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Abstract Westudy the applicability of the Peaceman–Rachford (PR) splittingmethod
for solving nonconvex optimization problems. When applied to minimizing the sum
of a strongly convex Lipschitz differentiable function and a proper closed function, we
show that if the strongly convex function has a large enough strong convexity modulus
and the step-size parameter is chosen below a threshold that is computable, then any
cluster point of the sequence generated, if exists, will give a stationary point of the
optimization problem. We also give sufficient conditions guaranteeing boundedness
of the sequence generated. We then discuss one way to split the objective so that
the proposed method can be suitably applied to solving optimization problems with
a coercive objective that is the sum of a (not necessarily strongly) convex Lipschitz
differentiable function and a proper closed function; this setting covers a large class of
nonconvex feasibility problems and constrained least squares problems. Finally, we
illustrate the proposed algorithm numerically.
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1 Introduction

Consider the following optimization problem with competing structure:

min
u

f (u) + g(u), (1)

where f and g are proper closed possibly nonconvex functions.Optimization problems
of this form arise in many important modern applications such as signal processing,
machine learning and statistics [6,10,17,32]. A typical application of (1) is to solve
some ill-posed inverse problems where the function f represents the data fitting term
and the function g is the regularization term. To solve problems with competing struc-
tures, an important and powerful class of algorithms is the class of splitting methods.
In these methods, the objective function is decomposed into simpler individuals which
are then processed separately in the subproblems. Two classical splitting methods in
the literature are the Douglas–Rachford (DR) splitting method [15,16,26] and the
Peaceman–Rachford (PR) splitting method [26,30].

The PR splitting method was originally introduced in [30] for solving linear heat
flow equations, and was later generalized to deal with nonlinear equations in [26]. In
the case when f and g are both convex, the PR splitting method can be described
conveniently by the following update:

xt+1 = (2proxγ g − I ) ◦ (2proxγ f − I )(xt ), (2)

where I is the identity mapping, γ > 0 and

proxγ h(z) := Arg min
u

{
γ h(u) + 1

2
‖u − z‖2

}
,

i.e., the set ofminimizers of the problemmin
u

γ h(u)+ 1
2‖u−z‖2;wenote that this set is a

singletonwhen h is convex.Although the PR splittingmethod can be faster than theDR
splitting method (see, for example, [18] and Example 1 in Appendix), the PR splitting
methodwas not as popular as theDR splittingmethod. This is alsowitnessed by the fact
that the PR splitting method is not discussed nor mentioned in the recent monograph
[5] on operator splitting methods. One of the main reasons for the unpopularity is that,
even in the convex settings, the PR splitting method is not convergent in general. To
guarantee convergence, typically onewould require either the operator (2proxγ f −I )or
(2proxγ g− I ) to be a contractionmapping. In applicationswhere f , g are both convex,
this requirement typically needs f or g to be strongly convex, which largely limits
the applicability of the PR splitting method; see, for example, [12,26]. In contrast,
under a commonly used constraint qualification which can be easily satisfied, the DR
splitting method converges in the convex case [13, Theorem 20]. Moreover, recently,
it has been shown in [25] that the DR splitting method can be adapted to a nonconvex
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setting with global convergence guaranteed under some assumptions. This broadens
the applicability of the DR splitting method to cover many nonconvex feasibility
problems and many important nonconvex optimization problems arising in statistical
machine learning such as the �1/2 regularized least squares problem.

In this paper, to broaden the applicability of the PR splitting method, we extend it
to a nonconvex setting. By constructing a merit function which captures the progress
of the PR splitting method, we extend the global convergence of the PR splitting
method from the known convex setting to the case where the objective function can be
decomposed as the sum of a strongly convex Lipschitz differentiable function and a
nonconvex function, under suitable assumptions. As a by-product, this extension also
allows us to establish the global convergence and iteration complexity of a new PR
splitting method for convex optimization problems in the absence of strong convexity.
The underlying intuitive idea is that one can decompose a non-strongly convex function
F + G into the sum of a strongly convex function f = F + γ ‖ · ‖2 and a nonconvex
function g = G − γ ‖ · ‖2, if a γ > 0 can be chosen so that f is strongly convex.

The contributions of this paper are two-fold. First,we establish that, for the sequence
generated by the PR splitting method applied to minimizing the sum of a strongly
convex Lipschitz differentiable function and a proper closed function, if the strongly
convex function has a sufficiently large strong convexity modulus and the step-size
parameter is chosen below a threshold that is computable, then any cluster point, if
exists, gives a stationary point of the optimization problem. We also provide sufficient
conditions to guarantee boundedness of the sequence generated. To our knowledge,
this is the first work that studies the convergence of the PR splitting method for
nonconvex optimization problems. Second, we demonstrate how the method can be
suitably applied to minimizing a coercive function F +G, where G is a proper closed
function, and F is convex Lipschitz differentiable but not necessarily strongly convex.
Even in the case when G is also convex, it was previously unknown in the literature
how the PR splitting method can be suitably applied to solving it. Our study largely
broadens the applicability of the PR splitting method. We also discuss global iteration
complexity of this new PR splitting method under the additional assumption that G is
convex, and establish global linear convergence of the sequence generated if F + G
is further assumed to be strongly convex.

The rest of the paper is organized as follows. In Sect. 1.1, we fix the notation and
recall some basic definitions which will be used throughout this paper. In Sect. 2,
we establish the convergence of the PR splitting method for nonconvex optimization
problems where the objective function can be decomposed as the sum of a strongly
convex function and a proper closed function, under suitable assumptions. In Sect. 3,
we demonstrate how the PR splitting method can be applied in the absence of strong
convexity. In Sect. 4, as applications, we illustrate how the PR splitting method can be
applied to solving two important classes of nonconvex optimization problems that arise
in the area of statistics and machine learning: constrained least squares problem and
feasibility problems. We also demonstrate our approach numerically. Our concluding
remarks are in Sect. 5. Finally, in the Appendix, we provide simple and concrete
examples illustrating the different behaviors of the classical PR splitting method, the
classical DR splitting method and our proposed PR splitting method.
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1.1 Notation

In this paper, the n-dimensional Euclidean space is denoted by IRn , with the associated
inner product denoted by 〈·, ·〉 and the induced norm denoted by ‖·‖. For an extended-
real-valued function f : IRn → (−∞,∞], we say that f is proper if it is never −∞
and its domain, dom f := {x ∈ IRn : f (x) < +∞}, is nonempty. Such a function is

said to be closed if it is lower semicontinuous. For a proper function f , we let z
f→ x

denote f (z) → f (x) and z → x . The limiting subdifferential of f at x ∈ dom f is
defined by [31]

∂ f (x) :=
{
v ∈ IRn : ∃xt f→ x, vt → v with

lim inf
z→xt

f (z) − f (xt ) − 〈vt , z − xt 〉
‖z − xt‖ ≥ 0 for each t

}
. (3)

From the above definition, one immediately obtains the following robustness property:

{
v ∈ IRn : ∃xt f→ x, vt → v , vt ∈ ∂ f (xt )

}
⊆ ∂ f (x). (4)

The subdifferential (3) reduces to the derivative of f (denoted by ∇ f ) if f is continu-
ously differentiable, and the classical subdifferential in convex analysis if f is convex
(see, for example, [31, Proposition 8.12]). For a function f havingmore than one group
of variables, we let ∂x f (resp., ∇x f ) denote the subdifferential (resp., derivative) of
f with respect to the variable x .
We say that a function f is a strongly convex function with modulus σ > 0 if

f − σ
2 ‖·‖2 is a convex function.A function f is said to be coercive if lim inf‖x‖→∞ f (x) = ∞.

For a nonempty closed set S ⊆ IRn , its indicator function δS is defined by

δS(x) =
{
0 if x ∈ S,

+∞ if x /∈ S.

We use the notation dS(x) or dist(x, S) to denote the distance from an x ∈ IRn to S,
i.e., dS(x) := inf y∈S ‖x − y‖. Moreover, we use PS(x) to denote the points in S that
are closest to x : note that PS(x) is a singleton set if S is, in addition, convex.

Finally, for an optimization problem min
x∈IRn

f (x), we use Arg min
x

f (x) to denote the

set consisting of all its minimizers. If Arg min
x

f (x) turns out to be a singleton, we

simply denote it as arg min
x

f (x).

2 Peaceman–Rachford splitting for structured nonconvex problems

Recall that the class of problems we consider is

min
u

f (u) + g(u), (5)
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where f and g are proper closed possibly nonconvex functions. As discussed in the
introduction, even in the case when both f and g are convex, typically one would need
f (or g) to be strongly convex to guarantee convergence of the PR splitting method.
Moreover, we recall that the Lipschitz differentiability of f played an important role
in the recent convergence analysis of the closely related DR splitting method in [25]
for (5) in the nonconvex settings. Motivated by these, we make the following blanket
assumption on f throughout this paper.

Assumption 1 (Blanket assumption on f ) The function f is strongly convex with a
strong convexity modulus at least σ > 0, and is Lipschitz differentiable so that ∇ f
has a Lipschitz continuity modulus at most L > 0.

Notice that the proximal mapping proxγ f (z) of a strongly convex function f is
well defined for any γ > 0 at any point z. Thus, in order for the iterates in (2) to be
well defined, we only need to make additionally the following blanket assumption on
g in this paper.

Assumption 2 (Blanket assumption on g) The function g is proper closed with a
nonempty proximal mapping proxγ g(z) for any z and for the γ > 0 we use in the
algorithm.

Under the blanket assumptions, we consider the following adaptation of the PR
splitting method to solve the possibly nonconvex problem (5), which can be easily
shown to be equivalent to (2) in the case when f and g are convex (so that the proximal
mappings are single-valued).

PR splitting method

Step 0 Input x0 and γ > 0.
Step 1 Set

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yt+1 = arg miny
{
f (y) + 1

2γ ‖y − xt‖2
}

,

zt+1 ∈ Arg minz
{
g(z) + 1

2γ ‖2yt+1 − xt − z‖2
}

,

xt+1 = xt + 2(zt+1 − yt+1).

(6)

Step 2 If a termination criterion is not met, go to Step 1.

Our convergence analysis follows a similar line of arguments (with some intricate
modifications) for showing convergence for theDouglas–Rachford splittingmethod as
in our recent work [25], and has to make extensive use of the followingmerit function:

Pγ (y, z, x) := f (y) + g(z) − 3

2γ
‖y − z‖2 + 1

γ
〈x − y, z − y〉

= Dγ (y, z, x) − 1

γ
‖y − z‖2, (7)
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where Dγ is the so-called Douglas–Rachford merit function given by Dγ (y, z, x) =
f (y) + g(z) − 1

2γ ‖y − z‖2 + 1
γ
〈x − y, z − y〉 (see [25, Definition 2.1]), motivated by

[29, Eq. 35].
Before proceeding, we make two important observations. First, it is not hard to see

that the merit function Pγ can alternatively be written as

Pγ (y, z, x) = f (y) + g(z) + 1

2γ
‖2y − z − x‖2 − 1

2γ
‖x − y‖2 − 2

γ
‖y − z‖2

= f (y) + g(z) + 1

2γ
(‖x − y‖2 − ‖x − z‖2 − 2‖y − z‖2), (8)

where the first relation follows from the elementary relation 〈u, v〉 = 1
2 (‖u + v‖2 −

‖u‖2 − ‖v‖2) applied with u = x − y and v = z − y in (7), while the second relation
is obtained by using the elementary relation 〈u, v〉 = 1

2 (‖u‖2 + ‖v‖2 − ‖u − v‖2) in
(7) with u = x − y and v = z − y. We will make use of these equivalent formulations
in the convergence analysis. Second, we note by using the optimality conditions for
the y and z-updates in (6) that:

0 = ∇ f (yt+1) + 1

γ
(yt+1 − xt ),

0 ∈ ∂g(zt+1) + 1

γ
(zt+1 − yt+1) − 1

γ
(yt+1 − xt ), (9)

where we made use of the subdifferential calculus rule [31, Exercise 8.8]. Conse-
quently, for all t ≥ 1,

0 ∈ ∇ f (yt ) + ∂g(zt ) + 1

γ
(zt − yt ). (10)

To establish convergence and characterize the cluster point of the sequence generated,
we will subsequently show that limt→∞ ‖zt − yt‖ = 0 and that g is “continuous” at
the cluster point along the sequence generated.

We are now ready to state and prove a convergence result for the PR splitting
method (6). We would like to point out that our proof is following exactly the same
line of arguments as [25, Theorem 1]. However, there are two crucial differences. First,
we now make use of the merit function (7) in place of the Douglas–Rachford merit
function. Second, as we will see in the upper estimate in (20), the factor of γ in the
denominator is canceled, and thus the strong convexity modulus σ comes into play in
establishing the non-increasing property of the sequence {Pγ (yt , zt , xt )}t≥1.

Theorem 1 (Global subsequential convergence) Suppose that 3σ > 2L and the
parameter γ is chosen so that

0 < γ <
3σ − 2L

L2 . (11)
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Then the sequence {Pγ (yt , zt , xt )}t≥1 is nonincreasing. Moreover, if a cluster point
(y∗, z∗, x∗) of the sequence exists, then we have

lim
t→∞ ‖xt+1 − xt‖ = 2 lim

t→∞ ‖zt+1 − yt+1‖ = 0, (12)

the cluster point satisfies z∗ = y∗, and

0 ∈ ∇ f (z∗) + ∂g(z∗).

Remark 1 We note that the condition 3σ > 2L indicates that this convergence result
can only be applied when f has a relatively large strong convexity modulus, i.e., when
σ > 2

3 L . It seems restrictive at first glance, but we will demonstrate in the next section
how this theorem can be applied in a wide range of problems that do not explicitly
contain a strongly convex part in the objective. Specifically, we will show that the
method can be suitably applied to minimizing a coercive function F +G, where G is
a proper closed function and F is convex Lipschitz differentiable but not necessarily
strongly convex; see Corollary 1.

Proof Westudy the behavior ofPγ along the sequence generated from the PR splitting
method. First, using (7) and the definition of the x-update, we see that

Pγ (yt+1, zt+1, xt+1) − Pγ (yt+1, zt+1, xt ) = 1

γ
〈xt+1 − xt , zt+1 − yt+1〉

= 1

2γ
‖xt+1 − xt‖2. (13)

Second, making use of the first relation in (8) and the definition of zt+1 as a minimizer,
we have

Pγ (yt+1, zt+1, xt ) − Pγ (yt+1, zt , xt )

= g(zt+1) + 1

2γ
‖2yt+1 − zt+1 − xt‖2 − 2

γ
‖yt+1 − zt+1‖2

−g(zt ) − 1

2γ
‖2yt+1 − zt − xt‖2 + 2

γ
‖yt+1 − zt‖2

≤ 2

γ

(
‖yt+1 − zt‖2 − ‖yt+1 − zt+1‖2

)

= 2

γ

(
‖yt+1 − zt‖2 − 1

4
‖xt+1 − xt‖2

)
, (14)

where the last relation is due to the definition of xt+1. Consequently, summing (13)
and (14), we have

Pγ (yt+1, zt+1, xt+1) − Pγ (yt+1, zt , xt ) ≤ 2

γ
‖yt+1 − zt‖2. (15)
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Next, making use of the second relation in (8), we see that

Pγ (yt+1, zt , xt ) − Pγ (yt , zt , xt )

= f (yt+1) + 1

2γ
‖xt − yt+1‖2 − f (yt ) − 1

2γ
‖xt − yt‖2 − 1

γ
‖yt+1 − zt‖2

+ 1

γ
‖yt − zt‖2

≤ −1

2

(
1

γ
+ σ

)
‖yt+1 − yt‖2 − 1

γ
‖yt+1 − zt‖2 + 1

γ
‖yt − zt‖2, (16)

where, in the last inequality, we used the definition of yt+1 as a minimizer and the
strong convexity of the objective in theminimization problem that defines the y-update.
Combining (16) with (15) gives further that

Pγ (yt+1, zt+1, xt+1) − Pγ (yt , zt , xt ) ≤ −1

2

(
1

γ
+ σ

)
‖yt+1 − yt‖2

+ 1

γ
‖yt+1 − zt‖2 + 1

γ
‖yt − zt‖2.

(17)

To further upper estimate (17), observe from the first relation in (9) that

∇ f (yt+1) = 1

γ
(xt − yt+1).

Since f is strongly convex with modulus σ > 0 by assumption, we see that for all
t ≥ 1,

〈
1

γ
(xt − yt+1) − 1

γ
(xt−1 − yt ), yt+1 − yt

〉
≥ σ‖yt+1 − yt‖2

�⇒ 〈xt − xt−1, yt+1 − yt 〉 ≥ (1 + γ σ)‖yt+1 − yt‖2.

Thus, making use of the definition of xt and the above relation, we obtain further that

‖yt+1 − zt‖2 = ‖yt+1 − yt + yt − zt‖2 =
∥∥∥∥yt+1 − yt − 1

2
(xt − xt−1)

∥∥∥∥
2

= ‖yt+1 − yt‖2 − 〈yt+1 − yt , xt − xt−1〉 + 1

4
‖xt − xt−1‖2

≤ −γ σ‖yt+1 − yt‖2 + 1

4
‖xt − xt−1‖2. (18)

In addition, observe also from the definition of the x-update, the first relation in (9)
and the Lipschitz continuity of ∇ f that for t ≥ 1

2‖yt − zt‖ = ‖xt − xt−1‖ ≤ (1 + γ L)‖yt+1 − yt‖. (19)

123



Peaceman–Rachford splitting for a class of nonconvex… 415

Combining (18), (19) with (17), we conclude that for any t ≥ 1

Pγ (yt+1, zt+1, xt+1)−Pγ (yt , zt , xt ) ≤ 1

2γ

(
(1+γ L)2−3γ σ −1

)
‖yt+1−yt‖2

= 1

2

(
−3σ + 2L + γ L2

)
‖yt+1 − yt‖2.

(20)

By our choice of γ , −3σ + 2L + γ L2 < 0. From this we see immediately that
{Pγ (yt , zt , xt )} is nonincreasing. Summing (20) from t = 1 to N − 1 ≥ 1, we obtain
that

Pγ (yN , zN , xN ) − Pγ (y1, z1, x1) ≤ 1

2

(
−3σ + 2L + γ L2

) N−1∑
t=1

‖yt+1 − yt‖2.

(21)

Using this, the closedness of Pγ and the existence of cluster points, we conclude
immediately from (21) that lim

t→∞ ‖yt+1 − yt‖ = 0. Combining this with (19), we

conclude that (12) holds. Furthermore, combining these with the third relation in (6),
we obtain further that lim

t→∞ ‖zt+1 − zt‖ = 0.

Consequently, if (y∗, z∗, x∗) is a cluster point of {(yt , zt , xt )} with a convergent
subsequence {(yt j , zt j , xt j )} such that lim

j→∞(yt j , zt j , xt j ) = (y∗, z∗, x∗), thenwemust

have

lim
j→∞(yt j , zt j , xt j ) = lim

j→∞(yt j−1, zt j−1, xt j−1) = (y∗, z∗, x∗). (22)

Since zt is a minimizer of the subproblem,

g(zt ) + 1

2γ
‖2yt − zt − xt−1‖2 ≤ g(z∗) + 1

2γ
‖2yt − z∗ − xt−1‖2.

Taking limit along the convergent subsequence and using (22) yields

lim sup
j→∞

g(zt j ) ≤ g(z∗).

Conversely, we have lim inf
j→∞ g(zt j ) ≥ g(z∗) by the lower semicontinuity of g. Thus,

lim
j→∞ g(zt j ) = g(z∗). (23)

Using (4), (12), (23) and passing to the limit in (10) along the convergent subsequence
above, we conclude that the cluster point gives a stationary point of (5), i.e., y∗ = z∗
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and

0 ∈ ∇ f (z∗) + ∂g(z∗).

This completes the proof. ��
In the next theorem, we study sufficient conditions to guarantee boundedness of the

sequence generated from the PR splittingmethod. Thus, a cluster point will necessarily
exist under these conditions.

Theorem 2 (Boundedness of sequence) Suppose that 3σ > 2L and the γ is chosen to
satisfy (11). Suppose in addition that f +g is coercive, i.e., lim inf‖u‖→∞( f +g)(u) =
∞. Then the sequence {(yt , zt , xt )} generated from (6) is bounded.

Proof Recall from Theorem 1 that the merit function is nonincreasing along the
sequence generated from (6). In particular,

Pγ (yt , zt , xt ) ≤ Pγ (y1, z1, x1) (24)

whenever t ≥ 1, where

Pγ (yt , zt , xt ) = f (yt ) + g(zt ) − 1

2γ
‖xt − zt‖2 + 1

2γ
‖xt − yt‖2 − 1

γ
‖yt − zt‖2

(25)

from the second relation in (8). Next, recall from the definition of x-update that xt =
xt−1 + 2(zt − yt ), which together with the first relation in (9) gives

∇ f (yt ) = 1

γ
(xt−1 − yt ) = 1

γ
([xt − zt ] − [zt − yt ]). (26)

Moreover, for the function f whose gradient is Lipschitz continuous with modulus L ,
we have

f (zt ) ≤ f (yt ) + 〈∇ f (yt ), zt − yt 〉 + L

2
‖zt − yt‖2. (27)

Combining these with (25) and (24), we see further that

Pγ (y1, z1, x1) ≥ f (yt ) + g(zt ) − 1

2γ
‖xt − zt‖2 + 1

2γ
‖xt − yt‖2 − 1

γ
‖yt − zt‖2

≥ f (zt ) + g(zt ) − 〈∇ f (yt ), zt − yt 〉 − 1

2γ
‖xt − zt‖2

+ 1

2γ
‖xt − yt‖2 −

(
L

2
+ 1

γ

)
‖yt − zt‖2

= f (zt ) + g(zt ) − 1

γ
〈xt − zt , zt − yt 〉 − 1

2γ
‖xt − zt‖2
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+ 1

2γ
‖xt − yt‖2 − L

2
‖yt − zt‖2

= f (zt ) + g(zt ) + 1

2

(
1

γ
− L

)
‖yt − zt‖2, (28)

where the second inequality follows from (27), the first equality follows from (26),
while the last equality follows from the elementary relation 〈u, v〉 = 1

2 (‖u + v‖2 −
‖u‖2 − ‖v‖2) applied to u = xt − zt and v = zt − yt . From (28), the coerciveness of
f + g and the fact that γ < 3σ−2L

L2 ≤ 1
L , we conclude that {zt } and {yt } are bounded.

The boundedness of {xt } now follows from these and the first relation in (9). This
completes the proof. ��
Remark 2 (Comments on the proof of Theorem 2)

(i) The technique of using (27) for establishing (28) was also used previously in [21,
Lemma 3.3] for showing that the augmented Lagrangian function is bounded
below along the sequence generated from the alternating direction method of
multipliers for a special class of problems. Here, we applied the technique to the
new merit function Pγ .

(ii) The same technique used here can be applied to establishing the boundedness
of the sequence generated by the DR splitting method studied in [25] under a
condition which is slightly weaker than the one used in [25]. In fact, one can
show that, the DR splitting method in [25] generates a bounded sequence under
the blanket assumptions of f and g in [25, Section 3], the condition that f + g
is coercive and the choice of parameter specified in [25, Theorem 4].1

To see this, recall that for the DR splitting method, we also have ∇ f (yt ) =
1
γ
(xt−1 − yt ) but have xt = xt−1 + (zt − yt ) instead of the third relation in (6).

Thus,∇ f (yt ) = 1
γ
(xt − zt ) and we have the following estimate for the DRmerit

function, making use of (27):

Dγ (yt , zt , xt ) = f (yt ) + g(zt ) − 1

2γ
‖xt − zt‖2 + 1

2γ
‖xt − yt‖2

≥ f (zt ) + g(zt ) − 〈∇ f (yt ), zt − yt 〉 − L

2
‖zt − yt‖2

− 1

2γ
‖xt − zt‖2 + 1

2γ
‖xt − yt‖2

= f (zt ) + g(zt ) − 1

γ
〈xt − zt , zt − yt 〉 − L

2
‖zt − yt‖2

− 1

2γ
‖xt − zt‖2 + 1

2γ
‖xt − yt‖2

= f (zt ) + g(zt ) + 1

2

(
1

γ
− L

)
‖yt − zt‖2,

1 This slightly improves [25, Theorem 4] because [25, Theorem 4] assumed a slightly stronger condition
that f and g are bounded below and one of them is coercive.
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where the last equality follows from the elementary relation 〈u, v〉 = 1
2 (‖u +

v‖2 − ‖u‖2 − ‖v‖2) applied to u = xt − zt and v = zt − yt . The boundedness
of the sequence can then be deduced under the choice of γ in [25, Theorem 4],
which guarantees γ < 1

L , and the assumption that f + g is coercive.

As in [24, Theorem 4] and [25, Theorem 2], one can also show that the whole
sequence generated is convergent under the additional assumption thatPγ (y, z, x) is
a KL function.2 To this end, note that for any t ≥ 1, we have from (7) and the third
relation in (6) that

∇xPγ (yt , zt , xt ) = 1

γ
(zt − yt ) = 1

2γ
(xt − xt−1). (29)

Moreover, using the second relation in (8), one can obtain

∇yPγ (yt , zt , xt ) = ∇ f (yt ) + 1

γ
(yt − xt ) − 2

γ
(yt − zt )

= 1

γ
(xt−1 − xt ) − 2

γ
(yt − zt ) = 0 (30)

where the second equality follows from the first relation in (9), and the last equality
follows again from the third relation in (6). Finally, using the second relation in (8),
one can compute that

∂zPγ (yt , zt , xt ) = ∂g(zt ) − 1

γ
(zt − xt ) − 2

γ
(zt − yt )

= ∂g(zt ) + 1

γ
(zt − yt ) − 1

γ
(yt − xt−1) − 1

γ
(zt − yt ) + 1

γ
(yt − xt−1)

− 1

γ
(zt − xt ) − 2

γ
(zt − yt )

� − 4

γ
(zt − yt ) + 1

γ
(xt − xt−1) = − 1

γ
(xt − xt−1), (31)

where the inclusion follows from the second relation in (9) and the last equality follows
from the third relation in (6). Consequently, by combining (29), (30), (31) and (19),
we see the existence of κ > 0 so that

dist (0, ∂Pγ (yt , zt , xt )) ≤ κ‖yt+1 − yt‖.

Using this, (20) and following the arguments as in the proof of [25, Theorem 2], it is
not hard to prove the following result. We omit the detailed proof here.

Theorem 3 (Global convergence of the whole sequence) Suppose that 3σ > 2L, the
parameter γ > 0 is chosen as in (11) and that the sequence {(yt , zt , xt )} generated

2 We refer the readers to, for example, [1,2,7,8], for the definition and examples of KL functions. In
particular, if f and g are proper closed semi-algebraic functions, thenPγ is a KL function for any γ > 0.
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from (6) has a cluster point (y∗, z∗, x∗). Suppose also thatPγ is a KL function. Then
the whole sequence {(yt , zt , xt )} is convergent.

As we have seen from Theorems 1 and 2, our convergence analysis of the PR
splitting method requires that the nonconvex objective function can be decomposed
as f + g where f is strongly convex. It should be noted that if the strong convexity
assumption on f is dropped, then the sequence generated is not necessarily converging
to/clustering at a stationary point even when g is also convex. On the other hand, in
the next section, we will demonstrate how the method can be suitably applied to
minimizing a coercive function F + G, where G is a proper closed function and F is
convex Lipschitz differentiable but not necessarily strongly convex.

3 Peaceman–Rachford splitting methods for nonconvex problems with
non-strongly convex decomposition

In many applications, the underlying optimization problem can be formulated as

min
u

F(u) + G(u) (32)

where F + G is coercive, F is a convex smooth function with a Lipschitz continuous
gradient whose modulus is at most LF > 0, and G is a proper and closed function
with a nonempty proximal mapping proxτG(z) for any z and any τ > 0. For example,
when F is the least squares loss function for linear regression and G is the indicator
function of the �1 norm ball, the problem (32) reduces to the LASSO [32]. This
and various related (possibly nonconvex) models have been studied extensively in
the statistical literature; see, for example, [2,6,11,17,22]. We will also provide more
concrete examples and simulation results later in Sect. 4.

In view of the structure of (32), a natural way of applying a splitting method would
be to set f (y) = F(y) and g(z) = G(z). However, since this choice of f is not
strongly convex, our convergence theory in Sect. 2 cannot be applied to deducing
convergence of the resulting PR splitting method.

Thus, we consider an alternative way of splitting the objective in order to obtain
a strongly convex f . To this end, we start by fixing any α > 0 and defining f (y) =
F(y) + α

2 ‖y‖2, g(z) = G(z) − α
2 ‖z‖2. Then ∇ f is Lipschitz continuous with a

modulus at most L = LF +α, and f is strongly convex with modulus at least σ = α.
Thus, one only needs to pick α > 2LF so that 3σ > 2L . Let α = βLF for some
β > 2. Then the upper bound of γ in (11) is given by

α − 2LF

(LF + α)2
= β − 2

(β + 1)2LF
.

Consequently, if we set

f (y) = F(y) + βLF

2
‖y‖2 and g(z) = G(z) − βLF

2
‖z‖2,
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thenwe can pick 0 < γ <
β−2

(β+1)2LF
.3 Moreover, for this choice of γ , theAssumption 2

is satisfied for the above choice of g. Hence, it follows from Theorem 2 that the
sequence generated by applying the PR splitting method to this pair of f and g is
bounded, and then any cluster point gives a stationary point of (32), according to
Theorem 1. For concreteness and easy reference for our subsequent discussion, we
present this algorithm explicitly below:

PR splitting method for (32)

Step 0 Input x0, β > 2 and γ ∈
(
0, β−2

(β+1)2LF

)
.

Step 1 Set

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yt+1 = arg miny
{
F(y) + βLF

2 ‖y‖2 + 1
2γ ‖y − xt‖2

}
,

zt+1 ∈ Arg minz
{
G(z) − βLF

2 ‖z‖2 + 1
2γ ‖2yt+1 − xt − z‖2

}
,

xt+1 = xt + 2(zt+1 − yt+1).

(33)

Step 2 If a termination criterion is not met, go to Step 1.

To the best of our knowledge, the global convergence of the sequence generated
from (33) is new, which we summarize below for concreteness.

Corollary 1 Consider optimization problem (32) and let {(yt , zt , xt )} be the sequence
generated from (33). Then the sequence is bounded, and any cluster point (ȳ, z̄, x̄)
would satisfy ȳ = z̄, and z̄ is a stationary point of (32), that is,

0 ∈ ∇F(z̄) + ∂G(z̄).

Proof We first note that since (33) is just (6) applied to f (y) = F(y) + βLF
2 ‖y‖2

and g(z) = G(z) − βLF
2 ‖z‖2, we obtain immediately from the above discussion

and Theorem 1 that ȳ = z̄ and z̄ is a stationary point of (32) for any cluster point
(ȳ, z̄, x̄). In addition, the objective function f +g = F+G is coercive by assumption.
The boundedness of the sequence {(yt , zt , xt )} now follows from Theorem 2. This
completes the proof. ��

3.1 Peaceman–Rachford splitting method for convex problems

In this subsection, we suppose in addition that theG in (32) is also convex. Hence, (32)
is a convex problem.We first establish the following global (ergodic) complexity result
for the sequence generated from (33). Similar kinds of complexity results have also
been established for other primal-dualmethods for convex optimization problems; see,

3 One natural choice of β is to set β = 5 so that maxβ>2
β−2

(β+1)2LF
= 1

12LF
is attained. However, we

discover in our numerical experiments that a smaller β > 2 coupled with a suitable heuristic for updating
γ leads to faster convergence.
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for example, [33, Theorem2].Wewould like to emphasize that the PR splittingmethod
we discuss here is different from the classical PR splitting method in the literature:
we split the convex objective F +G into the sum of a strongly convex function f and
a possibly nonconvex function g, while the classical PR splitting method only admits
splitting into a sum of convex functions.

Theorem 4 (Global iteration complexity under convexity) Consider optimization
problem (32) with G being convex. Let {(yt , zt , xt )} be the sequence generated from
(33) and (ȳ, z̄, x̄) be any cluster point of this sequence. Then, ȳ = z̄ and z̄ is a solution
of (32). Moreover, for any N ≥ 1, we have

F(z̄N ) + G(z̄N ) − F(z̄) − G(z̄) ≤ 1

8βγ NLF

(
1

γ
− βLF

)
‖x0 − x̄‖2, (34)

where z̄N := 1
N

∑N
t=1 z

t and

min
0≤t≤N

{‖xt+1 − xt‖} = o

(
1√
N

)
.

Proof Since (32) is convex, we conclude that z̄ is actually optimal. We now establish
the inequality (34). First, from the first-order optimality conditions for the y and z-
updates in (33), we have

−
(

βLF + 1

γ

)
yt+1 + 1

γ
xt = ∇F(yt+1),

(
βLF − 1

γ

)
zt+1 − 1

γ
xt + 2

γ
yt+1 ∈ ∂G(zt+1). (35)

Moreover, it is not hard to see from the definition of cluster point and (12) that (35)
is also satisfied with x̄ in place of xt and (ȳ, z̄) in place of (yt+1, zt+1). Write wt

e =
wt − w̄ for w = x , y or z for notational simplicity. We have from (35) (and its
counterpart at (ȳ, z̄, x̄)) and the monotonicity of convex subdifferentials that

〈
−

(
βLF + 1

γ

)
yt+1
e + 1

γ
xte, y

t+1
e

〉
≥ 0,

〈(
βLF − 1

γ

)
zt+1
e − 1

γ
xte + 2

γ
yt+1
e , zt+1

e

〉
≥ 0.

Summing these two relations and rearranging terms, we obtain that

〈xte, yt+1 − zt+1〉 + 2〈yt+1
e , zt+1

e 〉 ≥ (1 + βγ LF )‖yt+1
e ‖2 + (1 − βγ LF )‖zt+1

e ‖2.
(36)

Next, observe that

〈xte, yt+1 − zt+1〉 = 1

2
〈xte, xt − xt+1〉 = 1

4

(
‖xte‖2 + ‖xt − xt+1‖2 − ‖xt+1

e ‖2
)
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= 1

4

(
‖xte‖2 − ‖xt+1

e ‖2
)

+ ‖zt+1 − yt+1‖2

= 1

4

(
‖xte‖2 − ‖xt+1

e ‖2
)

+ ‖zt+1
e ‖2 + ‖yt+1

e ‖2 − 2〈yt+1
e , zt+1

e 〉,
(37)

where the first and third equalities follow from the third relation in (33), the second
equality follows from the elementary relation 〈u, v〉 = 1

2 (‖u‖2 +‖v‖2 −‖u−v‖2) as
applied to u = xte and v = xt − xt+1. Combining (37) with (36), we see further that

1

4
‖xte‖2 − 1

4
‖xt+1

e ‖2 ≥ βγ LF

(
‖yt+1

e ‖2 − ‖zt+1
e ‖2

)
(38)

Next, using the fact that ∇F is Lipschitz continuous with modulus at most LF , we
have

F(zt+1) ≤ F(yt+1) + 〈∇F(yt+1), zt+1 − yt+1〉 + LF

2
‖zt+1 − yt+1‖2. (39)

From this we see further that

F(zt+1) + G(zt+1) − F(z̄) − G(z̄)

≤ F(yt+1) − F(ȳ) + G(zt+1) − G(z̄) + 〈∇F(yt+1), zt+1 − yt+1〉
+ LF

2
‖zt+1 − yt+1‖2

≤ 〈∇F(yt+1), yt+1
e 〉 +

〈(
βLF − 1

γ

)
zt+1 − 1

γ
xt + 2

γ
yt+1, zt+1

e

〉

+〈∇F(yt+1), zt+1 − yt+1〉 + LF

2
‖zt+1 − yt+1‖2

=
〈
∇F(yt+1)+

(
βLF− 1

γ

)
zt+1− 1

γ
xt + 2

γ
yt+1, zt+1

e

〉
+ LF

2
‖zt+1 − yt+1‖2

=
〈
−

(
βLF − 1

γ

)
yt+1 +

(
βLF − 1

γ

)
zt+1, zt+1

e

〉
+ LF

2
‖zt+1 − yt+1‖2

=
(
1

γ
− βLF

)
〈yt+1 − zt+1, zt+1

e 〉 + LF

2
‖zt+1 − yt+1‖2

= 1

2

(
1

γ
− βLF

)
(‖yt+1

e ‖2 − ‖zt+1
e ‖2) + 1

2

(
(1 + β)LF − 1

γ

)
‖zt+1 − yt+1‖2

≤ 1

2

(
1

γ
− βLF

)
(‖yt+1

e ‖2 − ‖zt+1
e ‖2)

≤ 1

8βγ LF

(
1

γ
− βLF

)
(‖xte‖2 − ‖xt+1

e ‖2), (40)

where: the first inequality follows from (39) and the fact that z̄ = ȳ; the second
inequality follows from the subdifferential inequalities applied to F and G at the
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points yt+1 and zt+1 respectively, and also the second relation in (35); the second
equality follows from the first relation in (35); the fourth equality follows from the
elementary relation 〈u, v〉 = 1

2 (‖u + v‖2 − ‖u‖2 − ‖v‖2) as applied to u = zt+1
e

and v = yt+1 − zt+1; the second last inequality follows from the fact that 0 < γ <
β−2

(β+1)2LF
so that (1 + β)LF − 1

γ
< 0, while the last inequality follows from (38).

Summing both sides of (40) from t = 0 to N − 1 ≥ 0 and using the convexity of
F + G, we have

F(z̄N ) + G(z̄N ) − F(z̄) − G(z̄) ≤ 1

N

N−1∑
t=0

(F(zt+1) + G(zt+1) − F(z̄) − G(z̄))

≤ 1

8βγ NLF

(
1

γ
− βLF

)
‖x0 − x̄‖2,

where z̄N is defined in the statement of the theorem. This proves (34).
Finally, observe from the last equality in (40) that for all t ≥ 1

0 ≤ F(zt+1) + G(zt+1) − F(z̄) − G(z̄)

≤ 1

2

(
1

γ
− βLF

)
(‖yt+1

e ‖2 − ‖zt+1
e ‖2) + 1

2

(
(1 + β)LF − 1

γ

)
‖zt+1 − yt+1‖2,

where the first inequality follows from the optimality of z̄. Rearranging terms in the
above relation, we see further that

(
1

γ
− (1 + β)LF

)
‖zt+1 − yt+1‖2 ≤

(
1

γ
− βLF

)
(‖yt+1

e ‖2 − ‖zt+1
e ‖2).

Using this relation and the definition of the x-update, we obtain

1

4

N−1∑
t=0

‖xt+1 − xt‖2 =
N−1∑
t=0

‖zt+1 − yt+1‖2

≤ γ

1 − (1 + β)γ LF

(
1

γ
− βLF

) N−1∑
t=0

(‖yt+1
e ‖2 − ‖zt+1

e ‖2)

≤ 1

4βLF (1 − (1 + β)γ LF )

(
1

γ
− βLF

)
‖x0 − x̄‖2,

where the last inequality is due to (38). Thus,
∑+∞

t=0 ‖xt+1 − xt‖2 < +∞ and so,∑2N−1
t=N ‖xt+1−xt‖2 → 0 as N → ∞. NowconsiderαN := min0≤t≤N {‖xt+1−xt‖2}

for all N ≥ 0. Then, we have αN+1 ≤ αN for all N ≥ 0 and,

N α2N ≤ αN + · · · α2N−1 ≤
2N−1∑
t=N

‖xt+1 − xt‖2 → 0.
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This implies that αN = o(1/N ). Therefore, the conclusion follows. This completes
the proof. ��

Next, we show that the PR splitting method exhibits linear convergence in solving
(32) if G is convex and F + G is strongly convex. We note that, for the classical
PR splitting method, linear convergence under strongly convexity is known; see [26,
Remark 10 and Proposition 4]. As explained before, herewe are considering a different
PR splitting method.

Proposition 1 (Linear convergence under strong convexity) Consider optimization
problem (32) with G being convex. Suppose that F + G is indeed strongly convex.
Let {(yt , zt , xt )} be the sequence generated from (33). Then {(yt , zt , xt )} converges
linearly to (ȳ, z̄, x̄) with ȳ = z̄ and z̄ being the unique optimal solution for (32), i.e.,
there exist M > 0 and r ∈ (0, 1) such that for all t ≥ 1,

max{‖yt − ȳ‖2, ‖zt − z̄‖2, ‖xt − x̄‖2} ≤ M rt .

Proof Let (ȳ, z̄, x̄) be any cluster point of the sequence {(yt , zt , xt )}. As before, we
write wt

e = wt − w̄ for w = x , y or z for notational simplicity. From the preceding
theorem ȳ = z̄ and z̄ is optimal for (32). Note that F + G is strongly convex. Hence,
the optimal solution of (32) exists and is unique. Consequently, the whole sequence
{(yt , zt )} converges to the unique limit (z̄, z̄), where z̄ is the unique solution of (32).
From this and (35) one can deduce that {xt } is also convergent, and hence, converges
to x̄ . We next establish linear convergence.

Denote the strong convexity modulus of F + G by σ1. From (40), the strong
convexity of F +G and the fact that z̄ is the solution of (32), we see that for all t ≥ 1,

σ1

2
‖zt+1

e ‖2 ≤ F(zt+1) + G(zt+1) − F(z̄) − G(z̄) ≤ C(‖xte‖2 − ‖xt+1
e ‖2), (41)

where C := 1
8βγ LF

(
1
γ

− βLF

)
. Moreover, from the last inequality in (40), we have

for all t ≥ 1,

C1(‖yt+1
e ‖2 − ‖zt+1

e ‖2) ≤ C(‖xte‖2 − ‖xt+1
e ‖2),

where C1 = 1
2

(
1
γ

− βLF

)
. It then follows that

‖yt+1
e ‖2 − C

C1
(‖xte‖2 − ‖xt+1

e ‖2) ≤ ‖zt+1
e ‖2.

This together with (41) gives us that for all t ≥ 1,

‖yt+1
e ‖2 ≤

(
2C

σ1
+ C

C1

)
(‖xte‖2 − ‖xt+1

e ‖2). (42)
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On the other hand, note from the first relation in (35) that

−
(

βLF + 1

γ

)
yt+1
e + 1

γ
xte = ∇F(yt+1) − ∇F(ȳ).

This together with the Lipschitz continuity of ∇F implies that

−
(

βLF + 1

γ

)
‖yt+1

e ‖ + 1

γ
‖xte‖ ≤ ‖∇F(yt+1) − ∇F(ȳ)‖ ≤ LF‖yt+1

e ‖

and consequently, ‖xte‖ ≤ ((1 + β)γ LF + 1)‖yt+1
e ‖. Thus, we obtain that, for all

t ≥ 1

1

((1 + β)γ LF + 1)2
‖xte‖2 ≤ ‖yt+1

e ‖2 ≤
(
2C

σ1
+ C

C1

)
(‖xte‖2 − ‖xt+1

e ‖2).

This shows that there exists r ∈ (0, 1) such that

‖xt+1
e ‖2 ≤ r‖xte‖2 for all t ≥ 1.

It follows that

‖xte‖2 ≤ ‖x0 − x̄‖2 r t for all t ≥ 1.

Moreover, from (41) and (42), this further yields that, for all t ≥ 1,

‖zt+1
e ‖2 ≤ 2C

σ1
‖xte‖2 ≤ 2C‖x0 − x̄‖2

σ1
r t .

and

‖yt+1
e ‖2 ≤

(
2C

σ1
+ C

C1

)
‖xte‖2 ≤

(
2C

σ1
+ C

C1

)
‖x0 − x̄‖2 r t .

Therefore, the conclusion follows. ��

4 Applications

In this section, we apply the PR splitting method (33) to solving two important class of
nonconvex optimization problems: constrained least squares problem and feasibility
problems, based on our discussion in Sect. 3.
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4.1 Constrained least squares problems

A common type of problems that arises in the area of statistics and machine learning
is the following constrained least squares problem:

min
u∈D

1

2
‖Au − b‖2, (43)

where A is a linear map, b is a vector of suitable dimension, and D is a nonempty
compact set that is not necessarily convex. See [23,32] for concrete examples of (43).

The classical PR splitting method applied to (43) does not have a convergence
guarantee. As an alternative, as discussed in Sect. 3, we can set f (y) = 1

2‖Ay −
b‖2 + βλmax(AT A)

2 ‖y‖2 and g(z) = δD(z)− βλmax(AT A)
2 ‖z‖2 and apply the PR splitting

method accordingly.
We next discuss computation of the proximal mappings. We start with the proximal

mapping of γ g. From the definition, for each w, the proximal mapping gives the set
of minimizers of

min
z∈D

{
−βλmax(AT A)

2
‖z‖2 + 1

2γ
‖z − w‖2

}
.

It is clear that this set is given by PD

(
w

1−βλmax(AT A)γ

)
since γ < 1

βλmax(AT A)
. On

the other hand, to compute the proximal mapping for γ f , we consider the following
optimization problem for each w

min
y

{
1

2
‖Ay − b‖2 + βλmax(AT A)

2
‖y‖2 + 1

2γ
‖y − w‖2

}
,

whose unique minimizer is given by

y = [(βγ λmax(A
T A) + 1)I + γ AT A]−1(w + γ AT b).

Thus, the PR splitting method for (43) can be stated as follows:

PR splitting method for (43)

Step 0 Input x0, β > 2 and γ ∈
(
0, β−2

(β+1)2λmax(AT A)

)
.

Step 1 Set

⎧⎪⎨
⎪⎩

yt+1 = [(βγ λmax(AT A) + 1)I + γ AT A]−1(xt + γ AT b),

zt+1 ∈ PD

(
2yt+1−xt

1−βλmax(AT A)γ

)
,

xt+1 = xt + 2(zt+1 − yt+1).

(44)

Step 2 If a termination criterion is not met, go to Step 1.
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As a consequence of Corollary 1, we see that Algorithm (44) generates a bounded
sequence such that any of its cluster point gives a stationary point of (43). We note
that this global convergence result of (44) is new even when D is convex.

To illustrate our proposed approach, we now test the PR splitting method (44)
on solving (43). We compare our algorithm against the DR splitting method in [25].
Our initialization and termination criteria for both algorithms are the same as in [25,
Section 5]; both algorithms are initialized at the origin and terminated when

max{‖xt − xt−1‖, ‖yt − yt−1‖, ‖zt − zt−1‖}
max{‖xt−1‖, ‖yt−1‖, ‖zt−1‖, 1} < tol (45)

for some tol > 0. Note that, in general, the upper bound of γ in algorithm (44)
might be too small in practical computation. Thus, following a technique used in [25,
Section 5] for the DR splitting method, we adopt a heuristic for PR splitting method in
our numerical simulation,which combines algorithm (44)with a specific update rule of
the parameter γ . In particular, we setβ = 2.2 and start with γ = 0.93/(βλmax(AT A)).
We then update γ as max{ γ

2 , 0.9999 · γ1} whenever γ > γ1 := β−2
(β+1)2λmax(AT A)

and

the sequence satisfies either ‖yt − yt−1‖ > 1000
t or ‖yt‖ > 1010. Following a similar

discussion as in [25, Remark 4], one can show that this heuristic leads to a bounded
sequence which clusters at a stationary point of (43). On the other hand, for the DR
splitting method, we use the same heuristics described in [25, Section 5] for updating
γ but we consider three different initial γ ’s: k · γ0 for k = 10, 30 and 50, with

γ0 = (

√
3
2 − 1)/λmax(AT A). These variants are denoted by DR10, DR30 and DR50,

respectively.
In our first numerical experiment, we first randomly generate an m × n matrix A,

a noise vector ε ∈ IRm , and also an x̂ ∈ IRr with r = � m
10�, all with i.i.d. standard

Gaussian entries.We further scale each column of A to have norm 1. Next, we generate
a random sparse vector x̃ ∈ IRn by first setting x̃ = 0 and then assigning randomly r
entries in x̃ to be x̂ . Finally, we set b = Ax̃ + 0.01 · ε and D = {x ∈ IRn : ‖x‖0 ≤
r, ‖x‖∞ ≤ 106}; here ‖x‖0 denotes the cardinality of x and ‖x‖∞ is the �∞ norm of x .

We generate 50 random instances as described above for each pair of (m, n), where
m ∈ {100, 200, 300, 400, 500} and n ∈ {4000, 5000, 6000}. Our results are reported
in Table 1, where we present the number of iterations and the function value at termi-
nation4 averaged over the 50 instances. One can observe that the PR splittingmethod is
faster than theDR splittingmethods for largerm. Besides, the function values obtained
by the PR splitting method are usually comparable with DR30, worse than DR50 and
better than DR10.

We also perform experiments using real data. We consider four sets of real data for
the A andb used in (43): leukemia data, lymphnode status data, breast cancer prognosis
data and colon tumor gene expression data. We use the leukemia data pre-processed
in [34], that has 3501 genes and 72 samples. The lymph node status data we use are
pre-processed in [14], with 4514 genes and 148 samples. The breast cancer prognosis
data we use are pre-processed in [34], containing 4919 genes and 76 samples. Finally,

4 We choose tol = 10−8, and we report 1
2 ‖Azt − b‖2 for both methods.
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Table 1 Comparing DR10, DR30, DR50 and PR splitting for constrained least squares problem on random
instances

Data DR10 DR30 DR50 PR

m n iter fval iter fval iter fval iter fval

100 4000 805 5.00e−01 225 2.67e−01 274 7.73e−02 324 3.17e−01

100 5000 962 6.43e−01 252 4.96e−01 291 2.06e−01 370 4.95e−01

100 6000 1137 6.18e−01 326 5.02e−01 301 2.53e−01 436 4.76e−01

200 4000 508 5.32e−01 172 4.74e−02 217 9.20e−03 185 7.59e−02

200 5000 624 5.78e−01 195 6.93e−02 234 9.10e−03 224 2.06e−01

200 6000 723 6.93e−01 220 1.60e−01 250 8.94e−03 281 1.77e−01

300 4000 415 1.41e−01 141 1.33e−02 184 1.31e−02 123 1.39e−02

300 5000 489 2.70e−01 154 1.39e−02 201 1.35e−02 150 1.42e−02

300 6000 567 5.20e−01 170 1.36e−02 215 1.32e−02 187 1.44e−02

400 4000 322 4.35e−02 124 1.78e−02 166 1.75e−02 91 1.79e−02

400 5000 406 9.08e−02 137 1.77e−02 179 1.75e−02 115 1.83e−02

400 6000 481 1.48e−01 148 1.82e−02 194 1.77e−02 140 1.85e−02

500 4000 258 2.53e−02 114 2.26e−02 160 2.23e−02 75 2.27e−02

500 5000 314 2.97e−02 124 2.20e−02 166 2.17e−02 92 2.22e−02

500 6000 406 4.05e−02 135 2.25e−02 178 2.22e−02 112 2.27e−02

we use the data pre-processed in [19] with 2000 genes and 62 samples for the colon
tumor gene expression data.

Similar to [27, Section 3.3], for all the data, we first standardize A and b to make
each column have mean 0 and variance 1, and then scale the columns of A to have unit
norm. For the A and b thus constructed, we solve (43) with D = {x ∈ IRn : ‖x‖0 ≤
r, ‖x‖∞ ≤ 106} for r = 10, 20, 30 by the PR splitting method (44) and compare it
with DR10, DR30 and DR50. Our numerical results are presented in Table 2,5 where
one can see that PR is slower than DR50 and faster than DR10. Moreover, it usually
outperforms DR30 in terms of function values, and its speed is comparable with DR30
for the Breast and the Colon data.

4.2 Feasibility problems

Another important problem in optimization is the feasibility problem [2–4,9,20]. We
consider the following simple version: finding a point in the intersection of a nonempty
closed convex setC and a nonempty compact set D. It is well known that this problem
can be modeled via (32) by setting F(u) = 1

2d
2
C (u) and G(u) = δD(u); see, for

example, [28]. For this choice of F , we have LF = 1.

5 We choose tol = 10−5, and we report 1
2 ‖Azt − b‖2 for both methods.
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Table 2 Comparing DR10, DR30, DR50 and PR splitting on real data

Data r DR10 DR30 DR50 PR

iter fval iter fval iter fval iter fval

Leukemia 10 8242 2.40e+00 1805 3.92e+00 1229 3.92e+00 3461 2.47e+00

20 7890 2.32e+00 3727 6.09e−01 3065 5.81e−01 6608 3.05e−01

30 12,530 2.24e−01 5011 3.01e−01 2988 1.47e−01 8265 1.20e−01

Lymph 10 1345 2.93e+01 758 2.90e+01 496 2.90e+01 1297 2.76e+01

20 5912 2.26e+01 1910 1.91e+01 895 1.73e+01 2529 1.84e+01

30 9354 7.91e+00 1883 1.34e+01 939 1.44e+01 2089 8.27e+00

Breast 10 2338 1.28e+01 2705 9.33e+00 1095 8.40e+00 1656 1.33e+01

20 14,359 2.90e+00 2345 3.53e+00 2824 4.11e+00 2906 2.81e+00

30 9905 6.96e−01 5162 1.33e+00 3802 7.50e−01 8241 9.58e−01

Colon 10 7072 8.08e+00 4313 8.08e+00 3352 8.08e+00 4463 8.08e+00

20 14,393 3.20e+00 7011 1.95e+00 9798 2.29e+00 6187 1.89e+00

30 18,361 7.17e−01 8952 6.45e−01 4922 7.26e−01 10,937 1.33e+00

As before, it can be shown that the proximal mapping of γ g is given by PD

(
w

1−βγ

)
since γ < 1

β
. We next compute the proximal mapping for γ f in this case. From the

definition, for each w, we consider the following optimization problem

v := min
y

{
1

2
d2C (y) + β

2
‖y‖2 + 1

2γ
‖y − w‖2

}

= min
u∈C min

y

{
1

2
‖y − u‖2 + β

2
‖y‖2 + 1

2γ
‖y − w‖2

}
. (46)

Notice that the inner minimization on the right hand side is attained at

y = γ u + w

(1 + β)γ + 1
. (47)

Plugging (47) back into the (46), we see further that

v = 1

((1 + β)γ + 1)2

×min
u∈C

{
1

2
‖(1 + βγ )u − w‖2 + β

2
‖γ u + w‖2 + γ

2
‖u − (1 + β)w‖2

}
.

(48)

It is routine to show that the minimum in (48) is attained at

u = PC

(
w

1 + βγ

)
.
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Combining this with (47), the proximal mapping of γ f at w is given by

γ PC
(

w
1+βγ

)
+ w

(1 + β)γ + 1
.

Thus, the PR splitting method for (32) with F(u) = 1
2d

2
C (u) and G(u) = δD(u) can

be described as follows:

PR splitting method for (32) with F(u) = 1
2d

2
C (u) and G(u) = δD(u)

Step 0 Input x0, β > 2 and γ ∈
(
0, β−2

(β+1)2

)
.

Step 1 Set

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yt+1 = γ PC
(

xt
1+βγ

)
+xt

(1+β)γ+1 ,

zt+1 ∈ PD

(
2yt+1−xt

1−βγ

)
,

xt+1 = xt + 2(zt+1 − yt+1).

(49)

Step 2 If a termination criterion is not met, go to Step 1.

Similarly, as an immediate consequence of Corollary 1, we see that Algorithm (49)
generates a bounded sequence such that any of its cluster point gives a stationary point
of (32). We would like to point out that this global convergence result of (49) is new
even when D is also convex.

As an illustration of our proposed approach, we now test the PR splitting method
(49) on solving (32) with F(u) = 1

2d
2
C (u) and G(u) = δD(u) via MATLAB exper-

iments. We again benchmark our algorithm against the DR splitting method in [25].
Both algorithms are initialized at the origin and terminated when (45) is satisfied with
tol = 10−8.Also, as in the previous subsection,we adopt a heuristic for updatingγ fol-
lowing the technique used in [25, Section 5]. Specifically, for the PR splitting method
(49), we set β = 2.2 and start with γ = 0.93/β and update γ as max{ γ

2 , 0.9999 · γ1}
whenever γ > γ1 := β−2

(β+1)2
, and the sequence satisfies either ‖yt − yt−1‖ > 1000

t or

‖yt‖ > 1010. Following a similar discussion as in [25, Remark 4], this heuristic can
be shown to give a bounded sequence that clusters at a stationary point of (32). On
the other hand, for the DR splitting method, we adopt the same heuristics described
in [25, Section 5] for updating γ but we consider three different initial γ ’s: k · γ0 for

k = 50, 100 and 150, with γ0 :=
√

3
2 −1. These variants are denoted by DR50, DR100

and DR150, respectively.
As in [25, Section 5], we consider the problem of finding an r -sparse solution of

a randomly generated linear system Ax = b. To be concrete, we set C = {x ∈ IRn :
Ax = b} and D = {x ∈ IRn : ‖x‖0 ≤ r, ‖x‖∞ ≤ 106}; here ‖x‖0 denotes the
cardinality of x and ‖x‖∞ is the �∞ norm of x . For the set C , we first generate an
m × n matrix A and an x̂ ∈ IRr with r = �m

5 �, both with i.i.d. standard Gaussian
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entries. We then set x̃ to be the n-dimensional zero vector and randomly assign r
entries in x̃ to be x̂ . We further project this x̃ onto [−106, 106]n so that x̃ ∈ D. Finally,
we set b = Ax̃ . Consequently, the intersection C ∩ D is nonempty for the instance
generated because it contains x̃ . In particular, this means that the globally optimal
value of minu{ 12d2C (u) : u ∈ D} is zero.

In our experiments, we generate 50 random instances as described above for each
pair of (m, n), wherem ∈ {100, 200, 300, 400, 500} and n ∈ {4000, 5000, 6000}. We
report our results in Tables 3 and 4, wherewe present the number of iterations averaged
over the 50 instances, the largest and smallest function values at termination,6 and
also the number of successes and failures in identifying a sparse solution of the linear
system.7 We also present the average number of iterations for successful instances
(iters) and failed instances (iterf ).

In Table 3, we compare our PR splitting method with DR150. One can observe that
this version of DR splitting method outperforms the PR splitting method in terms of
the solution quality in this setting. However, the PR splitting method is consistently
faster and its performance becomes comparable with the DR splitting method for
easier instances (larger m and smaller n/m).

We also present in Table 4 the numerical results for DR50 and DR100. One can see
that the DR splitting method becomes faster (while still slower than the PR splitting
method) for these two smaller initial γ , at the price of fewer successful instances.

5 Concluding remarks

In this paper, we studied the applicability of the PR splitting method for solving
nonconvex optimization problems. We established global convergence of the method
when applied to minimizing the sum of a strongly convex Lipschitz differentiable
function f and a proper closed function g, under suitable assumptions. Exploiting
the possible nonconvexity of g, we showed how to suitably apply the PR splitting
method to a large class of convex optimization problems whose objective function is
not necessarily strongly convex. This significantly broadens the applicability of the
PR splitting method to cover feasibility problems and many constrained least squares
problems.

Appendix: concrete numerical examples

In this appendix, we provide some simple and concrete examples illustrating the dif-
ferent behaviors of the classical PR splittingmethod, the classical DR splittingmethod
and our proposed PR splitting method (33).

The first example shows that, even in the convex setting, the classical PR splitting
method can be faster than the classical DR splitting method, and our proposed PR
method can outperform the classical DR method for some particular choice of the

6 For both methods, we report 1
2 d

2
C (zt ).

7 We declare a failure if the function value at termination is above 10−6, and a success if the value is below
10−12.
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parameter γ . The second example on nonconvex feasibility problem shows that the
classical PR method can diverge while our proposed PR method converges linearly to
a solution for the feasibility problem.

Example 1 (Classical DR splitting method vs. classical/proposed PR method) Con-
sider f (x) = ‖x‖2 and g(x) = 0 for all x ∈ IRn . Then, a direct verification shows
that, for any γ > 0,

proxγ f (z) = arg min
u

{
γ ‖u‖2 + 1

2
‖u − z‖2

}
= z

2γ + 1

and

proxγ g(z) = arg min
u

{
1

2
‖u − z‖2

}
= z.

Thus, the classical DR method reads

xt+1 = I + (2proxγ g − I ) ◦ (2proxγ f − I )

2
(xt )

= 1

2γ + 1
xt = · · · =

(
1

2γ + 1

)t+1

x0,

while the classical PR method reads

xt+1 = (2proxγ g − I ) ◦ (2proxγ f − I )(xt ) = 1 − 2γ

2γ + 1
xt = · · · =

(
1 − 2γ

2γ + 1

)t+1

x0.

Thus, for this example, the classical PR method converges faster than the classical DR
method when γ ∈ (0, 1).

Moreover, let β = 2.5 and γ <
β−2

(β+1)2LF
= 1

49 . Then, the proposed PR method
(33) reads

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yt+1 = arg miny
{
7
2‖y‖2 + 1

2γ ‖y − xt‖2
}

= 1
1+7γ x

t ,

zt+1 = arg minz
{
− 5

2‖z‖2 + 1
2γ ‖2yt+1 − xt − z‖2

}
= 1

1−5γ (2yt+1 − xt ),

xt+1 = xt + 2(zt+1 − yt+1) =
(
1 − 4γ

(1−5γ )(1+7γ )

)
xt .

(50)

Note that, for γ = 0.01 <
β−2

(β+1)2LF
= 1

49 , we have

0 < 1 − 4γ

(1 − 5γ )(1 + 7γ )
≤ 0.97 <

1

2γ + 1
.

Thus, for γ = 0.01, our proposed PR method (33) is faster than the classical DR
method for this example.
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Example 2 (Classical PR method vs. the proposed PR method) Let C = {(0, 0)} and
D = ({0} × IR

) ∪ (
IR × {0}). We consider the feasibility problem of finding a point

in the intersection of C and D. We start with the initial point x0 = (a, 0) with a �= 0.
Then, the classical PR splittingmethod applies (6) to f (x) = δC (x) and g(x) = δD(x)
for all x ∈ IR2, and reduces to

xt+1 = (2proxγ g − I ) ◦ (2proxγ f − I )(xt ) = (2PD − I ) ◦ (2PC − I )(xt ) = −xt .

Thus, the classical PR splitting method diverges and cycles between two points (a, 0)
and (−a, 0). On the other hand, let β = 5 and γ ∈ (

0, 1
12

)
and consider the proposed

PR method (49) for feasibility problems. This algorithm reads

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yt+1 = γ PC
(

xt
1+βγ

)
+xt

(1+β)γ+1 = xt
6γ+1 ,

zt+1 ∈ PD

(
2yt+1−xt

1−βγ

)
=

{
2yt+1−xt

1−5γ

}
,

xt+1 = xt + 2(zt+1 − yt+1) =
(
1 − 2γ

(1−5γ )(6γ+1)

)
xt ,

(51)

where the formula for the z-update follows from the fact that xt , yt ∈ IR×{0} ⊂ D, and
so is 2yt+1 − xt by the construction. Hence, the proposed PR method (51) converges
to (0, 0) ∈ C ∩ D linearly in this case.
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