective
function f (x(t), y) cannot decrease. If

�a + wi ≤ wTx ≤ ua − wi , (15)

then we can let t grow in magnitude until either xi (t) = 0 or xi (t) = 1, while
complying with the bounds �a ≤ wTx(t) ≤ ua . In applications, either the inequality
(15) holds, or an analogous inequality �b + w j ≤ wTy ≤ ua − w j holds for y, where
y j is a nonbinary component of y. The reason that one of these inequalities holds is
that we typically have ua = ub > W(V)/2, which implies that the upper bounds
wTx ≤ ua and wTy ≤ ub cannot be simultaneously active. On the other hand, the
lower bounds wTx ≥ �a and wTy ≥ �b are often trivially satisfied when �a and �b are
small numbers like one.

Algorithm 2 represents the procedure used in the proof of Proposition 2 to convert
a given feasible point for (14) into a mostly binary feasible point without decreasing
the objective function value. In the case where w = 1, the final point returned by
Algorithm 2 is binary.

Although the continuous bilinear problem (14) is not necessarily equivalent to the
discrete VSP (2) when w �= 1, it closely approximates (2) in the sense that it has a
mostly binary optimal solution. Since (14) is a relaxation of (4), the objective value at
an optimal solution to (14) gives an upper bound on the optimal objective value in (4),
and therefore on the optimal objective value in (2). On the other hand, given a mostly
binary solution to (14), we can typically push the remaining fractional components to
bounds without violating the constraints onwTx andwTy. Then we apply Algorithm 1
to this binary point to obtain a feasible point in (4), giving a lower bound on the optimal
objective value in (4) and (2). In the case where w = 1, the upper and lower bounds
are equal.

123

A multilevel bilinear programming algorithm for the VSP 199

Input: A feasible point (x, y) for (14) and η > 0.
while ((x, y) not stationary point for (14))

x̂ ← argmax { f (x, y) : x ∈ Pa}
ŷ ← argmax { f (x, y) : y ∈ Pb}
if (f (x̂, ŷ) > max { f (x̂, y), f (x, ŷ)}(η + 1))

(x, y) ← (x̂, ŷ)
else if (f (x̂, y) > f (x, ŷ)(η + 1))

x ← x̂
else

y ← ŷ
end if

end while
return (x, y)

Algorithm 3 MCA: A modified version of Konno’s Mountain Climbing Algorithm for generating a
stationary point for (14).

4 Finding and improving upon vertex separators

Due to the bilinear structure of the objective in (14), one strategy for generating an
approximate solution is to start from any feasible point and successively optimize over
x and then over ywhile leaving the other variable fixed. This is a specific instance of the
general Mountain Climbing Algorithm of Konno [28] for solving bilinear programs.
Let Pa and Pb denote the feasible sets (polyhedra) associated with x and y in (14);
that is,

Pi = {z ∈ R
n : 0 ≤ z ≤ 1 and �i ≤ wTz ≤ ui }, i = a, b . (16)

In Algorithm 3, we employ a variant of the Mountain Climbing Algorithm (MCA)
that includes a diagonal step. For a given (x, y), let x̂ denote the maximizer of f (x, y)
over x ∈ Pa , and let ŷ denote the maximizer over y ∈ Pb. The diagonal steps to (x̂, ŷ)
are only taken during the initial iterations when they provide an improvement at least
1 + η times better than either an individual x̂ or ŷ step, where η is a small constant
(10−10 in our experiments). After an x̂ or ŷ step is taken, the iterates alternate between
(x̂, y) and (x, ŷ), and hence only one linear program is solved at each iteration.

At each iteration of MCA, computing x̂ or ŷ amounts to solving a linear program
where the feasible set is of the form (16). For example, the computation of x̂ in MCA
amounts to solving the linear program

max{gTz : 0 ≤ z ≤ 1, �a ≤ wTz ≤ ua}, (17)

where g corresponds to the gradient of the objective f (x, y) with respect to y. We
note that (17) is a special case of the convex quadratic knapsack problem studied in
[11]. In most VSP applications, the constraint �a ≤ wTz is satisfied trivially. In this
case, the algorithm in [11] for solving (17) introduces a Lagrange multiplier λ for the
constraint wTz ≤ ua and defines

123

200 W. W. Hager et al.

(J1)
f = 3 f = 4

(J2)
f = 2 f = 3

(J3)
f = 4 f = 4 f = 5

(J4)
f = 7 f = 7 f = 8

(J5)
f = 4 f = 4 f = 5

Fig. 1 Examples of the cases (J1)–(J5) in the Appendix where MCA is guaranteed to strictly improve the
objective value. The initial partition A, S, B, appears on the left, followed by the next one or two iterates
of MCA

zi (λ) =
{
1 if gi + λwi > 0,
0 if gi + λwi < 0,

where zi (λ) can be chosen arbitrarily in the interval [0, 1] when gi + λwi = 0. To
solve (17), we start from λ = 0 and decrease λ until reaching the first z(λ) for which
wTz(λ) ≤ ua . Since the set Z = {i : gi + λwi = 0} could have more than one
element, there could be multiple solutions to (17). In order to explore a larger swath
of the solution space, we make at most one component zi (λ) fractional for i ∈ Z ,
and make the remaining components of zi (λ) for i ∈ Z binary; the ones in these
remaining binary components are assigned randomly. MCA will typically converge
to a stationary point of (14) in a small number of iterations. Moreover, using the
implementation described above, the stationary point is almost binary.

In the Appendix, we develop 5 different cases, (J1)–(J5), whereMCA is guaranteed
to strictly improve the objective value. Specific instances of these cases are shown in
Fig. 1, where c = w = 1, �a = �b = 1, and ua and ub are sufficiently large. The figure

123

A multilevel bilinear programming algorithm for the VSP 201

gives for each case the initial partition in the order A, S, B, followed by the next one
or two iterations of MCA obtained by maximizing (14) first with respect to y and then
possibly with respect to x while holding the other variable fixed. In two of these cases,
MCA leads to iterates for which one or two vertices satisfy xi = yi = 1, so the dis-
jointness condition xTy = 0 does not hold. Dotted lines connect vertices that appear in
bothA and B. In this case, Proposition 1 and Algorithm 1 can be used to obtain a fea-
sible partition for (1) where A and B are disjoint. The objective value in (14) appears
above each partition. In the cases (J2), (J4), and (J5) a traditional Fidducia-Matheyses
type algorithm based on iteratively moving vertices from S to one of the two shores
and then moving the neighbors in the opposite shore into S would fail to find an
improvement in the initial partition. Indeed, applying the routine METISRefine (from
METIS 5.1.0 [24]) to these partitions fails to reduce the size of the separator. Observe
that in cases (J4) and (J5), MCA is able to reduce the size of S by essentially removing
“false hub” vertices from the separator and replacing them with a single better vertex.
One of the mechanisms by which MCA finds these improvement opportunities (eg.
(J4)) is by temporarily violating the disjointness condition, effectively delaying the
assignment of a vertex to a particular set until the “optimal” choice can be determined.
We remark that the structures described in (J4) and (J5) often arise in communication
networks and in networks having a centralized hub of vertices. This suggests that
MCA may be particularly effective on graphs coming from communication applica-
tions. As we will see, this hypothesis is supported by our computational results in
Sect. 6.

There are also many cases in which a vertex separator cannot be improved
by MCA, but can be improved by a Fidduccia-Mattheyses type algorithm. In
order to improve the performance of MCA in these cases, we enhance it to
include a technique which we call γ -perturbations. Let us also denote the objec-
tive function in (14) as fγ to emphasize its dependence on the penalty parameter
γ .

According to our theory, we need to take γ ≥ max{ci : i ∈ V} to ensure an
(approximate) equivalence between the discrete (2) and the continuous VSP (14).
The penalty term −γ xT(A + I)y in the objective function of (14) enforces the con-
straints A ∩ B = ∅ and (A × B) ∩ E = ∅ of (2). Thus, by decreasing γ , we
relax our enforcement of these constraints and place greater emphasis on the cost
of the separator. The next proposition will determine the amount by which we
must decrease γ in order to ensure that a first-order optimal point (x, y) of fγ
no longer satisfies the first-order optimality conditions for the perturbed problem
fγ̃ . A standard statement of the first-order optimality conditions for non-linear pro-
grams is given in [33]. The following theorem is a special case [18, Proposition
3.1].

Theorem 2 If γ ∈ R and (x, y) is feasible in (14), then (x, y) satisfies the first-order
optimal condition if and only if the following hold:

(C1) ∇x f (x, y)d ≤ 0 for every d ∈ Fa(x) ∩ D,
(C2) ∇y f (x, y)d ≤ 0 for every d ∈ Fb(y) ∩ D,

123

202 W. W. Hager et al.

where

Fi (z) =

⎧
⎪⎪⎨

⎪⎪⎩
d ∈ R

n :
d j ≤ 0 for all j such that z j = 1
d j ≥ 0 for all j such that z j = 0
wTd ≤ 0 if wTz = ui
wTd ≥ 0 if wTz = li

⎫
⎪⎪⎬

⎪⎪⎭
, i = a, b, z ∈ R

n,

and

D =
n⋃

i, j=1

{
ei ,−ei , w jei − wie j

}
. (18)

The sets Fa and Fb are the cones of first-order feasible directions at x and y. The
set D is a reflective edge description (introduced in [18]) of each of the sets Pa and
Pb; that is, each edge of Pa is parallel to an element of D. Since D is a finite set,
checking the first-order optimality conditions reduces to testing the conditions (C1)
and (C2) for the finite collection of elements fromD that are in the cone of first-order
feasible directions.

Proposition 3 Let γ ∈ R, let (x, y) be a feasible point in (14) which satisfies the first-
order optimality condition (C1) for f = fγ , and let γ̃ ≤ γ . Suppose that wTx > �a.
Then (C1) holds at (x, y) for f = fγ̃ if and only if

γ̃ ≥ α :=
{

α1, if wTx < ua,
α2, if wTx = ua,

where

α1 = max

{
c j

(A + I) jy
: x j < 1 and (A + I) jy > 0

}
, and

α2 = inf

{
α ∈ R : 1

wi

∂ fα
∂xi

(x, y) ≤ 1

w j

∂ fα
∂x j

(x, y) ∀ xi < 1 and x j > 0

}
.

Proof First, we consider the case wherewTx < ua . In this case, the cone of first-order
feasible directions at x is given by

Fa(x) = {
d ∈ R

n : di ≥ 0 when xi = 0 and di ≤ 0 when xi = 1, i = 1, . . . , n
}
.

It follows that for each i = 1, . . . , n,

ei ∈ Fa(x) if and only if xi < 1,
−ei ∈ Fa(x) if and only if xi > 0,

(w jei − wie j) ∈ Fa(x) if and only if xi < 1 and x j > 0.

123

A multilevel bilinear programming algorithm for the VSP 203

Hence, the first-order optimality condition (C1) for fγ̃ can be expressed as follows:

∇x fγ̃ (x, y)ei ≤ 0 when xi < 1, (19)

∇x fγ̃ (x, y)ei ≥ 0 when xi > 0, (20)

∇x fγ̃ (x, y)(w jei − wie j) ≤ 0 when xi < 1 and x j > 0. (21)

Since (21) is implied by (19) and (20), it follows that (C1) holds if and only if (19)
and (20) hold. Since (C1) holds for fγ , we know that

∇x fγ (x, y)ei = ci − γ (A + I)iy ≥ 0 when xi > 0.

Hence, since γ̃ ≤ γ and (A + I)iy ≥ 0,

∇x fγ̃ (x, y)ei = ci − γ̃ (A + I)iy ≥ 0 when xi > 0.

Hence, (C1) holds with respect to γ̃ if and only if (19) holds. Since (C1) holds for
f = fγ , we have

c j − γ (A + I) jy ≤ 0 when x j < 1. (22)

Hence, for every j such that x j < 1 and (A + I) jy = 0, we have

c j − γ̃ (A + I) jy = c j = c j − γ (A + I) jy ≤ 0.

So, (19) holds if and only if c j − γ̃ (A + I) jy ≤ 0 for every j ∈ J ; that is, if and only
if γ̃ ≥ α1.

Next, suppose that wTx = ua . Then, the cone of first-order feasible directions at
x has the constraint wTd ≤ 0. Consequently, ei /∈ Fa(x) ∩ D for any i , and the
first-order optimality condition (C1) for fγ̃ reduces to (20)–(21). As in Part 1, (20)
holds, since γ̃ ≤ γ . Condition (21) is equivalent to γ̃ ∈ Γ , where Γ is the set on the
right hand side of the definition of α2. Since (21) holds for f = fγ , we have γ ∈ Γ .
Since ∇x fγ̃ (x, y) is a affine function of γ̃ , the set of γ̃ satisfying (21) for some i and
j such that x j > 0 and xi < 1 is a closed interval, and the intersection of the intervals
over all i and j for which x j > 0 and xi < 1 is also a closed interval. Hence, since
γ̃ ≤ γ ∈ Γ , we have γ̃ ∈ Γ if and only if γ̃ ≥ α2, which completes the proof. ��
Remark 4.1 Of course, Proposition 3 also holds when the variables x and y and the
bounds (�a, ua) and (�b, ub) are interchanged. Hence, to ensure that the current iterate
is not a stationary point of of fγ , we only need to choose γ strictly smaller than the
largest of the two lower bounds gotten from Proposition 3. Given a stationary point
(x, y) for (14), let the function minreduce (x, y) denote the smallest γ for which
(x, y) remains a stationary point of fγ . In most applications, ua and ub > W(V)/2,
�a = �b = 1, which implies that at most one of the constraintswTx ≤ ua orwTy ≤ ub
is active. Note that the bound given by α2 in Proposition 3 often provides no useful
information in the following sense: In a multilevel implementation, the vertex costs
(and weights) are often 1 at the finest level, and at coarser levels, the vertex costs may
not differ greatly. When the vertex costs are equal, (21) holds when γ̃ has the same

123

204 W. W. Hager et al.

Input: A feasible point (x, y) for (14), δ > 0, and K ≥ 1.
(x, y) ← MCA (x, y)
γ̃ ← minreduce (x, y), k ← 1
while (k ≤ K)

γ̃ ← reduce (γ̃ , k)
(x̃, ỹ) ← MCA (x, y, γ̃)

(x∗, y∗) ← MCA (x̃, ỹ, γ)

if (f (x∗, y∗) > f (x, y)(δ + 1))
(x, y) ← (x∗, y∗)

γ̃ ← minreduce (x, y)
end if
k ← k + 1

end while
return (x, y)

Algorithm 5 MCA GR: A refinement algorithm for (14) which incorporates γ -refinements.

sign as γ ; that is, as long as γ̃ ≥ 0, which implies that α2 = 0. Since α1 is typically
positive, minreduce (x, y) often corresponds to α1.

Algorithm 5, denoted MCA GR, approximately solves (14), using MCA in con-
junction with γ -refinements. Here, the notationMCA(x, y, γ̃) indicates that theMCA
algorithm is applied to the point (x, y) using γ̃ in place of γ as the penalty parameter.
In our implementation of MCA GR, we used the function reduce which was defined
as follows:

reduce (γ̃ , k) =
{

γ̃ − 10−6 when k = 1,
γ̃ /2 when k > 1.

5 Multilevel algorithm

We now give an overview of a multilevel algorithm, which we call BLP, based on
the bilinear programming formulation of the vertex separator problem. The algorithm
consists of three phases: coarsening, solving, and uncoarsening.

Coarsening Vertices are visited one by one and each vertex is matched with an
unmatched adjacent vertex,whenever one exists.Matched vertices aremerged together
to form a single vertex having a cost and weight equal to the sum of the costs and
weights of the constituent vertices. This coarsening process repeats until the graph has
fewer than 75 vertices or fewer than 10 edges.

The goal of the coarsening phase is to reduce the number of degrees of freedom
in the problem, while preserving its structure so that the solutions obtained for the
coarse problems give a good approximation to the solution for the original problem.
We consider two matching rules: random and heavy-edge. In random matching, we
randomly combine pairs of vertices in the graph. To implement heavy-edge matching,
we associated weights with each edge in the graph. When two edges are combined
during the coarsening process, the new edge weight is the sum of the weights of the

123

A multilevel bilinear programming algorithm for the VSP 205

combined edges. In the coarsening, eachvertex ismatchedwith anunmatchedneighbor
such that the edge between them has the greatest weight over all unmatched neighbors.
Heavy edge matching rules have been used in multilevel algorithms such as [20,24],
and were originally developed for edge-cut problems. In our initial experiments, we
also considered a third rule based on an algebraic distance [8] between vertices.
However, the results were not significantly different from heavy-edgematching, which
is not surprising, since (like heavy-edge rules) the algebraic distance was originally
developed for minimizing edge-cuts.

Solving For each of the graphs in the multilevel hierarchy, we approximately solve
(14) using MCA GR. For the coarsest graph, the starting guess is xi = ua/W(V)

and yi = ub/W(V), i = 1, 2, . . . , n. For the finer graphs, a starting guess is obtained
from the next coarser level using the uncoarsening process described below. After
MCA GR terminates, Algorithm 3.2 along with the modification discussed after
Proposition 2 are used to obtain a mostly binary approximation to a solution of (14).
Algorithm 3.1 is then used to convert the binary solution into a vertex separator.

UncoarseningWeuse the solution for the vertex separator problem computed at any
level in themultilevel hierarchy as a starting guess for the solution at the next finer level.
Sophisticated cycling techniques like the W- or F-cycle [4] were not implemented. A
starting guess for the next finer graph is obtained by unmatching vertices in the coarser
graph. Suppose that we are uncoarsening from level l to l − 1 and (xl , yl) denotes the
solution computed at level l. If vertex i at level l is obtained bymatching vertices j and
k at level l−1, then our starting guess for (xl−1, yl−1) is simply (xl−1

j , yl−1
j) = (xli , y

l
i)

and (xl−1
k , yl−1

k) = (xli , y
l
i).

6 Numerical results

The multilevel algorithm BLP was programmed in C++ and compiled using g++
with optimization O3 on a Dell Precision T7610 Workstation with a Dual Intel Xeon
Processor E5-2687Wv2 (16 physical cores, 3.4GHz, 25.6MBcache, 192GBmemory).
When solving the linear programs (17) arising in MCA, it was convenient to sort the
ratios gi/wi ; the sorting phase was carried out by calling std :: sort , the (O(n log n))
sorting routine implemented in the C++ standard library. The number of iterations of
the main loop in MCA GR was capped at K = 10. On each level in the multilevel
hierarchy, after the uncoarsening phase, MCA GR was called repeatedly until the
solution failed to improve, but at most 10 times. We used the parameters η = 10−10

and δ = 10−13 for MCA and MCA GR, respectively.
We evaluated the performance of BLP by making comparisons with the routine

METIS ComputeVertexSeparator,

which is an implementation of a multilevel Fidduccia-Mattheyses-like algorithm for
the VSP available from METIS 5.1.0 [24]. The following options were used:

METIS IPTYPE NODE (coarsest problem solved with node growth scheme),
METIS RTYPE SEP2SIDED (Fiduccia–Mattheyses-like refinement scheme),
METIS OPTION NITER = 1,000,000 (maximum refinement iterations).

123

206 W. W. Hager et al.

In a preliminary experiment, we also considered the refinement option

METIS RTYPE SEP1SIDED,

but the results obtained were not significantly different. On average, the option

METIS RTYPE SEP2SIDED

provided slightly better results.
For our experiments, we compiled a test set of 52 sparse graphs with n ranging

from n = 1, 000 to n = 139, 752 and with sparsities ranging from 1.32 × 10−2 to
5.65×10−5,where sparsity is defined as the ratio |E |

n(n−1) (recall that |E | is equal to twice
the number of edges). Our graphs were taken from the Stanford SNAP database [22],
the University of Florida Sparse Matrix Library [10], and from a test set from [37]
consisting of graphs which were specifically designed to be challenging for graph
partitioning. Nine of the graphs from our test set represent 2D or 3D meshes, 15
represent either a communication, collaboration, or social network, and the remaining
31 come from miscellaneous applications. We label these groups with the letters M
(mesh), C (communication), and O (other), respectively. In order to enable future
comparisons with our solver, we have made this benchmark set available at http://
people.cs.clemson.edu/~isafro/data.html as well as in the supplementary material for
this paper.

After our experiments, we found that it was useful to further subdivide the O
instances into two groups based on the frequency of structures of the form (J4) (see
Appendix) in the final partition. We considered (J4), and not (J5), only because the
structure appearing in (J5) seemed more difficult to detect. One necessary condition
for the structure (J4) to arise is for there to exist a vertex i ∈ A such thatN (i)∩A = ∅
or a vertex j ∈ B such thatN (j)∩B = ∅. Hence, we (upper-)estimated the number of
(J4) structures in each graph by finding an approximate vertex separator (via a call to
METIS ComputeVertexSeparator), and calculating the percentage p(G) of vertices
i lying in A ∪ B for which the containment N (i) ⊆ S held. A graph G in group O
was moved to OC if p(G) ≥ 5% and to OO otherwise. Table 1 gives the statistics for
each graph: number of vertices, number of edges, sparsity, min/max/average degree,
and p(G). Note that p(G) ≥ 5% for all but two C graphs, and p(G) < 5% for all but
two of the M graphs.

Vertex costs ci and weights wi were assumed to be 1 at the finest level for all
graphs. For the bounds on the shores of the separator, we took �a = �b = 1 and
ua = ub = �0.6n�, which are the default bounds used by METIS. (Here �r� denotes
the largest integer not greater than r .) We considered both random matching and
heavy-edge matching schemes for both algorithms. Since both algorithms contain
random elements, the algorithms were run using 100 different random seeds for each
instance.

Tables 2, 3, 4 and 5 give the average, minimum, and maximum cardinalities of the
separators obtained by the algorithms for the 100 different random seeds. For each test
problem, the smallest separator size obtained across all four algorithms (METIS or
BLP with random or heavy edge matching) is highlighted in bold. Here, METIS HE
and METIS RM refer to the METIS algorithm with heavy-edge matching and with
random matching, respectively. Tables 6 and 7 compare the average separator sizes

123

http://people.cs.clemson.edu/~isafro/data.html
http://people.cs.clemson.edu/~isafro/data.html

A multilevel bilinear programming algorithm for the VSP 207

Table 1 Test set graphs with their statistics

Degree

Graph |V| |E |/2 Sparsity Min Max Ave p (%)

Type M

bcsstk17 10,974 208,838 3.47E−03 0 149 38.06 4.78

delaunay_n13 8192 24,547 7.32E−04 3 12 5.99 0.00

jagmesh7 1138 3156 4.88E−03 3 6 5.55 0.00

lshp3466 3466 10,215 1.70E−03 3 6 5.89 0.00

minnesota 2642 3303 9.47E−04 1 5 2.5 0.04

nasa4704 4704 50,026 4.52E−03 5 41 21.27 0.00

netz4504 1961 2578 1.34E−03 2 8 2.63 0.57

sherman1 1000 1375 2.75E−03 0 6 2.75 32.47

sstmodel 3345 9702 1.73E−03 0 17 5.8 18.54

Type C

ca-HepPh 7241 20,2194 7.71E−03 2 982 55.85 2.41

email-Enron 9660 224,896 4.82E−03 2 2532 46.56 2.03

email-EuAll 16805 76156 5.39E−04 1 3360 9.06 40.68

Erdos992 6100 7515 4.04E−04 0 61 2.46 33.42

netscience 1589 2742 2.17E−03 0 34 3.45 8.06

oregon2_010505 5441 19,505 1.32E−03 1 1888 7.17 31.94

p2p-Gnutella04 10879 39,994 6.76E−04 0 103 7.35 21.48

p2p-Gnutella05 8846 31,839 8.14E−04 1 88 7.2 22.06

p2p-Gnutella06 8717 31,525 8.30E−04 1 115 7.23 20.88

p2p-Gnutella08 6301 20,777 1.05E−03 1 97 6.59 24.79

p2p-Gnutella09 8114 26,013 7.90E−04 1 102 6.41 27.70

p2p-Gnutella24 26,518 65,369 1.86E−04 1 355 4.93 26.80

p2p-Gnutella25 22,687 54,705 2.13E−04 1 66 4.82 27.63

p2p-Gnutella30 36,682 88,328 1.31E−04 1 55 4.82 28.30

p2p-Gnutella31 62586 147,892 7.55E−05 1 95 4.73 25.09

Type OO

bcspwr09 1723 2394 1.61E−03 1 14 2.78 0.18

c-38 8127 34781 1.05E−03 1 888 8.56 0.16

c-43 11125 56275 9.09E−04 1 2619 10.12 0.05

crystm01 4875 50,232 4.23E−03 7 26 20.61 0.00

fxm3_6 5026 44,500 3.52E−03 3 128 17.71 0.00

G42 2000 11779 5.89E−03 4 249 11.78 0.45

net25 9520 195,840 4.32E−03 2 138 41.14 0.00

Peko01 7849 533,03 1.73E−03 2 62 13.58 0.00

USpowerGrid 4941 6594 5.40E−04 1 19 2.67 0.16

123

208 W. W. Hager et al.

Table 1 continued

Degree

Graph |V| |E |/2 Sparsity Min Max Ave p (%)

barth5_1Ksep_50in_5Kout 32212 101,805 1.96E−04 1 22 6.32 0.00

bcsstk30_500sep_10in_1Kout 58348 2,016,578 1.18E−03 0 219 69.12 0.02

bump2_e18_aa01_model1_crew1 56,438 300,801 1.89E−04 1 604 10.66 2.51

c-30_data_data 11,023 62,184 1.02E−03 1 2109 11.28 0.11

c-60_data_cti_cs4 85,830 241,080 6.55E−05 1 2207 5.62 0.44

data_and_seymourl 9167 55,866 1.33E−03 1 229 12.19 2.59

msc10848_300sep_100in_1Kout 21,996 1,221,028 5.05E−03 1 722 111.02 0.01

p0291_seymourl_iiasa 10,498 53,868 9.78E−04 1 229 10.26 0.24

web-NotreDame 56,429 235,285 1.48E−04 1 6852 8.34 2.56

web-Stanford 122,749 1,409,561 1.87E−04 1 35,053 22.97 1.16

wiki-Vote 3809 95,996 1.32E−02 1 1167 50.4 3.00

Type OC

soc-Epinions1 22,908 389,439 1.48E−03 1 3026 34 10.38

befref_fxm_2_4_air02 14,109 98,224 9.87E−04 1 1531 13.92 41.80

finan512_scagr7-2c_rlfddd 139,752 552,020 5.65E−05 1 669 7.9 30.05

model1_crew1_cr42_south31 45101 189,976 1.87E−04 1 17,663 8.42 14.01

sctap1-2b_and_seymourl 40,174 140,831 1.75E−04 1 1714 7.01 9.19

south31_slptsk 39,668 189,914 2.41E−04 1 17,663 9.58 14.49

vibrobox_scagr7-2c_rlfddd 77,328 435,586 1.46E−04 1 669 11.27 56.09

yeast 2361 6646 2.39E−03 0 64 5.63 21.05

obtained by the algorithms for 100 different random seeds. The column labeled “Wins”
gives the percentage of problems where the average separator size for BLPwas strictly
smaller than the average separator size for METIS. The column labeled “Ave” takes
these average separator sizes, forms the relative ratio |SMET I S |−|SBLP |

|V | of the average
separator sizes, and then computes the average over a test set. The columns labeled
“Min” and “Max” replace the average over a test set by either the minimum or max-
imum. Regardless of the matching scheme used, the average separator size obtained
by BLP was smaller than that of METIS for all of the C graphs, with an average
improvement of almost 3%, with similar (though slightly worse) results for the OC
graphs. We believe that the strong performance of BLP on these graphs is likely due
to the relatively large p(G) values, which suggest that improvement opportunities of
type (J4) may arise frequently. Likely for the same reason, the performance of BLP
was much poorer on the M and OO graphs.

METIS exhibited a clear favorability towards the heavy-edge-based matching
scheme (which out-performed the randommatching scheme in approximately 82% of
the instances). On the other hand, BLP was relatively indifferent to the choice of the
matching scheme (the heavy-edge-based scheme performed better in approximately
48% of the instances). However, when each algorithm was run with its optimal match-
ing scheme, BLP still out-performed METIS in approximately 58% of the instances.

123

A multilevel bilinear programming algorithm for the VSP 209

Table 2 Comparison of sizes of separators obtained by METIS and BLP on M graphs

METIS RM BLP RM

Graph Ave Min Max Ave Min Max

bcsstk17 147.29 138 168 142.99 126 296

delaunay_n13 75.49 69 90 88.26 72 152

jagmesh7 14.14 14 21 20.97 14 42

lshp3466 55.45 52 61 65.18 52 107

minnesota 17.34 14 23 21.14 15 37

nasa4704 175.45 168 188 175.51 167 187

netz4504 18.29 16 23 21.75 16 40

sherman1 30.7 29 50 22.14 18 30

sstmodel 24.85 22 40 26.98 20 39

METIS HE BLP HE

Graph Ave Min Max Ave Min Max

bcsstk17 143.82 132 186 163.97 126 237

delaunay_n13 74.05 69 83 83.74 72 102

jagmesh7 14.03 14 15 19.75 14 39

lshp3466 55.42 51 61 58.28 51 106

minnesota 16.79 14 23 21.46 14 42

nasa4704 176.65 163 206 186.93 165 268

netz4504 18.02 17 20 22 16 41

sherman1 29.98 28 39 21.58 18 27

sstmodel 24.29 22 35 28.44 20 42

Figure 2 gives a performance profile comparing the separator sizes obtained by each
algorithm with its optimal matching scheme. The profile gives the percentage P of
graphs in which each algorithm produced a solution which was within a factor of τ

of the best solution (between the two algorithms). The left hand side of the plot gives
the percentage of instances for which each algorithm obtained the best solution, while
the center and right hand sides of the plot give an indication of the relative robustness
of the algorithms. In terms of overall robustness, we conclude that the algorithms are
comparable, though for about 5% of the instances the BLP solution was within a factor
of between 2 and 2.25 of the METIS solution.

Since each iteration of MCA requires the solution of an LP (which is often more
computationally intensive than performing swaps), the running time of BLP is con-
siderably slower than METIS. CPU times for BLP RM ranged from 0.02 (s) to 66.92
(s), with an average of 6.77 (s), while CPU times for METIS RM ranged from less
than 0.01 (s) to 0.84 (s), with an average of 0.13 (s).

Figure 3 gives a log–log plot of n = |V| versus CPU time for all 52 instances. The
best fit line through the data in the log–log plot has a slope of approximately 1.62,
which indicates that the CPU time of BLP is between a linear and a quadratic function
of the number of vertices.

123

210 W. W. Hager et al.

Table 3 Comparison of sizes of separators obtained by METIS and BLP on C graphs

METIS RM BLP RM

Graph Ave Min Max Ave Min Max

ca-HepPh 767.56 683 851 663.44 610 709

email-Enron 709.29 650 839 488.73 435 531

email-EuAll 76.04 5 348 11.17 5 36

netscience 0.16 0 5 0.05 0 2

oregon2_010505 79 66 113 52.89 42 66

p2p-Gnutella04 2140.5 2089 2200 1602.78 1560 1732

p2p-Gnutella05 1720.54 1687 1750 1370.22 1273 1419

p2p-Gnutella06 1689.01 1641 1727 1277.15 1183 1345

p2p-Gnutella08 1042.3 1003 1075 807.3 780 830

p2p-Gnutella09 1328.33 1293 1367 1016.61 995 1053

p2p-Gnutella24 3617.52 3538 3685 2563.77 2525 2607

p2p-Gnutella25 3008.89 2931 3095 2142.97 2090 2198

p2p-Gnutella30 4692.64 4580 4798 3170.95 3127 3218

p2p-Gnutella31 6904.14 6619 7468 5280.04 5208 5350

METIS HE BLP HE

Graph Ave Min Max Ave Min Max

ca-HepPh 753.62 668 839 659.91 586 706

email-Enron 687.23 604 804 497.08 447 555

email-EuAll 8.6 5 57 7.76 5 17

netscience 0.09 0 3 0.01 0 1

oregon2_010505 58.51 48 70 51.5 42 63

p2p-Gnutella04 2054.89 1986 2103 1599.85 1550 1725

p2p-Gnutella05 1666.26 1629 1724 1364.78 1259 1415

p2p-Gnutella06 1605.74 1568 1653 1271.4 1194 1340

p2p-Gnutella08 1009.23 976 1043 809.32 786 830

p2p-Gnutella09 1287.09 1253 1327 1018.97 987 1043

p2p-Gnutella24 3284.79 3203 3380 2567.34 2519 2623

p2p-Gnutella25 2761.55 2691 2836 2144.51 2104 2186

p2p-Gnutella30 4267.38 4094 4398 3171.29 3121 3252

p2p-Gnutella31 5986.29 5888 6184 5271.12 5205 5328

In order to close the gap in running time between BLP and METIS, the BLP code
needs further development to take into account the sparse change in successive iterates.
The current code takes into account the sparsity ofAwhen computing a matrix vector
product Ax, but it does not take into account the fact the change xk − xk−1 and
yk − yk−1 in successive iterates is often sparse. Instead of computing the product Axk
from scratch in each iteration, we could store the prior product Axk−1 and update it
with the very sparse change A(xk − xk−1) to obtain Axk . Similarly, when solving the
linear programs in MCA, a solution obtained at iteration k − 1 could be updated to

123

A multilevel bilinear programming algorithm for the VSP 211

Table 4 Comparison of sizes of separators obtained by METIS and BLP on OO graphs

METIS RM BLP RM

Graph Ave Min Max Ave Min Max

bcspwr09 7.47 6 11 11.43 6 20

c-38 24.82 12 72 47.81 14 108

c-43 140.86 117 156 138.74 115 160

crystm01 66.5 65 90 79.5 65 85

fxm3_6 60.82 42 90 79.67 42 143

G42 441.48 427 458 439.54 427 454

net25 676.32 641 714 864.71 510 990

Peko01 29.36 23 47 45.82 23 82

USpowerGrid 9.13 8 16 19.37 9 42

vsp_barth5_1Ksep_50in_5Kout 1346.14 1043 1530 1551.72 1312 1804

vsp_bcsstk30_500sep_10in_1Kout 636.7 528 844 623.49 516 910

vsp_bump2_e18_aa01_model1_crew1 4378.39 4280 4793 3593.84 3534 3935

vsp_c-30_data_data 536.73 471 611 528.24 468 594

vsp_c-60_data_cti_cs4 2636.81 2384 2741 2465.98 2318 2957

vsp_data_and_seymourl 1243.14 1091 1347 1287.53 1210 1344

vsp_msc10848_300sep_100in_1Kout 523.7 279 715 360.2 279 693

vsp_p0291_seymourl_iiasa 535.98 531 545 519.37 511 535

web-NotreDame 437.77 274 611 420.98 210 614

web-Stanford 143.73 29 484 270.66 121 366

wiki-Vote 708.97 694 737 709.4 683 766

METIS HE BLP HE

Graph Ave Min Max Ave Min Max

bcspwr09 7.52 6 13 11.88 7 19

c-38 14.2 12 22 41.02 14 99

c-43 141.6 103 155 137.72 118 156

crystm01 67.33 65 90 77.46 65 105

fxm3_6 53.44 42 88 76.41 42 104

G42 441.04 424 462 438.77 417 455

net25 598.21 510 915 896.52 574 1005

Peko01 31.06 23 45 55.91 24 111

USpowerGrid 8.99 8 14 18.35 8 34

vsp_barth5_1Ksep_50in_5Kout 1329.88 1131 1451 1573.16 1290 1875

vsp_bcsstk30_500sep_10in_1Kout 752.41 552 1228 865.21 564 1614

vsp_bump2_e18_aa01_model1_crew1 4306.43 4264 4343 3589.46 3516 3944

vsp_c-30_data_data 510.07 453 594 599.07 496 733

vsp_c-60_data_cti_cs4 2600.51 2525 2684 2516.27 2366 2998

vsp_data_and_seymourl 1252.78 1148 1341 1269.98 1169 1354

123

212 W. W. Hager et al.

Table 4 continued

METIS HE BLP HE

Graph Ave Min Max Ave Min Max

vsp_msc10848_300sep_100in_1Kout 648.16 279 929 658.07 279 1072

vsp_p0291_seymourl_iiasa 536.25 532 542 519.44 511 534

web-NotreDame 399.97 270 518 419.93 209 600

web-Stanford 133.52 29 575 274.87 97 617

wiki-Vote 704.86 694 731 703.6 680 765

Table 5 Comparison of sizes of separators obtained by METIS and BLP on OC graphs

METIS RM BLP RM

Graph Ave Min Max Ave Min Max

soc-Epinions1 3072.42 2915 3224 2309.64 2270 2342

vsp_befref_fxm_2_4_air02 1464.03 1328 1584 299.6 282 327

vsp_finan512_scagr7-2c_rlfddd 7610.25 7400 7883 4693.56 4584 4848

vsp_model1_crew1_cr42_south31 2740.18 2558 2894 2348.24 2283 2425

vsp_sctap1-2b_and_seymourl 4269.77 3884 4557 3657.33 3446 3958

vsp_south31_slptsk 2416.25 2350 2498 2219.08 2139 2287

vsp_vibrobox_scagr7-2c_rlfddd 4182.86 3995 5240 2720.02 2652 2820

yeast 212.37 177 236 156.59 144 172

METIS HE BLP HE

Graph Ave Min Max Ave Min Max

soc-Epinions1 2976.1 2818 3078 2305.18 2266 2344

vsp_befref_fxm_2_4_air02 1072.9 989 1142 298.22 283 340

vsp_finan512_scagr7-2c_rlfddd 7438.5 7216 7697 5026.48 4608 5330

vsp_model1_crew1_cr42_south31 2216.08 2086 2631 2346.6 2295 2407

vsp_sctap1-2b_and_seymourl 4114.48 3831 4373 3665.98 3440 3931

vsp_south31_slptsk 2054.39 1982 2116 2224.59 2168 2284

vsp_vibrobox_scagr7-2c_rlfddd 3467.55 3362 3613 2720.2 2646 2828

yeast 192.62 182 213 156.83 146 170

Table 6 Improvement of BLP
over METIS when random
matching was used

% Improvement

Category % Wins Ave Min Max

M 22.22 −0.06 −0.60 0.86

C 100.00 2.88 0.00 4.94

OO 45.00 −0.10 −1.98 1.39

OC 100.00 2.60 0.50 8.25

Total 65.38 1.14 −1.98 8.25

123

A multilevel bilinear programming algorithm for the VSP 213

Table 7 Improvement of BLP
over METIS when heavy-edge
matching was used

% Improvement

Category % Wins Ave Min Max

M 11.11 −0.09 −0.50 0.84

C 100.00 2.20 0.00 4.18

OO 30.00 −0.27 −3.13 1.27

OC 75.00 1.63 −0.43 5.49

Total 53.85 0.74 −3.13 5.49

1 1.5 2 2.5

τ

0.4

0.5

0.6

0.7

0.8

0.9

1

P

Separator Size

BLP
METIS

Fig. 2 Performance profile comparing BLP andMETIS with their optimal matching schemes on all graphs

get a solution at iteration k. There are many potential enhancements of this nature that
should provide a much faster running time for BLP.

In [35], the authors developed a semi-definite programming method for computing
tight upper and lower bounds on the cardinality of an optimal vertex separator in a
graph, where the cardinalities of the two shores are approximately the same. Tests
were run on a set of 11 graphs having between 93 and 343 vertices. Table 8 gives
the dimensions of the test graphs, the upper and lower bounds on the cardinality of
an optimal separator, and the average, minimum, and maximum cardinality of the
vertex separator found by BLP HE across 100 random trials using �a = �b = 1
and ua = ub = �0.5n�. The results for BLP RM were similar. For all graphs, the
minimum cardinality separator obtained by BLP was always less than or equal to the
upper bound of [35]. The average cardinality was less than or equal to the upper bound
in 5 out of the 11 instances. Due to slight differences in the way the bounds on the
shores are enforced in the SDP method of [35], the BLP solution is below the lower
bound in 3 of the instances.

123

214 W. W. Hager et al.

10 3 10 4 10 5 10 6

n

10 -2

10 -1

10 0

10 1

10 2

C
P

U
 ti

m
e

(s
ec

on
ds

)

Dimension versus CPU time

Fig. 3 Number of vertices n versus CPU time for BLP RM

Table 8 Results for BLP HE
on test graphs from [35]

|S|
Graph |V| |E |/2 LB UB Ave Min Max

bcspwr03 118 179 4 5 5.53 4 9

can144 144 576 5 6 7.74 6 12

can161 161 608 17 18 16.95 16 25

can229 229 774 16 19 19.02 19 20

example1 93 470 11 11 11.01 10 15

grid3dt5 125 604 19 19 20.36 19 21

grid3dt6 216 1115 27 30 27.31 27 32

grid3dt7 343 1854 27 37 39.53 37 40

gridt15 120 315 9 11 11 11 11

gridt17 153 408 10 13 12.21 12 13

Smallmesh 136 354 6 6 5.32 5 19

7 Conclusion

We have developed a new algorithm (BLP) for solving large-scale instances of the
Vertex Separator Problem (1). The algorithm incorporates a multilevel framework;
that is, the original graph is coarsened several times; the problem is solved for the
coarsest graph; and the solution to the coarse graph is gradually uncoarsened and
refined to obtain a solution to the original graph. A key feature of the algorithm is the
use of the continuous bilinear program (14) in both the solution and refinement phases.
In the case where vertex weights are all equal to one (or a constant), (14) is an exact

123

A multilevel bilinear programming algorithm for the VSP 215

formulation of the VSP in the sense that there exists a binary solution satisfying (3),
from which an optimal solution to the VSP can be recovered using (8). When vertex
weights are not all equal, we showed that (14) still approximates the VSP in the sense
that there exists a mostly binary solution.

During the solution and refinement phases of BLP, the bilinear program is solved
approximately by applying the algorithm MCA GR, a mountain climbing algorithm
which incorporates a technique which we call γ -perturbations to escape from station-
ary points and explore more of the search space. The γ -perturbations improve the
separator by relaxing the requirement that there are no edges between the sets in the
partition. We determined the smallest relaxation that will generate a new partition.
To our knowledge, this is the first multilevel algorithm to make use of a continuous
optimization based refinement method for the family of graph partitioning problems.
The numerical results of Sect. 6 indicate that BLP is capable of locating vertex separa-
tors of high quality (comparing against METIS); the algorithm is particularly effective
on communication and collaboration networks, while being less effective on graphs
arising in mesh applications.

8 Appendix

In this section, we analyze cases where MCA is guaranteed to strictly improve the
current vertex separator. For any k ∈ B and any Z ⊆ V we define the setN≤k(Z) by

N≤k(Z) := {i ∈ V : |N (i) ∩ Z| ≤ k} .

For simplicity, we denote N≤0(Z) by N 0(Z) = V\N (Z).

Observation 81 Let A,B ⊆ V , x := supp−1(A), and y := supp−1(B). Then,

xT(A + I)y = ∑
i∈B |N (i) ∩ A| = ∑

i∈A |N (i) ∩ B| .

Observation 82 Let Z ⊆ V . Then

N 0(Z) ⊆ N≤1(Z) .

Observation 83 Let X ,Y ⊆ V be such that X ⊆ Y . Then for any k ≥ 0,

N≤k(X) ⊇ N≤k(Y) .

Throughout this section, we consider the special case where ua, �a, ub, �b ∈ Z,
ci = γ > 0 ∀ i ∈ V , and w = 1, in which case the extreme points of (14) are binary
(see [19, Lemma 3.3]).

Proposition 4 Let A,B ⊆ V be such that x := supp−1(A) ∈ Pa and y :=
supp−1(B) ∈ Pb. Suppose that |N≤1(A)| ≥ �b and let y∗ ∈ Pb ∩ B

n and
B∗ := supp(y∗). Then y∗ is an optimal solution to the problem

max { f (x, ỹ) : ỹ ∈ Pb} (23)

123

216 W. W. Hager et al.

if and only if one of the following conditions holds:

(M1) N 0(A) ⊆ B∗ ⊆ N≤1(A),
(M2) B∗ ⊂ N 0(A) and |B∗| = ub.

Proof First of all, since f (x, y) is linear in y when x is fixed, (23) has an optimal
solution lying at an extreme point of the set Pb (see, for instance Chapter 2 of [40]);
that is, at a point y for which there are n linearly independent constraints in Pb which
are active. If all n of these constraints are of the form 0 ≤ y or y ≤ 1, then y is binary.
Otherwise, y has at least n − 1 binary components and the constraint 1Ty is active at
either the lower or upper bound; that is, 1Ty = ub or 1Ty = �b. But since ub, �b ∈ Z

and n − 1 components of y are binary, in fact we must have that every component of
y is binary. Thus, (23) has an optimal solution which is binary.

Next, note that by computation we have that for any ỹ ∈ Pb ∩ B
n

1

γ
f (x, ỹ) = 1

γ
[cT(x + ỹ) − γ xT(A + I)ỹ]

= 1T(x + ỹ) − xT(A + I)ỹ (24)

= |A| + |B̃| −
∑

i∈B̃
|N (i) ∩ A| (25)

= |A| + |N 0(A) ∩ B̃| + |B̃\N 0(A)| −
∑

i∈B̃\N 0(A)

|N (i) ∩ A| (26)

= |A| + |N 0(A) ∩ B̃| +
∑

i∈B̃\N 0(A)

(1 − |N (i) ∩ A|) (27)

= |A| + |N 0(A) ∩ B̃| +
∑

i∈B̃\N≤1(A)

(1 − |N (i) ∩ A|) (28)

≤ |A| + |N 0(A) ∩ B̃| , (29)

where B̃ := supp(ỹ), (24) follows from the assumption on c, (25) follows from
Observation 81, (26) is due to the definition of N 0(A), and (28) and (29) follow
from the definition of N≤1(A) (which implies in particular that the terms in the final
summation of (28) are negative, when they exist). The remainder of the proof is split
into two cases.

Case 1 |N 0(A)| > ub. In this case, first observe that there does not exist a point
ỹ ∈ Pb ∩ B

n such that N 0(A) ⊆ B̃ ⊆ N≤1(A), since otherwise 1Tỹ = |B̃| ≥
|N 0(A)| > ub, contradicting ỹ ∈ Pb. So, we claim that a point y∗ ∈ Pb ∩ B

n is
an optimal solution to (23) if and only if (M2) holds. To see this, observe that if
y∗ ∈ Pb ∩ B

n satisfies (M2) (with B∗ = supp(y∗)), then by (28) we have

1

γ
f (x, y∗) = |A| + |N 0(A) ∩ B∗| +

∑

i∈B∗\N≤1(A)

(1 − |N (i) ∩ A|)

= |A| + |N 0(A) ∩ B∗| (30)

123

A multilevel bilinear programming algorithm for the VSP 217

= |A| + |B∗| (31)

= |A| + ub , (32)

where (30) and (31) follow from the fact that B∗ ⊂ N 0(A) ⊆ N≤1(A) (by (M2)),
and (32) follows from (M2). Next, if ỹ ∈ Pb ∩ B

n is a vector which does not satisfy
(M2) (with B∗ replaced by B̃), observe that we cannot have B̃ = N 0(A), since this
case would fall under (M1), and we have already established that no points in Pb ∩B

n

satisfying (M1) exist. Hence, either B̃\N 0(A) �= ∅ or |B̃| < ub (note that we cannot
have |B̃| > ub, since this would contradict ỹ = supp−1(B̃) ∈ Pb); and in both cases
it follows that |N 0(A) ∩ B̃| < ub (in the first case |N 0(A) ∩ B̃| < |B̃| ≤ ub and in
the second case |N 0(A) ∩ B̃| ≤ |B̃| < ub). Hence, by (29) and (32) we have

1

γ
f (x, ỹ) ≤ |A| + |N 0(A) ∩ B̃| < |A| + ub = 1

γ
f (x, y∗) . (33)

Hence, for any y∗, ỹ ∈ Pb ∩ B
n such that y∗ satisfies (M2) and ỹ does not satisfy

(M2), we have f (x, ỹ) < f (x, y∗) = (|A| + ub)γ . Moreover, by our assumption
|N 0(A)| > ub, a point y∗ ∈ Pb ∩ B

n satisfying (M2) exists (let y∗ by any binary
point such that supp(y∗) is a subset of N 0(A) of cardinality ub). Hence, the binary
optimal solutions to (23) are precisely the points y∗ ∈ Pb ∩ B

n satisfying (M2). This
completes the proof of Case 1.

Case 2 |N 0(A)| ≤ ub. In this case, we first note that there does not exist a ỹ ∈ Pb∩B
n

satisfying (M2), since otherwise |B̃| < |N 0(A)| ≤ ub = |B̃|, a contradiction (note
that here we use the assumption that |N 0(A)| ≤ ub). So, we claim that a point
y∗ ∈ Pb ∩ B

n is an optimal solution to (23) if and only if (M1) holds. To see this,
observe that if y∗ is a point in Pb ∩ B

n satisfying (M1), then we have from (28) that

1

γ
f (x, y∗) = |A| + |N 0(A) ∩ B∗| +

∑

i∈B∗\N≤1(A)

(1 − |N (i) ∩ A|) (34)

= |A| + |N 0(A) ∩ B∗| (35)

= |A| + |N 0(A)| , (36)

where (35) and (36) follow from the fact that B∗ ⊆ N≤1(A) and N 0(A) ⊆ B∗,
respectively. Next, if ỹ ∈ Pb ∩ B

n is a point which does not satisfy (M1), then either
N 0(A)\B̃ �= ∅ or B̃\N≤1(A) �= ∅. In the first case, we have |N 0(A)∩B̃| < |N 0(A)|;
in the second case, the inequality (29) holds strictly (since the terms appearing in the last
summation in (28) are all negative) andwe have trivially that |N 0(A)∩B̃| ≤ |N 0(A)|.
And so in either case by (28) and (29) we have that

1

γ
f (x, ỹ) < |A| + |N 0(A)| = 1

γ
f (x, y∗) . (37)

Hence, for any y∗, ỹ ∈ Pb∩B
n such that y∗ satisfies (M1) and ỹ does not satisfy (M1),

we have that f (x, ỹ) < f (x, y∗) = γ (|A|+|N 0(A)|).Moreover, since |N 0(A)| ≤ ub

123

218 W. W. Hager et al.

(the assumption associated with Case 2) and |N≤1(A)| ≥ �b (the supposition in the
statement of the proposition), a point y∗ ∈ Pb ∩ B

n satisfying (M1) exists (construct
supp(y∗), for example, by starting with N 0(A) and gradually adding elements from
N≤1(A)\N 0(A) until the set has cardinality ub). Hence, the binary optimal solutions
to (23) are precisely the points y∗ ∈ Pb ∩ B

n satisfying (M1). This completes the
proof. ��

The following corollary, obtained by taking the contrapositive of Proposition 4,
gives necessary and sufficient conditions for being able to improve upon a given
separator by solving (23) (or the analogous program in x).

Corollary 1 LetA,B ⊆ V be such that x := supp−1(A) ∈ Pa and y := supp−1(B) ∈
Pb.

1. Suppose that |N≤1(A)| ≥ �b. Then ∃ ŷ ∈ Pb such that

f (x, ŷ) > f (x, y)

if and only if one of the following conditions holds:
(J1) |N 0(A) ∩ B| < min {ub, |N 0(A)|},
(J2) B\N≤1(A) �= ∅.

2. Suppose that |N≤1(B)| ≥ �a. Then ∃ x̂ ∈ Pa such that

f (x̂, y) > f (x, y)

if and only if one of the following conditions holds:
(L1) |N 0(B) ∩ A| < min {ua, |N 0(B)|},
(L2) A\N≤1(B) �= ∅.

Proof We only prove Part 1, since Part 2 will follow by symmetry. By Proposition 4,
we need only show that the negation of [(M1) or (M2)] (with B∗ replaced by B) holds
if and only if [(J1) or (J2)] holds.

To see the forward direction, suppose that neither (M1) nor (M2) holds. Since (M1)
does not hold, we have that either B\N≤1(A) �= ∅ orN 0(A)\B �= ∅. In the first case,
(J2) holds and we are done. In the second case, we have

|N 0(A) ∩ B| < |N 0(A)| . (38)

Moreover, since (M2) does not hold, we have that either B\N 0(A) �= ∅ (note that we
cannot have B = N 0(A), since this would imply that (M1) holds, a contradiction)
or |B| < ub. In the first case, |N 0(A) ∩ B| < |B| ≤ ub, while in the second case
|N 0(A) ∩ B| ≤ |B| < ub. Hence, in either case we have

|N 0(A) ∩ B| < ub . (39)

Combining (38) with (39) we have that (J1) holds. This completes the proof of the
forward direction.

123

A multilevel bilinear programming algorithm for the VSP 219

To prove the backwards direction, we will prove the contrapositive; that is, we will
prove that if either (M1) or (M2) holds, then neither (J1) nor (J2) holds. First, suppose
that (M1) holds. Then, |N 0(A) ∩ B| = |N 0(A)| ≥ min {ub, |N 0(A)|}, and so (J1)
does not hold. Moreover, since by (M1) B ⊆ N≤1(A), we have that B\N≤1(A) =
∅, implying that (J2) does not hold. Next, suppose instead that (M2) holds. Then,
|N 0(A) ∩ B| = |B| = ub ≥ min {ub, |N 0(A)|}, implying that (J1) does not hold. To
see that (J2) does not hold, we need only observe that B ⊂ N 0(A) ⊆ N≤1(A), and
so B\N≤1(A) = ∅. This completes the proof of the backwards direction. ��

Corollary 1may be applied recursively (first toB, then toA, etc.) in order to develop
necessary and sufficient conditions for improvement between any two consecutive
iterates in an entire sequence {(Ak,Bk)}k≥0 (where Ak = Ak−1 when k ≥ 1 is odd
and Bk = Bk−1 when k ≥ 2 is even), all stated in terms of the initial setsA0 = A and
B0 = B. In the next proposition, we employ Corollary 1 to derive sufficient conditions
for improvement after two iterations of this process. To save space, we only state the
conditions for the casewhereB is refinedfirst. It is clear that by symmetry, an analogous
set of conditions applies to the case where A is refined first.

Proposition 5 Let A,B ⊆ V be such that x := supp−1(A) ∈ Pa and y :=
supp−1(B) ∈ Pb. Suppose that |N≤1(A)| ≥ �b, |N≤1(N≤1(A))| ≥ �a, and that
one of the following conditions holds:

(J3) |A| < ua, |N 0(A)| ≤ ub, and

∃ i ∈ V\A such that N (i) ⊆ N (A) and |N≤1(A)\N (i)| ≥ �b ,

(J4) �b ≤ |N 0(A)| + 2 ≤ ub and

∃ i ∈ A, j ∈ V\A such that N (i) ∩ A = ∅ and N (j) ∩ A = {i} ,

(J5) �b ≤ |N 0(A)| + 2 ≤ ub and

∃ i ∈ A, j �= k ∈ V\A such that N (j) ∩ A = N (k) ∩ A = {i} .

Then ∃ ŷ ∈ Pb ∩ B
n such that for some x̂ ∈ Pa

f (x̂, ŷ) > f (x, ŷ) = max { f (x, ỹ) : ỹ ∈ Pb} ≥ f (x, y) .

Proof We split the proof into three cases, depending on the particular condition which
holds.

Case (J3) Suppose that (J3) holds. By Observation 82, N 0(A) ⊆ N≤1(A) and by
(J3) we have N 0(A) = V\N (A) ⊆ V\N (i). Hence,

N 0(A) ⊆ N≤1(A)\N (i) . (40)

Moreover, (J3) states that

|N 0(A)| ≤ ub and |N≤1(A)\N (i)| ≥ �b . (41)

123

220 W. W. Hager et al.

Hence, combining (40) and (41), ∃ B̂ ⊆ V such that

N 0(A) ⊆ B̂ ⊆ N≤1(A)\N (i) and �b ≤ |B̂| ≤ ub . (42)

By (42) the point ŷ := supp−1(B̂) lies in Pb ∩ B
n and B̂ satisfies (M1). Hence,

Proposition 4 implies that ŷ is optimal in (23), and thus

f (x, ŷ) ≥ f (x, y) , (43)

which proves the first half of the statement in the proposition.
Next, observe that since by (J3) we have i ∈ V\A and since by (42) we have

N (i) ∩ B̂ = ∅, it follows that i ∈ N 0(B̂)\A, and hence N 0(B̂) ∩ A ⊂ N 0(B̂),
implying |N 0(B̂) ∩ A| < |N 0(B̂)|. In addition, |N 0(B̂) ∩ A| ≤ |A| < ua , by (J3).
Hence,

|N 0(B̂) ∩ A| < min {ua, |N 0(B)|} ;

that is, B̂ satisfies (L1) (with B replaced by B̂). And since by (42) B̂ ⊆ N≤1(A) we
have from Observation 81 that N≤1(B̂) ⊇ N≤1(N≤1(A)), and hence |N≤1(B̂)| ≥
|N≤1(N≤1(A))| ≥ �a , where the final inequality here follows from the supposition in
the statement of the proposition. So, B̂ satisfies the assumptions of Part 2 ofCorollary 1,
in addition to (L1). Hence, ∃ x̂ ∈ Pa such that f (x̂, ŷ) > f (x, ŷ). This completes the
proof in the case where (J3) holds.

Case (J4) Suppose that (J4) holds. First, note that by the assumption on i and j , we
have

N (i) ∩ A = N (j) ∩ A = {i} .

Hence, |N (i) ∩ A| = |N (j) ∩ A| = 1; that is, {i, j} ⊆ N≤1(A)\N 0(A). Hence,
letting

B̂ := N 0(A) ∪ {i, j} ,

we have
N 0(A) ⊆ B̂ ⊆ N≤1(A) , (44)

so that B̂ satisfies (M1) (with B∗ replaced by B̂). Moreover, since |B̂| = |N 0(A)|+2,
by (J4) we have that

�b ≤ |B̂| = |N 0(A)| + 2 ≤ ub . (45)

So by (45) we have ŷ := supp−1(B̂) ∈ Pb and by (44) B̂ satisfies (M1). Hence, by
Proposition 4, ŷ is an optimal solution to (23) and therefore satisfies (43). This proves
the first half of the statement in the proposition.

Next, observe thatN (i)∩B̂ ⊇ {i, j}, so that |N (i)∩B̂| ≥ 2; that is, i ∈ A\N≤1(B̂),
implying that B̂ satisfies (L2) (withB replaced by B̂). And since B̂ ⊆ N≤1(A) by (44),
Observation 81 again implies that N≤1(B̂) ⊇ N≤1(N≤1(A)), so that |N≤1(B̂)| ≥

123

A multilevel bilinear programming algorithm for the VSP 221

|N≤1(N≤1(A))| ≥ �a . Thus, B̂ satisfies the assumptions of Part 2 of Corollary 1, in
addition to (L2). Therefore ∃ x̂ ∈ Pa such that f (x̂, ŷ) > f (x, ŷ). This completes the
proof in the case where (J4) holds.

Case (J5) Suppose that (J5) holds. First, note that by the assumption on i , j , and k we
have

N (j) ∩ A = N (k) ∩ A = {i} .

Hence, |N (j) ∩ A| = |N (k) ∩ A| = 1; that is, { j, k} ⊆ N≤1(A)\N 0(A). Letting,

B̂ := N 0(A) ∪ { j, k} ,

the proof that ŷ := supp−1(B̂) lies in Pb ∩ B
n and satisfies (43) is identical to the

proof used in Case (J4).
Next, observe thatN (i)∩B̂ ⊇ { j, k}, so that |N (i)∩B̂| ≥ 2; that is, i ∈ A\N≤1(B̂),

implying that B̂ satisfies (L2) (with B replaced by B̂). The remainder of the proof is
identical to Case (J4). ��
Remark 2 It can be shown that whenever the assumptions of (J4) or (J5) hold, any
point y ∈ Pb ∩ B

n satisfying supp(ŷ) ⊆ supp(y) ⊆ N≤1(A) will also satisfy

f (x̂, y) > f (x, y) ≥ f (x, y)

for some x̂ ∈ Pa . Hence, in order to take advantage of improvement opportunities
of the form (J4) or (J5), it is sufficient to take ŷ ∈ Pb ∩ B

n such that B̂ = supp(ŷ)
is maximal while satisfying {i, j} ∪ N 0(A) ⊆ B̂ ⊆ N≤1(A) (in the case of (J4)) or
{ j, k} ∪ N 0(A) ⊆ B̂ ⊆ N≤1(A) (in the case of (J5)). Since in practice there may be
many vertices i , j , and k satisfying either (J4) or (J5) for a given partition, a pair of
vectors (x̂, ŷ) improving the partition is often not difficult to find.

References

1. Acer, S., Kayaaslan, E., Aykanat, C.: A recursive bipartitioning algorithm for permuting sparse square
matrices into block diagonal formwith overlap. SIAMJ. Sci. Comput. 35(1), C99–C121 (2013). doi:10.
1137/120861242

2. Ashcraft, C.C., Liu, J.W.H.: A partition improvement algorithm for generalized nested dissection.
Technical Report BCSTECH-94-020, Boeing Computer Services, Seattle, WA (1994)

3. Benlic, U., Hao, J.: Breakout local search for the vertex separator problem. In: Proceedings of the
Twenty-Third International Joint Conference on Artificial Intelligence (2013)

4. Brandt, A., Ron, D.: Chapter 1: Multigrid solvers and multilevel optimization strategies. In: Cong, J.,
Shinnerl, J.R. (eds.) Multilevel Optimization and VLSICAD. Kluwer, Alphen (2003)

5. Bui, T., Jones, C.: Finding good approximate vertex and edge partitions is NP-hard. Inf. Process. Lett.
42, 153–159 (1992)

6. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning. In:
Kliemann, L., Sanders, P. (eds.) Algorithm Engineering: Selected Results and Surveys, pp. 117–158.
Springer, Berlin (2016)

7. Burmester, M., Desmedt, Y., Wang, Y.: Using approximation hardness to achieve dependable com-
putation. In: Luby, M., Rolim, J., Serna, M. (eds.) Randomization and Approximation Techniques in

123

http://dx.doi.org/10.1137/120861242
http://dx.doi.org/10.1137/120861242

222 W. W. Hager et al.

Computer Science, vol. 1518, pp. 172–186. Springer, Berlin (1998). doi:10.1007/3-540-49543-6_15.
Lecture Notes in Computer Science

8. Chen, J., Safro, I.: Algebraic distance on graphs. SIAM J. Sci. Comput. 33, 3468–3490 (2011)
9. Davis, T.A.: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia (2006)

10. Davis, T.A.: University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38, 1–25 (2011)
11. Davis, T.A., Hager, W.W., Hungerford, J.T.: The separable convex quadratic knapsack problem. ACM

Trans. Math. Softw. 42, 1–25 (2016)
12. Evrendilek, C.: Vertex separators for partitioning a graph. Sensors 8, 635–657 (2008)
13. Feige, U., Hajiaghayi, M., Lee, J.: Improved approximation algorithms for vertex separators. SIAM J.

Comput. 38, 629–657 (2008)
14. Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: Pro-

ceedings of 19th Design Automation Conference, pp. 175–181. Las Vegas, NV (1982)
15. Fukuyama, J.: NP-completeness of the planar separator problems. J. Graph Algorithms Appl. 10(2),

317–328 (2006)
16. George, A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall,

Englewood Cliffs (1981)
17. Gilbert, J.R., Zmijewski, E.: A parallel graph partitioning algorithm for a message-passing multipro-

cessor. Intl. J. Parallel Program. 16, 498–513 (1987)
18. Hager, W.W., Hungerford, J.T.: Optimality conditions for maximizing a function over a polyhedron.

Math. Program. 145, 179–198 (2014)
19. Hager,W.W., Hungerford, J.T.: Continuous quadratic programming formulations of optimization prob-

lems on graphs. Eur. J. Oper. Res. 240, 328–337 (2015)
20. Hendrickson, B., Leland, R.: A multilevel algorithm for partitioning graphs. In: Proceedings of Super-

computing ’95. IEEE (1995)
21. Hendrickson, B., Rothberg, E.: Effective sparse matrix ordering: just around the bend. In: Proceedings

of 8th SIAM Conference on Parallel Processing for Scientific Computing (1997)
22. http://snap.stanford.edu/data/
23. Karypis, G., Kumar, V.: METIS: unstructured graph partitioning and sparse matrix ordering system.

Technical Report, Department of Computer Science, University of Minnesota (1995)
24. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs.

SIAM J. Sci. Comput. 20, 359–392 (1998)
25. Kayaaslan, E., Pinar, A., Catalyürek, U., Aykanat, C.: Partitioning hypergraphs in scientific computing

applications through vertex separators. SIAM J. Sci. Comput. 34(2), A970–A992 (2012)
26. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J.

49, 291–307 (1970)
27. Kim, D., Frye, G.R., Kwon, S.S., Chang, H.J., Tokuta, A.O.: On combinatoric approach to circumvent

internet censorship using decoy routers. In: Military Communications Conference, 2013. MILCOM
2013., pp. 1–6. IEEE (2013)

28. Konno, H.: A cutting plane algorithm for solving bilinear programs. Math. Program. 11, 14–27 (1976)
29. Leiserson, C., Lewis, J.: Orderings for parallel sparse symmetric factorization. In: Third SIAM Con-

ference on Parallel Processing for Scientific Computing, pp. 27–31. SIAM Publications (1987)
30. Leiserson, C.: Area-efficient graph layout (for VLSI). In: Proceedings of 21st Annual Symposium on

the Foundations of Computer Science, pp. 270–281. IEEE (1980)
31. Litsas, C., Pagourtzis, A., Panagiotakos, G., Sakavalas, D.: On the resilience and uniqueness of CPA

for secure broadcast. In: IACR Cryptology ePrint Archive (2013)
32. Miller, G., Teng, S.H., Thurston, W., Vavasis, S.: Geometric separators for finite element meshes.

SIAM J. Sci. Comput. 19, 364–386 (1998)
33. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)
34. Pothen, A., Simon, H.D., Liou, K.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J.

Matrix Anal. Appl. 11(3), 430–452 (1990)
35. Rendl, F., Sotirov, R.: Themin-cut and vertex separator problem. Comput. Optim. Appl. (2017). doi:10.

1007/s10589-017-9943-4
36. Ron, D., Safro, I., Brandt, A.: Relaxation-based coarsening and multiscale graph organization. Multi-

scale Model. Simul. 9(1), 407–423 (2011)
37. Safro, I., Sanders, P., Schulz, C.: Advanced coarsening schemes for graph partitioning. ACM J. Exp.

Algorithm. 19(2), Article 2.2 (2014)

123

http://dx.doi.org/10.1007/3-540-49543-6_15
http://snap.stanford.edu/data/
http://dx.doi.org/10.1007/s10589-017-9943-4
http://dx.doi.org/10.1007/s10589-017-9943-4

A multilevel bilinear programming algorithm for the VSP 223

38. Safro, I., Ron, D., Brandt, A.: Graph minimum linear arrangement by multilevel weighted edge con-
tractions. J. Algorithms 60, 24–41 (2006)

39. Ullman, J.: Computational Aspects of VLSI. Computer Science Press, Rockville (1984)
40. Vanderbei, R.J.: Linear Programming: Foundations and Extensions, 4th edn. Springer, Berlin (2014)

123

	A multilevel bilinear programming algorithm for the vertex separator problem
	Abstract
	1 Introduction
	2 Notation
	3 Bilinear programming formulation
	4 Finding and improving upon vertex separators
	5 Multilevel algorithm
	6 Numerical results
	7 Conclusion
	8 Appendix
	References

