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Abstract The single facility location problemwith demand regions seeks for a facility
locationminimizing the sumof the distances from n demand regions to the facility. The
demand regions represent sales markets where the transportation costs are negligible.
In this paper, we assume that all demand regions are disks of the same radius, and
the distances are measured by a rectilinear norm, e.g. �1 or �∞. We develop an exact
combinatorial algorithm running in time O(n logc n) for some c dependent only on
the space dimension. The algorithm is generalizable to the other polyhedral norms.

Keywords 1-median · Single facility location problem ·Rectilinear norm · Polyhedral
norm · Exact algorithm

1 Introduction

In the conventional facility location problem each customer is associated with a single
point in the space. Often in applications, the number of points is too large to consider
them individually and the clients are combined in demand regions, see Dinler et al. [6].
In the basic problem considered in the present paper, we assume the transportation
costs to a demand region are proportional to the shortest distance between any point in
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the region and the facility, also referred to as a center. The transportation costs within
the demand region are negligible. While Brimberg and Wesolowsky [3] have used the
same cost function with the regions being polytopes, we consider a special case where
the demand regions are disks (balls) of radius R ≥ 0 and the distances are measured
by a rectilinear norm, e.g., �1 or �∞. Notice, under �1- and �∞-norm a disk shape is
not a conventional disk but a diamond and a square, respectively.

A special case of the problem with R = 0 and distances defined by the Euclidean
norm �2 is the well-known geometric 1-median problem. It has been shown that for the
geometric 1-median problem, neither a closed form formula, nor an exact algorithm
involving only ruler and compass can be constructed, see Bajaj [1]. Kumar et al. [9]
presented a randomized sampling algorithm, which for any ε > 0 with probability
at least 1/2 finds a (1 + ε)-approximation to the geometric k-median problem in
O(2(k/ε)O(1)

dn) time, where d is the space dimension and n is the number of points.
Very recently, Cohen et al. [5] presented a deterministic algorithm computing the
geometric median to arbitrary precision in nearly linear time. For R = 0 and under
�1- or �∞-norm, Kalcsics et al. [7] constructed an algorithm solving the 1-median
problem in O(n logd n) time. In that work the authors utilized a general framework
of Cohen and Megiddo [4] developed for minimization of a broad class of convex
functions over polytopes.

In this paper we develop an exact algorithm for the single facility location problem
with disk-shaped demand regions in R

d under rectilinear distance measures. The
running time of our exact algorithm matches the running time of the algorithm by
Kalcsics et al. [7], but solves the problem for arbitrary R ≥ 0. Then, we generalize
the algorithm to generic polyhedral norms.

2 Problem definition

First, we derive the results for the �1 norm. Let ρ(x) = ‖x‖1 be the �1-norm. Since a
disk in R

d under �1-norm has a diamond shape, we refer to the disk-shaped demand
regions as the diamond-shaped regions.

Given an input set X = {x1, x2, . . . , xn} ⊆ R
d and R ≥ 0, the single facility

location problem (SFLP) with diamond-shaped regions is to find a center c ∈ R
d ,

which minimizes

f (c) =
n∑

i=1

(ρ(xi − c) − R)+ , (1)

where (x)+ = max{0, x}, x ∈ R. This problem can be reformulated as a linear
program as follows. Let index j ∈ {1, 2, . . . , d} specify the j th coordinate of a point.
Then, the linear program reads

min
c,y,z

n∑

i=1

zi
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Fig. 1 Linear regions for
d = 2, n = 4

subject to

yi, j ≥ xi, j − c j , ∀i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , d}
yi, j ≥ −xi, j + c j , ∀i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , d}

zi ≥
n∑

j=1

yi, j − R, ∀i ∈ {1, 2, . . . , n},

zi ≥ 0, ∀i ∈ {1, 2, . . . , n},

where for each data point i ∈ {1, 2, . . . , n}, variable yi, j is the distance between c
and xi projected on the j th coordinate, and zi is the distance between c and xi minus
R if this value is non-negative, otherwise it equals 0.

This linear program has nd + n+ d variables and 2nd + n constraints. Vaidya [14]
have shown that the time needed to solve such a linear program is O((nd)2.5L),
where L is a parameter characterizing the constraint matrix. In this paper we intro-
duce a simple combinatorial algorithm as an alternative to the solution of the above
linear program.Moreover, our algorithmoutperforms the classical linear programming
algorithm.

The idea of the algorithm is purely geometrical. First, we observe, that the objective
function f (c) is convex and piecewise linear. Second, we can define polynomially
many polytopal regions, such that the objective function is linear in each region; see
Fig. 1 for an illustration of a two-dimensional case with four data points.Third, the
algorithm runs a binary search in each dimension over these polytopal regions and
finds an optimal solution.

3 A two-dimensional �1 case

To simplify the presentation, we first describe the algorithm for the planar case, i.e.
for d = 2. For one data point x , the basic division of the space into regions, where
f is linear, is depicted in Fig. 2a. This basic drawing is centered at x . For the case
of more than one data point, say for x1, x2, . . . , xn , we embed such basic drawings in
the plane centering them at points x1, x2, . . . , xn (Fig. 1), respectively. Similar to the
graph drawing terminology, we call the union of the basic drawings an embedding. For
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(a) (b) (c) (d)

Fig. 2 Division of the space in linearity regions. a Linear regions, b Grid, c cell and d block of cells

simplicity of further calculations, we extend the line segments to the straight lines; see
Fig. 2b. This creates a complex grid with two types of lines: vertical-horizontal and
turned by 45◦. Let a cell be an inclusion maximal polyhedron in the plane, not crossed
by any line of the embedding. This is similar to a face of a planar graph embedding.
Finally, we refer to the union of cells between any two consecutive parallel grid lines
as a block of cells, see Fig. 2d.

Notice, division of the space into the regions where the objective function is linear
is very well-known approach in Location Theory, see e.g. [10–13]. These regions are
often referred to as linearity regions, domains of linearity, or cells, see the above
references. For simplicity, in this paper we follow the latter notion of cells introduced
in Nickel et al. [12]. The most important property of the problem is that within any
cell of the embedding the function f is linear. Therefore the evaluation of the function
in any point of a cell takes only O(n) time.

In the two-dimensional case there are only four different line directions and, there-
fore, any cell has at most eight facets and eight vertices. Thus the evaluation of the
function in all corner points of a cell takes O(n) time and finding a minimum in a
cell also takes linear time. Despite the fact that there are in general O(n2) cells and
naive brute force would take cubic time, we are able to construct an almost linear time
algorithm to the problem. Instead of enumerating over a quadratic number of cells, we
run binary searches along four possible line directions, corresponding to four different
types of blocks. Since the function f is convex, binary search correctly determines a
cell containing a minimizer of the function. Binary search requires at most O(log n)

steps per line direction, making the total number of steps O(log4 n) for the four line
directions of any two-dimensional case. At each step of this high dimensional binary
search, the function f is evaluated, making the overall computation time of the algo-
rithm at most O(n log4 n). Details on the algorithm are deferred to the next section
where we discuss the more general high dimensional case.

4 Higher dimensions and polyhedral norms

4.1 Notation and definitions

Notice that under the �1-norm for any x ∈ R
d we have ρ(x) = maxa∈{−1,1}d aT x ,

where {−1, 1}d is the set of d-dimensional vectors consisting entries 1 and−1. There-
fore, we rewrite the objective function f as follows:
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f (c) =
n∑

i=1

(
max

a∈{−1,1}d
aT (xi − c) − R

)

+
.

Similar to the two-dimensional case, we define the notions of grid, cells and blocks
in Rd . We first define the set of directions A, which is the set of orthogonal vectors to
the norm defining hyperplanes. Let

A =
{
a ∈ {−1, 0, 1}d | a 	= {0}d and the first non-zero entry of a is 1

}
. (2)

Notice, |A| = (3d − 1)/2. For simplicity of notations we assume all vectors in A are
indexed: A = {a1, a2, . . . , a|A|}. Let us remind that X = {x1, x2, . . . , xn}. For every
vector ak ∈ A, we define

Bk =
{
bk1, b

k
2, . . . , b

k|Bk |
}

=
{{

aTk x ± R | x ∈ X
}
, if ak ∈ {−1, 1}d ;

{
aTk x | x ∈ X

}
, otherwise,

(3)

being the set of positions/levels of the hyperplanes orthogonal to ak ∈ A. The intuition
for the set Bk is that the hyperplanes aTk x = bkj , x ∈ R

d , bkj ∈ Bk , are the delimiters
of the linearity regions (cells) in the space, and these hyperplanes will be used in
the construction of the high dimensional grid, blocks and cells, similarly to the two-
dimensional case in Sect. 3. Again, without loss of generality, assume bk1 ≤ bk2 ≤
· · · ≤ bk|Bk |, otherwise we sort the positions in the preprocessing step in O(n log n)

time. For convenience, let us introduce bk0 = −∞ and bk|Bk |+1 = +∞. Now, we define
the grid, cells and blocks of cells for a general high dimensional case.

Definition 1 The hyperplanes
{
x ∈ R

d | aTk x = bkj , ak ∈ A, bkj ∈ Bk
}

form the

grid. A cell is an inclusion maximal polyhedron in R
d not crossed by a grid hyper-

plane. A set of indices { j1, j2, . . . , j|A|}, where jk ∈ {0, 1, . . . , |Bk | + 1} for any
k ∈ {1, 2, . . . , |A|}, completely specifies the cell:

C(0; j1, j2, . . . , j|A|) =
{
x ∈ R

d | bkjk ≤ aTk x ≤ bkjk+1, ak ∈ A
}

. (4)

Leaving out l constraints in the definition of a cell, we arrive at the definition of a
block of cells parameterized by l:

C(l; j1, j2, . . . , j|A|−l) =
{
x ∈ R

d | bkjk ≤ aTk x ≤ bkjk+1
for any

k ∈ {1, 2, . . . , |A| − l}
}

. (5)

4.2 Observations

The following observations are necessary ingredients of the algorithm and its further
analysis. First of all, notice that for any cell C and for any x ∈ X , either the cell is
within the range R from x and then
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(
max

a∈{−1,1}d
aT (c − x) − R

)

+
= 0, ∀c ∈ C, (6)

or there exists a vector a0 ∈ {−1, 1}d such that

(
max

a∈{−1,1}d
aT (c − x) − R

)

+
= a0

T (c − x) − R, ∀c ∈ C. (7)

In other words, every individual contribution of a data point x ∈ X to the objective
function f is linear in any cell C . As the sum of linear functions is a linear function,
f is linear in any cell C .
The second observation is that every individual contribution of a data point x ∈ X

to the objective function f is convex as it is a maximum of two linear functions. Since
the sum of convex functions is convex, the function f is convex.

The third observation is that for any cellC theminimumof f overC can be found in
O(dn+d4.53d) time. By linearity of the function f within a cell, we have to compute
d coefficients of that linear function. Computation of any coefficient requires at most
O(n) time. Thus, specification of the linear objective function in a cell is obtained in
O(dn) time. Then, solving the linear program minimizing f on polyhedron cell C
takes at most O(d4.53d) time, e.g., using Karmarkar’s Algorithm [8].

4.3 High dimensional recursive binary search algorithm

Now, we are ready to present the algorithm and to analyze its running time.

Algorithm 1:
Data: X = {x1, x2, . . . , xn} ⊂ R

d .
Result: c∗ = arg min

c∈Rd
f (c).

Algorithm main()
// Define the grid by the sets A and Bk , ak ∈ A, according to the

Definitions (2) and (3).
// For every ak ∈ A, sort elements of Bk in non-decreasing order.
return minimize (C(|A|; ∅)).

Procedure minimize(C(l; j1, j2, . . . , j|A|−l ))
// This procedure returns the point c∗l ∈ C(l; j1, j2, . . . , j|A|−l ) where

the minimum of the objective function in the block is
attained, i.e., f (c∗l ) ≤ f (c) for all c ∈ C(l; j1, j2, . . . , j|A|−l ).

// Consider the segment of integers Sl = {0, 1, . . . , |B|A|−l+1| + 1}.
// Let c∗l−1,q be the point returned in

minimize
(
C(l − 1; j1, j2, . . . , j|A|−l , q)

)
, q ∈ Sl.

// For l ≥ 1, using binary search on q ∈ Sl find an integer q∗
minimizing f (c∗l−1,q ). Let c∗l = c∗l−1,q∗.

// For l = 0, solve the linear program minimizing function f on
polyhedron cell C(0; j1, j2, . . . , j|A|). Let c∗l be a solution to the

linear program.
return c∗l .
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Theorem 1 Algorithm 1 returns an optimal solution c∗ ∈ R
d to the single facility

location problem with diamond-shaped regions in O
(
dn log3

d
n + d4.53d log3

d
n
)

time.

Proof By convexity of the function f , the binary search correctly computes the min-
imum objective function values and the corresponding solution points in the blocks
of cells. Given that the binary search for a single parameter q takes at most O(log n)

time and the recursion depth in the algorithm is at most 3d , we have that the binary
search takes O(log3

d
n) steps in total. In every leaf of the binary search tree, the algo-

rithm evaluates a minimum of the function f in a cell. By the observation above, this
evaluation is done by solving a linear program in O(dn + d4.53d) time. Hence, the
claimed time complexity follows. ��

Algorithm 1 works also for l∞ and for more general polyhedral norms. We use
the definition of a polyhedral norm as in Barvinok et al. [2]. Let P be a centrally
symmetric bounded polyhedron in R

d with the origin in its center. By symmetry,
the number of facets is even. Let the number of facets be 2m. Then, there is a set
HP = {h1, h2, . . . , hm} of points in Rd such that P is the intersection of a collection
of half-spaces defined by HP :

P =
(

m⋂

i=1

{x ∈ R
d | hTi x ≤ 1}

)
∩

(
m⋂

i=1

{x ∈ R
d | hTi x ≥ −1}

)
.

Then, the polyhedral norm is defined by ρ(x) = max1≤i≤m |hTi x |. For instance,
for �1 in R

2 we can take HP = {(1, 1), (−1, 1)} and for �∞ in R
2 we can take

HP = {(0, 1), (1, 0)}.
For a polyhedral norm, the only adjustment we have to make in the Algorithm 1 is

to generalize sets A and B in the definition of the grid. For this generalization, let

A1 = {±hi | hi ∈ HP , 1 ≤ i ≤ m} , (8)

A2 = {
hi − h j | hi , h j ∈ HP , 1 ≤ i, j ≤ m, i 	= j

}
, (9)

A = A1 ∪ A2. (10)

Again, we assume all vectors in A are indexed: A = {a1, a2, . . . , a|A|}. For every
vector ak ∈ A, we define

Bk =
{
bk1, b

k
2, . . . , b

k|Bk |
}

=
{{

aTk x ± R | x ∈ X
}
, if ak ∈ A1;

{
aTk x | x ∈ X

}
, if ak ∈ A2.

(11)

Now, to adjust Algorithm 1 to a generic polyhedral norm we define the grid by the
sets A and Bk, ak ∈ A, according to the definitions (10) and (11). The rest of the
algorithm remains intact.
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Finally, let us estimate the run-time of Algorithm 1 adjusted to a polyhedral norm.
The new set A determines the types of the grid hyperplanes. For each ak ∈ A the set
Bk determines all hyperplanes of type ak . Notice, |A| = O(m2) as the size of A2 is
quadratic in the number of facets. By definition, for every ak ∈ A, the size of the set
Bk is at most 2n. Thus, the number of grid cells created in this construction is nO(m2).
Using the adjusted number of grid cells and following literally the same arguments as
in Theorem 1, we generalize the result as follows.

Theorem 2 Under a polyhedral norm determined by a polyhedron with 2m facets,
the adjusted Algorithm 1 returns an optimal solution c∗ ∈ R

d to the single facility

location problem with disk-shaped demand regions in O
(
(dn + d4.5m2) logO(m2) n

)

time.

Since 2m ≥ d + 1 for any bounded polyhedron in R
d , we have the following

straightforward corollary:

Corollary 1 Under a polyhedral norm determined by a polyhedron with 2m facets,
the adjusted Algorithm 1 returns an optimal solution to the single facility location

problem with disk-shaped demand regions in O
(
(mn + m6.5) logO(m2) n

)
time.
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